TW200806586A - Method and system for providing potable water - Google Patents
Method and system for providing potable water Download PDFInfo
- Publication number
- TW200806586A TW200806586A TW096120970A TW96120970A TW200806586A TW 200806586 A TW200806586 A TW 200806586A TW 096120970 A TW096120970 A TW 096120970A TW 96120970 A TW96120970 A TW 96120970A TW 200806586 A TW200806586 A TW 200806586A
- Authority
- TW
- Taiwan
- Prior art keywords
- water
- treated
- separation device
- species
- driven separation
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/22—Improving land use; Improving water use or availability; Controlling erosion
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Urology & Nephrology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Environmental Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Sorption (AREA)
- Cultivation Of Plants (AREA)
- Hydroponics (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
200806586 九、發明說明: 【發明所屬之技術領域】 本申請案主張2006年6月22日申請之美國臨時專利申 請案第60/805,5 12號之優先權,其標題爲”ELECTRODIALYSIS FOR DESALINATION OF SEAWATER AND BRACKISH WATER FOR AGRICULTURAL USEn& 2006 年 6 月 13 曰申請之美 . 國臨時專利申請案第60/8 04,6 1 0號之優先權,其標題爲 "ELECTRODIALYSIS AND FILTRATION FOR AGRICULTURAL Φ WATER PRODUCTION”,兩案之全文以弓I用的方式倂入本 文中以供參考。 本發明係關於提供農作物灌溉水以及飮用水之系統和 方法,更特別,係關於自具有不合格之溶解固體粒子含量之 水,提供灌溉水及/或飲用水之系統和方法。 【先前技術】 去鹽或淡化係述及舉例而言,自水中移除鹽之水處理 方法。某些情況中,水源是含鹽或海水而其去鹽技術供應 ® 至少一部分之都市預期的飮用水。淡化技術一般包括基於 蒸餾之技術以及逆滲透技術。亦可將去鹽之水消費在商業 和工業應用方面,舉例而言,作爲程序進料水、鍋爐給水 和灌溉水。可利用去鹽水之工業的特別實例包括藥物、採 礦、紙和紙漿、及農業產業。 【發明內容】 本發明的一些態樣提供包括用於產生飮用水之系統之 一或數實施例。該系統可包括欲處理之水源、壓力驅動之 200806586 分離裝置具有流動地連接至欲處理之水源之進口、廢水出 口、已處理之水出口、及電驅動之分離裝置具有產物水出 口及流動地連接至至少一個的欲處理水源之進口及廢水出 口,以及一混合器具有飮用水出口及流動地連接至已處理 之水出口和至產物水出口之進口。 本發明的另外態樣提供包括用於產生飮用水之方法之 一或數實施例。該方法可包括: 提供欲處理之水; 在電驅動之分離裝置中,處理一部分的欲處理之水而 產生第一處理水; 在壓力驅動之分離裝置中,處理一部分的欲處理之水 而產生第二處理水;及 混合第一處理水和第二處理水而產生具有所預期之 TDS含量之飮用水。 【實施方式】 在其應用方面,本發明不限於下列敘述中所揭示或圖 式中所舉例說明之構件的構造和配置細節。本發明能具體 化及能被實施,或以超出本文中例示所陳述者以外之不同 方式予以進·行。 本發明的一或數個態樣可包括用於提供適合於農業設 施之水的系統和技術。本發明的其他態樣可提供飮用水或 適合於人類使用或消耗之水以及適合家畜和家禽之水。本 發明的某些系統和技術可轉化或在其他狀況下致使非飮用 水適合.於農業、家畜、家禽、及/或人類消耗。本發明的更 200806586 另外態樣可包括系統和技術,其自欲處理之流體中,優先 地或選擇地移除某些物種超過其他物種而產生具有一或數 種預期特性之產物。與非選擇性技術成對比,本發明的某 些選擇性移除態樣,由於避免或減少附加之後處理程序, 例如摻合,可能更具成本效益。因此,本發明的系統和技 術經濟地提供更適合於預定目的使用之處理水。 .本發明的某些實施例中,將某些型式的物種保留在已 處理流中,同時將其他型式的物種優先地移除。可將生成 之產物流體利用於各種應用中及/或在其他情況,符合一或 數個目標。本發明的其他態樣可包括系統和技術其提供具 有特製之一或數種性質或特性之水以符合特別目的。因此 ,本發明的某些一或數種實施例可包括系統和技術其提供 具有一或數種特質之一或數種特質之水流或液體,此特質 係基於使用點或利用該水流或液體在其中之設施的一或數 個參數予以調整。 本發明的甚至另外態樣可包括系統和技術其經濟地提 供農業、工業、商業和住宅之用水。此外,本發明的某些 特別態樣可包括提供水來供給複數之預期或各種程度的純 度或品質。因此,在某些實施例中,本發明的系統和技術 可提供一或數種水流或液體在混合使用設施中。本發明的 特別有利態樣可包括自具有高固體含量之水源提供複數的 水流或液體’各水流或液體可能具有不同之水品質程度至 複數的使用點,各使用點可具有不同之預期。本發明的此 等態樣可提供系統和技術,舉例而言,其處理非飮用水來 200806586 致使它可飲用及/或適合於灌溉、適合家畜及/或家禽消耗 及適合人類消耗或使用。 本發明的某些態樣中,可處理具有被溶入其中之高含 量的一或數種不良物種之水來移除或至少減少此等物種的 濃度至合格程度。一或數種不良物種可能是任何物種其致 使未經處理之水不適合於特定應用。舉例而言,該水可能 含有高含量或非期望濃度的單價陽離子及/或陰離子其不 利地或非期望地阻礙水在土壤中的保留或其他物種的吸附 ’舉例而言,包括二價或甚至多價物種。如果預期是和農 作物灌溉有關係,可厭的狀況或特性可能包括含有一或數 物種之水,其影響被灌溉之土壤的透過性及/或滲濾性質。 舉例而言,本發明的某些態樣可包括致使或處理水來相較 於非單價物種優先移除單價物種。 依照一或數個特別態樣,本發明可包括與系統及/或方 法有關之實施例,包括提供或導引欲處理之水入電驅動之 分離裝置中。本發明的某些實施例可包括灌溉系統其包括 流動地連接或至少可連接至一或數個欲處理之水源的電驅 動之分離裝置及至少一個灌溉水分配系統。 本發明的某些態樣中,其某些實施例可包括提供飲用 水之方法。顯著地,本發明的某些態樣不須熱驅動之分離 技術或單元操作就可提供灌溉水及/或飲用水。舉例而言, 本發明的某些實施例中,該方法可包括提供欲處理之水及 在電驅動之分離裝置中處理至少一部分的該欲處理之水而 產生第一處理水的一或數個動作或步驟。該方法可另外包。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 SEAWATER AND BRACKISH WATER FOR AGRICULTURAL USEn& June 13, 2006 曰Application of Beauty. Priority of the Provisional Patent Application No. 60/8 04,6 1 0, entitled "ELECTRODIALYSIS AND FILTRATION FOR AGRICULTURAL Φ WATER PRODUCTION" The full text of the two cases is incorporated herein by reference. The present invention relates to systems and methods for providing crop irrigation water and hydrazine water, and more particularly to systems and methods for providing irrigation water and/or drinking water from water having unacceptable dissolved solids content. [Prior Art] Desalting or desalination is described, for example, as a method of removing salt water from water. In some cases, the source of water is salt or seawater and its desalination technology supplies ® at least a portion of the city's intended water use. Desalination techniques generally include distillation based techniques as well as reverse osmosis techniques. Desalting water can also be consumed in commercial and industrial applications, for example, as process feed water, boiler feed water, and irrigation water. Specific examples of industries that can utilize desalination include pharmaceuticals, mining, paper and pulp, and the agricultural industry. SUMMARY OF THE INVENTION Some aspects of the present invention provide one or more embodiments including a system for generating hydrazine water. The system may include a water source to be treated, a pressure driven 200806586 separation device having an inlet fluidly connected to the water source to be treated, a waste water outlet, a treated water outlet, and an electrically driven separation device having a product water outlet and a flow connection To at least one of the inlet and waste water outlets for which the water source is to be treated, and a mixer having a water outlet and a connection to the treated water outlet and to the product water outlet. A further aspect of the invention provides one or more embodiments comprising a method for producing hydrazine water. The method may include: providing water to be treated; in the electrically driven separating device, processing a portion of the water to be treated to generate first treated water; and in the pressure-driven separating device, processing a portion of the water to be treated to produce The second treated water; and the first treated water and the second treated water are mixed to produce hydrazine water having the desired TDS content. [Embodiment] In its application, the invention is not limited to the construction and configuration details of the components disclosed in the following description or illustrated in the drawings. The present invention can be embodied and carried out in various ways other than as set forth in the description herein. One or more aspects of the invention may include systems and techniques for providing water suitable for agricultural facilities. Other aspects of the invention may provide water for use or water suitable for human use or consumption as well as water suitable for livestock and poultry. Certain systems and techniques of the present invention can transform or otherwise render non-drinking water suitable for use in agriculture, livestock, poultry, and/or human consumption. Further aspects of the invention 200806586 may also include systems and techniques for preferentially or selectively removing certain species from other species from the fluid to be treated to produce a product having one or more desired characteristics. In contrast to non-selective techniques, certain selective removal aspects of the present invention may be more cost effective due to avoiding or reducing additional post-processing procedures, such as blending. Accordingly, the system and technology of the present invention economically provide treated water that is more suitable for use for the intended purpose. In certain embodiments of the invention, certain types of species are retained in the treated stream while other types of species are preferentially removed. The resulting product fluid can be utilized in a variety of applications and/or in other situations, consistent with one or more goals. Other aspects of the invention may include systems and techniques that provide water with one or several properties or characteristics tailored to meet particular objectives. Accordingly, certain one or more embodiments of the present invention can include systems and techniques that provide a water stream or liquid having one or several characteristics of one or more traits based on point of use or utilizing the stream or liquid. One or several parameters of the facility are adjusted. Even further aspects of the invention may include systems and techniques that economically provide water for agriculture, industry, commerce, and dwelling. Moreover, certain particular aspects of the invention may include providing water to supply a plurality of expected or various degrees of purity or quality. Thus, in certain embodiments, the systems and techniques of the present invention can provide one or more streams or streams of water in a mixed use facility. A particularly advantageous aspect of the invention may include providing a plurality of streams or streams from a source of water having a high solids content. Each water stream or liquid may have a different level of water quality to a plurality of points of use, each point of use may have a different expectation. This aspect of the invention provides systems and techniques for, for example, treating non-tantalum water 200806586 to render it drinkable and/or suitable for irrigation, suitable for livestock and/or poultry consumption, and suitable for human consumption or use. In some aspects of the invention, water having one or several undesirable species that are dissolved therein can be treated to remove or at least reduce the concentration of such species to a level of compliance. One or several undesirable species may be of any species which renders untreated water unsuitable for a particular application. For example, the water may contain high or undesired concentrations of monovalent cations and/or anions which adversely or undesirably impede the retention of water in the soil or adsorption of other species, for example, including bivalent or even Multivalent species. If the expectation is related to crop irrigation, an annoying condition or characteristic may include water containing one or more species that affects the permeability and/or percolation properties of the irrigated soil. For example, certain aspects of the invention can include causing or treating water to preferentially remove monovalent species compared to non-monovalent species. In accordance with one or more particular aspects, the invention may include embodiments relating to systems and/or methods, including providing or directing a water-driven drive to be treated. Certain embodiments of the invention may include an irrigation system that includes an electrically driven separation device and at least one irrigation water distribution system that are fluidly coupled or at least connectable to one or more water sources to be treated. In some aspects of the invention, certain embodiments thereof may include a method of providing drinking water. Significantly, certain aspects of the present invention provide irrigation water and/or drinking water without the need for thermally driven separation techniques or unit operations. For example, in some embodiments of the invention, the method can include providing water to be treated and processing at least a portion of the water to be treated in the electrically driven separation device to produce one or more of the first treated water Action or step. This method can be additionally packaged
200806586 括在一^或數個壓力驅動之分離裝置中處 之水,一般是分離部分而產生第二處理 。某些情況中,該方法可進一步包括混 處理水而產生飲用水之步驟。該飲用水 預期之總溶解固體(TDS)含量。 與提供飮用水之系統有關之本發明 理之水源,壓力驅動之分離裝置具有一 連接,或至少可連接至欲處理之水源。 可具有一或數個出口,一般至少一個產 水出口。該壓力驅動之裝置一般亦具有 作爲含有自已處理之水所移除之一或數 望的物種之液流出口。用於提供飲用水 括一或數個電驅動之分離裝置,可將它 連接至欲處理之水源,至壓力驅動之分 兩者。舉例而言,如下文中更詳細敘述 驅動之分離裝置流動地連接至電驅動之 口。依照本發明之特別實施例,用於產 另外包括一或數個混合器具有流動地連 壓力驅動之裝置的處理水出口之一或數 分離裝置的產物水出口。該混合器可包 操作其促進一或數產物流之至少部分地 情況中,包括來自欲處理之水源的水流 數個預期特性之最後產物流。 欲處理之水可包括海水、含鹽分之 理一部分的欲處理 水的一或數個動作 第一處理水和第二 一般具有目標或所 的態樣可包括欲處 個進口,其流動地 壓力驅動之裝置亦 物出口作爲已處理 至少一個廢水出口 物種,一般是非期 之系統可進一步包 流動地連接,或可 離裝置,或連接至 ,可將一或數個電 分離裝置的廢水出 生飲用水之系統可 接至,或可連接至 個進口及電驅動之 括任何混合之單元 摻合或聯合,某些 t,而形成具有一或 水、及/或含高濃度 200806586 的溶解固體粒子或鹽類之水。其他欲處理之水源可包括因 爲滲濾及/或毒性原因而可能不適合使用於農業設施中之 水。 於適當之情況,本發明的系統和技術可包括預處理子 系統來促進與一或數個操作原理。可利用一或數個預處理 和後處理單元操作在本發明的一或數個實施例中。舉例而 言,本發明的系統和技術可包括預處理子系統,其中包括 一個或複數的過濾器其能分離或移除至少一部分的欲處理 # 之水中任何懸浮之固體粒子。此種預處理子系統一般移除 可能損害本發明系統的任何下游單元操作的顆粒物質。其 他預處理單元操作,舉例而言包括微過濾器以及以沈積爲 基礎之系統其可移除1微米或更大之懸浮固體粒子。 可利用另外預處理操作來改良本發明的一或數個單元 操作之有效性。舉例而言,預處理子系統可包括冷卻器或 加熱器,其各自冷卻或加熱在分離操作之前,欲處理之水 可實施冷卻原進料流,或任何中間程序流,舉例而言,來 ® 促進可來自欲處理之流之非期望物種之輸送,或阻止預期 物種的輸送。同樣地,可實施加熱來昇高原進料流的溫度 ,或一或數種中間程序流的溫度至所預期之溫度,舉例而 言,其促進一或數個分離裝置的經濟或有效操作。加熱程 序的非限制實施例可包括加熱器、爐或熱交換器其可與本 發明的方法或系統聯合或是本發明的方法或系統之單元操 作。舉例而言,加熱可通過發電廠的熱交換器來提供,其 不一定與本發明的處理系統聯合。 -10- 200806586 後處理單元操作可能淨化、移除或降低已處理水中之 一或數種物種之濃度。舉例而言,可利用一或數個離子交 換柱來移除電驅動之分離裝置及/或壓力驅動之分離裝置 中未能立即移除之物種。後處理操作中,一般可能被移除 或至少降低其濃度較佳至無毒性及/或無害程度之物種的 非限制實施例包括可影響土壤聚集、水滲濾及/或對於植物 生長可能有毒之那些化學物種,例如鋁、砷、鈹、鎘、鈷 、鉻、銅、鐵、氟、鋰、錳、鉬、鎳、鉛、硒、錫、鈦、 鎢、釩、硼和鋅。經由一或數個後處理操作可能面對之其 他物種包括飮用中對於人類、家禽及/或家畜有毒或不良之 那些物種,例如,但不限於硝酸鹽、亞硝酸鹽、和釩及硫 化物。亦可實施消毒程序來至少部分地惰化或降低可能對 於人類及/或家畜不良之形成菌落之微生物的濃度。 或者,或與一或數個淨化單元操作聯合,本發明的系 統和技術可包括添加一或數種物種至至少一部分的已處理 水中。舉例而言,可添加石膏來調整一或數種預期之物種 的濃度或調整水的特性。當使用水用於灌溉時,其他添加 劑可包括促進農作物生長之肥料或其他補充物。 電驅動之裝置一般利用電位場來創造誘導一或數個物 種,一般是目標物種之動勢,其可能包括預期的、以及非 期望的物種、自載體或流體遷移。該電驅動之裝置可利用 一或數種構件’在遷移期間此等構件隔離目標物種及/或抑 制回返或逆程序。此等裝置的非限制性實例包括電透析(ED) 裝置,包括電流反轉之電透析(EDR)裝置,以及電去離子 200806586 (EDI)裝置。然而,本發明不限於一種或此等電驅動之裝置 的組合且可能在提供動勢之其他裝置中予以實施,該動勢 促進欲處理之流體中一或數個目標物種較其他物種的優先 遷移。 本發明的電驅動之分離裝置一般利用離子選擇性薄膜 來促進分離現象。某些情況中,該選擇性可透過之薄膜, 相對於其他物種可優先或選擇地容許輸送某些物種。舉例 而言,可剪下利用陽離子選擇性薄膜在電驅動之分離裝置 II 的某些隔間中。其他情況中,可剪下利用陰離子選擇性薄 膜在一或數個隔間中。更有其他情況中,本發明的電驅動 之分離裝置可包括一或數個單價選擇性薄膜來選擇性促進 單價陽離子或陰離子物種的轉移。實際上,本發明的某些 實施例中,本發明的分離裝置可包括單價陽離子選擇性薄 膜及一或數個單價陰離子選擇性薄膜,一般在該裝置的一 或數個濃縮室中。商業上可供應之單價選擇性薄膜之非限 制性實施例包括來自日本東京 ASTOM公司或日本東京 ^ Tokuyama公司之NEOSEPTA®陽離子和陰離子選擇性薄膜。 壓力驅動之分離裝置一般利用一或數個障壁來抑制遷 移通過它,同時容許另一者之穿透。促進分離現象之動勢 一般包括加壓欲處理之流體。壓力驅動之分離裝置的非限 制性實施例包括微過濾、奈米過濾(NF)裝置以及逆滲透(R0) 系統。 本發明的一或數個實施例可能關於水處理系統1 00 ’ 如第1圖中示範所示。系統1 〇 〇可爲用於提供飲用水’灌 -12· 200806586 溉水或兩者至舉例而言,使用點1 1 4之系統。該處理系統 100可包括至少一個分離單元操作或分離裝置110,在某些 情況中,其選擇性移除來自欲處理之水源1 02之一或數物 種或一或數種型式的物種。該系統視預期可包括一或數個 監測子系統,其提供處理系統之一或數項操作特性的指示 。如所舉例說明,系統1 〇〇可具有一或數個監測感測器1 0 8 ,其自分離裝置11 〇 —般提供所產生之,或在其他情況所 處理之水品質的指示。本發明的某些態樣中,系統1 00可 利用調節或建構與配置之控制系統或控制器來調整本發明 系統中一或數個單元操作的一或數個參數。再述及第1圖 ,系統100因此可具有一或數個控制器106其調整分離裝 置110的至少一個操作參數典型至至少一種所預期之狀況 。可利用任何適當控制技術來調整系統1 0 0中任何單元操 作的至少一個操作參數來提供具有一或數個所預期特性之 水。 本發明的系統和技術可包括一或數個水分配系統其促 進輸送已處理水至一或數個使用點。舉例而言,該分配系 統可包括灌漑分配系統其輸送灌溉水至農業設施中之個別 使用點。爲了促進輸送已處理水,該分配系統可包括一或 數個儲存系統,例如貯槽、槽、井或其他器皿和容器。本 發明的灌溉系統可利用頂部及/或表面灌溉技術來運輸水 至指定之區域。因此,該等灌漑系統構件可採用不可移動 以及移動裝置。 可將一或數個儲存系統視爲分配系統之一部分或是處 -13- 200806586 理系統的輔助子系統。該等一或數個儲存系統可進一步促 進提供具有所預期特性的已處理水。舉例而言,在進一步 處理或加工之前,例如與另外已處理或未處理水或液流摻 合之前,可將具有第一狀況或特性之已處理水儲存在一或 數個儲存容器中。 第2圖是示意圖,示範地顯示與灌槪系統200有關係 之本發明的一些特徵。灌溉系統200可包括流動地連接之 分離裝置23 0,並如例示所配置,係透過灌漑水分配系統 Φ . 224接收來自源202之欲處理水。分離裝置220可處理來 自源202之水並提供已處理之水至第一使用點228,本文 中舉例說明係第一型的農作物。使用點228可爲一部分的 農作物,舉例而言,它是在與至少一部分的整個農作物不 同之生長階段。系統200可另外包括一或數個第二分離裝 置230。分離裝置230亦可處理來自源202之水並通過第 二灌溉分配系統234提供已處理之水至第二使用點23 8, 舉例說明爲第二型的農作物。使用點228,第二使用點238 ® 可爲舉例而言,與第一使用點228予以灌溉之相同型的農 作物之一部分,或在不同生長階段之第二農作物的一部分 .。依照本發明的某些實施例,分離裝置23 0可視預期通過 導管或連接管244提供已處理之水至第一使用點228,代 替及/或自分離裝置220補充已處理之水。本發明的某些實 施例至少部分地考慮分級之處理計劃。舉例而言,第一分 離裝置220可提供具有第一水品質或特性之已處理水,其 可通過導管或分配系統2 42在第二分離裝置230中進一步 -14- 200806586 處理。可將複數的第二分離裝置230連同一或數個第一分 離裝置220利用來提供已處理之水至一或數個使用點。本 發明的某些實施例可包括串聯配置之分離裝置及其他實施 例可利用呈並聯組態之分離裝置來提供已處理之水以便滿 足一或數個使用點的體積要求。然而,在某些情況中,可 實施串聯和並聯處理路徑之聯合以一種速率或複數的速率 來提供已處理之水,其中水流或已處理之各一或數種已處 理之水流具有一或數種所預期之特性。 系統200可包括一或數個控制器(未圖示)來控制系統 2 00之任何構件或子系統的一或數個操作參數。像第1圖 中示範所舉例說明之系統那樣,系統200可具有可調整一 或數個操作參數之一或數個控制器。舉例而言,系統200 之一或數個控制器可調整任何分離裝置中所施加的電場之 電流、電位或兩者。可被調整之其他參數,舉例而言,包 括該系統之任何水流的TD S含量、壓力、溫度、pH値、流 動比或任何組合。 依照本發明的某些態樣,已處理之水流的一或數個特 性可爲產物流的任何所測得或所衍生之特質,以便致使它 適合於在點1 1 4之其所預期的使用。然而,本發明並不限 於此;舉例而言,以相對於欲處理之水流的觀點,水的特 性可爲已處理或產物水流的特性。該特質或參數可爲水的 單或複合或聚集體特性。此等特質的特定,非限制性實施 例可包括水的導電率或電阻率,水中之一或數種特別控制 器或種類之物種的存在、不存在或濃度、以及其組合。 200806586 依照本發明的一或數個實施例,本發明的系統和技術 提供具有所預期之水特質之水,此水特質表示或定量爲複 合特性。該複合特性可提供作爲特別目的用之已處理水的 適合性指示。因此,本發明的系統和技術可包括各種操作 其尋求或至少促進提供具有一或數種所預期之複合特性之 水。在灌溉應用方面,已處理水特質可能係關於其作爲灌 溉水之適合性。因此,本發明的某些態樣可能經由調整其 一或數種特性指向處理非飲用水並致使該水成爲適合於一 或數個農業設施灌溉之處理水。本發明的某些態樣可提供 予以修改之灌溉水適合一或數種農作物生長或裁培在一或 數個農業設施中。舉例而言,再參照第2圖,本發明的系 統和技術可提供具有弟一複合特性之第一處理水至第一型 的農作物228及具有第二複合特性之第二處理水至第二型 的農作物238。可使用第二處理水來補充及/或調整第一處 理水的特性,反之,可使用第一處理水來調整第二處理水 的一或數種特性。舉例而言,經由將一或數種已處理之水 流混合在一起或摻合,可調整一或數種特性來滿足特別需 求。特別目標特性可經由調整被混合之已處理水流的比或 相對數量或速率予以達成。 在典型操作期間,各一或數個分離裝置220和230 — 般產生一或數條次要水流。一般,該等一或數條次要水流 含有不合格程度的一或數種非期望之物種。可將任一或數 條次要水流作爲廢水流排放出。舉例而言,可將一般含有 自分離裝置23 0中所處理之水流所轉移之一或數物種之廢 -16- 200806586 水流通過導管或分配系統23 6排放或轉移至欲處理之水源 2 02。同樣地,本發明的其他實施例考慮將一般來自一或數 個下游分離裝置之一或數條次要水流與一或數個上游分離 裝置中予以處理之水流聯合。亦可將廢水流連同可能或不 與處理系統直接相聯合之其他流排放出。舉例而言,在與 來自,舉例而言,冷卻塔之一或數條排放流相混合後,可 將被排放之水流回送至欲處理之水源,其可能不是處理系 統的一個單元操作。然而,在其他情況中,可儲存一或數 # 條廢水流並與具有極低鹽度之水互相聯合來減輕水滲濾問 題(其可能導致濾取可溶性礦物、及來自表面土壤之鹽類例 如鈣)。 本發明的某些實施例中,可將來自第二分離裝置230 之包含在導管236中之次要水流單獨或如第2圖中所示, 與來自源202之欲處理水相聯合被引入第一分離裝置220 中,係通過導管222予以輸送。 第1圖和第2圖中所描述之示意舉例說明之系統可另 ^ 外包括促進水的處理之單元操作。舉例而言,可利用一個 視預期之系統在分離裝置220和23 0的上游來過濾或在其 他情況,移除至少一部分之來自源202水中的懸浮固體粒 子。可利用來降低被夾帶在欲處理水中之至少一種懸浮固 體的濃度之預處理單元操作的非限制性實施例包括微過濾 器、沈降器和行進粒子過濾器。 此外,可利用一或數個單元操作來進一步處理一或數 條已處理水流。舉例而言,——淨化床可自分配系統224和 -17-200806586 Water contained in one or several pressure-driven separation devices, typically a separate portion, produces a second treatment. In some cases, the method may further comprise the step of mixing the treated water to produce potable water. The expected total dissolved solids (TDS) content of the drinking water. The pressure-driven separation device has a connection, or at least a connection to a source of water to be treated, associated with the system of the present invention. There may be one or several outlets, typically at least one water outlet. The pressure driven device also typically has a liquid flow outlet that is one of or a species that has been removed from the treated water. Used to provide drinking water with one or several electrically driven separation devices that can be connected to the water source to be treated, to pressure driven. For example, the driven separation device is fluidly coupled to the electrically driven port as described in more detail below. In accordance with a particular embodiment of the present invention, a product water outlet for producing one or more of the process water outlets of one or more mixers having a flow-connected pressure driven device. The mixer may be operated to promote at least a portion of one or more product streams, including a final product stream having a plurality of expected characteristics of the water stream from the water source to be treated. The water to be treated may include seawater, a portion of the salt-containing portion of the water to be treated, one or more actions, the first treatment water, and the second generally having the target or the aspect, which may include an inlet, the flow-driven pressure The device is also exported as at least one waste water exporting species. Generally, the non-period system can be further connected by flow, or can be separated from the device, or connected to, and the wastewater of one or several electrical separation devices can be used to produce drinking water. The system may be connected to, or may be connected to, an inlet and an electric drive, including any mixed unit blend or combination, some t, to form dissolved solid particles or salts having one or water, and/or containing a high concentration of 200806586 Water. Other sources of water to be treated may include water that may not be suitable for use in agricultural facilities due to diafiltration and/or toxicity. Where appropriate, the systems and techniques of the present invention may include a pre-processing subsystem to facilitate operation with one or more principles. One or more pre- and post-processing units may be utilized in one or more embodiments of the invention. By way of example, the systems and techniques of the present invention can include a pretreatment subsystem including one or more filters that can separate or remove at least a portion of any suspended solid particles in the water to be treated #. Such pretreatment subsystems generally remove particulate matter that may impair the operation of any downstream unit of the system of the present invention. Other pre-processing unit operations, including, for example, microfilters and deposition-based systems, can remove suspended solids of 1 micron or larger. Additional pre-processing operations may be utilized to improve the effectiveness of one or more of the unit operations of the present invention. For example, the pretreatment subsystem can include a chiller or heater that is each cooled or heated prior to the separation operation, and the water to be treated can be implemented to cool the raw feed stream, or any intermediate process stream, for example, to Promotes the transport of undesired species that can come from the stream to be treated, or prevents the transport of the intended species. Likewise, heating can be applied to increase the temperature of the raw feed stream, or the temperature of one or more intermediate process streams to the desired temperature, for example, to facilitate economic or efficient operation of one or more separation devices. Non-limiting embodiments of the heating procedure can include a heater, furnace or heat exchanger that can be coupled to the method or system of the present invention or to the unit of the method or system of the present invention. For example, heating can be provided by a heat exchanger of a power plant, which is not necessarily associated with the processing system of the present invention. -10- 200806586 Post-processing unit operations may purify, remove or reduce the concentration of one or more species in the treated water. For example, one or more ion exchange columns can be utilized to remove species that are not immediately removed from the electrically driven separation device and/or the pressure driven separation device. Non-limiting examples of species that may be removed or at least reduced in concentrations that are preferably non-toxic and/or harmless in post-treatment operations include effects that may affect soil agglomeration, water percolation, and/or may be toxic to plant growth. Those chemical species such as aluminum, arsenic, antimony, cadmium, cobalt, chromium, copper, iron, fluorine, lithium, manganese, molybdenum, nickel, lead, selenium, tin, titanium, tungsten, vanadium, boron and zinc. Other species that may be faced through one or several post-treatment operations include those that are toxic or undesirable for humans, poultry, and/or livestock, such as, but not limited to, nitrates, nitrites, and vanadium and sulfides. . Disinfection procedures can also be implemented to at least partially inerte or reduce the concentration of microorganisms that may form colonies that are undesirable for humans and/or livestock. Alternatively, or in conjunction with one or more purification unit operations, the systems and techniques of the present invention can include the addition of one or more species to at least a portion of the treated water. For example, gypsum may be added to adjust the concentration of one or several desired species or to adjust the characteristics of the water. When water is used for irrigation, other additives may include fertilizers or other supplements that promote crop growth. Electrically driven devices typically utilize a potential field to create an induction of one or more species, typically the momentum of the target species, which may include expected, undesired species, migration from a carrier or fluid. The electrically driven device can utilize one or more components' to isolate the target species and/or inhibit the return or reverse process during migration. Non-limiting examples of such devices include electrodialysis (ED) devices, including electrical reversal electrodialysis (EDR) devices, and electrodeionization 200806586 (EDI) devices. However, the invention is not limited to a combination of one or such electrically driven devices and may be implemented in other devices that provide momentum that promotes preferential migration of one or more target species in the fluid to be treated over other species. . The electrically driven separation device of the present invention generally utilizes an ion selective membrane to promote separation. In some cases, the selectively permeable membrane may preferentially or selectively permit delivery of certain species relative to other species. For example, a cation selective membrane can be cut in certain compartments of an electrically driven separation device II. In other cases, an anion selective membrane can be cut in one or several compartments. In still other cases, the electrically driven separation device of the present invention can include one or several monovalent selective membranes to selectively promote the transfer of monovalent cation or anion species. Indeed, in certain embodiments of the invention, the separation device of the present invention may comprise a monovalent cation selective membrane and one or more monovalent anion selective membranes, typically in one or more concentrating compartments of the apparatus. Non-limiting examples of commercially available monovalent selective films include NEOSEPTA® cation and anion selective films from ASTOM Corporation of Tokyo, Japan or Tokuyama Corporation of Tokyo, Japan. Pressure driven separation devices typically utilize one or more barriers to inhibit migration through it while allowing the other to penetrate. The momentum that promotes the separation phenomenon generally involves pressurizing the fluid to be treated. Non-limiting embodiments of pressure driven separation devices include microfiltration, nanofiltration (NF) devices, and reverse osmosis (R0) systems. One or more embodiments of the invention may be illustrated with respect to the water treatment system 100' as illustrated in Figure 1. System 1 〇 〇 can be used to provide drinking water ' irrigation -12 · 200806586 irrigation water or both to, for example, point 1 14 system. The processing system 100 can include at least one separation unit operation or separation device 110, which in some cases selectively removes species from one or several species or one or more types of water source 102 to be treated. The system may include one or more monitoring subsystems as desired, which provide an indication of one or more operational characteristics of the processing system. As illustrated, system 1 can have one or more monitoring sensors 108 that provide an indication of the quality of the water produced, or otherwise processed, from separation device 11. In some aspects of the invention, system 100 may utilize one or more parameters of one or more unit operations in the system of the present invention using a control system or controller that is adapted or constructed and configured. Referring again to Figure 1, system 100 can thus have one or more controllers 106 that adjust at least one operational parameter of separation device 110 to at least one expected condition. At least one operational parameter of any of the unit operations in system 1000 can be adjusted using any suitable control technique to provide water having one or several desired characteristics. The systems and techniques of the present invention can include one or more water distribution systems that facilitate the delivery of treated water to one or more points of use. For example, the dispensing system can include an irrigation distribution system that delivers irrigation water to individual points of use in an agricultural facility. To facilitate delivery of treated water, the dispensing system can include one or more storage systems, such as tanks, tanks, wells or other vessels and containers. The irrigation system of the present invention utilizes top and/or surface irrigation techniques to transport water to a designated area. Therefore, the components of the irrigation system can be made non-removable and mobile. One or several storage systems can be considered as part of the distribution system or as an auxiliary subsystem of the -13-200806586 system. The one or more storage systems can further facilitate the provision of treated water having the desired characteristics. For example, treated water having a first condition or characteristic can be stored in one or more storage containers prior to further processing or processing, such as prior to mixing with additional treated or untreated water or liquid streams. Figure 2 is a schematic diagram exemplarily showing some of the features of the present invention in relation to the irrigation system 200. The irrigation system 200 can include a separation device 230 that is fluidly coupled and configured, as exemplified, to receive water to be treated from the source 202 through a irrigation water distribution system Φ. Separation device 220 can process water from source 202 and provide treated water to first point of use 228, exemplified herein as a first type of crop. The use point 228 can be a portion of the crop, for example, it is in a different growth phase than at least a portion of the entire crop. System 200 can additionally include one or more second separation devices 230. Separation device 230 can also process water from source 202 and provide treated water to second point of use 23, through second irrigation distribution system 234, exemplified as a second type of crop. Using point 228, the second point of use 238® can be, for example, a portion of the same type of crop that is irrigated with the first point of use 228, or a portion of the second crop at a different stage of growth. In accordance with certain embodiments of the present invention, the separation device 230 may optionally provide treated water to the first point of use 228 via a conduit or connecting tube 244, replacing and/or replenishing the treated water from the separation device 220. Certain embodiments of the present invention at least partially consider a hierarchical processing plan. For example, the first separation device 220 can provide treated water having a first water quality or characteristic that can be processed by the conduit or dispensing system 2 42 in the second separation device 230 further -14-200806586. A plurality of second separation devices 230 may be utilized in conjunction with the same or a plurality of first separation devices 220 to provide treated water to one or more points of use. Certain embodiments of the invention may include separate devices in series configuration and other embodiments may utilize separate devices in a parallel configuration to provide treated water to meet the volume requirements of one or several points of use. However, in some cases, a combination of series and parallel processing paths may be implemented to provide treated water at a rate or a complex rate, wherein the water stream or one or more of the treated water streams have one or more The expected characteristics. System 200 can include one or more controllers (not shown) to control one or more operational parameters of any component or subsystem of system 200. As with the system illustrated in the exemplary embodiment of Figure 1, system 200 can have one or several controllers that can adjust one or several operational parameters. For example, one or more of the systems 200 can adjust the current, potential, or both of the electric field applied in any of the discrete devices. Other parameters that can be adjusted, for example, include the TD S content, pressure, temperature, pH 値, flow ratio, or any combination of any of the water streams of the system. In accordance with certain aspects of the present invention, one or more characteristics of the treated water stream can be any measured or derived characteristic of the product stream to render it suitable for its intended use at point 112. . However, the invention is not limited thereto; for example, the characteristics of water may be characteristics of treated or product water streams with respect to the flow of water to be treated. This trait or parameter can be a single or composite or aggregate characteristic of water. Specific, non-limiting examples of such traits can include the conductivity or electrical resistivity of water, the presence, absence or concentration of one or several species of particular controller or species in water, and combinations thereof. 200806586 In accordance with one or more embodiments of the present invention, the systems and techniques of the present invention provide water having the desired water characteristics that are expressed or quantified as a composite characteristic. This composite property provides an indication of suitability for treated water for special purposes. Thus, the systems and techniques of the present invention can include various operations that seek or at least facilitate the provision of water having one or more of the desired composite characteristics. In terms of irrigation applications, the treated water traits may be appropriate for their suitability as irrigation water. Thus, certain aspects of the invention may be directed to treating non-potable water by adjusting one or more of its characteristics and rendering the water a treated water suitable for irrigation by one or several agricultural facilities. Certain aspects of the invention may provide modified irrigation water suitable for growing or cutting one or more crops in one or several agricultural facilities. For example, referring again to FIG. 2, the system and technique of the present invention can provide a first treatment water having a composite property to a first type of crop 228 and a second treatment water having a second composite characteristic to a second type. Crop 238. The second treated water may be used to supplement and/or adjust the characteristics of the first treated water, and conversely, the first treated water may be used to adjust one or more characteristics of the second treated water. For example, one or more characteristics can be adjusted to meet particular needs by mixing or blending one or more treated streams of water. Special target characteristics can be achieved by adjusting the ratio or relative amount or rate of mixed treated water streams. During typical operation, each of the one or more separation devices 220 and 230 typically produces one or more secondary water streams. Typically, the one or more secondary streams contain one or more undesired species of unacceptable levels. Any or several minor streams of water can be discharged as a wastewater stream. For example, a stream of waste -16-200806586, typically containing one or a plurality of species transferred from the water stream treated in the separation unit 230, can be discharged or transferred to the water source 2 02 to be treated through a conduit or distribution system 236. Likewise, other embodiments of the present invention contemplate combining water flow generally treated from one or several downstream separation devices or a plurality of secondary water streams with one or more upstream separation devices. The wastewater stream can also be vented with other streams that may or may not be directly associated with the treatment system. For example, after mixing with, for example, one or more of the cooling towers, the discharged water can be sent back to the water source to be treated, which may not be a unit operation of the processing system. In other cases, however, one or several # wastewater streams may be stored and combined with water having very low salinity to mitigate water percolation problems (which may result in the filtration of soluble minerals, and salts from surface soils such as calcium). In certain embodiments of the present invention, the secondary water stream contained in the conduit 236 from the second separation device 230 may be introduced separately or in combination with the water to be treated from the source 202 as shown in FIG. In a separation device 220, it is delivered through a conduit 222. The schematically illustrated system depicted in Figures 1 and 2 may additionally include unit operations that facilitate the treatment of water. For example, at least a portion of the suspended solid particles from the source 202 water can be removed by filtering, or in other situations, upstream of the separation devices 220 and 230 using an unexpected system. Non-limiting examples of pretreatment unit operations that may be utilized to reduce the concentration of at least one suspended solid entrained in the water to be treated include microfilters, settlers, and traveling particle filters. In addition, one or more unit operations may be utilized to further process one or more of the treated water streams. For example, the purification bed can be self-dispensing systems 224 and -17-
200806586 234中之一或數條已處理水流中 可利用來移除至少一部分的弱電 如但不限於硼、亞硒酸鹽和砷之 實施例包括離子交換柱。 促進本發明的後處理一或數 操作包括添加或在其他情況,調 濃度或水流的特性之那些單元操 致使一或數廢水流適合於排放至 因此,可配置一混合器在本 的下游,其促進摻合另外已處理 、養分、及/或來自此等的一或數 本發明的某些實施例,可安排鹽 入已處理之水流中。舉例而言, 的處理或灌溉系統中,其選擇性 水流之二價或其他非單價物種的 可能典型地提供具有相當高濃度 流,可將它導引至已處理水流來 提供具有目標或預期狀況之水流 益物種之水流的系統和技術之實 請案編號第 1 1/474,299 號4 H Electrically-Driven Separation 用的方式倂入本文中以供參考。 其使用之前,可利用舉例而言, 在其他情況中分開或獨特來源抹 進一步移除一或數物種。 離或可離子化之物種,例 此類單元操作的非限制性 條已處理水流之另外單元 整一或數種所預期物種之 作。可採用後處理操作來 環境。 發明之一或數個分離裝置 或未處理之水流、消毒劑 :來源之所預期鹽類。依照 類的一或數種來源以使引 可利用分離裝置在本發明 移除或降低來自欲處理之 濃度。此種視預期之裝置 的非單價物種之至少產物 調整其至少一種特性以便 或水。有利地提供富含有 施例包括審理中的美國申 ί所揭示者,其標題是 Apparatus",將其內容以引 然而,在某些情況中,在 鈣及/或鎂鹽類的一或數個 [調整已處理水流的一或數 200806586 種特性。附帶,可將水流之一或數種固有及/或外來的性質 進一步調整。舉例而言,可將水流冷卻或加熱來調整其溫 • .度.。水流或水體的pH値亦可,舉例而言經由添加一或數種 酸或鹼予以調整來獲得所預期之pH値。所預期之性質或特 性可能基於複數的因素,舉例而言,被灌溉之土壤的pH 値、被灌溉之農作物之耐鹽性、及在某些情況中、土壤的 水分含量。因此,本發明的某些特徵提供關於獲得一或數 種所預期之複合特性之進一步能力。 Φ 一或數種性質或特性的進一步調整可能在分離裝置中 處理以後,在使用或引導至使用點之前,或在已處理水的 儲存在一或數個貯槽中期間予以實施。 然而.,,本發明的某些態樣,相對於第一或已處理之產 物流及/或被引入分離裝置中之水流,考慮含有高濃度的一 或數種已溶物種之此等次要水流的有益或經濟、上有吸引力 之特質。舉例而言,該次要產物流可含有高已溶之固體粒 子且可作爲進料流,可將它進一步處理來獲得另外之物種 ^ 或至少提供具有高濃度的預期物種之產物流。 利用於本發明的某些系統和技術之水的一或數種特性 可提供供應農業使用之水的適合性指示。舉例而言,水的 一或數種特性可能以全部已溶之鹽類的含鹽量或固體粒子 含量、及/或導電係數、以及或連同任何的鹼度,鐵含量、 及水的pH値來表示。某些情況中,當相對於經由至少部分 地處理之水予以灌溉之該型農作物予以考慮時,水的含鹽 量之程度可能變成一個選擇性參數。因此,依照本發明的 -19- 200806586 某些態樣,可使用水之鹽度來調整本發明系統的至少一個 操作參數。在本發明的系統和技術之其他實施例中,可將 特徵値表示爲物種濃度之比,相對於趨向於致使土壤成爲. 聚集或水吸附,其趨向於致使土壤成爲水不滲透。 依照本發明的某些態樣,該特徵値可提供關於灌溉目 的,關於人類消耗及/或關於家畜或家禽使用之水的適合性 指示。某些實施例中,水流或體的特徵値可表示成爲相對 於水中之二價物種的濃度,單價物種的濃度之比。舉例而 ® 言,該特徵値可被至少部分地表示爲鈉吸附比或可交換之 鈉百分率。水流或水體的SAR較佳可提供關於是否該水可 能適合灌溉一種型式或種類的農作物之指示。因此,依照 本發明的某些態樣,其某些實施例係關於系統和技術,此 等系統和技術可包括至少部分地基於所預期之特徵値來控 制一或數個操作參數,此所預期之特徵値是自使用點的至 少一種預期予以至少部分地衍生。舉例而言,使用點爲予 以灌溉之一種農作物的情況,該所預期之特徵値可能基於 _ W 農作物的耐鹽性及/或土壤的一或數種特質或特性。 鈉吸附比値一般係根據式(I)予以測定: &4j?=-7=J£L= ^[Ca]HMg] 式中[Na]爲水中,以莫耳/立方米(mol/m3)計之鈉物種 濃度,[Ca]爲水中,以mol/m3計之鈣物種濃度,及[Mg]爲 水中,以mol/m3計之鎂物種濃度。可單獨利用水的其他特 徵値或連同其他特徵値。因此,在某些情況中,可作爲水 -20- 200806586 品質的指示或關於其預期目的之適合性之水的特徵値包括 水中之總溶解固體粒子濃度、pH値、及/或一或數種毒性 或危險性物種的濃度。 調整灌溉水之SAR値舉例而言,可能經由調整水系統 的一或數個操作參數予以實施。舉例而言,可調整具有不 同聯合SAR値之已處理的相對比來提供具有所預期SAR値 之產物水的複合或摻合混合物。包括減少通過一或數個分 離裝置之水流的流速或增加滯留或處理期間之其他技術可 # 促進獲得所預期之SAR値。另外,或連同此等技術,舉例 而言,通過電驅動或壓力驅動之分離裝置所施加之電位能 級亦可提供具有一或數種所預期特性之已處理水。 本發明系統的處理水產物可淡化海水及/或含鹽之水 來提供灌溉水,其避免或減少任何土壤滲透性及/或滲濾問 題的程度。 已處理水的一或數個特徵値可爲包含在水中之各物種 間之相對相互關係。舉例而言,該特徵値可爲已溶之鈉物 ^ 種對已溶之鈣的比。不超過約3:1的較佳預期之鈉對鈣比 可避免或減少由於土壤分散和阻塞及土壤表面孔隙封閉, 水滲濾問題的可能。此外,本發明的某些實施例可選擇性 降低灌漑水中之單價鈉的濃度,可提供富含|相對鈣之水源 來抵制灌溉時之任何鈉分散現象。 產物水可具有範圍自約2至約8之s AR値。然而,目 標或預期之SAR値可能基於農業設施中之一或數個因素。 舉例而言,該目標SAR値係基於設施中所生長之農作物種 -2 1 - 200806586 類、設施中一或數種農作物的生長階段,及土壞狀況包括 水滲濾、鈉質度、及/或土壤的鹼度。可使用來提供灌溉水 的一或數個目標特性之特別準則包括由聯合國糧食及農業 組織(FAO)所提供之那些準則。舉例而言,與SAr値可能 相互關聯之可交換之鈉含量可作.爲爲了灌溉目的所利用之 水的理想特徵値。特別,敏感性農作物,例如,但不限於 水果、堅果和柑橘屬一般預期具有SAR値高達約8之灌溉 水;其他敏感性農作物例如豆類可能耐受具有SAR値高達 約1 8之灌溉水;適度有耐藥性之農作物例如三葉草、燕麥 和水稻可能耐受具有S AR値高達約1 8至46之灌溉水;及 耐藥性農作物例如,但不限於小麥、大麥、蕃茄、甜菜和 高小麥草可能耐受具有SAR値高達46至102之灌溉水。 當灌漑水不能進入土壤且變得不能爲農作物利用時, 一般浮現滲濾之議題。相對於鹽度之議題,其減少水的可 用性,滲濾問題可能有效地減少供農作物使用可利用之水 的數量。水滲濾可隨著增加之鹽度而增加及可隨著減少鹽 度或相對於鈣和鎂增加鈉含量而減少。此外,低鹽度水, 低於約0.5 dS/m,一般具有腐蝕性且趨向於濾取土壤表面的 可溶礦物和鹽類,例如鈣,其接下來可減少土壤聚集和結 構。不具有或具有低鹽含量之土壤趨向於分散,成爲細土 壤粒子,其塡充空隙空間,有效地封閉土壤表面且減少水 滲濾的速率。該土壤可能趨向於形成一個殻層其減少進入 地面下的部分之水的數量且赤可防止農作物出現。因此, 本發明的某些實施例中,所預期之水品質可能進一步基於 -22- 200806586 灌溉水的鹽度。舉例而言,第4圖,其是基於 和Westcot,D.W.之出版物其標題是"農業之水J 灌溉和排水,Paper 29 rev.l,聯合國糧食及農業 ,1 994,其顯示含鹽量的影響,如由TDS濃度 滲濾時之SAR可聯合地提供灌溉水的理想鹽度 値其減少或避免滲濾問題。第4圖中,使用海 述參考文獻之電導係數來導出TDS濃度値。特 鹽度間及鹽度與20 °C時之海水的電導係數間之 基於公佈之物理性質予以決定。然後,使用此 來轉變自上述參考文獻之海水的電導係數値成 TDS濃度,然後關於相對應之SAR値將它繪圖 圖中所陳述之滲濾準則,。 當灌溉水具有複合特徵値例如具有小於約 周時具有約l,5 00ppm或更大之TDS含量時, 外實施例亦可提供適當灌溉水。 本發明的某些實施例可提供淡化系統和技 移除非期望之物種/其與非選擇性淡化技術, 和壓力驅動之程序的那些技術成對比。此外, 些系統和技術不預期另外添加較佳之物種,就 水流。舉例而言,本發明可提供灌溉水其不包 補充之物種來進一步調整之特徵値。 第3圖舉例說明本發明的另外特徵和態樣 說明之處理系統3 00可包括第一分離裝置304 裝置3 06。分離裝.置304和3 06典型地處理來 -2 3 -One or more of the treated water streams of 200806586 234 may be utilized to remove at least a portion of the weak electricity such as, but not limited to, boron, selenite, and arsenic. Examples include ion exchange columns. Promoting the post-treatment one or more operations of the present invention includes adding or, in other cases, those units that adjust the concentration or characteristics of the water stream to cause one or more wastewater streams to be suitable for discharge to the extent that a mixer can be disposed downstream of the present, To facilitate the incorporation of certain embodiments of one or more of the inventions that have been otherwise treated, nutrient, and/or derived therefrom, the salt may be disposed of in the treated water stream. For example, in a treatment or irrigation system, the divalent or other non-monovalent species of selective water flow may typically provide a relatively high concentration stream that can be directed to the treated water stream to provide a target or expected condition. The system and the technical application of the water flow of the species are described in detail in the document No. 1 1/474,299 4 H Electrically-Driven Separation. Prior to its use, one or several species may be further removed by, for example, separate or unique source wipes in other cases. Species that are ionized or ionizable, such as non-limiting strips of such unit operations have been treated with additional units of water flow, one or more of the expected species. Post-processing operations can be used to environment. One or several separate devices or untreated water streams, disinfectants: the desired salts from the source. One or more sources of the class are used to enable or utilize the separation device to remove or reduce the concentration from the treatment to be treated. Such at least one of the non-monovalent species of the intended device adjusts at least one of its characteristics to or water. It is advantageous to provide a method enriched with a case including the one disclosed in the United States, the title of which is Apparatus", which refers to its content, in some cases, in one or more of calcium and/or magnesium salts. [Adjust one or several 200806586 characteristics of treated water flow. Incidentally, one or several of the inherent and/or extrinsic properties of the water stream can be further adjusted. For example, the water stream can be cooled or heated to adjust its temperature. The pH of the water stream or body of water can also be adjusted, for example, by the addition of one or more acids or bases to achieve the desired pH. The expected nature or characteristics may be based on a plurality of factors, for example, the pH of the soil being irrigated, the salt tolerance of the irrigated crop, and, in some cases, the moisture content of the soil. Accordingly, certain features of the present invention provide further capabilities for obtaining one or more of the desired composite characteristics. Further adjustment of one or more properties or characteristics of Φ may be performed after treatment in the separation device, prior to use or directing to the point of use, or during storage of the treated water in one or more storage tanks. However, in certain aspects of the invention, such secondary to a high concentration of one or more dissolved species is considered relative to the first or treated product stream and/or the water stream introduced into the separation unit. The beneficial or economical, attractive nature of the water flow. For example, the secondary product stream can contain highly dissolved solid particles and can be used as a feed stream which can be further processed to obtain additional species ^ or at least to provide a product stream having a high concentration of the desired species. One or more characteristics of the water utilized in certain systems and techniques of the present invention provide an indication of suitability for supplying water for agricultural use. For example, one or more characteristics of water may be the salt content or solid particle content of all dissolved salts, and/or conductivity, and or together with any alkalinity, iron content, and pH of water. To represent. In some cases, the degree of salt content of the water may become an optional parameter when considered in relation to the type of crop that is irrigated via at least partially treated water. Thus, in accordance with certain aspects of the invention -19-200806586, the salinity of water can be used to adjust at least one of the operating parameters of the system of the present invention. In other embodiments of the systems and techniques of the present invention, the characteristic 値 can be expressed as a ratio of species concentrations, which tends to cause the soil to become aggregate or water sorb, which tends to render the soil water impermeable. In accordance with certain aspects of the present invention, the feature can provide an indication of suitability for human consumption and/or water for livestock or poultry use. In some embodiments, the characteristic of the water stream or body can be expressed as the ratio of the concentration of the bivalent species relative to the concentration of the monovalent species in the water. By way of example, the characteristic 値 can be expressed, at least in part, as the sodium adsorption ratio or the exchangeable sodium percentage. The SAR of the water stream or body of water preferably provides an indication as to whether the water may be suitable for irrigating a type or type of crop. Thus, in accordance with certain aspects of the present invention, certain embodiments are related to systems and techniques, which may include controlling one or more operational parameters based at least in part on expected characteristics, which is contemplated The feature is at least partially derived from at least one of the points of use. For example, where a crop is used for irrigation, the expected characteristics may be based on the salt tolerance of the crop and/or one or more characteristics or characteristics of the soil. The sodium adsorption ratio is generally determined according to formula (I): &4j?=-7=J£L= ^[Ca]HMg] where [Na] is water, in mol/m3 (mol/m3) The concentration of sodium species, [Ca] is the concentration of calcium species in mol/m3, and [Mg] is the concentration of magnesium species in mol/m3. Other characteristics of water, or other features, may be utilized separately. Thus, in some cases, the characteristics of water that may be indicative of the quality of water-20-200806586 or suitability for its intended purpose include total dissolved solids concentration in water, pH値, and/or one or more Concentration of toxic or dangerous species. Adjusting the SAR of irrigation water, for example, may be implemented by adjusting one or several operational parameters of the water system. For example, the processed relative ratios with different combined SAR(R) can be adjusted to provide a composite or blended mixture of product water having the desired SAR(R). Included to reduce the flow rate of the water flow through one or several separation devices or to increase the retention or processing period may be used to promote the desired SAR. Alternatively, or in conjunction with such techniques, for example, the level of potential applied by an electrically or pressure driven separation device may also provide treated water having one or more of the desired characteristics. The treated water product of the system of the present invention can dilute seawater and/or salty water to provide irrigation water that avoids or reduces the extent of any soil permeability and/or percolation problems. One or more characteristics of the treated water may be the relative relationship between the various species contained in the water. For example, the characteristic 値 can be the ratio of dissolved sodium species to dissolved calcium. A better expected sodium to calcium ratio of no more than about 3:1 may avoid or reduce the potential for water percolation problems due to soil dispersion and clogging and pore closure of the soil surface. In addition, certain embodiments of the present invention selectively reduce the concentration of monovalent sodium in the potting water, providing a source of water rich in |relative to resist any sodium dispersion during irrigation. The product water can have an s AR range ranging from about 2 to about 8. However, the target or expected SAR値 may be based on one or several factors in the agricultural facility. For example, the target SAR is based on the growth of the crop species - 1 1 - 200806586 in the facility, the growth phase of one or several crops in the facility, and the soil condition including water percolation, sodium quality, and / Or the alkalinity of the soil. Special guidelines that can be used to provide one or more target characteristics of irrigation water include those provided by the Food and Agriculture Organization of the United Nations (FAO). For example, the exchangeable sodium content that may be interrelated with SAr値 can be used as an ideal feature for water used for irrigation purposes. In particular, sensitive crops such as, but not limited to, fruits, nuts and citrus are generally expected to have irrigated water up to about 8 SAR; other sensitive crops such as legumes may tolerate irrigation water with SAR 値 up to about 18; moderate Resistant crops such as clover, oats and rice may tolerate irrigation water with S AR値 up to about 18 to 46; and resistant crops such as, but not limited to, wheat, barley, tomatoes, beets and high wheat grasses Irrigation water with SAR 値 up to 46 to 102 may be tolerated. When irrigation water does not enter the soil and becomes unusable for crops, the problem of percolation generally arises. Relative to the issue of salinity, which reduces the availability of water, the problem of percolation may effectively reduce the amount of water available for use in crops. Water percolation can increase with increasing salinity and can decrease with decreasing salinity or increasing sodium content relative to calcium and magnesium. In addition, low salinity water, below about 0.5 dS/m, is generally corrosive and tends to filter out soluble minerals and salts of the soil surface, such as calcium, which in turn reduces soil agglomeration and structure. Soils that do not have or have a low salt content tend to disperse and become fine soil particles that fill the void space, effectively sealing the soil surface and reducing the rate of water percolation. The soil may tend to form a shell that reduces the amount of water that enters the underside of the ground and red prevents crops from appearing. Thus, in certain embodiments of the invention, the expected water quality may be further based on the salinity of the irrigated water of -22-200806586. For example, Figure 4, which is based on a publication with Westcot, DW, is titled "Agricultural Water J Irrigation and Drainage, Paper 29 rev.l, UN Food and Agriculture, 1 994, which shows salt content The effects, such as SAR when percolated by TDS concentration, can jointly provide the desired salinity of the irrigation water, which reduces or avoids the percolation problem. In Figure 4, the conductivity of the reference is used to derive the TDS concentration 値. The inter-salt and inter-salt and the conductivity of seawater at 20 °C are determined based on the published physical properties. This is then used to convert the conductivity of the seawater from the above reference into a TDS concentration, and then plot the percolation criteria as stated in the graph for the corresponding SAR. The external embodiment may also provide suitable irrigation water when the irrigation water has a composite character, for example having a TDS content of less than about 1,500 ppm or greater. Certain embodiments of the present invention may provide a desalination system and techniques to remove undesired species/these are in contrast to those of non-selective desalination techniques, and pressure driven procedures. In addition, these systems and techniques are not expected to add a better species to the water stream. For example, the present invention can provide the characteristics of further adjustment of irrigation water without supplemental species. Figure 3 illustrates an additional feature and aspect of the present invention. The processing system 300 can include a first separation device 304 device 306. Separate assembly. 304 and 3 06 are typically processed to -2 3 -
Ayers, R. S . 志質",FA0 :組織,1 9 8 9 所表示,及 等級和SAR 水性質自上 別,密度與 相互關係係 等相互關係 爲相對應之 而獲得第4 8之SAR値 本發明的另 術其選擇性 例如基於熱 本發明的某 可提供產物 括經由添加 。示範舉例 和第二分離 :自一或數源 200806586 3 02之流體。來自源3 02之欲處理之水一般含有高或不合 格程度的已溶物種。因此,可利用一或數個分離裝置來至 少部分地移除或降低來自水中之一或數種非期望物種的濃 度。作爲示範舉例說明,可將來自分離裝置304之已處理 水與來自分離裝置3 06之已處理水在一或數混合操作或混 合器3 0 8中相聯合來提供具有所預期之性賢及/或特性之已 處理水流至使用點3 1 4。依照本發明的某些實施例,可致 使已處理水適合在一或數個使用點314被使用作爲飲用水 及/或沐浴水。 第一分離裝置3 04可爲電驅動之裝置或壓力驅動之裝 置。.同樣地,第二分離裝置3 0 6可爲電驅動之分離裝置或 壓力驅動之分離裝置。依照本發明的某些態樣,分離裝置 304移除至少一部分的來自源302之欲處理水中之複數的 非期望物種。在某些情況中,第一分離裝置可能不加區別 地移除至少一部分的來自欲處理之水的複數之非期望物種 。舉例而言,第一分離裝置可利用以R〇及/或;^^爲基礎 之技術來移除,一般無優先性或選擇性,至少一部分的任 何非期望物種。自壓力驅動之分離裝置產生的已處理水流 較佳超過飲用水品質要求。 第二分離裝置可自欲處理之水源移除一或數種非期望 物種。某些情況中,該分離裝置選擇地移除至少一部分的 來自水中之一或數種非期望物種來產生產物水流。如果來 自第二分離裝置之產物水流不能達到或超過飲用水品質要 求’可將來自弟一分離裝置之一部分的已處理水,其超過 -24-Ayers, R. S. Sense of Quality ", FA0: Organization, 1 9 8 9 indicates that the level and SAR water properties are different from each other, and the relationship between density and interrelationships is correspondingly obtained. SAR 値 Another alternative of the present invention, for example based on heat, may provide a product via addition. Demonstration example and second separation: fluid from one or several sources 200806586 3 02. The water to be treated from source 3 02 generally contains dissolved species of high or unacceptable degree. Thus, one or several separation devices can be utilized to at least partially remove or reduce the concentration of one or several undesired species from the water. As an exemplary illustration, the treated water from the separation unit 304 can be combined with the treated water from the separation unit 306 in one or more mixing operations or mixers 308 to provide the desired sage and/or Or characteristic treated water flow to point of use 3 1 4 . In accordance with certain embodiments of the present invention, treated water may be adapted to be used as drinking water and/or bath water at one or more points of use 314. The first separating device 310 can be an electrically driven device or a pressure driven device. Similarly, the second separation device 306 can be an electrically driven separation device or a pressure driven separation device. In accordance with certain aspects of the present invention, the separation device 304 removes at least a portion of the plurality of undesired species from the source 302 in the water to be treated. In some cases, the first separation device may indiscriminately remove at least a portion of the plurality of undesired species from the water to be treated. For example, the first separation device can be removed using techniques based on R〇 and/or; generally, without prioritization or selectivity, at least a portion of any undesired species. The treated water produced by the pressure driven separation device preferably exceeds the drinking water quality requirements. The second separation device can remove one or more undesired species from the water source to be treated. In some cases, the separation device selectively removes at least a portion of one or several undesired species from the water to produce a product water stream. If the product water flow from the second separation unit does not meet or exceed the quality requirements for drinking water, the treated water from one of the separation devices may be more than -24-
200806586 飮用水品質要求,與它倂合或摻合。舉例而言,於第 離裝置提供具有約25 0mg/L的TDS含量之產物水及第 離裝置提供具有約1,〇〇〇mg/L的TDS含量之產物水的 ,可將該等產物水流以約2 : 1的體積比相聯合而產生 約5 0 0mg/L的TDS含量之摻合產物。目標含量可爲控 度其符合或超過世界衛生組組所建議之一或數個準則 可將其他水流與本發明的分離裝置之一或數個產物流 合而提供飮用水及/或沐浴水,其符合或超過由政府管 織一般所設定之準則或要求。 可將來自第一分離裝置之一或數廢水水流,其一 有自第一處理產物流所移除之相對高等級的物種排放 水口,導引至一或數個輔助使用點3 1 0,或回送至源 。本發明的另外實施例考慮將廢水水流通過導管322 自源3 02之水聯合以使在第二分離裝置中予以處理。 將來自第二分離裝置之次要或廢水水流排放至排水口 引至一或數個輔助使用點310及/或312,如所示透過 3 16回送至源302。 如上所特別提及,可利用輔助系統在本發明的系 技術之後處理操作中。舉例而言,可配置一或數個消 統例如,輻射、氧化或在其他情況減少水中之微生物 的系統來進一步處理水。此外,如上文所討論,亦司 一或數個儲存系統。 本發明的某些特徵包括系統和技術其包括如上 述,利用選擇性薄膜之電驅動的分離裝置。如第7 一分 二分 情況 具有 制濃 。亦 相摻 制組 般含 至排 302 與來 亦可 ,導 導管 統和 毒系 活性 使用 :所論 1中所 -25- 200806586 舉例說明,係由舉例而言,TDS含量所表示之已處理水的 品質可能受所利用之薄膜的選擇性所影響。第8A圖和第 8B圖顯示依照本發明的某些態樣,選擇分離裝置的能力。 如第8A圖中所示,經由利用電驅動之分離裝置,可產生具 有所預期一組的特性之水用於灌溉農作物。本發明的某些 實施例中,電驅動之分離裝置利用單價選擇性薄膜來促進 處理水,例如海水及/或含鹽之水來提供適合於農業設施中 灌溉之水。相對的,非選擇性技術或甚至非單價選擇性技 Φ •術例如,包括逆滲透裝置、蒸餾裝置以及奈米過濾之技術 不能靈活地提供符合目標特性之處理水。第8B圖特別舉例 說明包括單價選擇性薄膜之電驅動的分離裝置可提供具有 相對於TDS含量,高於2,500或甚至3,000ppm之可接受之 鈉吸附比特性之處理水。因此,本發明的某些態樣可提供 系統和技術其能標定移除非期望之物種同時保留較少不良 之物種。 此外,因爲本發明的某些實施例可選擇性移除單價物 m 胃 種,所以任何生成之次要流或濃縮物流甚少容易產生積垢 和污垢。與非選擇性技術相比較,此特徵有利地容許本發 明的某些分離實施例以較高之水回收速率來操作,因爲任 何次要流的體積率可被有效地減少而與非期望之沉澱無關 係或稍有關係。因此,相較於非選擇性ED和以蒸餾爲基 礎之分離裝置,可將針對利用選擇性分離單價物種之系統 和技術之本發明的某些實施例以較高之回收率操作,且與 以RO和NF爲基礎之分離裝置相比較,甚至以高得多的回 -26- 200806586 收率來操作。値得注意地,因爲以R〇和NF爲基礎之分離 系統選擇性降低非單價物種的濃度,所以此等程序不能有 效地提供具有低SAR値之已處理水。 本發明之選擇性分離系統和技術的另外優點係關於減 少或移除對於農作物生長具有甚少或無影響之非離子化物 種。舉例而言,在本發明的以ED爲基礎之系統中,一般 不將矽石典型地優先移除,藉以避免次要水流中之任何結 垢或污垢事件,當在RO和蒸餾裝置中處理含有矽石之水 # 時,其一般會發生。另外,因爲本發明的某些實施例之次 要水流一般已減少結垢趨勢,所以本發明的分離系統和技 術中之回收速率係大於以RO和蒸餾爲基礎之系統的回收 速率。 可將本發明系統的控制器1 06使用一或數個電腦系統 來實施。,舉例而言,該電腦系統可爲一種通用電腦例如基 於 Intel PENTIUM®型處理器,Motorola PowerPC⑧處理器, Sun UltraSPARC®處理器,He wl e tt-P ac k ar d P A - RI S C ® 處理 ^ 器或任何其他型式的處理器或其組合之電腦。該電腦系統 可使用特別程式化,特別目的硬體予以實施,舉例而言, 意欲供水處理系統用之特定應用積體電路(ASIC)或控制器 〇 該電腦系統可包括一般連接至一或數個記憶裝置之一 或數個處理器,舉例而言,其可包括任何一或數個的碟片 9 驅動記憶器、快閃記憶裝置、Ram記憶裝置或用於儲存數 據之其他裝置。在系統1 00及/或電腦系統的操作期間,一 -27- 200806586 般使用記憶元件或子系統用於儲存程式和數據。舉例而言 ,可使用記憶元件用於儲存與一段時間內的參數有關之歷 史數據以及操作數據。可將軟體,包括實施本發明的實施 例之程式碼儲存在電腦可讀及/或可寫不變性記錄媒體上 ,然後典型地拷貝成爲記憶器子系統,其中,然後它可能 經由一或數個處理器予以執行。可將此程式碼以任何複數 的程式語言來寫,舉例而言,Java,Visual Basic,C,C#,或 C + +,Fortan,Pascal,Eiffel,Basie,或其任何的各種組合。 W 可將電腦系統的構件經由互連機構予以耦合,其可包 括提供被整合在相同裝置內之各構件間之通信的一或數個 匯流排,及/或提供駐留在分開個別裝置上之各構件間之通 信或相互作用的網路。相互作用機構一般使辑信,包括但 不限於數據和指令能在系統的各構件間予以交換。 該電腦系統亦可包括一或數個輸入裝置,舉例而言, 鍵盤、滑鼠、軌跡球、麥克風、觸摸屏及一或數個輸出裝 φ 置舉例而言,列印裝置、顯示屏或揚聲器。另外,額外或 作爲可能由一或數個系統的構件所形成之網路的替代,電 腦系統可含有一或數個界面其可連接電腦系統至通信網路 〇 根據本發明的一或數個實施例,一或數個輸入裝置可 包括用於量測參數之感測器。或者,可將感測器、計量閥 及/或泵、或所有的此等構件連接至通信網路,將其操作上 耦合至電腦系統。舉例而言,可將一或數個感測器i 〇 8配 -28- 200806586 置成爲輸入裝置將其直接連接至控制器1 〇 6,可將計量閥 、泵及/或裝置1 02的構件配置成爲輸出裝置將其連接至控 制器1 06。可將任何一或數個此類子構件或子系統耦合至 另外計算機系統或構件以便與通信網路上之計算機系統通 信。此一組態容許將一個感測器定位在距另一感測器相當 距離或容許將任何感測器定位在距任何子系統及/或控制 器一段相當距離,同時在其間仍提供數據。 該控制器可包括一或數個電腦儲存媒體例如可讀及/ 或可寫之不變性記錄媒體其上可儲存信號,其形成經由一 或數處理器予以執行之程式。舉例而言,該介質可爲碟片 或快閃記憶體。典型操作中,處理器可產生數據,例如實 施本發明的一或數實施例之編碼自儲存媒體被讀取而進入 記憶器中,其容許經由一或數個處理器較媒體,更快速存 取資訊。該記憶器一般是不變性,隨機接達記憶器例如動 態隨機存取記憶體(DRAM)或靜態記憶體(SRAM)或其他適 當裝置其促進資訊轉移至及自一或數個處理器。 ® 雖然將控制系統經由實例敘述成爲一種電腦系統的形 式,可實施例本發明的各個態樣在其上,但是應了解,本 發明不限於在軟體中予以實施,或在如示範所示,在電腦 系統上予以實施。實際上,舉例而言,不在通用電腦系統 上予以實施,替代地,可被實施,控制器或其構件或子部 分成爲專用系統或成爲專用可程式邏輯控制器(PLC)或呈 分佈之控制系統。此外,應了解,本發明的一或數個特徵 或態樣可在軟體、硬體或韌體、或其任何組合中予以實施 -29- 200806586 。舉例而言,經由控制器1 06可執行之演算法的一或數個 程式段可在分開之計算機中予以實施,依次其可通過一或 數個通信網路。 雖然示範所示之各種實施例已被敘述成爲使用感測器 ,但是應了解,本發明並非如此限制。本發明考慮修改現 有之設施來將一或數個系統、子系統或構件翻新改進並實 施本發明的技術。因此,舉例而言,依照本文中示範所論 述之任何一或數個實施例,可變更現有之設施,特別是農 業或生長農作物之設施,包括所構形之一或數個系統來提 供灌溉水、飮用水或兩者。或者,可變更現有之系統及/或 其構件或子系統來實施本發明的任何一或數個動作。 本發明之此等和其他實施例的功能和優點自下列實施 例可進一步了解,其舉例說明本發明的一或數個系統和技 術之利益及/或優點但是並不例示本發明的全部範圍。 實施例1 Φ 此實施例敘述當被利用自欲處理之水流中來選擇性移 除單價陽離子並產生具有較低SAR値之處理水時,ED裝 置的預期性能。 第5圖是顯示利用各種單價選擇性薄膜之處理水中之 SAR値,具有不同程度的選擇性之圖表。如所示,如果可 接受或所預期之SAR値是小於約6,約3,5 00ppm的TDS 含量可使用具有約5的選擇性之單價選擇性薄膜來獲得。 又,如果可接受或所預期之SAR値是小於3,約2,7 00ppm -30- 200806586 TDS含量可使用具有約10的選擇性之單價選擇性薄膜來獲 得。 ED裝置之預計能量需求係小於利用裝置之預計需 求。此外,在本發明的電驅動之分離裝置中處理水所預期 之預計能量預料受欲處理之水的鹽度線性所影響。本發明 的某些實施例中,可調整進料流的溫度來減少促進電驅動 之分離裝置中之成本效益分離所預期之能量。舉例而言, 包括利用約2 5 °C之海水來增加進料流的溫度可能提供具有 約l,5 00ppm的產物TDS含量及約50%的回收,可導致ED 模組中的預計能量減少約6%。 實施例2 除去未利用控制器來調整系統的操作參數以外,此實 施例敘述利用如第1圖的示意舉例說明中大體上表示之本 發明技術之系統的性能。 該ED堆係由濃縮和稀釋室的十個有效槽組構成,五 個槽組在向下之流動路徑中及五個槽組在向上之流動路徑 中,提供約2 8英吋的總流體流程序流動路徑。該等槽組利 用陽離子選擇性薄膜,來自Tokuyama公司之CMS單價選 擇性均勻薄膜來優先地移除鈉陽離子,及不均勻離子交換 薄膜作爲陰離子選擇性薄膜(I〇NPUREtm陰離子薄膜, 0.018英吋厚)。使用0.020英吋厚之間隔墊片及約70%開 放面和0.02 0英吋厚之擠壓屏來至少部分地形成該等室。 ED裝置係通過Ru02覆蓋之鈦電極,在每槽組,約2伏特 的所施加之電位時予以操作。 進料水係溶解由 sPectrum Brands公司可供應之 200806586200806586 飮 Water quality requirements, blending or blending with it. For example, the product water having a TDS content of about 25 mg/L is provided in the first separation device and the product water having a TDS content of about 1, 〇〇〇mg/L is supplied to the product water. The blended product of about 500 mg/L of TDS content was produced in combination at a volume ratio of about 2:1. The target content may be a degree of control that meets or exceeds one or several criteria recommended by the World Health Group, and may provide other water and one or more products of the separation device of the present invention to provide water and/or bath water. It meets or exceeds the criteria or requirements set by the government. One or a plurality of waste water streams from the first separation device, one of which has a relatively high level of species discharge nozzle removed from the first process product stream, may be directed to one or several auxiliary use points 3 1 0, or Return to the source. A further embodiment of the invention contemplates combining wastewater water flow through conduit 322 from source 308 of water for treatment in a second separation unit. The secondary or wastewater stream from the second separation unit is vented to the drain port to one or more auxiliary points of use 310 and/or 312, which are sent back to source 302 as shown. As specifically mentioned above, the auxiliary system can be utilized in subsequent processing operations of the system of the present invention. For example, one or more systems that sterilize, oxidize, or otherwise reduce microorganisms in the water can be configured to further treat the water. In addition, as discussed above, there are also one or several storage systems. Certain features of the invention include systems and techniques which include an electrically driven separation device utilizing a selective membrane as described above. For example, in the case of the 7th minute, there is a strong situation. It can also be used in conjunction with the group 302. It can also be used for the conductivity of the catheter and the toxic system: In the case of the 1st, the meaning of the method is as follows, for example, the treated water represented by the TDS content. Quality may be affected by the selectivity of the film being utilized. Figures 8A and 8B show the ability to select a separation device in accordance with certain aspects of the present invention. As shown in Fig. 8A, by using an electrically driven separation device, water having an expected set of characteristics can be produced for irrigating crops. In certain embodiments of the invention, the electrically driven separation device utilizes a monovalent selective membrane to promote the treatment of water, such as seawater and/or salty water, to provide water suitable for irrigation in agricultural facilities. In contrast, non-selective techniques or even non-monovalent selective techniques • Techniques such as reverse osmosis devices, distillation devices, and nanofiltration are not flexible enough to provide treated water that meets the target characteristics. Figure 8B is particularly illustrative of an electrically driven separation apparatus comprising a monovalent selective membrane that provides treated water having an acceptable sodium adsorption ratio characteristic of greater than 2,500 or even 3,000 ppm relative to the TDS content. Thus, certain aspects of the present invention can provide systems and techniques that can be calibrated to remove undesired species while retaining less undesirable species. Moreover, because certain embodiments of the present invention selectively remove monovalent m gastric species, any secondary or concentrated streams that are produced are less prone to fouling and fouling. This feature advantageously allows certain separation embodiments of the present invention to operate at higher water recovery rates as compared to non-selective techniques, as the volume fraction of any secondary stream can be effectively reduced with undesired precipitation. No relationship or a little relationship. Thus, certain embodiments of the present invention for systems and techniques utilizing selective separation of monovalent species can be operated at higher recovery rates than non-selective EDs and distillation-based separation devices, and RO and NF-based separation devices are even operating at much higher yields back to -26-200806586. It is noted that because R 〇 and NF-based separation systems selectively reduce the concentration of non-monovalent species, such procedures do not effectively provide treated water with low SAR 。. An additional advantage of the selective separation systems and techniques of the present invention is the reduction or removal of non-ionic species that have little or no effect on crop growth. For example, in an ED-based system of the present invention, vermiculite is typically not preferentially removed, in order to avoid any fouling or fouling events in the secondary water stream, when processed in the RO and distillation unit. When the stone of Shishi is #, it usually happens. Additionally, because the secondary water flow of certain embodiments of the present invention has generally reduced the tendency to foul, the separation systems and techniques of the present invention have a recovery rate that is greater than the recovery rate of RO and distillation based systems. The controller 106 of the system of the present invention can be implemented using one or several computer systems. For example, the computer system can be a general-purpose computer such as an Intel PENTIUM® processor, a Motorola PowerPC8 processor, a Sun UltraSPARC® processor, a He wl e tt-P ac k ar d PA - RI SC ® processing^ A computer or any other type of processor or combination thereof. The computer system can be implemented using special stylization, special purpose hardware, for example, a specific application integrated circuit (ASIC) or controller intended for a water treatment system. The computer system can include a general connection to one or several One or a plurality of memory devices, for example, may include any one or more of the discs 9 drive memory, flash memory device, Ram memory device, or other device for storing data. Memory elements or subsystems are used to store programs and data during the operation of system 100 and/or computer systems, as described in -27-200806586. For example, memory elements can be used to store historical data as well as operational data relating to parameters over a period of time. The software, including the code implementing the embodiments of the present invention, may be stored on a computer readable and/or writable immutable recording medium and then typically copied into a memory subsystem, where it may then be via one or several The processor executes it. This code can be written in any of a number of programming languages, for example, Java, Visual Basic, C, C#, or C++, Fortan, Pascal, Eiffel, Basie, or any combination thereof. W may couple components of the computer system via an interconnect mechanism, which may include one or more bus bars that provide communication between components integrated within the same device, and/or provide for each of the separate devices A network of communication or interaction between components. Interacting mechanisms generally enable the exchange of information, including but not limited to data and instructions, to be exchanged between components of the system. The computer system may also include one or more input devices, for example, a keyboard, a mouse, a trackball, a microphone, a touch screen, and one or more output devices, for example, a printing device, a display screen, or a speaker. Additionally, in addition to or as an alternative to a network that may be formed by one or more system components, the computer system may include one or more interfaces that connect the computer system to the communication network, one or more implementations in accordance with the present invention. For example, one or more input devices may include sensors for measuring parameters. Alternatively, the sensor, metering valve and/or pump, or all of these components, can be coupled to a communication network to be operatively coupled to the computer system. For example, one or several sensors i 〇 8 can be placed as an input device to connect it directly to the controller 1 〇6, which can be used as a component of the metering valve, pump and/or device 102. Configure as an output device to connect it to controller 106. Any one or several such sub-components or subsystems can be coupled to another computer system or component for communication with a computer system on a communication network. This configuration allows one sensor to be positioned at a considerable distance from another sensor or to allow any sensor to be positioned at a considerable distance from any subsystem and/or controller while still providing data therebetween. The controller can include one or more computer storage media such as a readable and/or writable immutable recording medium having stored thereon signals that form a program for execution via one or more processors. For example, the medium can be a disc or a flash memory. In a typical operation, the processor can generate data, for example, the code that implements one or more embodiments of the present invention is read from the storage medium and entered into the memory, which allows for faster access via one or more processors than the media. News. The memory is generally invariant, and random access memory such as dynamic random access memory (DRAM) or static memory (SRAM) or other suitable device facilitates the transfer of information to and from one or more processors. ® Although the control system is described as a computer system by way of example, various aspects of the invention may be embodied thereon, but it should be understood that the invention is not limited to being implemented in software, or as exemplified in Implemented on a computer system. In fact, for example, it is not implemented on a general purpose computer system, alternatively, it can be implemented, the controller or its components or subsections become dedicated systems or become dedicated programmable logic controllers (PLCs) or distributed control systems. . In addition, it is to be understood that one or more features or aspects of the invention can be implemented in a soft body, a hard body or a tough body, or any combination thereof, -29-200806586. For example, one or more of the blocks of algorithms executable via controller 106 can be implemented in separate computers, which in turn can pass through one or more communication networks. While the various embodiments shown in the examples have been described as using sensors, it should be understood that the invention is not so limited. The present invention contemplates modifying existing facilities to retrofit and implement one or more systems, subsystems, or components to implement the techniques of the present invention. Thus, for example, in accordance with any one or more of the embodiments discussed herein, existing facilities, particularly agricultural or growing crop facilities, including one or more systems configured to provide irrigation water, may be modified. , water or both. Alternatively, existing systems and/or components or subsystems thereof can be modified to carry out any one or several of the acts of the present invention. The functions and advantages of the present invention and other embodiments are further understood from the following examples, which illustrate the advantages and/or advantages of one or several systems and techniques of the invention. Example 1 Φ This example describes the expected performance of an ED device when it is utilized in a water stream to be treated to selectively remove monovalent cations and produce treated water having a lower SAR. Figure 5 is a graph showing SAR 水中 in treated water using various monovalent selective films with varying degrees of selectivity. As shown, if the acceptable or expected SAR is less than about 6, a TDS content of about 3,500 ppm can be obtained using a monovalent selective film having a selectivity of about 5. Also, if the acceptable or expected SAR is less than 3, about 2,7 00 ppm -30-200806586 TDS content can be obtained using a monovalent selective film having a selectivity of about 10. The projected energy demand of the ED device is less than the projected demand of the utilization device. Furthermore, the expected energy expected to treat water in the electrically driven separation apparatus of the present invention is expected to be affected by the linearity of the salinity of the water to be treated. In certain embodiments of the invention, the temperature of the feed stream can be adjusted to reduce the energy expected to facilitate cost-effective separation in the electrically driven separation unit. For example, including the use of seawater at about 25 °C to increase the temperature of the feed stream may provide a product TDS content of about 1,500 ppm and a recovery of about 50%, which may result in a reduction in the estimated energy in the ED module. 6%. Embodiment 2 In addition to removing the operational parameters of the system that are not utilized by the controller, this embodiment describes the performance of the system of the present invention as generally illustrated in the schematic illustration of Figure 1. The ED stack consists of ten active tanks in the concentration and dilution chamber, with five tanks in the downward flow path and five tanks in the upward flow path providing approximately 28 inches of total fluid flow. Program flow path. The tanks utilize a cation selective membrane, a CMS monovalent selective uniform membrane from Tokuyama Corporation to preferentially remove sodium cations, and a heterogeneous ion exchange membrane as an anion selective membrane (I〇NPUREtm anion membrane, 0.018 inch thick) ). The chambers are at least partially formed using a 0.020 inch thick spacer and a 70% open face and a 0.02 inch thick press screen. The ED device was operated with a Ru02-coated titanium electrode at an applied potential of about 2 volts per cell. Feed water system is dissolved by sPectrum Brands Inc. 200806586
Instant Ocean®合成海鹽混合物在去離子水中予以製備。視 預期,添加氯化鈉來提供具有海水的SAR値(約5 4)之進料 溶液。 該模組以單程模式予以操作,其中將稀釋流和濃縮物 流兩者回送至進料槽。將電極室構造成稀釋室並分開予以 進料。進料流和產物流中之鈣和鎂物種濃度係由標準滴定 方法予以測定。TD S含量係基於所測得導電率予以計算。 亦計算鈉濃度。 表1和表2各自顯示進口和產物水流特性。如表2中 所示,本發明的系統和技術可提供具有一或數種所預期特 性之產物水流。舉例而言,本發明之系統和技術可選擇性 降低單價物種的濃度來提供具有所預期SAR値之水。 此外,該寺表中所列之數據顯不親合兩或數個電驅動 之分離裝置可提供具有所預期SAR値之已處理水。即,第 一電驅動之分離裝置可降低水流的SAR値來提供具有中間 SAR値之中間產物流。依次,可將該中間產物流引導入第 二電驅動之分離裝置中來提供具有所預期SAR値之已處理 水。特別,第6圖顯示經由利用具有單價選擇性薄膜之E d 裝置,以基於此組態之大約三階段,可將TDS含量及SAR 値減少至所預期程度。其他組態可包括或多或少之階段來 獲得一或數種所預期之水特性。 該數據另外顯示可調整各種參數來特別符合產物水中 之S AR値。舉例而言,可增加或減少處理之流速來獲得目 標S A R値。或者,或連同調整流速,可使用所施加之電位 -32- / 200806586 及/或總流動路徑長度作爲本發明的一或數個態樣中之可 調整的操作參數。The Instant Ocean® synthetic sea salt mixture is prepared in deionized water. As expected, sodium chloride was added to provide a feed solution of SAR(R) (about 5 4) with seawater. The module operates in a single pass mode where both the dilution stream and the concentrate stream are returned to the feed tank. The electrode chamber was constructed as a dilution chamber and fed separately. The calcium and magnesium species concentrations in the feed stream and product stream are determined by standard titration methods. The TD S content is calculated based on the measured conductivity. The sodium concentration is also calculated. Tables 1 and 2 each show inlet and product water flow characteristics. As shown in Table 2, the systems and techniques of the present invention can provide a product water stream having one or more of the desired characteristics. For example, the systems and techniques of the present invention can selectively reduce the concentration of monovalent species to provide water with the desired SAR. In addition, the data listed in the temple table does not match two or more electrically driven separation devices to provide treated water with the desired SAR値. That is, the first electrically driven separation device reduces the SAR of the water flow to provide an intermediate product stream having an intermediate SAR. In turn, the intermediate product stream can be directed to a second electrically driven separation unit to provide treated water having the desired SAR. In particular, Figure 6 shows that TDS content and SAR 可 can be reduced to the desired level by utilizing an E d device with a monovalent selective film to achieve approximately three stages based on this configuration. Other configurations may include more or less stages to achieve one or more of the desired water characteristics. This data additionally shows that various parameters can be adjusted to specifically match the S AR値 in the product water. For example, the flow rate of the treatment can be increased or decreased to achieve the target S A R値. Alternatively, or in conjunction with adjusting the flow rate, the applied potential -32- / 200806586 and/or the total flow path length can be used as an adjustable operational parameter in one or more aspects of the present invention.
表1進料流特性 流速 傳導度 鈣 鎂 TDS 鈉 S AR L/m m S / c m ppm ppm ppm ppm - 0.064 33.7 340 1940 24062 63 97 29.4 0.072 3 3.7 340 194 0 24062 63 97 29.4 0.072 33.7 340 1940 24062 63 97 29.4 0.076 34.7 3 52 1928 248 3 6 6673 30.7 0.1 15.8 224 1196 1 0 5 96 2418 14.1 0.122 3 3.7 340 1940 24062 63 97 29.4 0.148 49.7 3 16 17 8 4 37426 113 39 54.4 表 2產物流特性 流速 傳導度 鈣 鎂 TDS 鈉 S AR L/m m S / c m ppm ppm ppm ppm - 0.064 16.0 23 6 1584 1 0766 2094 10.7 0.072 16.2 252 1588 1 0 8 8 0 2116 10.8 0.072 2 2.1 2 84 175 6 15 164 3 45 3 16.8 0.076 24.8 292 1720 17159 4 192 2 0.5 0.1 5.2 124 74 0 3 3 74 374 2.8 0.122 23.3 276 1724 1 603 1 3 8 0 0 18.6 0.148 36.4 268 165 2 26 163 74 93 3 7.5 -33 -Table 1 Feed Flow Characteristics Flow Rate Conductivity Calcium Magnesium TDS S S S L / mm S / cm ppm ppm ppm ppm - 0.064 33.7 340 1940 24062 63 97 29.4 0.072 3 3.7 340 194 0 24062 63 97 29.4 0.072 33.7 340 1940 24062 63 97 29.4 0.076 34.7 3 52 1928 248 3 6 6673 30.7 0.1 15.8 224 1196 1 0 5 96 2418 14.1 0.122 3 3.7 340 1940 24062 63 97 29.4 0.148 49.7 3 16 17 8 4 37426 113 39 54.4 Table 2 Product flow characteristics Velocity conductivity Calcium Magnesium TDS Sodium S AR L/mm S / cm ppm ppm ppm ppm - 0.064 16.0 23 6 1584 1 0766 2094 10.7 0.072 16.2 252 1588 1 0 8 8 0 2116 10.8 0.072 2 2.1 2 84 175 6 15 164 3 45 3 16.8 0.076 24.8 292 1720 17159 4 192 2 0.5 0.1 5.2 124 74 0 3 3 74 374 2.8 0.122 23.3 276 1724 1 603 1 3 8 0 0 18.6 0.148 36.4 268 165 2 26 163 74 93 3 7.5 -33 -
200806586 實施例3 此實施例比較電驅動之分離裝置的性能 力驅動之分離裝置的性能。 所利用之ED模組具有十個槽組在摺疊 以便流動通經五個槽組的稀釋室和濃縮室, 通經另外五個槽組。模組中之各單元係由屏 厚間隔物構成。該等槽爲1 4英吋X 1.2英吋。 陽離子選擇性薄膜爲來自Tokuyama Soda公 。所利用之陰離子選擇性薄膜爲I〇NPUREtm ED模組利用$自覆蓋之鈦板。變更所施加之電 速和進料組成來獲得有效選擇性的各種狀況 表3和表4列出進料流和產物水流性質 表顯示相對於ED模組中所利用之薄膜的選 水的TDS含量之影響。分析進料流和產物流 及鈉、鈣和鎂的濃度。利用此等所測得之値 計算有效之選擇性: 與熱驅動和壓 之流動路徑中 然後,返回並 和 0.020英吋 所利用之單價 司之CMS薄膜 不均勻薄膜。 / 壓和電流、流 〇 。第7圖爲圖 擇性,已處理 的TDS含量以 ,根據式(2)來200806586 EXAMPLE 3 This example compares the performance of an electrically driven separation device to the performance of a force driven separation device. The ED module utilized has ten trough groups that are folded to flow through the distilling chamber and the concentrating chamber of the five trough groups, passing through the other five trough groups. Each unit in the module consists of a screen spacer. The slots are 1 4 inches x 1.2 inches. The cation selective film is from Tokuyama Soda. The anion selective membrane utilized was a self-covering titanium plate for the I〇NPUREtm ED module. Various conditions for changing the applied electric velocity and feed composition to obtain effective selectivity Tables 3 and 4 list the feed stream and product water flow properties. The table shows the TDS content of the water selected relative to the membrane used in the ED module. The impact. The feed and product streams and the concentrations of sodium, calcium and magnesium were analyzed. Using these measured enthalpies, the effective selectivity is calculated: in the flow path with the heat drive and pressure, then, and the 0.04 inch of the unit price of the CMS film is used to form an uneven film. / Voltage and current, flow 〇. Figure 7 is an alternative, processed TDS content, according to formula (2)
選擇性="η-—-=Γ 2 AVCa^AvMg L vCa+vMg 離子物種i的 其中V爲離子物種i的莫耳濃度及Δν 莫耳濃度之改變。 -34- 200806586 表3進料流特性Selectivity = "η---=Γ 2 AVCa^AvMg L vCa+vMg Ion species i where V is the change in molar concentration of ionic species i and Δν molar concentration. -34- 200806586 Table 3 Feed Flow Characteristics
鈣 鎂 TDS S AR 鈉 ppm ppm ppm - ppm 1 126 428 3 7426 121.66 1 2822 2 141 1928 2483 6 75.42 8 2 8 3 3 136 1940 2 4 0 62 72.92 8 0 0 9 4 136 1940 24062 72.92 8009 5 136 1940 24062 72.92 8009 6 136 194 0 2 40 62 72.92 80 09 7 355 5 112 40268 72.13 1 2 8 5 0 g 3 06 4 3 96 3 5 0 2 8 6 7.75 11193 9 23 4 3 3 96 2 7 129 59.78 8 6 74 10 163 2340 1 928 1 5 1.29 61 84 11 9 8 1336 11356 3 9.93 3 6 5 1 12 90 1196 1 05 96 3 9.45 34 19 13 32 3 84 4014 26.5 13 13 14 32 3 8 4 40 14 2 6.5 13 13 200806586 擇性 衣外 鈣 座糊Μ拆 鎂 r g 5LJ2}1 TDS__ S AR -——--- 鈉 j擇性 ppm ppm ppm _:___ ppm - 1 107 3 96 2 616 3 87.8 4 8 8 5 2 1.8 2 292 1720 17159 54.42 56 14 1.4 3 276 17 24 1 603 1 50.72 5217 1.4 4 252 1588 1 0 8 8 0 34.66 3420 1.5 5 284 1756 15 164 4 7.14 48 97 1.8 6 236 1584 1 0766 34.51 3 3 8 6 1.4 7 804 5 03 6 34123 60.92 1 0707 3.1 8 704 4276 29348 56.79 9217 2.5 9 536 3 3 24 21566 47.05 6724 3.7 10 3 04 1972 8 897 2 3.73 2604 1 .7 11 1 88 1148 6187 22.26 187 1 1.6 12 124 . 740 3 3 74 14.58 986 0.9 13 44 236 1321 10.4 400 0.9 14 1 3 2 168 65 1 5.57 181 0.8 表3和表4以及第7圖中之數據顯示當進料水的TDS 含量減少時,陽離子選擇性薄膜的選擇性亦減小。對於TDS 之選擇性的相互關係係遵循式(3)予以測定: 選擇性= 0.5 9 05 + (5 X Hr5)(TDS) 然後相對於其他非選擇性技術逆滲透、蒸餾和奈米^ 濾,利用此種選擇性/TDS關係以如第8A圖和第8B圖中所 -36- 200806586 表示之複合特性的觀點,來鑑定依照本發明電驅動之分離 裝置的能力。 假定海水中約96%的單價陽離子物種爲鈉及約4%爲鉀 。此外,假設所有陽離子物種構成約37%的TDS含量致使 TDS之改變可根據式(4)予以測定: 23Calcium Magnesium TDS S AR Sodium ppm ppm ppm - ppm 1 126 428 3 7426 121.66 1 2822 2 141 1928 2483 6 75.42 8 2 8 3 3 136 1940 2 4 0 62 72.92 8 0 0 9 4 136 1940 24062 72.92 8009 5 136 1940 24062 72.92 8009 6 136 194 0 2 40 62 72.92 80 09 7 355 5 112 40268 72.13 1 2 8 5 0 g 3 06 4 3 96 3 5 0 2 8 6 7.75 11193 9 23 4 3 3 96 2 7 129 59.78 8 6 74 10 163 2340 1 928 1 5 1.29 61 84 11 9 8 1336 11356 3 9.93 3 6 5 1 12 90 1196 1 05 96 3 9.45 34 19 13 32 3 84 4014 26.5 13 13 14 32 3 8 4 40 14 2 6.5 13 13 200806586 Selective clothing, extracellular calcium paste, magnesium removal, rg 5LJ2}1 TDS__ S AR -——--- sodium, selective ppm ppm ppm _:___ ppm - 1 107 3 96 2 616 3 87.8 4 8 8 5 2 1.8 2 292 1720 17159 54.42 56 14 1.4 3 276 17 24 1 603 1 50.72 5217 1.4 4 252 1588 1 0 8 8 0 34.66 3420 1.5 5 284 1756 15 164 4 7.14 48 97 1.8 6 236 1584 1 0766 34.51 3 3 8 6 1.4 7 804 5 03 6 34123 60.92 1 0707 3.1 8 704 4276 29348 56.79 9217 2.5 9 536 3 3 24 21566 47.05 6724 3.7 10 3 04 1972 8 897 2 3.73 2604 1 .7 11 1 88 1148 6187 22 .26 187 1 1.6 12 124 . 740 3 3 74 14.58 986 0.9 13 44 236 1321 10.4 400 0.9 14 1 3 2 168 65 1 5.57 181 0.8 The data in Tables 3 and 4 and 7 show when the feed water When the TDS content is reduced, the selectivity of the cation selective film is also reduced. The selectivity for the selectivity of TDS is determined by following equation (3): selectivity = 0.5 9 05 + (5 X Hr5) (TDS) and then reverse osmosis, distillation and nanofiltration relative to other non-selective techniques, The ability of the electrically driven separation device in accordance with the present invention is identified using this selectivity/TDS relationship from the point of view of the composite characteristics as indicated by Figures 8A and 8B, -36-200806586. It is assumed that about 96% of the monovalent cationic species in seawater is sodium and about 4% is potassium. In addition, assuming that all cationic species constitute a TDS content of approximately 37%, the change in TDS can be determined according to formula (4): 23
AvNa^ 0.96 + 40(Δ vCa) + 24(Δ vMg) = 037(ATDS)AvNa^ 0.96 + 40(Δ vCa) + 24(Δ vMg) = 037(ATDS)
另外假定當在電驅動之分離裝置中被移除時,二價物 種鈣和鎂行爲相似,可利用下式:It is also assumed that when the bivalent species of calcium and magnesium behave similarly when removed in an electrically driven separation device, the following formula can be utilized:
AvCa _ AvMg VCa vMg 使用利用式(2)、(3)和(4)之上述假定相對於TDS.含量 來預測產物水之SAR値。將結果示於第8A圖和第8B圖中 ,後者顯示前者的放大剖面。第8B圖,其包括形成某些農 作物之較佳特性的一個區域之覆蓋層,顯示本發明之分離 技術可提供複數的符合或跨越該等目標特性界限之實際產 物流。顯著地,本發明的分離系統和技術提供中間及/或可 修改之特徵,其不能使用非選擇性替代技術直接獲得。不 過,爲了提供一個比較性基礎,已處理水的中間性質經由 估計實際生成之產物與成比例數量的原或未處理之海水的 假定摻合物予以模擬。舉例而言,爲了提供估計蒸餾水產 物之SAR/TDS關係的性質,將進料海水與實際餾出物水相 混合來預測中間產物的特徵値。雖然一般並未使用此等做 法,但是陳述所舉例說明之預測中間特性,如由連接實際 -37- 200806586 數據之虛線所示,來提供相對於選擇性分離系統之一個比 較。關於逆滲透和奈米過濾等系統之SAR/TDS關係的性質 同樣地經由估計理論上摻合之產物的性質予以模擬。因此 ,關於各分立,不可修改適合之技術,連接實際數據點之 虛線代表一種假設可獲得之可修改適合產物而連接實際數 據値之實線顯示可獲得之修改適合產物。 實際餾出物水性質自美國Dept, of Interior,Bureau of Reclamation,Denver Office,其標題爲1’Water TreatmentAvCa _ AvMg VCa vMg uses the above assumptions of equations (2), (3), and (4) to predict the SAR of the product water relative to the TDS. The results are shown in Figs. 8A and 8B, which show an enlarged cross section of the former. Figure 8B, which includes a cover layer forming a region of preferred characteristics of certain crops, shows that the separation technique of the present invention can provide a plurality of actual production streams that meet or cross the boundaries of such target characteristics. Significantly, the separation systems and techniques of the present invention provide intermediate and/or modifiable features that cannot be directly obtained using non-selective alternative techniques. However, in order to provide a comparative basis, the intermediate nature of the treated water is simulated by estimating the actual product produced with a proportional amount of a hypothetical blend of raw or untreated seawater. For example, to provide an estimate of the nature of the SAR/TDS relationship of distilled water products, the feed seawater is mixed with the actual distillate water to predict the characteristics of the intermediate product. Although these practices are generally not used, the predicted intermediate characteristics exemplified in the statements are as shown by the dashed line connecting the actual -37-200806586 data to provide a comparison with the selective separation system. The nature of the SAR/TDS relationship for systems such as reverse osmosis and nanofiltration is similarly simulated by estimating the properties of the theoretically blended product. Therefore, with respect to each discrete, the appropriate technique cannot be modified. The dashed line connecting the actual data points represents a hypothetically achievable modified product and the actual line connecting the actual data shows the modified suitable product. The actual distillate water properties are from Dept, of Interior, Bureau of Reclamation, Denver Office, USA, titled 1'Water Treatment
Technology Program Report",Νο·7 1995 之出版物可獲得 。非選擇性ED產物水性質之實際數據自Turek Μ·之出版 物,’’Cost Effective Electrodialytic Seawater Desalination” ,Desalination, No. 153,pp.371 至 376,2002 獲得。奈米 過濾之產物水性質之實際數據自 Tseng等之出版物, ’’Optimization of Dual -Staged NF Membranes for Seawater Desalination”,AWWA 2003 CA-NV An. Fall Conf·,2003 獲得。 ^ 現在已敘述本發明的某些舉例說明之實施例,熟習該 項技藝之人士應了解,前面所述僅是舉例說明並非限制。 許多變更和其他實施例爲在通常熟習該項技藝人士之一的 範圍以內且被考慮係屬於本發明的範圍以內。特別,雖然 許多的本文中所陳述之實施例包括方法實行或系統元件的 特定組合,但是應了解,可將那些實行和那些元件以其他 方式聯合來達到相同目的。舉例而言,可將ED和EDI裝 置聯合在兩階段程序中,其中ED裝置減少海水中TDS含 -38- 200806586 量至約5,000ppm至約6,000ppm的範圍及EDI裝置隨後減 少TDS含量至約l,500ppm至約2,000ppm的範圍。 此外,僅和一實施例有關係所論述之實行、元件和特 徵無意不包括在其他實施例中之相似任務中。 應了解,各種變更、修正和改進可爲熟習該項技藝之 人士容易地想到且意欲此等變更、修正和改進爲內容之一 部分並在本發明的要旨和範圍.以內。舉例而言,鈉吸附比 可根據替代式(5)予以表示: adj \Cax+Mg 其中Na爲以me/L計,水中之鈉濃度;Cax爲以me/L 計,變更之鈣値,其代表水中之鈣物種濃度,由於水的鹽 度具有補償,HC03/Ca比(以me/L計),及土壤表面中所估 計之C02分壓;及Mg爲以me/L計,水中之鎂物種的濃度 〇 φ 而且,亦應了解,本發明係關於本文中所敘述之各特 徵、系統、子系統或技術及本文中所敘述之兩或數特徵、 系統、子系統或技術的任何組合及考慮兩或數特徵、系統 、子系統及/或方法的任何組合(如果此等特徵、系統、子 系統和技術不是相互地不一致),是在本發明的範圍以內, 如申請專利範圍所具體表現。 使用序數術語例如"第一 π、”第二π、π第三’’等等在申請 專利範圍中來修飾一個申請專利範圍單元,其本身並不暗 示一申請專利範圍單元較另一單元的任何優先權、領先或 -39- 200806586 次序或暫時的次序其中實施方法的實行,而係僅使用作爲 標記來區別具有某一名稱之申請專利範圍單元與具有相同 名稱(除了使用序數術語以外)之另外單元來區別該等申請 專利範圍單元。 熟習該項技藝之人士應了解,本文中所敘述之參數和 構型是例示,且實際參數及/或組態將基於特定應用其中使 用本發明的系統和技術。熟習該項技藝之人士亦應確認或 能確定,使用僅僅例行實驗,相當於本發明的特定實施例 。因此,應了解,本文中所敘述之實施例 '僅經由實施例予 以陳述,且在所附隨之申請專利範圍及其同義詞的範圍以 內;可實施本發明,除了作爲具體地敘述以外。 如本文中所使用,術語"複數”係述及兩或數種項目或 構件。術語 M 包括’’、"包含"、"car r yin g π、" having "、 "containing ”和"involving",無論在書面敘述或申請專利範 圍中爲非限定之術語,即,意指"包括但不限於"。因此, 使用此等術語意指包括此後所列之項目及其相當物,以及 另外之項目。關於申請專利範圍,僅轉換成語"consisting of "和’’ c ο n s i s t i n g e s s e n t i a 11 y o f ”各自爲限定或半限定之轉換 成語。此外,關於水,特別是已處理水,使用術語"飲用" 並不限制本發明論題的範圍且可述及適合於家畜使用之水 ,包括消費。 【圖式簡單說明】 附隨之圖式並未試圖按比例繪製。該等圖式中,不同 圖中予以舉例說明之各相同或接近相同構件係由相同數字 -4 0 - 200806586 表示。爲了清晰之目的,每一圖式中,未將每一構件標記 〇 第1圖爲依照本發明的一或數特徵之系統的示意舉例 說明。 第2圖爲依照本發明的另外特徵之灌槪系統的示意舉 例說明。 第3圖爲另外示意舉例說明顯示依照本發明的更另外 特徵再另外系統。 第4圖爲圖表顯示依照本發明的某些態樣、合格程度 之水特性的代表範圍。 第5圖爲圖表顯示依照本發明的某些態樣,相對於利 用在不同程度的選擇性之單價選擇性陽離子薄膜之總溶解 固體含量,經由電透析、去鹽水的預測鈉吸附比。 第6圖爲圖表顯示本發明的分級處理態樣來產生具有 一或數預期特性之已處理水。 第7圖爲圖表顯示薄膜選擇性對於依照本發明某些實 施例之裝置中所處理之產物水的總溶解固體含量的影響。 第8 A圖及第8 B圖爲圖表比較性舉例說明相對於其他 非選擇性方法,經由本發明的系統和技術所產生之處理水 的某些特性。 【主要元件符號說明】 100, 200 系統 102 水源 106 控制器 -41- 200806586The publication of the Technology Program Report", Νο·7 1995 is available. Actual data on the water properties of non-selective ED products are obtained from the publication of Turek Μ·, ''Cost Effective Electrodialytic Seawater Desalination', Desalination, No. 153, pp. 371 to 376, 2002. The actual data was obtained from the publication of Tseng et al., ''Optimization of Dual - Staged NF Membranes for Seawater Desalination', AWWA 2003 CA-NV An. Fall Conf., 2003. The exemplified embodiments of the present invention are now described, and those skilled in the art should understand that the foregoing description is by way of illustration and not limitation. Many variations and other embodiments are within the scope of one of ordinary skill in the art and are considered to be within the scope of the invention. In particular, while many of the embodiments set forth herein include method implementations or specific combinations of system components, it will be appreciated that those implementations may be combined with those elements in other ways to achieve the same objectives. For example, the ED and EDI devices can be combined in a two-stage procedure in which the ED device reduces the amount of TDS in seawater from -38 to 200806586 to a range of from about 5,000 ppm to about 6,000 ppm and the EDI device subsequently reduces the TDS content to about 1 , in the range of 500 ppm to about 2,000 ppm. In addition, implementations, elements and features discussed in connection with only one embodiment are not intended to be included in a similar task in other embodiments. It is to be understood that various changes, modifications, and improvements can be readily made by those skilled in the art and are intended to be a part of the present invention. For example, the sodium adsorption ratio can be expressed according to the alternative formula (5): adj \Cax+Mg where Na is the sodium concentration in water in me/L; Cax is the calcium in terms of me/L, which is changed Represents the concentration of calcium species in the water, due to the salinity of the water, the HC03/Ca ratio (in me/L), and the estimated CO 2 partial pressure in the soil surface; and Mg is the me/L, magnesium in water The concentration of the species 〇 φ Also, it should be understood that the present invention relates to any feature, system, subsystem or technique described herein and any combination of two or more features, systems, subsystems or techniques described herein and Any combination of two or more features, systems, subsystems, and/or methods (if such features, systems, subsystems, and techniques are not mutually inconsistent) are within the scope of the invention, as the scope of the claims . The use of ordinal terms such as "first π," second π, π third '', etc., in the scope of the patent application to modify a patentable range unit does not by itself imply that one patented range unit is Any priority, lead or -39-200806586 order or temporary order in which the implementation of the method is implemented, and only the use of the mark as a mark to distinguish between a patented scope unit having a certain name and having the same name (except for the use of ordinal terms) Further units are used to distinguish such patented scope units. Those skilled in the art will appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will be based on the particular application in which the system of the invention is used. And those skilled in the art should also clarify or be able to determine that the use of only routine experimentation is equivalent to a particular embodiment of the invention. It is therefore understood that the embodiments described herein are described by way of example only. And within the scope of the accompanying claims and their synonyms, the invention may be practiced otherwise . Recited outside the body As used herein, the term " complex "system mentioned item or two or several members. The term M includes '', "include", "car r yin g π, " having ", "containing ” and "involving", whether in written or patented terms, unqualified terms , ie, means "including but not limited to ". Therefore, the use of these terms is intended to include the items listed thereafter and their equivalents, as well as additional items. Regarding the scope of the patent application, only the idiom "consisting of " and ''c ο nsistingessentia 11 yof ” are each a defined or semi-qualified conversion idiom. Moreover, with regard to water, particularly treated water, the use of the term "drink" does not limit the scope of the subject matter of the invention and may refer to water suitable for use in livestock, including consumption. [Simple description of the drawings] The accompanying drawings are not intended to be drawn to scale. In the drawings, the same or nearly identical components, which are illustrated in the different figures, are represented by the same numeral -40-200806586. For the sake of clarity, each component is not labeled in each of the figures. Figure 1 is a schematic illustration of a system in accordance with one or more features of the present invention. Figure 2 is a schematic illustration of a filling system in accordance with additional features of the present invention. Figure 3 is a further schematic illustration of an additional system showing additional features in accordance with the present invention. Figure 4 is a graphical representation of representative ranges of water characteristics in accordance with certain aspects and levels of compliance in accordance with the present invention. Figure 5 is a graph showing the predicted sodium adsorption ratio via electrodialysis, demineralized water, relative to the total dissolved solids content of the monovalent selective cationic film at varying degrees of selectivity, in accordance with certain aspects of the present invention. Figure 6 is a graph showing the staged treatment of the present invention to produce treated water having one or several desired characteristics. Figure 7 is a graph showing the effect of film selectivity on the total dissolved solids content of the product water treated in a device in accordance with certain embodiments of the present invention. Figures 8A and 8B are diagrams comparatively illustrating certain characteristics of treated water produced by the systems and techniques of the present invention relative to other non-selective methods. [Main component symbol description] 100, 200 system 102 Water source 106 Controller -41- 200806586
108 監測感測器 110, 230 分離裝置 114, 134 使用點 122, 124 控制線 202, 302 源 220, 304 第一分離裝置 222, 316, 322 導管 224 灌溉水分配系統 228 第一型之農作物 23 0, 306 第二分離裝置 234 第二灌溉分配系統 23 6, 242 導管分佈系統 244 導管或連接 238 第二型之農作物 3 00 處理系統 308 混合器 310, 3 12 輔助使用點 ED 電透析 EDI 電去離水 TDS 總溶解固體粒子 SAR 鈉吸附比 -42-108 monitoring sensor 110, 230 separating device 114, 134 using point 122, 124 control line 202, 302 source 220, 304 first separating device 222, 316, 322 conduit 224 irrigation water distribution system 228 first type crop 23 0 306 second separation device 234 second irrigation distribution system 23 6, 242 conduit distribution system 244 conduit or connection 238 crop 2 of the second type 00 treatment system 308 mixer 310, 3 12 auxiliary point of use ED electrodialysis EDI deionization TDS total dissolved solids SAR sodium adsorption ratio -42-
Claims (1)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80461006P | 2006-06-13 | 2006-06-13 | |
US80551206P | 2006-06-22 | 2006-06-22 | |
US11/524,078 US8277627B2 (en) | 2006-06-13 | 2006-09-20 | Method and system for irrigation |
US11/524,033 US8114259B2 (en) | 2006-06-13 | 2006-09-20 | Method and system for providing potable water |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200806586A true TW200806586A (en) | 2008-02-01 |
TWI510439B TWI510439B (en) | 2015-12-01 |
Family
ID=38596872
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096120968A TW200812473A (en) | 2006-06-13 | 2007-06-11 | Method and system for irrigation |
TW096120970A TWI510439B (en) | 2006-06-13 | 2007-06-11 | Method and system for providing potable water |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096120968A TW200812473A (en) | 2006-06-13 | 2007-06-11 | Method and system for irrigation |
Country Status (14)
Country | Link |
---|---|
EP (2) | EP2027072A1 (en) |
JP (1) | JP2009539402A (en) |
KR (1) | KR20090019010A (en) |
CN (1) | CN104478044A (en) |
AU (2) | AU2007259267B2 (en) |
BR (1) | BRPI0713414A2 (en) |
CA (1) | CA2655050A1 (en) |
CL (1) | CL2007001706A1 (en) |
EA (1) | EA017151B1 (en) |
IL (3) | IL195497A (en) |
MX (1) | MX2008015813A (en) |
SG (2) | SG174796A1 (en) |
TW (2) | TW200812473A (en) |
WO (2) | WO2007145785A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10252923B2 (en) | 2006-06-13 | 2019-04-09 | Evoqua Water Technologies Llc | Method and system for water treatment |
US10213744B2 (en) | 2006-06-13 | 2019-02-26 | Evoqua Water Technologies Llc | Method and system for water treatment |
US8277627B2 (en) | 2006-06-13 | 2012-10-02 | Siemens Industry, Inc. | Method and system for irrigation |
US8114259B2 (en) | 2006-06-13 | 2012-02-14 | Siemens Industry, Inc. | Method and system for providing potable water |
US20080067069A1 (en) | 2006-06-22 | 2008-03-20 | Siemens Water Technologies Corp. | Low scale potential water treatment |
US7820024B2 (en) | 2006-06-23 | 2010-10-26 | Siemens Water Technologies Corp. | Electrically-driven separation apparatus |
MX2010005876A (en) | 2007-11-30 | 2010-06-15 | Siemens Water Tech Corp | Systems and methods for water treatment. |
RU2454855C1 (en) * | 2010-12-15 | 2012-07-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Московский государственный университет природообустройства" | Method of surface watering |
RU2454858C1 (en) * | 2010-12-15 | 2012-07-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Московский государственный университет природообустройства" | Method of surface watering |
RU2454856C1 (en) * | 2010-12-15 | 2012-07-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Московский государственный университет природообустройства" | Method of surface watering |
RU2454854C1 (en) * | 2010-12-15 | 2012-07-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Московский государственный университет природообустройства" | Method of surface watering |
RU2454857C1 (en) * | 2010-12-15 | 2012-07-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Московский государственный университет природообустройства" | Method of surface watering |
GB2487247B (en) | 2011-01-17 | 2017-04-12 | Oceansaver As | Water treatment |
GB2487248B (en) | 2011-01-17 | 2017-07-26 | Oceansaver As | Water treatment |
GB2487246B (en) | 2011-01-17 | 2016-10-05 | Oceansaver As | Water treatment |
GB2487249B (en) * | 2011-01-17 | 2017-08-16 | Oceansaver As | Water treatment |
CN104996055B (en) * | 2015-07-29 | 2016-10-12 | 杨宁 | Plant nutrient water circulation utilization system |
AU2018266639B2 (en) * | 2017-05-08 | 2024-03-28 | Evoqua Water Technologies Llc | Water treatment of sodic, high salinity, or high sodium waters for agricultural applications |
EA202090132A1 (en) | 2017-08-21 | 2020-08-03 | Эвокуа Уотер Текнолоджиз Ллк | TREATMENT OF SALT WATER FOR ITS USE FOR AGRICULTURAL AND INDUSTRIAL NEEDS |
CN110915586B (en) * | 2019-12-13 | 2022-03-25 | 黑龙江大学 | Planting method and irrigation device for improving beet yield and sugar content by combining Internet of things |
JP7095721B2 (en) * | 2020-09-17 | 2022-07-05 | 栗田工業株式会社 | Agricultural water treatment system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2723422B2 (en) * | 1992-06-18 | 1998-03-09 | 株式会社トクヤマ | Production method of domestic water |
TW227022B (en) * | 1992-11-18 | 1994-07-21 | Tzong-Biau Su | Apparatus for purifying and polarizing water |
JP3184015B2 (en) * | 1993-08-10 | 2001-07-09 | 野村マイクロ・サイエンス株式会社 | Ultrapure water production equipment |
JP2887105B2 (en) * | 1996-04-24 | 1999-04-26 | 幸子 林 | Method and apparatus for producing drinking water and salt |
US6651383B2 (en) * | 1998-07-06 | 2003-11-25 | Gerald J. Grott | Methods of utilizing waste waters produced by water purification processing |
FR2818267B1 (en) * | 2000-12-20 | 2003-09-26 | Gervais Danone Sa | PROCESS FOR DEPLETION IN MONOVALENT CATIONS OF WATER INTENDED FOR SUPPLY |
WO2004013048A2 (en) * | 2002-08-02 | 2004-02-12 | University Of South Carolina | Production of purified water and high value chemicals from salt water |
US7582198B2 (en) * | 2003-11-13 | 2009-09-01 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
EP3395769B1 (en) * | 2003-11-13 | 2021-01-06 | Evoqua Water Technologies LLC | Water treatment system and method |
CN1634644A (en) * | 2003-12-26 | 2005-07-06 | 上海兰格科技有限公司 | Bacterial inhibiting heterogeneous ion-exchange membrane |
US7329358B2 (en) * | 2004-05-27 | 2008-02-12 | Siemens Water Technologies Holding Corp. | Water treatment process |
RU2281255C1 (en) * | 2004-12-21 | 2006-08-10 | Открытое акционерное общество "Научно-исследовательский и конструкторский институт химического машиностроения" | Method of treatment of brackish water including water of high hardness and plant for realization of this method |
-
2007
- 2007-05-22 WO PCT/US2007/012145 patent/WO2007145785A1/en active Application Filing
- 2007-05-22 MX MX2008015813A patent/MX2008015813A/en active IP Right Grant
- 2007-05-22 AU AU2007259267A patent/AU2007259267B2/en not_active Ceased
- 2007-05-22 CN CN201410525908.4A patent/CN104478044A/en active Pending
- 2007-05-22 SG SG2011065315A patent/SG174796A1/en unknown
- 2007-05-22 JP JP2009515405A patent/JP2009539402A/en active Pending
- 2007-05-22 BR BRPI0713414-2A patent/BRPI0713414A2/en not_active IP Right Cessation
- 2007-05-22 KR KR1020097000648A patent/KR20090019010A/en not_active Application Discontinuation
- 2007-05-22 CA CA002655050A patent/CA2655050A1/en not_active Abandoned
- 2007-05-22 EP EP07777206A patent/EP2027072A1/en not_active Withdrawn
- 2007-05-22 AU AU2007259354A patent/AU2007259354B2/en active Active
- 2007-05-22 WO PCT/US2007/012150 patent/WO2007145786A1/en active Application Filing
- 2007-05-22 SG SG2011065323A patent/SG174797A1/en unknown
- 2007-05-22 EP EP07777210A patent/EP2035334A1/en not_active Withdrawn
- 2007-05-22 EA EA200970004A patent/EA017151B1/en not_active IP Right Cessation
- 2007-06-11 TW TW096120968A patent/TW200812473A/en unknown
- 2007-06-11 TW TW096120970A patent/TWI510439B/en not_active IP Right Cessation
- 2007-06-11 CL CL2007001706A patent/CL2007001706A1/en unknown
-
2008
- 2008-11-25 IL IL195497A patent/IL195497A/en active IP Right Grant
- 2008-12-11 IL IL195908A patent/IL195908A0/en unknown
-
2013
- 2013-01-03 IL IL224102A patent/IL224102A/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2009539402A (en) | 2009-11-19 |
AU2007259267B2 (en) | 2011-09-22 |
CL2007001706A1 (en) | 2008-01-18 |
MX2008015813A (en) | 2009-01-12 |
AU2007259267A1 (en) | 2007-12-21 |
EP2035334A1 (en) | 2009-03-18 |
EA017151B1 (en) | 2012-10-30 |
SG174797A1 (en) | 2011-10-28 |
AU2007259354A1 (en) | 2007-12-21 |
IL195908A0 (en) | 2009-09-01 |
BRPI0713414A2 (en) | 2012-03-27 |
IL224102A (en) | 2015-06-30 |
IL195497A0 (en) | 2009-09-01 |
TWI510439B (en) | 2015-12-01 |
IL195497A (en) | 2013-09-30 |
WO2007145785A1 (en) | 2007-12-21 |
CN104478044A (en) | 2015-04-01 |
TW200812473A (en) | 2008-03-16 |
EA200970004A1 (en) | 2009-06-30 |
AU2007259354B2 (en) | 2012-04-19 |
WO2007145786A1 (en) | 2007-12-21 |
CA2655050A1 (en) | 2007-12-21 |
EP2027072A1 (en) | 2009-02-25 |
KR20090019010A (en) | 2009-02-24 |
SG174796A1 (en) | 2011-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI510439B (en) | Method and system for providing potable water | |
US10322953B2 (en) | Method and system for water treatment | |
US8114259B2 (en) | Method and system for providing potable water | |
US9592472B2 (en) | Method and system for irrigation | |
US10625211B2 (en) | Method and system for water treatment | |
JP7261745B2 (en) | Water treatment of sodium water, high salinity water or high sodium water for agricultural applications | |
US20240132389A1 (en) | Treatment of Saline Water for Agricultural and Potable Use | |
CN101500946A (en) | Method and system for providing potable water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |