TW200532963A - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
TW200532963A
TW200532963A TW094105915A TW94105915A TW200532963A TW 200532963 A TW200532963 A TW 200532963A TW 094105915 A TW094105915 A TW 094105915A TW 94105915 A TW94105915 A TW 94105915A TW 200532963 A TW200532963 A TW 200532963A
Authority
TW
Taiwan
Prior art keywords
aqueous electrolyte
aqueous
benzenes
halogenated
battery
Prior art date
Application number
TW094105915A
Other languages
Chinese (zh)
Other versions
TWI265651B (en
Inventor
Takashi Hayashi
Akio Hiwara
Akira Yajima
Shusuke Inada
Sayaka Fukui
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Publication of TW200532963A publication Critical patent/TW200532963A/en
Application granted granted Critical
Publication of TWI265651B publication Critical patent/TWI265651B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Disclosed is a nonaqueous electrolyte secondary battery wherein safety during overcharge is further improved. Specifically disclosed is a nonaqueous electrolyte secondary battery having such a structure that an electrode group (3) including a positive electrode (10), a negative electrode (11) and a separator (12) is arranged within a space hermetically sealed by a container body (2) and a covering plate (4), and a nonaqueous electrolyte is injected into the electrode group(3). In this secondary battery, it is used a nonaqueous electrolyte obtained by dissolving an electrolyte in a nonaqueous solvent which contains halogenated benzenes while having the aminated benzene content, as impurities, of less than 100 ppm.

Description

•200532963 ⑴ 九、發明說明 【發明所屬之技術領域】 本發明係有關非水電 【先前技術】 .近年,移動通信機、 、一體型數位相機、CD < φ 機器圖謀小型化、輕量化 量之電池。 此等電子機器的電源 之原始電池、鎳鎘電池、 正極使用鋰複合氧化物, 之碳質材料的非水電解質 電壓高,高能量密度而受: 但是,最近的電池隨 φ 的安定性、防止電池溫度 電時的安全化於相關的先 電池構造改良之安全化, 謀求提高安全性爲主。其 加劑,其構造上約束少,: 過充電添加劑,有4 、3,4,5-三甲氧基甲苯 知氧化還元電位爲4 · 8〜 曰本特開平' 3 02 6 1 4號公 解質及非水電解質蓄電池。 筆記型個人電腦、掌型個人電腦 〔MD )隨身聽、無線電話等電子 ,此等之電源特別要求小型大容 普及之電池,可列舉如鹼錳電池 鉛蓄電池等之蓄電池。其中亦以 且負極使用可吸存•放出鋰離子 蓄電池、小型輕量可得到單電池 注@。 著高能量密度化,保持過充電時 顯著上昇的暴熱更加困難。過充 前文獻及專利文獻已知很多,以 於非水電解質添加過充電添加劑 中亦由於在非解質添加過充電添 有種種提案。 -甲氧基甲苯、2,6 -甲氧基甲苯 等具有甲基與甲氧基的苯類,已 4 · 9 V程度之氧化還元梭(參閱 報)。 (8 -5- -200532963 (2) 又,已知如2 -氯-p -二甲苯、4 ·溴· m •二甲苯等具有烷 基與鹵原子的苯類(參閱日本特開平9-50822號公報)。 特開平9 - 5 0 8 2 2號公報之實施例記載,添加此等苯類於非 , 水電解液之電池之發熱開始電壓爲4.45〜4.75V的範圍內 〇 又,已知1,2 -二甲氧基苯、1,2·二甲氧基-4 -氟苯 等之鹵原子及院氧基取代之苯類(日本特開2000-156243 φ 號公報)。 曰本特開7-302614號公報、日本特開平9-50822號公 報、日本特開2 000 - 1 5 624 3號公報記載之苯類,任一者, 比非解液電池之滿充電時的正極電位更高的電池電位爲具 有可逆性氧化還元電位者,由添加非水電解質,促進過充 電狀態時非水溶劑之氧化分解反應,利用由該氧化分解反 應之發熱遮斷過充電電流。 又’提案含有具氟原子與碳數1〜1 0烴之苯類之非水 φ 電解液(參閱日本特開平]1 - 3 2 9 4 9 6號公報)。特開平 1卜329496號公報記載抑制該苯類與非解液反應速度抑制 發熱反應。 又,提案含有鋰鹽電解質,與含碳酸乙酯20〜60容 量%、二院基碳酸酯2 0〜7 0容量°/。及氟化甲苯(2 -氟甲苯 、3 -氟甲苯、4 ·氟甲苯等)5〜3 0容量%有機溶劑之有機 電解液(參閱日本特開2 0 0 1 - 2 5 6 9 9 6號公報)。依特開平 2 00 1 - 2 5 6 9 9 6號公報,由使用該有機電解液,於高溫長時 間放置時抑制電池內部電壓的上昇,防止電池,特別是排 -6- :200532963 (3) 氣部份的破損,提高電池安定性。 日本特開7 - 3 0 2 6 1 4號公報、日本特開平9 _ 5 〇 8 2 2號公 報、日本特開2000- 156243、日本特開平ι1-32949ό號公 • 報5虎公報記載之苯類、日本特開2 0 0 1 - 2 5 6 9 9 6號公報記載 ‘ ,由添加本環上具有甲基、甲氧基、鹵原子等苯類於非水 電解質(或非水電解液),可提高電池安全性、安定性等 。但是,切望更提高過充電時之安全性的電池。 φ 又,日本特開7-3 026 1 4號公報、日本特開平9-5 〇822 號公報、日本特開2000- 1 56243、日本特開平1卜3 2 9496 號公報號公報記載之苯類、日本特開2001-256996號公報 任一者均未記載提及於非水電解質所含之雜質成分。 【發明內容】 〔發明之揭示〕 本發明的目的爲提供顯著提高過充電時安全性之非水 φ 電解質及非水電解質蓄電池。 本發明者爲解決上述課題之硏究過程,發現防止電池 _ 進行過充電作用之過充電添加劑,含具有甲基及鹵原子苯 類之非水電解質,存在該苯類製造原料之胺基化苯類爲雜 質,對電池之過充電時之安全性有不良影響。 基於該硏究過程經深入硏究結果,發現非水電解質中 之胺基化苯類之含有量特別對非水電解質蓄電池有不良的 大影響,而完成本發明。 本發明含非水溶劑及電解質之非水電解質,其非水溶 -7- (4) (4):200532963 劑爲含鹵化苯類,且非水溶劑中所含離質之胺基化苯類之 含有量未達100 ppm爲特徵之非水電解質。 又本發明非水電解質,上述非水溶劑以同時含有鹵化 苯類、碳酸酯類及/或r-丁內酯爲其特徵。 又,本發明之非水電解質,上述之鹵化苯類爲至少1 種選自含有1或2之氯原子及/或氟原子之鹵化甲苯及 鹵化二甲苯者爲基特徵。 又,本發明之非水電解質,上述之鹵化苯類爲至少1 種選自氯甲苯、[氯甲苯及〇·氟甲苯者爲其特徵。 又’本發明之非水電解質,上述之胺基化苯類爲至少 1種選自胺基化甲苯及胺基化二甲苯者爲其特徵。 又’本發明之非水電解質,上述之胺基化苯類爲至少 1種選自2-胺基甲苯、4-胺基甲苯及胺基二甲苯者爲其特 徵。 又,本發明爲含正極、負極、上述任一者之非水電解 質爲特徵之非水電解質蓄電池。 本發明之非水電解質及非水電解質蓄電池,於過充電 時之異常發率顯著降低,具有非常高的安全性。 〔用以實施發明之最佳型態〕 &下參考圖面以合適的實施例詳細說明本發明。 [非水電解質] 本發明之非水電解質爲含非水溶劑及電解質之非水電 8 (§ •200532963 (5) 解質,其非水溶劑爲含鹵化苯類,且非水溶劑中作爲雜質 所含之胺基化苯類之含有量未達100 ppm者爲其特徵。 本發明之非水電解質,理想爲非水溶劑以同時含有鹵 . 化苯類、碳酸酯類及/或r-丁內酯。碳酸酯類及/或 7 -丁內酯可提高非水電解質之離子傳導性、氧化還元安 定性等。 本發明之非水電解質,由於過充電時與正極的反應性 φ 比較低,電流遮斷後,正極與非水電解質之反應迅速終了 。因此,可迴避非水電解質蓄電池之暴熱。 本發明之非水電解質,其非水溶劑所含之鹵化苯類可 使用公知者,其中亦以苯環上之取代基具有1或2以上各 自之鹵原子或甲基之鹵化苯類爲理想。如此之鹵化苯類中 ,以鹵化甲苯、鹵化二甲苯等爲理想。又,鹵原子以氯或 氟爲理想。碘或溴於電池中容易分解不理想。 鹵化甲苯之具體例可列舉如〇 -氯甲苯、m -氯甲苯、ρ· φ 氯甲苯、〇-氟甲苯、m-氟甲苯、2,3-二氯甲苯、2,4-二 氯甲苯、2,5-二氯甲苯、2,6-二氯甲苯、3,4-二氯甲苯 、2,3·二氟甲苯、2,4-二氟甲苯、2,5-二氟甲苯、2, 6-二氟甲苯、2-氯-4-氟甲苯、2-氯-6-氟甲苯等之苯環上由 1種或2種之鹵原子1或2個以上所取代之鹵化甲苯。 鹵化二甲苯之具體例,可列舉如2-氯-ρ·二甲苯、2-氯-m二甲苯、3-氯二甲苯、4-氯二甲苯、2’ 5-二 氯· p-二甲苯、2-氟-P-二甲苯、2-氟-m-二甲苯、3-氟-〇·二 甲苯、4-氟-〇·二甲苯、2-5-二氟-P-二甲苯等之苯環上由1 (§ -9- .200532963 (6) 種或2種之鹵原子1或2個以上所取代之鹵化二甲苯 鹵化苯類可單獨使用1種或2種以上倂用。 鹵化苯類之非水溶劑之含有量無特別限制,理想 . 水溶劑全量之0 . 1〜1 5重量%,更理想爲0 · 5〜1 〇 | ,特別理想爲1〜8重量%。 與鹵化苯類同時使用的碳酸酯類以公知者即可, 環狀碳酸酯、鏈狀碳酸酯等。 φ 環狀碳酸酯,以使用碳酸乙烯酯、碳酸丙烯酯等 想。又,鏈狀碳酸酯以使用碳酸二甲酯、碳酸乙甲醋 酸二乙酯等。碳酸酯類可單獨使用1種或2種以上倂 碳酸酯於非水溶劑的含有量以非水溶劑全量之1 5 9.9重量%,更理想爲2 5〜5 0重量%,特別理想爲 45重量%。未達19.9重量%時,本發明之含非水電解 電池,特別是在高溫環境下負極與非水解質之反應有 抑制之慮。超過59.9重量%時,於低溫有容易產生固 φ 問題之慮。 又,與鹵化苯類同時使用r - 丁內酯於非水溶劑 有量無特別的限制,理想爲非水溶劑全量之4 0〜8 0 %,更理想爲5 0〜8 0重量%,特別理想爲5 5〜7 5重 者。 本發明,雖各自單獨使用1種碳酸酯或7 -丁內 以2種以上之碳酸酯類之倂用或碳酸酯與類r -丁內 倂用爲理想。 特別是,含本發明非水電解質蓄電池,由提高高 丨爲非 量% 例如 爲理 、碳 用。 9.9〜 25〜 質蓄 不受 化等 之含 重量 [量% 酯, 酯之 溫保 (8 -10- 200532963 ' (7) 存時的容量維持率之方面,以環狀碳酸酯與鏈狀碳酸酯之 組合等爲理想。依高溫保持時之抑制氣體產生方面,以環 狀碳酸酯與r -丁內酯之組合、2種環狀碳酸酯之組合等爲 . 理想。由提高安全性方面,以環狀碳酸酯與r - 丁內酯之 組合爲理想。又,依高溫保存特性與安全性之兩立方面, 以酸乙烯酯與τ-丁內酯之組合、碳酸烯酯與碳酸乙甲酯 之組合、碳酸乙烯酯與碳酸乙甲酯與碳酸二乙酯之組合等 0 爲理想。 於本發明之非水電解質,於非水溶劑含有雜質的胺基 化苯類苯環上具有胺基取代基之苯類。這種苯類雖已知多 種,其中,亦以胺基化甲苯、胺基化二甲苯、苯環上具有 胺基取代基及1或2個以上甲基之苯類,於含有本發明非 水電解質蓄電池之於過充電時的安全性,由本發明者的硏 究,判明有特別不良的影響。 胺基化甲苯及胺基化二甲苯,任一者,作爲鹵化苯類 φ 原料化合物使用,依反應條件、純化程度等,於鹵化甲苯 及鹵化二甲苯中容易以未反應原樣殘留。可由商業上取得 . 的鹵化苯類,一般,含胺基化甲苯及/或胺基化二甲苯 。例如,日本和光純孳工業公司製之〇-氟化甲苯中殘留 1 000 ppm 2-胺基甲苯(〇-甲苯胺)。 胺基化甲苯之具體例,可列舉如2 -胺基甲苯、3 -胺基 甲苯、4-胺基甲苯、2,3-二胺基甲苯、2,4-二胺基甲苯 、2,5-二胺基甲苯、2,6-二胺基甲苯' 3,4·二胺基甲苯 等。• 200532963 九 IX. Description of the invention [Technical field to which the invention belongs] The present invention is related to non-hydropower [prior art]. In recent years, mobile communication machines, digital cameras, integrated cameras, and CD & phi machines have sought to reduce the size and weight of the machine. battery. The primary battery, nickel-cadmium battery, and lithium composite oxide used in the power source of these electronic devices have high non-aqueous electrolyte voltage and high energy density due to the carbonaceous material: However, recent batteries have been affected by the stability of φ. The safety of the battery at the time of electric power is related to the safety improvement of the related pre-battery structure, and the main goal is to improve safety. Its additive has less constraints on its structure: Overcharged additives have 4, 3, 4, 5-trimethoxytoluene known redox potential is 4 · 8 ~ Said Japanese Patent No. 3 '02 6 1 4 Quality and non-aqueous electrolyte batteries. Electronic devices such as notebook personal computers, handheld personal computers (MD), walkie-talkies, wireless phones, etc. These power supplies particularly require small, large-capacity and popular batteries. Examples include alkaline manganese batteries and lead-acid batteries. Among them, the negative electrode can be used to store and discharge lithium ion batteries, and small and lightweight can obtain single cells Note @. As the energy density becomes higher, it becomes more difficult to maintain the excessively high temperature during overcharge. Many documents are known before overcharging and patent documents, and various proposals have been made for non-aqueous electrolyte overcharge additives due to non-degradable overcharge. -Methoxytoluene, 2,6-methoxytoluene and other benzenes with methyl and methoxy groups have been oxidized to 4 · 9 V (see Report). (8 -5- -200532963 (2) In addition, benzenes having an alkyl group and a halogen atom such as 2-chloro-p-xylene, 4 · bromo · m · xylene are known (see Japanese Patent Application Laid-Open No. 9-50822 JP-A No. 9-5 0 8 2 2 describes the example of adding benzenes to non-aqueous, aqueous electrolyte batteries whose heating start voltage is in the range of 4.45 ~ 4.75V. It is known that Halogen atoms such as 1,2-dimethoxybenzene, 1,2 · dimethoxy-4-fluorobenzene, etc., and benzenes substituted with oxo groups (Japanese Patent Laid-Open No. 2000-156243 φ). Any of the benzenes described in JP 7-302614, JP 9-50822, and JP 2 000-1 5 624 3 is higher than the positive electrode potential of a non-liquid battery when fully charged. A high battery potential is a person with a reversible oxidation-reduction potential. The non-aqueous electrolyte is added to promote the oxidative decomposition reaction of the non-aqueous solvent in the overcharged state, and the heat generated by the oxidative decomposition reaction is used to block the overcharge current. Non-aqueous φ electrolyte with fluorine atom and benzenes with 1 to 10 carbons (see Japanese Patent Application Laid-Open) No. 1-3 2 9 4 9 6 Japanese Patent Application Publication No. 329496 discloses the inhibition of the reaction rate of the benzenes with the non-hydrolysing solution and the suppression of exothermic reactions. In addition, it is proposed to contain a lithium salt electrolyte, and 20 to 60% by volume of ethyl carbonate; 0 ~ 7 0 capacity ° / ° and fluorinated toluene (2-fluorotoluene, 3-fluorotoluene, 4-fluorotoluene, etc.) 5 to 30% by volume organic solvent organic solvent (see Japanese Patent Laid-Open No. 2 0 0 1 -2 5 6 9 9 6). JP-A No. 2 00 1-2 5 6 9 9 6 uses the organic electrolyte to suppress the rise of the internal voltage of the battery when it is left at high temperature for a long time, and to prevent the battery, Especially row-6-: 200532963 (3) Damage of the gas part improves battery stability. Japanese Patent Laid-Open No. 7-3 0 2 6 1 4, Japanese Patent Laid-Open No. 9 _ 5 〇 8 2, Japan JP 2000-156243, Japanese Patent Application Laid-Open No. 1-32949, Benzene described in Japanese Bulletin No. 5 Tiger, Japanese Patent Application Laid-Open No. 2 0 0 1-2 5 6 9 9 6 ', by adding Base, methoxy, halogen atom and other benzenes in non-aqueous electrolyte (or non-aqueous electrolyte), can improve battery safety, safety However, it is desired to improve the safety of the battery during overcharge. Φ Japanese Patent Application Publication No. 7-3 026 1 4; Japanese Patent Application Publication No. 9-5 〇822; Japanese Patent Application Publication No. 2000-1 56243 None of the benzenes described in Japanese Patent Application Laid-Open No. 3 2 9496 and Japanese Patent Application Laid-Open No. 2001-256996 do not describe the impurity components contained in the non-aqueous electrolyte. [Summary of the Invention] [Disclosure of the Invention] An object of the present invention is to provide a non-aqueous φ electrolyte and a non-aqueous electrolyte secondary battery which significantly improve safety during overcharge. In order to solve the above-mentioned problem, the inventor has found that an overcharge additive that prevents the battery from overcharging, contains a nonaqueous electrolyte having benzenes of methyl and halogen atoms, and an aminated benzene which is a raw material for the production of benzenes. It is an impurity, which has an adverse effect on the safety of the battery during overcharging. Based on the results of in-depth research based on this research process, it was found that the content of the aminated benzenes in the non-aqueous electrolyte has a particularly large adverse effect on the non-aqueous electrolyte battery, and completed the present invention. The non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte according to the present invention is non-aqueous -7- (4) (4): 200532963. The agent is a halogenated benzene, and the non-aqueous solvent contains a non-aqueous aminated benzene. Non-aqueous electrolytes characterized by less than 100 ppm. In the non-aqueous electrolyte of the present invention, the non-aqueous solvent is characterized in that it also contains halogenated benzenes, carbonates and / or r-butyrolactone. The non-aqueous electrolyte of the present invention is characterized in that the above-mentioned halogenated benzenes are based on at least one selected from halogenated toluene and halogenated xylene containing 1 or 2 chlorine atoms and / or fluorine atoms. The non-aqueous electrolyte of the present invention is characterized in that the above-mentioned halogenated benzenes are at least one selected from the group consisting of chlorotoluene, [chlorotoluene, and 0 · fluorotoluene. Furthermore, the non-aqueous electrolyte of the present invention is characterized in that the above-mentioned aminated benzenes are at least one selected from the group consisting of aminated toluene and aminated xylene. Furthermore, the non-aqueous electrolyte of the present invention is characterized in that the above-mentioned aminated benzenes are at least one selected from the group consisting of 2-aminotoluene, 4-aminotoluene, and aminoxylene. The present invention is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and any of the nonaqueous electrolytes described above. The non-aqueous electrolyte and non-aqueous electrolyte storage battery of the present invention have a significantly reduced abnormal incidence rate during overcharge and have very high safety. [Best Mode for Implementing the Invention] The present invention will be described in detail below with reference to the drawings and suitable embodiments. [Non-aqueous electrolyte] The non-aqueous electrolyte of the present invention is non-aqueous electricity containing non-aqueous solvents and electrolytes 8 (§ • 200532963 (5) Decomposition, its non-aqueous solvents are halogenated benzenes, and non-aqueous solvents are used as impurities. It is characteristic that the content of the aminated benzenes does not reach 100 ppm. The non-aqueous electrolyte of the present invention is preferably a non-aqueous solvent to contain a halogen at the same time. Benzenes, carbonates and / or r-butane Esters. Carbonates and / or 7-butyrolactone can improve the ionic conductivity, oxidation stability, etc. of non-aqueous electrolytes. The non-aqueous electrolytes of the present invention have relatively low reactivity with the positive electrode φ during overcharge and low current After being cut off, the reaction between the positive electrode and the non-aqueous electrolyte ends quickly. Therefore, the extreme heat of the non-aqueous electrolyte battery can be avoided. For the non-aqueous electrolyte of the present invention, the halogenated benzenes contained in the non-aqueous solvent can be known, and among them, Halogenated benzenes having 1 or 2 or more of halogen atoms or methyl groups as substituents on the benzene ring are preferred. Among such halogenated benzenes, halogenated toluene, halogenated xylene, etc. are preferred. Further, the halogen atom is chlorine or Fluorine is ideal. Iodine or Bromine is not easily decomposed in a battery. Specific examples of halogenated toluene include 0-chlorotoluene, m-chlorotoluene, ρ · φ chlorotoluene, 0-fluorotoluene, m-fluorotoluene, and 2,3-dichlorotoluene. , 2,4-dichlorotoluene, 2,5-dichlorotoluene, 2,6-dichlorotoluene, 3,4-dichlorotoluene, 2,3 · difluorotoluene, 2,4-difluorotoluene, 2 1,5-difluorotoluene, 2, 6-difluorotoluene, 2-chloro-4-fluorotoluene, 2-chloro-6-fluorotoluene, etc. have 1 or 2 halogen atoms on the benzene ring The halogenated toluene substituted above. Specific examples of the halogenated xylene include 2-chloro-ρ · xylene, 2-chloro-m-xylene, 3-chloroxylene, 4-chloroxylene, and 2 '5- Dichlorop-xylene, 2-fluoro-P-xylene, 2-fluoro-m-xylene, 3-fluoro-〇xylene, 4-fluoro-〇xylene, 2-5-difluoro -P-xylene, etc. Halogenated xylene halogenated benzenes substituted by 1 (§ -9-.200532963 (6) or 2 types of halogen atoms can be used alone or 2 There are no particular restrictions on the content of non-aqueous solvents of halogenated benzene, ideal. The total amount of aqueous solvents is 0.1 to 15% by weight, more It is preferably from 0.5 to 1 〇 |, and particularly preferably from 1 to 8% by weight. The carbonates to be used together with the halogenated benzenes may be known, cyclic carbonates, chain carbonates, etc. φ cyclic carbonic acid As the ester, think of using ethylene carbonate, propylene carbonate, etc. In addition, as the chain carbonate, use dimethyl carbonate, diethyl carbonate, etc. Carbonate can be used alone or two or more kinds of carbonic acid. The content of the ester in the non-aqueous solvent is 15 to 9.9% by weight of the total amount of the non-aqueous solvent, more preferably from 25 to 50% by weight, and particularly preferably to 45% by weight. In water electrolytic batteries, the reaction between the negative electrode and the non-hydrolyzable substance may be inhibited, especially in a high-temperature environment. When it exceeds 59.9% by weight, there is a concern that the problem of solid φ may easily occur at low temperatures. In addition, there is no particular limitation on the amount of r-butyrolactone used in the non-aqueous solvent at the same time as the halogenated benzenes. The non-aqueous solvent is preferably 40 to 80% of the total amount of the nonaqueous solvent, and more preferably 50 to 80% by weight. Ideally, 5 5 to 7 5 weights. In the present invention, although one kind of carbonate or 7-butyrate is used alone, two or more kinds of carbonates are used for the purpose or carbonates and r-butyrate are used for the purpose. In particular, the non-aqueous electrolyte battery containing the present invention is improved by increasing the amount of non-aqueous electrolyte, such as carbon and carbon. 9.9 ~ 25 ~ Weight-free [mass%, esters, temperature guarantee of esters (8-10-200532963 '(7) In terms of capacity retention rate during storage, cyclic carbonate and chain carbonic acid The combination of esters and the like are ideal. In terms of suppressing the generation of gas when maintained at a high temperature, a combination of a cyclic carbonate and r-butyrolactone, a combination of two cyclic carbonates, etc. are ideal. From the aspect of improving safety, The combination of cyclic carbonate and r-butyrolactone is ideal. In addition, according to the two aspects of high temperature storage characteristics and safety, the combination of vinyl acid ester and τ-butyrolactone, alkenyl carbonate and ethyl methyl carbonate A combination of an ester, a combination of ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate, etc., is preferably 0. In the nonaqueous electrolyte of the present invention, an aminated benzene benzene ring having impurities in a nonaqueous solvent has an amine group Substituted benzenes. Although many such benzenes are known, among them, aminated toluene, aminated xylene, benzenes having amine substituents on the benzene ring and 1 or 2 methyl groups, The safety of a non-aqueous electrolyte battery containing the present invention during overcharge is provided by the present invention. The research of the wise person has been judged to have a particularly bad influence. Aminated toluene and aminated xylene, either of which is used as a halogenated benzene φ raw material compound, depends on the reaction conditions and the degree of purification. Xylene is easily left unreacted as it is. It is commercially available. Halogenated benzenes, generally, aminated toluene and / or aminated xylene. For example, O-fluoride manufactured by Wako Pure Chemical Industries, Japan. 1 ppm of 2-aminotoluene (0-toluidine) remained in toluene. Specific examples of the aminated toluene include 2-aminotoluene, 3-aminotoluene, 4-aminotoluene, and 2,3 -Diaminotoluene, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,6-diaminotoluene '3,4 · diaminotoluene, and the like.

(S -11 - 200532963 (8) 又,胺基二甲苯之具體例,2 -胺基-ρ·二甲苯、2 -胺 基-m -二甲苯、3 -胺基-〇-二甲苯、4 -胺基二甲苯、2,5- 二胺基-P-二甲苯等。 - 胺基化甲苯及胺基化二甲苯,各自1種或2種以上含 、 於非水溶劑中。又,1種或2種以上之胺基化甲苯,與1 種或2種以上之胺基化二甲苯同時含於非水溶劑中。 胺基化苯類於非水溶劑有關之含有量,其合計量必要 φ 爲未達1 〇 〇 Ρ Ρ Π1者。於非水溶劑中含1 〇 〇 p p m以上時,於 含本發明非水電解質蓄電池,在過充電時產生異常發熱之 頻率變高,安全性有下降之慮。 爲使胺基化苯類非水溶劑相關之含有量未達100 ppm ,例如將鹵化苯類施以高度純化。高度純化之方法,有關 融點未達5 0 °c之鹵化苯類,適用蒸餾純化。此時,蒸餾段 數以使用5段以上蒸館能力之設備爲理想。又,有關融點 高於5 0 °C之鹵化苯類,可適用由晶析法之純化。 φ 本發明非水電解質相關之非水溶劑,含有必須成分之 鹵化苯類,理想爲與鹵化苯類同時含有碳酸酯類及 /或 一 r -丁內酯。 本發明非水電解質,與非水溶劑,可同時使用作爲副 成分之非水溶劑以外的溶劑。作爲副成分,可使用蓄電池 用非解質所使用物質之任一者,例如,碳酸乙烯撐酯、碳 酸乙烯基乙烯酯 '碳酸苯乙烯酯、r ·戊內酯、丙酸甲酯 、丙酸乙酯、乙酸乙酯、乙腈、2 -甲基呋喃、呋喃、噻吩 、碳酸鄰苯二酚酯、硫化乙烯、1 2 -冠· 4醚、四乙二醇二 (§: -12 - .200532963 (9) 甲基醚、1,3 -丙烷磺內酯、磺基苯甲酸酐、二乙烯碼、3 -羥基-卜丙烯磺酸-r -磺內酯、三(三辛基)磷酸酯等。 如此副成分中,碳酸乙烯撐酯' 1,3 -丙烷磺內酯、 . 磺基苯甲酸酐、二乙烯碼、3 -羥基-1-丙磺酸-r-磺內酯 等,在含本發明之非水電解質之蓄電池,由於負極表面生 成緻密的保護皮膜’負極與非水電解質之反應性可變爲更 低,可改善放置放電特性或高溫保存時的安定性爲理想。 Φ 副成分可單獨使用1種或2種以上倂用。 副成分之使用量雖無特別限制,理想爲相對於非水溶 劑全重量之10重量%以下,更理想爲0·01〜5重量% ’特 別理想爲〇· 1〜3重量%範圍內所選者爲理想。副成分使用 比1 0重量%多時,負極表面保護皮膜之離子穿透性降低有 大幅損及低溫放電特性之慮。 溶解於非水溶劑的電解質,可使用此領域常用者,例 如,列舉如過氯酸鋰(LiCl〇4 )、六氟磷酸鋰(LiPF6 ) φ 、四氟硼酸(LiBF4 )、六氟砷鋰(LiAsF6 )、三氟甲基 磺酸鋰(LiCF3S03 )、雙三氟甲基磺醯醯亞胺(LiN ( ^ CF3S02 ) 2 )、雙五氟乙基磺醯醯亞胺(LiN(CF5S02)2 )等之鋰鹽。電解質可單獨使用1種或2種以上倂用。特 別是使用含LiBF4與LiPF6之混合鹽時,本發明含非水電 解質蓄電池、更可提高高溫循環壽命。 電解質於非水溶劑之溶解量無特別限制雖可由大範圍 適當的選擇,理想爲0.5〜2·5莫耳/ L,更理想爲1〜 2.5莫耳 / L的範圍者爲佳。 (1 -13- 200532963 do) 本發明的非水電解質’例如,鹵化苯類因應必 碳酸酯類及/或r 丁內酯調製非水溶劑,由溶解 質而製造。非水電解質’例如,可爲溶液(非水電 、膠狀等所望之型態。 非水電解液之使用量雖無特別限制,理想爲 mA電池單位容量爲0.2〜0.6 g,更理想爲0.25〜 者。 [非水電解質蓄電池] 本發明之非水電解質蓄電1,含正極、負極、 明非水電解質爲其特徵。 即本發明之非水電解質蓄電池,使用本發明之 作爲電解質以外,可採用向來所知非水電解質同樣 〇 依本發明之非水電解質蓄電池,其內藏之携帶 φ 充電器的故障等成爲過充電狀態正極的電位上昇時 可由隔離確實產生膜關機,可安全終止過充電狀態 ^ 於過充電狀態,由於鹵化苯類之氧化反應產生發熱 因電池溫度可迅速的上昇至隔離膜的關機溫度,可 電電流於早期遮斷。所以使胺基化苯類之含有量未 Ρ Ρ Π1進行圓滑的氧化反應,由此可迴避暴熱。 於非水溶劑中含有I 00 ppm以上胺基化苯類時 比鹵化苯類早開始引起氧化反應,比單獨鹵化苯類 的發熱反應變緩慢。此狀態,電池溫度不容易迅速 要添加 此電解 解液) 每 100 0.55 g 與本發 非解質 的構造 機器因 ,由於 。即, 反應, 將過充 達100 ,由於 其全體 上至_ -14 - •200532963 ' (11) 離膜之關機溫度,隔離膜關機成爲不完全狀態,不能將過 充電電流完全遮斷,又,過充電電流繼續流動,成爲暴熱 有危險。 . 以下。一邊參閱圖面,一邊說明本發明之非水電解質 蓄電池。圖1所示爲本發明實施的第1型態之非水電解質 蓄電池1之構成槪略斜視圖。圖2爲由圖1線II-II剖面 所見之部份剖面圖。 φ 非水電解質蓄電池1,含形成矩形之杯狀容器本體2 ,與於容器本體內收納之電極群3,與將容器本體密閉之 蓋板4,與於容器本體與蓋板4之間插入之與電極群3內 之正極10連接之正極端片5,與於容器本體與蓋板4之間 插入之與電極群3內之負極1 1連接之負極端片6所構成 〇 容器本體2,由含外部保護層7,與內部保護層8,與 配置於由外部保護層7與與內部保護層8之間的金屬層9 φ 之層合膜所形成。外部保護層7與與內部保護層8以熱可 塑性樹脂,理想爲耐熱性熱可塑性樹脂爲主成分之樹脂薄 _ 膜。熱可塑性樹脂之具體例,例如可列舉如聚乙烯、聚丙 烯、環狀聚烯烴等之聚烯烴、聚醯胺、聚酯、結晶性聚晶 、高密度聚乙烯、低密度聚乙烯、線型低密度聚乙烯、乙 烯-醋酸乙烯共聚物、聚丙烯腈、聚偏氯乙烯等。樹脂薄 膜可爲含2種以上相異之熱可塑性樹脂之樹脂薄膜層合物 。構成金屬層9之金屬,例如可列舉如鋁、不鏽鋼、鐵、 鎳、鈦、鉬、金等之金屬,二氧化矽、氧化鋁等之金屬氧 -15- (12) (12)•200532963 化物等。又,層合薄膜之厚度雖可由廣泛範圍適當選擇’ 理想爲5 0〜3 0 0 # m。又,容器本體2之緣部2 a爲寬幅者 ,由該緣部2a,將容器本體2與蓋板4接合。 電極群3,係含正極10、與負極11,與於正極1〇與 負極1 1之間所配置之隔離膜1 2之層合物形成偏平形狀構 造捲筒。 正極10,含集電體,與載持於集電體之一面或二面’ 含活性物質之正極層。 集電體,可使用該領域常用者,例如,可列舉如導電 性基板。構成導電性基板之金屬,例如,可列舉如鋁、不 鏽鋼、鎳等。導電性基板爲多孔質構造亦可或無孔者亦可 〇 正極層含正極活性物質、導電劑及結合劑。 正極活性物質可使用該領域常用者,例如,二氧化錳 、鋰錳複合氧化物、含鋰鎳氧化物,含鋰鈷氧化物、含鋰 鎳鈷氧化物,含鋰鐵氧化物,含鋰釩氧化物等金屬氧化物 ,二硫化鈦、二硫化鉬等之硫屬化合物等。其中,使用含 鋰鈷氧化物(例如 LiC 〇02 )、含鋰鎳鈷氧化物(例如 LiNi〇.8CoG.2 02 )、含鋰錳複合氧化物(例如 LiMn204、 LiMn02 )時,由於可得到高電壓爲理想。正極活性物質可 單獨使用〗種或2種以上倂用。 導電劑可使用該領域常用者,例如,乙炔黑、碳黑等 。導電劑可單獨使用1種或2種以上倂用。 結合劑可使用該領域常用者,例如,聚四氟乙烯、聚 -16- • 200532963 (13) 氟化偏氯乙烯、PES (Poly ether sulphone)、乙烯丙烯- 二烯共聚物、苯乙烯-丁二烯橡膠等,結合劑可單獨使用1 種或2種以上倂用。 - 正極活性物質、導電劑及結合劑之配合比例,以正極 . 活性物質8 0〜9 5重量%、導電劑3〜2 0重量%、結合劑2 〜7重量%的範圍者爲理想。 正極1 0,例如將正極活性物質、導電劑及結合劑以適 Φ 當的溶劑調成懸浮狀,將懸浮物塗敷於集電體,乾燥製作 成薄板狀。 負極11,爲含集電體,與載持於集電體之一面或二面 之負極層。 集電體可使用該領域常用者,例如,導電性基板。構 成導電性基板之金屬,可列舉如銅、不鏽鋼、鎳等。導電 性基板爲多孔質構造亦可,爲無孔者亦可。 負極層含負極活性物質及結合劑。 • 負極活性物質可使用吸存·放出鋰離子之材料,例如 將石墨、焦碳、碳纖維、球狀碳素、熱分解氣相碳質物質 - 、樹脂燒結體等之石墨質材或碳質材料,熱硬化性樹脂、 ~ 等方性瀝青、中間相瀝青系碳、中間瀝青系碳纖維、中間 相ί歷青小球體等(特別是,中間瀝青系碳纖維容量或充放 電循環特性高爲理想)於5 0 0〜3 0 0 0 °C熱處理所得之石墨 材料或碳質材料,二硫化鈦、二硫化鉬、硒化鈮等之硫屬 化合物’絕 '鋁合金、鎂合金、鋰、鋰合金等之金屬或其 合金等。其中,亦以含(〇〇2 )面之面間隔理想爲〇.34(S -11-200532963 (8) Specific examples of amino-xylene, 2-amino-ρ-xylene, 2-amino-m-xylene, 3-amino-〇-xylene, 4 -Amine xylene, 2,5-diamino-P-xylene, etc.-Aminated toluene and aminated xylene, each of which is contained in one or two or more kinds in a non-aqueous solvent. Also, 1 One or more kinds of aminated toluene, and one or more kinds of aminated xylene are contained in the non-aqueous solvent at the same time. The content of the aminated benzenes in the non-aqueous solvent is necessary in total φ is less than 100 pp Π1. When the non-aqueous solvent contains more than 1000 ppm, the frequency of abnormal heat generation during overcharging of the non-aqueous electrolyte battery containing the present invention becomes higher, and safety decreases. In order to make the content of aminated benzene non-aqueous solvents less than 100 ppm, for example, highly purified halogenated benzenes are used. The highly purified method involves halogenated benzenes with a melting point of less than 50 ° c. It is suitable for distillation purification. At this time, the number of distillation sections is ideal to use equipment with a steaming capacity of more than 5 sections. Also, the halogenated benzene with a melting point higher than 50 ° C It can be used for purification by crystallization. Φ The non-aqueous solvent related to the non-aqueous electrolyte of the present invention contains halogenated benzenes as essential components. It is desirable to contain carbonates and / or mono-r-butyrolactone together with halogenated benzenes. The non-aqueous electrolyte and the non-aqueous solvent of the present invention can be used together with a solvent other than the non-aqueous solvent as a sub-component. As the sub-component, any one of non-degradable materials for a storage battery can be used, for example, ethylene carbonate Esters, vinyl vinyl carbonate's styrene carbonate, r-valerolactone, methyl propionate, ethyl propionate, ethyl acetate, acetonitrile, 2-methylfuran, furan, thiophene, catechol carbonate Esters, ethylene sulfide, 12-crown · 4 ether, tetraethylene glycol di (§: -12-.200532963 (9) methyl ether, 1,3-propane sultone, sulfobenzoic anhydride, diethylene glycol Code, 3-hydroxy-propenesulfonic acid-r-sultone, tris (trioctyl) phosphate, etc. Among such subcomponents, ethylene carbonate '1,3-propanesultone, .sulfobenzene Formic anhydride, diethylene code, 3-hydroxy-1-propanesulfonic acid-r-sultone, etc. High-quality batteries, because a dense protective film is formed on the surface of the negative electrode, the reactivity between the negative electrode and the non-aqueous electrolyte can be lowered, and it is ideal to improve the discharge and discharge characteristics or stability at high temperature storage. Φ As a secondary component, it can be used alone. Or two or more types are used. Although the amount of the sub-component used is not particularly limited, it is preferably 10% by weight or less with respect to the total weight of the non-aqueous solvent, and more preferably 0. 01 to 5% by weight. It is desirable to select within the range of 3% by weight. When more than 10% by weight of the sub-component is used, the ion permeability of the negative electrode surface protective film is reduced, which may greatly impair the low-temperature discharge characteristics. As the electrolyte dissolved in a non-aqueous solvent, those commonly used in this field can be used. For example, lithium perchlorate (LiCl04), lithium hexafluorophosphate (LiPF6) φ, tetrafluoroborate (LiBF4), lithium hexafluoroarsenide (LiAsF6), Lithium trifluoromethanesulfonate (LiCF3S03), bistrifluoromethanesulfonimide (LiN (^ CF3S02) 2), bispentafluoroethylsulfonimide (LiN (CF5S02) 2), and other lithium salt. The electrolyte can be used alone or in combination of two or more. Especially when a mixed salt containing LiBF4 and LiPF6 is used, the present invention contains a non-aqueous electrolyte storage battery, which can further improve the high temperature cycle life. Although the amount of the electrolyte dissolved in the non-aqueous solvent is not particularly limited, although it can be appropriately selected from a wide range, it is preferably from 0.5 to 2.5 mol / L, and more preferably from 1 to 2.5 mol / L. (1 -13- 200532963 do) The non-aqueous electrolyte of the present invention 'is prepared from a solute by preparing a non-aqueous solvent in accordance with a biscarbonate and / or r-butyrolactone, for example. For example, the non-aqueous electrolyte may be a solution (non-hydroelectric, gel, etc.). Although the amount of the non-aqueous electrolyte used is not particularly limited, the unit capacity of the mA battery is preferably 0.2 to 0.6 g, and more preferably 0.25 to [Non-aqueous electrolyte storage battery] The non-aqueous electrolyte storage battery 1 of the present invention is characterized by including a positive electrode, a negative electrode, and a non-aqueous electrolyte. That is, the non-aqueous electrolyte storage battery of the present invention may be conventionally used in addition to the electrolyte of the present invention. The known non-aqueous electrolyte is also the same. According to the non-aqueous electrolyte battery according to the present invention, the built-in carrying φ charger failure, etc. becomes an overcharged state. When the potential of the positive electrode rises, the isolation can indeed generate a membrane shutdown, and the overcharged state can be safely terminated ^ In the overcharged state, heat is generated due to the oxidation reaction of halogenated benzenes. Because the battery temperature can quickly rise to the shutdown temperature of the separator, the electric current can be interrupted at an early stage. Therefore, the content of the aminated benzenes is not ρ Ρ Π1 A smooth oxidation reaction can be avoided to avoid extreme heat. When non-aqueous solvents contain more than 100 ppm of aminated benzenes, they open earlier than halogenated benzenes. It causes the oxidation reaction, which is slower than the exothermic reaction of halogenated benzenes alone. In this state, the battery temperature is not easy to quickly add this electrolytic solution) 0.55 g per 100 non-degradable structure of the machine due to mechanical reasons. That is, the reaction will be overcharged to 100. Due to its overall up to _ -14-• 200532963 '(11) the shutdown temperature of the separation film, the shutdown of the isolation film becomes incomplete, and the overcharge current cannot be completely blocked, and, The overcharge current continues to flow and becomes dangerously hot. . the following. The non-aqueous electrolyte battery of the present invention will be described with reference to the drawings. Fig. 1 is a schematic perspective view showing the structure of a non-aqueous electrolyte battery 1 according to a first embodiment of the present invention. FIG. 2 is a partial cross-sectional view taken along the line II-II of FIG. 1. FIG. φ Non-aqueous electrolyte battery 1 includes a rectangular cup-shaped container body 2, an electrode group 3 housed in the container body, and a cover plate 4 that seals the container body, and is inserted between the container body and the cover plate 4 The positive terminal piece 5 connected to the positive electrode 10 in the electrode group 3, and the negative electrode end piece 6 connected between the container body and the cover plate 4 and connected to the negative electrode 11 in the electrode group 3. The container body 2 is composed of The outer protective layer 7 and the inner protective layer 8 are formed by a laminated film disposed between the outer protective layer 7 and the metal layer 9 φ between the inner protective layer 7 and the inner protective layer 8. The outer protective layer 7 and the inner protective layer 8 are made of a thermoplastic resin, preferably a thin resin film containing heat-resistant thermoplastic resin as a main component. Specific examples of the thermoplastic resin include, for example, polyolefins such as polyethylene, polypropylene, and cyclic polyolefins, polyamides, polyesters, crystalline polycrystallines, high-density polyethylene, low-density polyethylene, and linear low Density polyethylene, ethylene-vinyl acetate copolymer, polyacrylonitrile, polyvinylidene chloride, etc. The resin film may be a resin film laminate containing two or more different thermoplastic resins. Examples of the metal constituting the metal layer 9 include metals such as aluminum, stainless steel, iron, nickel, titanium, molybdenum, and gold, and metal oxides such as silicon dioxide and aluminum oxide. 15- (12) (12) • 200532963 compounds Wait. Although the thickness of the laminated film can be appropriately selected from a wide range, it is preferably 50 to 3 0 0 # m. Further, the edge portion 2 a of the container body 2 is wide, and the container body 2 and the cover plate 4 are joined by the edge portion 2 a. The electrode group 3 includes a positive electrode 10, a negative electrode 11, and a laminate having a separator 12 arranged between the positive electrode 10 and the negative electrode 11 to form a flat shape to form a roll. The positive electrode 10 includes a current collector and a positive electrode layer containing an active material supported on one or both sides of the current collector. As the current collector, those commonly used in this field can be used, and examples thereof include a conductive substrate. Examples of the metal constituting the conductive substrate include aluminum, stainless steel, and nickel. The conductive substrate may be porous or non-porous. The positive electrode layer contains a positive electrode active material, a conductive agent, and a binder. As the positive electrode active material, those commonly used in this field can be used, for example, manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-nickel cobalt oxide, lithium-iron oxide, and lithium-vanadium. Metal oxides such as oxides, chalcogen compounds such as titanium disulfide and molybdenum disulfide. Among them, when lithium-containing cobalt oxides (for example, LiCO 2), lithium-containing nickel-cobalt oxides (for example, LiNi0.8CoG.2 02), and lithium-containing manganese composite oxides (for example, LiMn204, LiMn02) are used, high The voltage is ideal. The positive electrode active material may be used alone or in combination of two or more. As the conductive agent, those commonly used in this field can be used, for example, acetylene black, carbon black, and the like. The conductive agent can be used alone or in combination of two or more. As the binder, those commonly used in this field can be used, for example, polytetrafluoroethylene, poly-16- • 200532963 (13) fluorinated vinylidene chloride, PES (Poly ether sulphone), ethylene propylene-diene copolymer, styrene-butadiene Diene rubber and the like can be used alone or in combination of two or more. -The mixing ratio of the positive electrode active material, conductive agent, and binder is preferably in the range of positive electrode. Active material 80 to 95% by weight, conductive agent 3 to 20% by weight, and binder 2 to 7% by weight. For the positive electrode 10, for example, a positive electrode active material, a conductive agent, and a binding agent are adjusted to a suspension with an appropriate solvent, and the suspension is applied to a current collector and dried to form a thin plate. The negative electrode 11 includes a current collector and a negative electrode layer supported on one or both sides of the current collector. As the current collector, those commonly used in this field can be used, for example, a conductive substrate. Examples of the metal constituting the conductive substrate include copper, stainless steel, and nickel. The conductive substrate may have a porous structure or a non-porous structure. The negative electrode layer contains a negative electrode active material and a binder. • The negative electrode active material can use materials that store and release lithium ions, such as graphite or carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic gas-phase carbonaceous substances-, resin sintered bodies, etc. , Thermosetting resin, ~ isotropic pitch, mesophase pitch-based carbon, mesophase pitch-based carbon fibers, mesophase cyan spheres, etc. (especially, it is ideal to have high capacity or charge-discharge cycle characteristics) Graphite or carbonaceous material obtained by heat treatment at 5 0 ~ 3 0 0 ° C, chalcogen compounds such as titanium disulfide, molybdenum disulfide, niobium selenide, etc. Metal or alloy thereof. Among them, it is also ideal that the interplanar interval including the (002) plane is 0.34

(S -17- (14) (14)-200532963 以下,更理想爲0.3 3 7 nm以下之石墨結晶之石墨材料爲 理想。具備含如此之石墨質材料作爲負極活性物質之負極 的非水電解質蓄電池,提高電池容量及大電流放電特性。 負極活性物質可單獨使用1種或2種以上倂用。 結合劑可使用該領域常用者,例如,聚四氟乙烯、聚 氟化偏氯乙烯、乙烯丙烯-二烯共聚物、苯乙烯-丁二烯橡 膠等,羧基甲基纖維素等。結合劑可單獨使用1種或2種 以上倂用。 負極活性物質及結合劑之配合比例,以碳質物質8 0〜 9 8重量%、結合劑2〜2 0重量%的範圍者爲理想。 負極1 1,例如將負極活性物質與結合劑於適當的溶劑 存在下混合,將所得之懸浮物塗敷於集電體,乾燥後,以 指定的壓力壓縮一次或由2〜5次多階段壓縮製作。 隔離膜1 2可使用該領域常用者,可列舉如微多孔性 膜’織布、不織布,其中可爲同種或異種材料之層合物等 。其中,微多孔性膜,因過充電等發熱而引起電極群溫度 的異常上昇時,構成樹脂塑性變形阻塞微細孔,引起所謂 關機現象,遮斷鋰離子的流動,防止超過這個以上的發熱 ’可安全的終止過充電狀態爲理想。形成隔離膜1 2之材 料’可列舉如聚乙烯、聚丙烯、乙烯-丙烯共聚物、乙烯-丁烯共聚物等。此等之材料可單獨使用一種或2種以上倂 用。 電極群3,例如,由(1 )將正極1 〇及負極1 1於其間 介以隔離膜1 2捲成扁平狀或螺旋狀,(2 )將正極1 0及 -18 - .200532963 (15) 負極1 1於其間介以隔離膜1 2捲成螺旋狀後,於徑方向壓 縮,(3 )將正極i 〇及負極1 1於其間介以隔離膜1 2曲折 1次以上,或(4 )將正極1 0及負極1 1於其間介以隔離膜 • 1 2層合的方法製造。 ^ 電極群3,不施加壓縮亦可,爲提高正極1〇、負極η 及隔離膜1 2之一體強度施加壓縮亦可。又,壓縮時可施 以加熱。 φ 電極群3,爲提高正極10、負極11及隔離膜12之一 體化強度可含有接著性高分子化合物。接著性高分子化合 物,以可保持非水電解質的狀態維持高接著性者爲理想, 以鋰離子傳導性高者爲更理想。具體的,可列舉如聚丙烯 腈、聚丙烯酸酯、聚化偏氯乙烯、.聚氯乙烯、或聚氧化 乙燒等。 電極群3,保持浸漬本發明之非水電解質。 蓋板4,爲由含有外部保護層7、內部保護層8、及保 φ 護層7與內部保護層8之間所配置之金屬層9之層合薄膜 所形成。層合薄膜可使用與容器本體2之層合薄膜同樣的 , 薄膜。 正極端片5、其一端與正極10連接,通過容器本體2 與蓋板4之間,由容器本體的外部的他端5 a引出’作爲 正極端之功能。構成正極端子5的材料可使用該領域常用 者,例如鋁、鎳、鈦等。 負極端片6、其一端與負極11連接,通過容器本體2 與蓋板4之間,由容器本體的外部的他端6 a引出’作爲 (§ -19- 200532963 (16) 正極端之功能。構成負極端子6的材料可使用該領域常用 者,可列舉如銅、鎳、由銅鍍等形成鎳層之層合物等。 非水電解質蓄電池1,可由向來的電池同樣的製造方 , 法製造。例如,於電極群連接正極端子5及極端子6 ’正 極端子5及負極端子6之各自一部份凸出容器本體2的緣 部將電極層3載置於容器本體2內。又,由蓋板4之內部 保護層8與容器本體2的緣部2a的內部保護層8的連接 g ,蓋板4與容器本體2重疊,該部份以熱封等接合,由固 定化封閉容器本體2內之電極群3得到非水電解質蓄電池 〇 又,本發明之非水電解質蓄電池,不限定於非電解質 .蓄電池1的形態,.可爲圓筒型、角型、銅板型等之種種型 態。 本發明之非水電解質蓄電池,可適用於向來非水電解 質蓄電池之同樣用途。其一例,例如各種電子機器類,其 φ 中特別是携帶用電子機器類,例如適合作爲行動電話、行 動綱路(MOBILE )等的移動體通信機、筆記型個人電腦 、掌上型個入電腦等之可携帶個人電腦、相機、數位相機 、一體型攝影機、CD ( MD )隨身聽等之電源使用。 【實施方式】 以下舉實施例及比較例具體的說明·本發明。 (實施例1 )(S -17- (14) (14) -200532963 or less, more preferably 0.3 3 7 nm or less graphite crystal material is ideal. A non-aqueous electrolyte battery having a negative electrode containing such a graphite material as a negative electrode active material Improve the battery capacity and high-current discharge characteristics. Negative electrode active materials can be used alone or in combination of two or more. The binder can be used in the field, such as polytetrafluoroethylene, polyvinylidene chloride, ethylene propylene -Diene copolymer, styrene-butadiene rubber, etc., carboxymethyl cellulose, etc. The binder can be used alone or in combination of two or more. The proportion of the negative electrode active material and the binder is carbonaceous material. 80 to 98% by weight and 2 to 20% by weight of the binder are desirable. Negative electrode 11 For example, a negative electrode active material and a binder are mixed in the presence of a suitable solvent, and the resulting suspension is applied to After being dried, the current collector is compressed once at a specified pressure or produced by multi-stage compression of 2 to 5. The separator 12 can be used in the field, and examples include microporous membranes such as woven and non-woven fabrics. For the same Laminates of different materials or dissimilar materials, etc. Among them, when the microporous membrane abnormally rises in the temperature of the electrode group due to overheating such as overcharging, the plastic deformation of the resin blocks the micropores, causing the so-called shutdown phenomenon and blocking the lithium ions. It is desirable to prevent the generation of heat that exceeds this level. The state of overcharge can be safely stopped. Materials for forming the isolation film 12 include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer. These materials can be used singly or in combination of two or more kinds. The electrode group 3 is, for example, (1) the positive electrode 10 and the negative electrode 11 are rolled into a flat shape or a spiral shape with a separator 12 interposed therebetween, ( 2) The positive electrode 10 and -18-.200532963 (15) The negative electrode 11 is wound into a spiral shape with a separator 12 interposed therebetween, and then compressed in the radial direction. (3) The positive electrode i 0 and the negative electrode 11 are interposed therebetween. Zigzag 1 or more times with the separator 12 interposed, or (4) Laminate the positive electrode 10 and the negative electrode 1 1 with a separator • 12 laminated between them. ^ Electrode group 3, without compression, can be Improving the strength of the positive electrode 10, the negative electrode η, and the separator 12 Compression can also be applied. In addition, heating can be applied during compression. Φ Electrode group 3 may contain an adhesive polymer compound to improve the integration strength of the positive electrode 10, the negative electrode 11, and the separator 12. The adhesive polymer compound may be It is desirable to maintain the state of the non-aqueous electrolyte and maintain high adhesion, and it is more desirable to have high lithium ion conductivity. Specific examples include polyacrylonitrile, polyacrylate, polyvinylidene chloride, polyvinyl chloride, Or polyethylene oxide, etc. The electrode group 3 is kept impregnated with the non-aqueous electrolyte of the present invention. The cover plate 4 is composed of an outer protective layer 7, an inner protective layer 8, and a protective layer 7 between the inner protective layer 8 and the inner protective layer 8. A laminated film of the arranged metal layer 9 is formed. As the laminated film, the same film as the laminated film of the container body 2 can be used. The positive terminal piece 5, one end of which is connected to the positive electrode 10, is drawn out from the other end 5a of the container body through the container body 2 and the cover plate 4 as a function of the positive terminal. As the material constituting the positive electrode terminal 5, those commonly used in this field can be used, such as aluminum, nickel, titanium, and the like. The negative electrode end piece 6, one end of which is connected to the negative electrode 11, passes between the container body 2 and the cover plate 4, and is drawn from the other end 6a of the container body as a (§ -19-200532963 (16) function of the positive terminal. The material constituting the negative electrode terminal 6 can be one commonly used in this field, and examples thereof include copper, nickel, and a laminate formed of a nickel layer by copper plating, etc. The non-aqueous electrolyte battery 1 can be manufactured by the same method as conventional batteries. For example, the positive electrode terminal 5 and the extreme electrode terminal 6 are connected to the electrode group, and each of the positive electrode terminal 5 and the negative electrode terminal 6 protrudes from the edge of the container body 2 to place the electrode layer 3 in the container body 2. The connection g of the inner protective layer 8 of the cover plate 4 and the inner protective layer 8 of the edge portion 2a of the container body 2, the cover plate 4 and the container body 2 overlap, and the portion is joined by heat sealing or the like, and the container body 2 is closed by immobilization. The inner electrode group 3 obtains a non-aqueous electrolyte battery. The non-aqueous electrolyte battery of the present invention is not limited to a non-electrolyte. The shape of the battery 1 may be various types such as a cylindrical type, an angular type, and a copper plate type. The non-aqueous electrolyte battery of the present invention, It can be applied to the same use of non-aqueous electrolyte storage batteries. One example is various electronic devices. Among them, φ is especially for portable electronic devices. For example, it is suitable as a mobile communication device such as a mobile phone and a mobile phone. , Notebook personal computers, palm-sized personal computers, etc. can be used with portable personal computers, cameras, digital cameras, integrated cameras, CD (MD) Walkman, etc. [Embodiment] The following examples and comparative examples are specific Explanation of the invention (Embodiment 1)

(I -20- (17) (17)200532963 <正極的製作> 於鋰銘氧化物(LixC〇02 ;但,X爲〇<χ$ 1)粉末9〇 重量份,加入乙炔黑5重量份,與聚氟化偏氯乙烯5重量 份之一甲基甲醯胺溶液混合,調製駿料。將該漿料塗敷於 厚15//m之銘箱(正極集電體)之兩面,乾燥,由壓縮製 作將厚度60//m之正極層載持於集電體的兩面之構造的正 極0 <負極的製作> 於3 00 0 °C熱處理之中間相瀝青系碳纖維(由粉末X 線繞射所求得的(〇 〇 2 )面的面間隔(d 〇 〇 2 )爲〇 · 3 3 6 n m )粉末爲碳'質材料95重量份,與聚氟化偏氯乙烯5重量 份之二甲基甲醯胺溶液混合,調製漿料。將該漿料塗敷於 厚12//m之銅箔(負極集電體)之兩面,乾燥,由壓縮製 作將厚度5 5 # m之負極層載持於集電體的兩面之構造的負 極。 碳質物質的(〇〇2 )面的面間隔(d002 )爲由粉末X 線繞射光譜半寬値中點法求出。此時,沒有進行洛倫滋( L 〇 r e η z )散射等的散射校正。 <隔離膜> 使用厚25 // m,多孔度45 %之微多孔性聚乙烯膜。 <電極群> -21 - d (18) 200532963 於正極集電體超音波溶接由帶狀鋁箔(厚度I 00 // m )所成之正極導線,於負極集電體超音波溶接由帶狀鋁箔 (厚度1 〇 0 // m )所成之負極導線後,將正極及負極於其 ^ 間介由隔離膜捲螺旋狀,製作電極群。將該電極群於加熱 ^ 下以壓縮機加壓形成偏平狀。 <非水電解質的調製> φ 將碳酸乙烯酯(EC) ,丁內酯(GBL) ,〇-氯化 甲苯(o-CT;對金屬鋰的氧化電位爲4.8V)及三(三辛 基)磷酸酯按重量比率(EC ·· GBL ·· o-CT : TOP )爲35 : 5 9 · 5 : 5 : 0 · 5混合調製非水溶劑。於所得的之非水溶劑將 四氟化硼酸鋰(LiBF4 )溶劑成濃度.1 .5莫耳 / L,調製本 發明的非水電解液。又,由氣相色譜儀分析的結果,非水 溶劑含胺基化苯類的2-胺基甲苯,其含有量爲30 ppm以 下。 <非水電解質蓄電池的製造> 將鋁箔的兩面被覆厚度1 00//m之聚乙烯之層合薄膜 ,由壓縮機成形爲矩型杯狀將電極群收納於所得的容器內 〇 其次,將容器內的電極群以8 0 °C真空乾燥1 2小時, 去除電極群及層合薄膜所含之水分。 於容器內的電極群注入電池容量每lAh量爲4.8g的 非水電解液後,於容器上面以上述同樣的層合覆蓋,由熱 -22- 200532963 (19) 封密閉’組合成具有圖1、2所示構造,厚度3.6mm,寬 3 5 mm ’闻6 2 mm,公稱容量0 · 6 5 A h之非水電解質蓄電池 〇 < 對該非水電解質蓄電池,於室溫下以〇.2 c進行1 5小 ♦ 時定電流·定電壓充電至4 · 2 V之初充放電步驟,其後, 於室溫下0 · 2 C放電至3.0 V,製造非解質蓄電池。 此處’ 1 C爲將公稱容量(Ah )於1小時放電必要的 • 電流値。所以0.2 C爲將公稱容量(^ )於5小時放電必 要之電流値。 (實施例2〜2 2 ) ;除將非水溶劑之組成及胺基化苯類之含有量變更爲表 1所示以外,與實施例1同樣製造非水電解質蓄電池。 又’表1中’^^爲〇-氟化甲苯(對鋰金屬氧化電 位爲4·9 V ) ’ ρ-CT爲p-氧化甲苯(對鋰金屬的氧化電位 爲4。8 V) ,2-FPX爲氟-P-二甲苯(對鋰金屬氧化電位 爲 4 · 7 V )。 又表1中所示,副成分之top爲三(三辛基)磷酸酯 ’ VC爲碳酸乙烯酯,PS爲1,3-丙烷磺內酯,SBA爲磺 基苯甲酸酐,DVSU爲二乙烯碼,PRS爲3-羥基-1-丙烯磺 酸-r -磺內酯。 又表I中所示,胺基化苯之2-AT爲2-胺基甲苯,2-APX爲2 -胺基-P-二甲苯。 ⑧ -23 - (20) (20)200532963 (比較例1〜1 1 ) 非水溶劑之組成及胺基化苯類之含有量變更爲表】所 示以外,與實施例1同樣製造非水電解質蓄電池。 (試驗例1 ) 實施例1〜2 2及比較例1〜1 1所得之非水電解質蓄 電池各1 〇個,進行過充電試驗。過充電試驗係於電値2 C 持續充電,記錄此時產生異常發熱或發火非水電解質蓄電 池之數。產生異常的發熱或發火之電池個數佔全體的比例 (異常發熱發生率,% )如表1所示。(I -20- (17) (17) 200532963 < Preparation of positive electrode >) 90 parts by weight of powder of lithium oxide (LixC〇02; but X is 0 < χ $ 1) was added to acetylene black 5 Part by weight, mixed with 5 parts by weight of methylformamide solution of polyvinylidene chloride to prepare a raw material. The slurry was applied to both sides of a 15 // m thick case (positive electrode current collector). , Dry, Compressed to produce a positive electrode with a thickness of 60 // m and a positive electrode layer supported on both sides of the current collector 0 < Production of the negative electrode > Mesophase pitch-based carbon fiber heat-treated at 3000 ° C The interplanar spacing (d 002) of the (〇〇 2) plane obtained by powder X-ray diffraction was 0.36 nm. The powder was 95 parts by weight of a carbonaceous material, and was made of polyvinylidene chloride 5 Part by weight of the dimethylformamide solution is mixed to prepare a slurry. This slurry is applied to both sides of a copper foil (negative electrode current collector) with a thickness of 12 // m, dried, and compressed to a thickness of 5 5 # The negative electrode layer of m is a negative electrode having a structure supported on both sides of the current collector. The interplanar spacing (d002) of the (002) plane of the carbonaceous material is obtained by the half-width chirped midpoint method of the powder X-ray diffraction spectrum. this No scattering correction such as Lorentz (Lorez) scattering was performed. ≪ Isolation film > Use a microporous polyethylene film with a thickness of 25 // m and a porosity of 45%. ≪ Electrode group > -21-d (18) 200532963 Welded the positive lead made of strip-shaped aluminum foil (thickness I 00 // m) to the positive electrode current collector ultrasonically, and welded to the negative electrode current collector made of strip-shaped aluminum foil (thickness 1 〇). 0 // m) after forming the negative electrode lead, the positive electrode and the negative electrode are spirally wound through an insulation film between them to form an electrode group. The electrode group is heated to form a flattened shape under pressure by a compressor. ≪ Preparation of non-aqueous electrolytes> φ will be ethylene carbonate (EC), butyrolactone (GBL), 0-chlorotoluene (o-CT; oxidation potential of metal lithium is 4.8V) and three (trioctyl ) Phosphate esters are prepared in a weight ratio (EC ·· GBL ·· o-CT: TOP) of 35: 5 9 · 5: 5: 0 · 5 to prepare a non-aqueous solvent. The non-aqueous solvent obtained is boron tetrafluoride acid. The lithium (LiBF4) solvent has a concentration of 1.5 moles / L to prepare the non-aqueous electrolyte of the present invention. As a result of analysis by a gas chromatograph, the non-aqueous solvent contains an amine group. The content of 2-aminotoluene of benzene type is 30 ppm or less. ≪ Manufacture of non-aqueous electrolyte battery > A laminate film of polyethylene with a thickness of 100 // m is coated on both sides of an aluminum foil, and the compressor is used. The electrode group was formed into a rectangular cup shape, and the electrode group was stored in the obtained container. Next, the electrode group in the container was vacuum-dried at 80 ° C for 12 hours to remove the water contained in the electrode group and the laminated film. The electrode group in the container was filled with a non-aqueous electrolyte with a capacity of 4.8 g per lAh of the battery, and the container was covered with the same laminate as described above. The package was sealed by heat-22-200532963 (19) to have the figure 1 Non-aqueous electrolyte battery with the structure shown in Figures 2 and 3.6 mm in thickness and 35 mm in width and 6 2 mm in width and a nominal capacity of 0 · 65 A h. ≪ c Carry out the initial charging and discharging step of charging at a constant current and constant voltage to 4 · 2 V for 15 hours. After that, discharge at 0 · 2 C to 3.0 V at room temperature to manufacture a non-degraded battery. Here, “1 C” is the current required to discharge the nominal capacity (Ah) in one hour. So 0.2 C is the current 値 necessary to discharge the nominal capacity (^) in 5 hours. (Examples 2 to 2 2); A non-aqueous electrolyte battery was manufactured in the same manner as in Example 1 except that the composition of the non-aqueous solvent and the content of the aminated benzenes were changed to those shown in Table 1. Also in Table 1, ^^ is 0-fluorinated toluene (oxidation potential for lithium metal is 4.9 V) 'ρ-CT is p-toluene oxide (oxidation potential for lithium metal is 4.8 V), 2 -FPX is fluorine-P-xylene (the oxidation potential of lithium metal is 4 · 7 V). As shown in Table 1, the top of the secondary components is tris (trioctyl) phosphate, VC is ethylene carbonate, PS is 1,3-propane sultone, SBA is sulfobenzoic anhydride, and DVSU is diethylene. Code, PRS is 3-hydroxy-1-propanesulfonic acid-r-sultone. As shown in Table I, 2-AT of the aminated benzene is 2-aminotoluene, and 2-APX is 2-amino-P-xylene. ⑧ -23-(20) (20) 200532963 (Comparative Examples 1 to 1 1) Non-aqueous electrolyte was produced in the same manner as in Example 1 except that the composition of the non-aqueous solvent and the content of the aminated benzenes were changed to those shown in the table. Battery. (Test Example 1) Ten non-aqueous electrolyte batteries obtained in Examples 1 to 2 and Comparative Examples 1 to 11 were each subjected to an overcharge test. The overcharge test was performed by continuously charging the battery at 2 C, and the number of non-aqueous electrolyte batteries that generated abnormal heat or ignition at this time was recorded. Table 1 shows the ratio of the number of batteries that generate abnormal heat or ignition (abnormal heat generation rate,%).

-24- (21) 200532963-24- (21) 200532963

表1 非水溶劑組成 /重量〇/〇 副成分 /重量% 胺基化苯 /ppm 電解質 異常發熱 產生率 % 1 EC/35?GBL/59.5,o-CT/5 TOP/0.5 2-AT/30 以下 LiBF4 0 2 EC/35,GBL/59.5,o-CT/5 TOP/0.5 4-AT/30 以下 LiBF4 0 3 EC/359GBL/59.5?o-FT/5 TOP/0.5 2-AT/30 以下 LiBF4 0 4 EC/35,GBL/59.5,o-FT/5 ΤΟΡ/0.5 2-AT/50 LiBF4 0 5 EC/35,GBL/59.5,o-FT/5 ΤΟΡ/0.5 2-AT/90 LiBF4 20 6 EC/36.9,GBL/62.5,〇-FT/0· 1 ΤΟΡ/0.5 2-AT/30 以下 LiBF4 20 7 EC/35,GBL/59.5,o-FT/15 ΤΟΡ/0.5 2-AT/30 以下 LiBF4 0 8 EC/35?GBL/59.5?o-FT/5 ΤΟΡ/0.5 2-AT/30 以下 LiBF4/ LiBF6 20 實 9 EC/35?GBL/59.5?2PFX/5 ΤΟΡ/0.5 2-APX/30 以下 LiBF4 0 施 10 EC/35,GBL/58.5,o-FT/5 TOP/0.5?VC/1 2-AT/30 以下 LiBF4 0 例 11 EC/42.5,PC/50,o-CT/5 TOP/0.5?VC/2 2-AT/30 以下 LiBF6 0 12 EC/42.5,PC/50,o-FT/5 TOP/0.5?VC/2 2-AT/30 以下 LiBF6 0 13 EC/42.5,PC/50,o-CT/5 TOP/0.5,PS/2 2-AT/30 以下 LiBF6 0 14 EC/42.5,PC/50,o-FT/5 TOP/0.5?PS/2 2-AT/30 以下 LiBF6 0 15 EC/42.5,PC/50,oCT/5 TOP/0.5,SBAH/2 2-AT/30 以下 LiBF6 0 16 EC/42.5?PC/50?o-FT/5 TOP/0.5,SBAH/2 2-AT/30 以下 LiBF6 0 17 EC/42.5,PC/50,o-CT/5 TOP/0.5,DCSU/2 2-AT/30 以下 LiBF6 0 18 EC/42.5?PC/50?o-FT/5 TOP/0.5,DVSU/2 2-AT/30 以下 LiBF6 0 19 EC/42.5,PC/50,o-CT/5 TOP/0.5,PRS/2 2-AT/30 以下 LiBF6 0 20 EC/42.5,PC/50,o-FT/5 TOP/0.5,PRS/2 2-AT/30 以下 LiBF6 0 21 EC/385EMC/55?o-CT/5 VC/2 2-AT/30 以下 LiBF6 0 22 EC/38,EMC/55,o-FT/5 VC/2 2-AT/30 以下 LiBF6 0 1 EC/35?GBL/59.5?o-CT/5 TOP/0.5 2-AT/120 LiBF4 30 2 EC/35,GBL/59.5,o-CT/5 TOP/0.5 2-AT/300 LiBF4 40 3 EC/35,GBL/59.5,o-FT/5 TOP/0.5 2-AT/110 LiBF4 30 4 EC/35,GBL/59.5,o-FT/5 TOP/0.5 2-AT/300 LiBF4 40 比 5 EC/35,GBL/59.5,2PFX/5 TOP/0.5 2-APX/300 LiBF4 40 較 6 EC/42.5?PC/50?o-FT/5 TOP/0.5,PS/2 2-AT/300 LiBF6 40 例 7 EC/42.5,PC/50,o-FT/5 TOP/0.5,SBAH/2 2-AT/300 LiBF6 40 8 EC/42.5,PC/50,o-FT/5 TOP/0.5,DVSU/2 2-AT/300 LiBF6 40 9 EC/42.5;PC/50,o-FT/5 TOP/0.5,PRS/2 2-AT/300 LiBF6 40 10 EC/38,EMC/55,o-FT/5 VC/2 2-AT/300 LiBF6 40 11 EC/32,GBL/52.5,o-CT/5 TOP/0.5 2-AT/300 LiBF4 30 註:實施例8爲使用LiBF4與LiBF6以1 : 1 (重量)的比例。 -25- (22) 200532963 由表1可明了,使用含鹵化苯類且胺基苯類的含 未達1 00 ppm之非水溶劑之實施例1〜22之蓄電池, 10個過充電試驗之中幾乎無產生異常發熱者,最多爲 (20%以下),將過充電狀態於安全終了的效果大。 是,添加胺基苯類的含有量爲50 ppm以下之o-CT、 、〇-FT之實施例1〜4之蓄電池,與胺基苯類的含有 9 0 ppm之實施例5之蓄電池比較,將過充電狀態於安 了的效果更大。 相對於此,使用含鹵化苯類且胺基苯類的含有 1 00 ppm以上之非水溶劑之比較例1〜1 1之非水電解 電池,任一者10個之中3個產生異常發熱。 本發明,在不脫離其精神或主要的特徵,可其他 型態實施。因此,不單上述實施型態所有例示’本發 範圍爲如專利申請範圍所示者,不受說明書本文的拘 又,屬於專利申請範圍之變形或變更全部爲本發明白勺 〔產業上之利用領域〕 可安全的作爲移動體通信機,筆記型電腦' $ t 腦、一體型攝影機、CD ( MD )隨身聽、無線電話等 子機器的電源利用。 【圖式簡單說明】 本發明之目的,特色及利點,由以下詳細@ @ 有量 進行 2個 特別 p-CT 量爲 全終 量爲 質蓄 種植 明的 束。 範_ 型謹 之謹 -26- (23) (23)200532963 面可更明確。 圖1所示爲本發明實施的第1型態之非水電解質蓄電 池之構成之槪略斜視圖。 圖2爲由圖1線II-II剖面之部份剖面圖。 【主要元件之符號說明】 1 :非水電解質蓄電池 2 :容器本體 2a :容器本體緣部 3 :電極群 4 :蓋板 5 :正極薄片 ,, 5 a、6 a :他端 6 :負極薄片 7 :外部保護層 8 :內部保護層 9 :金屬層 1 〇 :正極 1 1 :負極 1 2 :隔離膜 d -27-Table 1 Non-aqueous solvent composition / weight 〇 / 〇 secondary components / weight% aminated benzene / ppm electrolyte abnormal heat generation rate% 1 EC / 35? GBL / 59.5, o-CT / 5 TOP / 0.5 2-AT / 30 Below LiBF4 0 2 EC / 35, GBL / 59.5, o-CT / 5 TOP / 0.5 4-AT / 30 and below LiBF4 0 3 EC / 359GBL / 59.5? O-FT / 5 TOP / 0.5 2-AT / 30 and below LiBF4 0 4 EC / 35, GBL / 59.5, o-FT / 5 ΤOΡ / 0.5 2-AT / 50 LiBF4 0 5 EC / 35, GBL / 59.5, o-FT / 5 ΤOP / 0.5 2-AT / 90 LiBF4 20 6 EC / 36.9, GBL / 62.5, 〇-FT / 0 · 1 TBF / 0.5 2-AT / 30 or below LiBF4 20 7 EC / 35, GBL / 59.5, o-FT / 15 TIPO / 0.5 2-AT / 30 or below LiBF4 0 8 EC / 35? GBL / 59.5? O-FT / 5 ΤΟΡ / 0.5 2-AT / 30 or less LiBF4 / LiBF6 20 real 9 EC / 35? GBL / 59.5? 2PFX / 5 ΤΟΡ / 0.5 2-APX / 30 or less LiBF4 0 10 EC / 35, GBL / 58.5, o-FT / 5 TOP / 0.5? VC / 1 2-AT / 30 and below LiBF4 0 Example 11 EC / 42.5, PC / 50, o-CT / 5 TOP / 0.5 ? VC / 2 2-AT / 30 or below LiBF6 0 12 EC / 42.5, PC / 50, o-FT / 5 TOP / 0.5? VC / 2 2-AT / 30 or below LiBF6 0 13 EC / 42.5, PC / 50, o-CT / 5 TOP / 0.5, PS / 2 2-AT / 30 or below LiBF6 0 14 EC / 42.5, PC / 50, o-FT / 5 TOP / 0.5? PS / 2 2-AT / 30 or below LiBF6 0 15 EC /42.5, PC / 50, oCT / 5 TOP / 0.5, SBAH / 2 2-AT / 30 and below LiBF6 0 16 EC / 42.5? PC / 50? O-FT / 5 TOP / 0.5, SBAH / 2 2-AT / Below 30 LiBF6 0 17 EC / 42.5, PC / 50, o-CT / 5 TOP / 0.5, DCSU / 2 2-AT / 30 and below LiBF6 0 18 EC / 42.5? PC / 50? O-FT / 5 TOP / 0.5 , DVSU / 2 2-AT / 30 or below LiBF6 0 19 EC / 42.5, PC / 50, o-CT / 5 TOP / 0.5, PRS / 2 2-AT / 30 or below LiBF6 0 20 EC / 42.5, PC / 50, o-FT / 5 TOP / 0.5, PRS / 2 2-AT / 30 or below LiBF6 0 21 EC / 385EMC / 55? o-CT / 5 VC / 2 2-AT / 30 or below LiBF6 0 22 EC / 38, EMC / 55, o-FT / 5 VC / 2 2-AT / 30 or below LiBF6 0 1 EC / 35? GBL / 59.5? O-CT / 5 TOP / 0.5 2-AT / 120 LiBF4 30 2 EC / 35, GBL / 59.5 , o-CT / 5 TOP / 0.5 2-AT / 300 LiBF4 40 3 EC / 35, GBL / 59.5, o-FT / 5 TOP / 0.5 2-AT / 110 LiBF4 30 4 EC / 35, GBL / 59.5, o -FT / 5 TOP / 0.5 2-AT / 300 LiBF4 40 to 5 EC / 35, GBL / 59.5, 2PFX / 5 TOP / 0.5 2-APX / 300 LiBF4 40 to 6 EC / 42.5? PC / 50? O-FT / 5 TOP / 0.5, PS / 2 2-AT / 300 LiBF6 40 cases 7 EC / 42.5, PC / 50, o-FT / 5 TOP / 0.5, SBAH / 2 2-AT / 300 LiBF6 40 8 EC / 42.5, PC / 50, o-FT / 5 TOP / 0.5, DVSU / 2 2-AT / 300 LiBF6 40 9 EC / 42.5; PC / 50, o-FT / 5 TOP / 0.5, PRS / 2 2-AT / 300 LiBF6 40 10 EC / 38, EMC / 55, o-FT / 5 VC / 2 2-AT / 300 LiBF6 40 11 EC / 32, GBL / 52.5, o-CT / 5 TOP / 0.5 2- AT / 300 LiBF4 30 Note: Example 8 uses LiBF4 and LiBF6 at a ratio of 1: 1 (weight). -25- (22) 200532963 As can be seen from Table 1, the storage batteries of Examples 1 to 22 using non-aqueous solvents containing less than 100 ppm of halogenated benzenes and amino benzenes were among 10 overcharge tests. There is almost no abnormal heat generation, the maximum is (less than 20%), and the effect of ending the overcharge state at a safe end is great. Yes, the batteries of Examples 1 to 4 in which o-CT, 0-FT with amine benzene content of 50 ppm or less were added, compared with the battery of Example 5 with amine benzene content of 90 ppm, The effect of keeping the overcharged state more stable. On the other hand, in the non-aqueous electrolytic cells of Comparative Examples 1 to 11 containing halogenated benzenes and amine benzenes containing 100 ppm or more of non-aqueous solvents, abnormal heat generation occurred in 3 out of 10. The present invention may be implemented in other forms without departing from its spirit or main characteristics. Therefore, not only the above-mentioned implementation modes are all exemplified. The scope of the present invention is as shown in the scope of patent applications, and is not subject to the description of this specification. All deformations or changes belonging to the scope of patent applications are all aspects of the present invention. 〕 It can be safely used as a power source for mobile communication devices such as laptops, laptops, integrated cameras, CD (MD) Walkmans, and wireless phones. [Schematic description] The purpose, features and advantages of the present invention are detailed from the following details @ @ 有 量 2 special p-CT quantities for the total end quantity for mass storage planting. Fan _ Xing Jin's sincerity -26- (23) (23) 200532963 The details can be more clear. Fig. 1 is a schematic perspective view showing the structure of a first type of non-aqueous electrolyte storage battery according to the present invention. FIG. 2 is a partial cross-sectional view taken along the line II-II of FIG. 1. [Description of Symbols of Main Components] 1: Non-aqueous electrolyte battery 2: Container body 2a: Edge of container body 3: Electrode group 4: Cover plate 5: Positive electrode sheet, 5 a, 6 a: Other end 6: Negative electrode sheet 7 : Outer protective layer 8: inner protective layer 9: metal layer 1 〇: positive electrode 1 1: negative electrode 1 2: separator d -27-

Claims (1)

(1) •200532963 十、申請專利範圍 1. 一種非水電解質,其爲含有非水溶劑及電解 非水電解質’其特徵係非水溶劑爲含鹵化苯類,且非 劑中作爲雜質所含的胺基化苯類之含有量爲未達1 〇〇 2 ·如申請專利範圍第 1項之非水電解質,其中 溶劑爲同時含有鹵化苯類、與碳酸酯類及/或7 一丁 者。 3 ·如申請專利範圍第1或第2項之非水電解質 中鹵化苯類爲至少1種選自含有1或2以上之氯原子 或氟原子之鹵化甲苯及鹵化二甲苯者。 4 ·如申請專利範圍第1或第2項之非水電解質 中鹵化本類爲至少1種選自〇 -氯甲苯、p -氯甲苯及0-苯者。 5 ·如申請專利範圍第1項之非水電解質,其中 化苯類爲至少1種選自胺基化甲苯及胺基化二甲苯者 6 ·如申請專利範圍第1項之非水電解質,其中 化本類爲至少1種選自2 -胺基甲苯、4 -胺基甲苯及胺 甲苯者。 7. 一種非水電解質蓄電池,其特徵爲含正極、 、及申請專利範圍第1〜6項中任一項之非水電解質考 質之 水溶 ppm 非水 內酯 ,其 及/ ,其 氟甲 月女基 〇 胺基 基二 負極 -28 -(1) • 200532963 X. Patent application scope 1. A non-aqueous electrolyte containing a non-aqueous solvent and an electrolytic non-aqueous electrolyte, which is characterized in that the non-aqueous solvent is a halogen-containing benzene and the non-agent contains impurities as impurities. The content of the aminated benzenes is less than 2,000. · As the non-aqueous electrolyte of the first scope of the patent application, the solvent is one containing both halogenated benzenes, carbonates and / or 7-butyl. 3. If the non-aqueous electrolyte in the first or second item of the scope of patent application is the halogenated benzenes, at least one selected from halogenated toluene and halogenated xylenes containing 1 or 2 chlorine atoms or fluorine atoms. 4 · If the non-aqueous electrolyte in the first or second scope of the patent application is halogenated, this category is at least one selected from the group consisting of 0-chlorotoluene, p-chlorotoluene and 0-benzene. 5 · If the non-aqueous electrolyte of item 1 of the patent application, wherein the benzenes are at least one selected from the group consisting of aminated toluene and aminated xylene 6 · If the non-aqueous electrolyte of item 1 of the patent application, This class is at least one selected from the group consisting of 2-aminotoluene, 4-aminotoluene, and aminetoluene. 7. A non-aqueous electrolyte battery, characterized in that it contains a positive electrode, a water-soluble ppm non-aqueous lactone, and / or its fluoromethanone Female base amine base negative electrode -28-
TW094105915A 2004-02-27 2005-02-25 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery TWI265651B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053284A JP4580662B2 (en) 2004-02-27 2004-02-27 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
TW200532963A true TW200532963A (en) 2005-10-01
TWI265651B TWI265651B (en) 2006-11-01

Family

ID=34908732

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094105915A TWI265651B (en) 2004-02-27 2005-02-25 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Country Status (5)

Country Link
JP (1) JP4580662B2 (en)
KR (1) KR100811917B1 (en)
CN (1) CN1965437A (en)
TW (1) TWI265651B (en)
WO (1) WO2005083828A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824578B2 (en) 2005-09-15 2010-11-02 Lg Chem, Ltd. Additives for non-aqueous electrolytes and electrochemical device using the same
TWI483443B (en) * 2012-05-31 2015-05-01 Lg Chemical Ltd A lithium secondary battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812056B1 (en) * 2005-10-24 2008-03-07 주식회사 엘지화학 Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same
KR100760763B1 (en) * 2006-10-17 2007-10-04 삼성에스디아이 주식회사 Electrolyte for high voltage lithium rechargeable battery and high voltage lithium rechargeable rechargeable battery employing the same
US20080134492A1 (en) * 2006-12-11 2008-06-12 Uchicago Argonne, Llc Poly(ethyleneoxide) siloxane gel electrolytes
US8187746B2 (en) 2008-05-16 2012-05-29 Uchicago Argonne, Llc Surface modification agents for lithium batteries
JP5506682B2 (en) * 2008-07-30 2014-05-28 ダイキン工業株式会社 Solvent for dissolving electrolyte salt of lithium secondary battery
JP4992921B2 (en) 2009-02-19 2012-08-08 ソニー株式会社 Non-aqueous electrolyte secondary battery
US8492033B2 (en) 2009-06-18 2013-07-23 Uchicago Argonne, Llc Fast cure gel polymer electrolytes
KR101310730B1 (en) * 2010-01-15 2013-09-24 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5708977B2 (en) * 2010-07-06 2015-04-30 トヨタ自動車株式会社 Assembled battery
JP7159864B2 (en) * 2016-09-26 2022-10-25 株式会社Gsユアサ NONAQUEOUS ELECTROLYTE STORAGE ELEMENT AND USAGE THEREOF
KR102183664B1 (en) 2017-09-21 2020-11-26 주식회사 엘지화학 Electrolyte for lithium-secondary battery and lithium-sulfur battery comprising thereof
CN115064769B (en) * 2022-07-26 2022-11-08 华中科技大学 Electrolyte compatible with graphite cathode and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150087B2 (en) * 1997-05-08 2008-09-17 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP4710099B2 (en) * 1999-12-28 2011-06-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR100325868B1 (en) * 2000-03-06 2002-03-07 김순택 Organic electrolytic solution and lithium secondary battery adopting the same
JP2003022809A (en) * 2001-07-09 2003-01-24 Nec Corp Battery and electrode for battery
JP4476530B2 (en) * 2001-12-21 2010-06-09 三星エスディアイ株式会社 Electrolyte, lithium secondary battery, and method for manufacturing lithium secondary battery
JP4321015B2 (en) * 2002-07-09 2009-08-26 日本電気株式会社 Secondary battery
KR100463189B1 (en) * 2002-07-15 2004-12-23 삼성에스디아이 주식회사 A lithium secondary battery and a method for preparing the same
JP4219127B2 (en) * 2002-08-08 2009-02-04 三菱化学株式会社 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP3748843B2 (en) * 2002-08-20 2006-02-22 日立マクセル株式会社 Organic electrolyte secondary battery
JP4569078B2 (en) * 2003-06-12 2010-10-27 三菱化学株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824578B2 (en) 2005-09-15 2010-11-02 Lg Chem, Ltd. Additives for non-aqueous electrolytes and electrochemical device using the same
TWI483443B (en) * 2012-05-31 2015-05-01 Lg Chemical Ltd A lithium secondary battery
US9178197B2 (en) 2012-05-31 2015-11-03 Lg Chem, Ltd. Lithium secondary battery

Also Published As

Publication number Publication date
KR20060116852A (en) 2006-11-15
KR100811917B1 (en) 2008-03-10
JP4580662B2 (en) 2010-11-17
WO2005083828A1 (en) 2005-09-09
CN1965437A (en) 2007-05-16
JP2005243490A (en) 2005-09-08
TWI265651B (en) 2006-11-01

Similar Documents

Publication Publication Date Title
TW200532963A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US11063251B2 (en) Secondary battery-use anode active material, secondary battery-use anode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
KR20120109316A (en) Secondary battery, electronic device, electric power tool, electrical vehicle, and electric power storage system
JP2002280079A (en) Battery
KR20180095709A (en) A positive electrode active material for a secondary battery, a positive electrode for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system,
JP2008135279A (en) Positive electrode active material, non-aqueous electrolyte secondary battery using this, and manufacturing method of positive electrode active material
KR20180077026A (en) Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR20150106883A (en) Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
JP4715848B2 (en) battery
JP2019121597A (en) Organic electrolyte solution and lithium battery including the same
JP4836415B2 (en) Nonaqueous electrolyte secondary battery
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JP2001176545A (en) Secondary battery
CN114335685A (en) Electrochemical device and electronic device comprising same
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JP2007335170A (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery
JP4395071B2 (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008305771A (en) Nonaqueous solution battery
JP7127692B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP4784133B2 (en) Secondary battery and battery
JP2004095308A (en) Non-aqueous electrolyte secondary battery
KR20210108300A (en) Anode pole piece and electrochemical device and electronic device comprising same
KR101701415B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2004327371A (en) Non-aqueous electrolyte secondary battery
JP4346395B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees