WO2005083828A1 - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2005083828A1
WO2005083828A1 PCT/JP2005/003677 JP2005003677W WO2005083828A1 WO 2005083828 A1 WO2005083828 A1 WO 2005083828A1 JP 2005003677 W JP2005003677 W JP 2005003677W WO 2005083828 A1 WO2005083828 A1 WO 2005083828A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
benzenes
secondary battery
aminated
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2005/003677
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Hayashi
Akio Hiwara
Akira Yajima
Shusuke Inada
Sayaka Fukui
Original Assignee
Kabushiki Kaisha Toshiba
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Mitsui Chemicals, Inc. filed Critical Kabushiki Kaisha Toshiba
Publication of WO2005083828A1 publication Critical patent/WO2005083828A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Non-aqueous electrolyte and non-aqueous electrolyte secondary battery are non-aqueous electrolyte and non-aqueous electrolyte secondary battery
  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery.
  • Batteries that are widely used as power sources for these electronic devices include primary batteries such as lithium-manganese batteries, and secondary batteries such as nickel-cadmium batteries and lead-acid batteries.
  • primary batteries such as lithium-manganese batteries
  • secondary batteries such as nickel-cadmium batteries and lead-acid batteries.
  • non-aqueous electrolyte secondary batteries using lithium composite oxide for the positive electrode and carbonaceous material capable of occluding and releasing lithium ions for the negative electrode are small, lightweight, have high cell voltage, and have high energy density. Is attracting attention.
  • Benzenes having a methyl group and a methoxy group such as 4-methoxytoluene, 2,6-methoxytoluene, and 3,4,5-trimethoxytoluene, are used as overcharge additives.
  • a redox shuttle having a reduction potential of about 4.8 to 4.9 V is known (for example, see Japanese Patent Application Laid-Open No. Hei 7-32014).
  • benzenes having an alkyl group and a halogen atom such as 2-chloro-p-xylene and 4-bromo_m-xylene, are known (for example, see Japanese Patent Application Laid-Open No. 9-50822). Gazette). Examples of Japanese Patent Application Laid-Open No. 9-50882 It is described that the heat generation starting voltage of a battery obtained by adding such benzenes to a non-aqueous electrolyte is in the range of 4.45 to 4.75 V.
  • benzenes substituted with a halogen atom and a alkoxy group such as 1,2-dimethoxybenzene and 1,2-dimethoxy-14-phenolenobenzene, are known (for example, see Japanese Patent Application Laid-Open No. 1 56 243).
  • JP-A-7-3026-14, JP-A-9-50822, and JP-A-2000-156243 are all available when the non-aqueous electrolyte battery is fully charged. It has a reversible oxidation-reduction potential at a more noble battery potential than the positive electrode potential.
  • the oxidative decomposition reaction of the non-aqueous solvent that occurs during an overcharged state is promoted. The overcharge current is cut off using the heat generated by the oxidative decomposition reaction.
  • benzenes having a fluorine atom and a hydrocarbon group having 1 to 10 carbon atoms be contained in a non-aqueous electrolyte solution (for example, see Japanese Patent Application Laid-Open No. H11-329496). ).
  • Japanese Patent Application Laid-Open No. 11-3294996 describes that the benzenes suppress the exothermic reaction by suppressing the reaction rate between the positive electrode and the non-aqueous electrolyte.
  • a lithium salt as the electrolyte ethylene carbonate 20-60 volume 0/0, dialkyl carbonate 20-70 volume 0/0 and fluorinated toluene (2 Fuzoreoro Tonoreen, 3 Funoreoro Tonoreen, 4 Funore silo Tonoreen
  • An organic electrolyte containing 5 to 30% by volume of an organic solvent has been proposed (see, for example, JP-A-2001-256996).
  • the use of the organic electrolyte suppresses an increase in the internal pressure of the battery when left at a high temperature for a long time, thereby preventing the battery, particularly the vent portion, from being damaged. The stability of the battery is improved.
  • Japanese Patent Application Laid-Open No. Hei 7-302614 Japanese Patent Application Laid-Open No. 9-508222, Japanese Patent Laid-Open No. 2000-156423, Japanese Patent Application Laid-Open No. 11-329496, Japanese Patent Application Laid-Open No. 2001-256996 describes that a benzene having a methyl group, a methoxy group, a halogen atom or the like on a benzene ring is added to a non-aqueous electrolyte (or a non-aqueous electrolyte). It is described that the safety and stability of the battery are improved. But However, there is a strong need for batteries that have improved safety during overcharge.
  • An object of the present invention is to provide a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery with remarkably high safety during overcharge.
  • the present inventor has proposed a non-charge additive containing a benzene having a methyl group and a halogen atom as an overcharge additive that has an effect of preventing further progress of charging of a battery.
  • a non-charge additive containing a benzene having a methyl group and a halogen atom as an overcharge additive that has an effect of preventing further progress of charging of a battery.
  • aminated benzenes which are raw materials for producing the benzenes, exist as impurities and adversely affect the safety of the battery during overcharge.
  • the present invention provides a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte, wherein the non-aqueous solvent contains halogenated benzenes and the content of aminated benzenes contained as impurities in the non-aqueous solvent is 100 ppm.
  • non-aqueous electrolyte of the present invention is characterized in that the non-aqueous solvent contains carbonates and / or ⁇ -petit mouth ratatones together with halogenated benzenes.
  • the non-aqueous electrolyte of the present invention is characterized in that the halogenated benzene is at least one selected from halogenated toluene and halogenated xylene having one or more chlorine atoms and / or fluorine atoms.
  • the above-mentioned halogenated benzenes are at least selected from ⁇ -chlorotoluene, ⁇ -chlorotoluene and ⁇ -funoleotoluene. It is also characterized by one kind.
  • the non-aqueous electrolyte of the present invention is characterized in that the aminated benzene is at least one selected from aminated toluene and xamino xylene. Further, the nonaqueous electrolyte of the present invention is characterized in that the aminated benzene is at least one selected from 2-aminotoluene, 4-aminotoluene and aminoxylene.
  • the present invention is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and any one of the above nonaqueous electrolytes.
  • FIG. 1 is a perspective view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view taken along the line II-II of FIG.
  • the nonaqueous electrolyte of the present invention contains a nonaqueous solvent and an electrolyte, the nonaqueous solvent contains halogenated benzenes and aminated benzenes as impurities, and the content of the aminated benzenes in the nonaqueous solvent is 1%. It is characterized by being less than 0 ppm.
  • the non-aqueous solvent preferably contains carbonates and / or ⁇ -butyrolactone together with halogenated benzenes. Carbonates and ⁇ -petit mouth ratatones can improve the ionic conductivity and redox stability of the nonaqueous electrolyte.
  • the non-aqueous electrolyte of the present invention has relatively low reactivity with the positive electrode during overcharge, the reaction between the positive electrode and the non-aqueous electrolyte immediately ends after the current is cut off. Therefore, it is possible to prevent the nonaqueous electrolyte secondary battery from causing thermal runaway.
  • the halogenated benzenes contained in the non-aqueous solvent Known ones can be used, and among them, halogenated benzenes having one or two or more halogen atoms or methyl groups as substituents on a benzene ring are preferable. Among such halogenated benzenes, halogenated toluene, halogenated xylene and the like are preferable. As the halogen atom, chlorine and fluorine are preferred. Iodine and bromine are not preferred because they are easily decomposed in batteries.
  • halogenated tonolenes include o-chlorotoluene, m -chlorotonolene, p-chlorotonolene, o-funorelotone, m_hustreolotonolene, 2, ,, 3-dichlorotonolene and 2,4-dichlorotonolene.
  • halogenated xylene examples include 2-chloro-p-xylene, 2-chloro: m-xylene, 3-chloro-one o-xylene, 4-chloro-one o-xylene, 2,5-dichloro-p -Xylene, 2-funoleollow p-xylene, 2-funoleol mouth _ m-xylene, 3-funolene low o-xylene, 4-funolene low o-xylene, 2,5-difluoro: p-xylene, etc. on the benzene ring And halogenated xylene in which one or more halogen atoms are substituted with one or more halogen atoms.
  • the benzenes can be used alone or two or more kinds can be used in combination.
  • the content of the lipophilic benzenes in the non-aqueous solvent is not particularly limited, it is preferably 0.1 to 15% by weight, more preferably 0.5 to 10% by weight, and particularly preferably 0.5 to 10% by weight of the total amount of the non-aqueous solvent. Is 1 to 8% by weight.
  • Known carbonates may be used together with the halogenated benzenes, and examples thereof include cyclic carbonates and chain carbonates.
  • cyclic carbonate ethylene carbonate, propylene carbonate and the like are preferably used.
  • chain carbonate dimethyl carbonate, ethyl methyl carbonate, getyl carbonate and the like are preferably used.
  • One type of carbonate can be used alone or two or more types can be used in combination.
  • nonaqueous solvent carbonates preferred properly 1 content of ethylene carbonate in the nonaqueous solvent total amount from 9.9 to 5 9.9 by weight 0/0, more preferably 2 5 It is 50% by weight, particularly preferably 25 to 45% by weight. If the content is significantly lower than 19.9% by weight, in the secondary battery containing the nonaqueous electrolyte of the present invention, there is a possibility that the reaction between the negative electrode and the nonaqueous electrolyte in a high-temperature environment may not be suppressed. If the content exceeds 59.9% by weight, problems such as easy solidification at low temperatures may occur.
  • the content of ⁇ -butyrolactone in the non-aqueous solvent used together with the halogenated benzenes is not particularly limited, but is preferably 40 to 80% by weight, more preferably 50 to 80% by weight of the whole non-aqueous solvent. %, Particularly preferably 55 to 75% by weight.
  • one of the carbonates or y-butyrolataton can be used alone, but a combination of two or more carbonates or a combination of the carbonates and dibutyrolactone is preferred.
  • a combination of a cyclic carbonate and a chain carbonate a combination of two or more cyclic carbonates are preferred.
  • a combination of a cyclic carbonate and ⁇ -butyrolatatone, a combination of two or more cyclic carbonates, and the like are preferable.
  • a combination of a cyclic carbonate and ⁇ -petit mouth ratatone is preferable.
  • a combination of ethylene carbonate and ⁇ -butyrolatatone, a combination of ethylene carbonate and propylene carbonate, and a combination of ethylene carbonate and ethyl methyl carbonate Preferred are a combination of ethylene carbonate, ethynolemethine carbonate and ethynolecarbonate.
  • the non-aqueous solvent contains an amination compound contained as an impurity.
  • Zenzens are benzenes having an amino group as a substituent on a benzene ring. Although many such benzenes are known, benzenes having an amino group and one or more methyl groups as substituents on the benzene ring, such as aminated toluene and aminated xylene, are among them. It has been found by the inventors of the present invention that these types of batteries have a particularly bad effect on the safety of the secondary battery containing the nonaqueous electrolyte of the present invention during overcharge.
  • Both aminated toluene and aminated xylene are used as raw material compounds for halogenated benzenes, and do not react with halogenated toluene and xylene halide depending on the reaction conditions and the degree of purification. It is easy to remain as it is.
  • Commercially available halogenated benzenes generally include aminated toluene and / or aminated xylene. For example, in o-fluorotoluene manufactured by Wako Pure Chemical Industries, 2-aminotoluene (auto / laizin) power of 1000 ppm remained.
  • aminated toluene examples include 2-aminotoluene, 3-aminotoluene, 4-aminotoluene, 2,3-diaminotoluene, 2,4-diaminotoluene, 2,5-diaminotoluene, and 2,6-aminotoluene. And diaminotoluene and 3.4-diaminotoluene.
  • aminated xylene examples include 2-amino-p-xylene, 2-amino-m: xylene, 3-amino-o-xylene, 4-amino_o-xylene, and 2,5-diamino-p. —Xylene and the like.
  • aminated toluene and aminated xylene may each be contained in a non-aqueous solvent.
  • one or more aminated toluene and one or more aminated xylene may be simultaneously contained in the nonaqueous solvent.
  • the total content of the aminated benzenes in the non-aqueous solvent must be less than 100 ppm, more preferably 50 p or less. If the nonaqueous solvent contains 100 ppm or more, abnormal heat generation at the time of overcharging occurs more frequently in the secondary battery containing the nonaqueous electrolyte of the present invention, and the safety may be reduced. is there.
  • the halogenated benzenes may be highly purified.
  • distillation purification can be applied to halogenated benzenes having a melting point of less than 50 ° C. At that time, it is preferable to use equipment having a distillation capacity of 5 or more distillation stages.
  • purification by crystallization can be applied.
  • the non-aqueous solvent in the non-aqueous electrolyte of the present invention contains halogenated benzenes as an essential component, and preferably contains carbonates or ⁇ -butyrolataton together with the halogenated benzenes.
  • a solvent other than the non-aqueous solvent can be used as an auxiliary component together with the non-aqueous solvent.
  • the auxiliary component any of those used in non-aqueous electrolytes for secondary batteries can be used.
  • Examples include 3-propane sultone, sulfobenzoic anhydride, divinyl sulfone, 3-hydroxyl-l-propenesulfonic acid-gamma-sultone, and tris (trioctyl) phosphate.
  • vinylene carbonate, 1,3-propanesultone, sulfobenzoic anhydride, divinylsulfone, 3-hydroxy-11-propenesulfonate- ⁇ -sultone, etc. are the non-aqueous electrolytes of the present invention.
  • a dense protective film is formed on the negative electrode surface, making it possible to further reduce the reactivity between the negative electrode and the nonaqueous electrolyte, and to improve the discharge characteristics during storage and the stability during high-temperature storage. It is preferable because it can be improved.
  • the accessory component one type can be used alone, or two or more types can be used in combination.
  • the amount of the auxiliary component is not particularly limited, it is preferably based on the total weight of the nonaqueous solvent. It is desirable to select from the range of 10% by weight or less, more preferably 0.1% to 5% by weight, particularly preferably 0.1% to 3% by weight. If more than 10% by weight of the subcomponent is used, the ion permeability of the protective film on the negative electrode surface may be reduced, and the low-temperature discharge characteristics may be significantly impaired.
  • lithium perchlorate Li C 10 4
  • lithium hexafluorophosphate Li i PF 6
  • four lithium fluoride borate Li i BF 4
  • lithium hexafluoroarsenate Li i A s F 6
  • triflumizole Ruo b meth lithium sulfonate Li i CF 3 S0 3
  • bis triflate Ruo b methylsulfonyl El Imi Dorichiumu Li i N (CF 3 S 0 2)
  • bi scan penta full O Roe chill sulfonyl Imi Dorichiumu Li i N (C 2 F 5 S_ ⁇ 2)
  • lithium salts such as.
  • One type of electrolyte can be used alone, or two or more types can be used in combination.
  • a mixed salt containing Li BF 4 and Li PF 6 is used, the cycle life at a high temperature of the secondary battery including the nonaqueous electrolyte of the present invention can be further improved.
  • the amount of the electrolyte dissolved in the non-aqueous solvent is not particularly limited and can be appropriately selected from a wide range, but is preferably in the range of 0.5 to 2.5 mol ZL, and more preferably in the range of 1 to 2.5 mol // L. It is desirable.
  • the non-aqueous electrolyte of the present invention is prepared, for example, by adding a carbonate or ⁇ -petit mouth ratato to halogenated benzenes as necessary to prepare a non-aqueous solvent, and dissolving the electrolyte therein.
  • Can be manufactured by The non-aqueous electrolyte can be in a desired form such as a liquid (non-aqueous electrolyte) or a gel.
  • the amount of the non-aqueous electrolyte used is not particularly limited, it is preferably 0.2 to 0.6 g, more preferably 0.25 to 0.55 g, per 1 O OmAh of the battery unit capacity.
  • a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present invention.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte of the present invention as a non-aqueous electrolyte. Except for the use of disintegration, the same structure as a conventionally known nonaqueous electrolyte battery can be adopted.
  • the non-aqueous electrolyte secondary battery of this invention when overcharged by the failure of the charger of the portable device in which this is built-in, etc., and the electric potential of a positive electrode rises, the shutdown by a separator is reliably produced. Therefore, the overcharge state can be safely terminated. In other words, in an overcharged state, an exothermic reaction is caused by the oxidation reaction of halogenated benzenes, so that the battery temperature can be quickly raised to the shutdown temperature of the separator. Can be. For this reason, the content of aminated benzenes is reduced to less than 100 ppm to perform a smooth oxidation reaction, thereby avoiding thermal runaway.
  • the nonaqueous solvent contains more than 100 ppm of aminated benzene, the oxidation reaction starts to occur earlier than the halogenated benzene, so that the entire exothermic reaction is slower than the halogenated benzene compound alone. In such a situation, the battery temperature does not quickly rise to the separator shutdown temperature, the separator shutdown is incomplete, and the overcharge current cannot be completely cut off. If the air continues to flow, there is a risk of thermal runaway.
  • FIG. 1 is a perspective view schematically showing a configuration of a nonaqueous electrolyte secondary battery 1 according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view as viewed from the section line II-II shown in FIG.
  • the nonaqueous electrolyte secondary battery 1 includes a container body 2 formed in a rectangular cup shape, an electrode group 3 housed in the container body 2, a lid plate 4 for sealing the container body 2, and a container body 2 A positive electrode tab 5 inserted between the electrode plate 3 and the positive electrode 10 in the electrode group 3, and a negative electrode 1 inserted between the container body 2 and the lid plate 4 and connected to the positive electrode 10 in the electrode group 3. And a negative electrode tap 6 connected to 1.
  • the container body 2 is formed of a laminate film including an outer protective layer 7, an inner protective layer 8, and a metal layer 9 disposed between the outer protective layer 7 and the inner protective layer 8.
  • the outer protective layer 7 and the inner protective layer 8 are resin films mainly composed of a thermoplastic resin, preferably a heat-resistant thermoplastic resin.
  • the thermoplastic resin include, for example, polyethylene, polypropylene, polyolefin such as cyclic polyolefin, polyamide, polyester, crystalline polyester, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ethylene-vinyl acetate. Copolymers, polyacryloetrile, polyvinylidene chloride, and the like.
  • the metal constituting the metal layer 9 include metals such as aluminum, stainless steel, iron, copper, nickel, titanium, molybdenum, and gold, and metal oxides such as silicon oxide and aluminum oxide.
  • the thickness of the laminate film can be appropriately selected from a wide range, it is preferably 50 to 300 / m.
  • the edge 2a of the container body 2 is wide, and the container body 2 and the cover plate 4 are bonded by the edge 2a.
  • Electrode group 3 is formed by combining positive electrode 10, negative electrode 11 and separator 12. Specifically, the electrode group 3 has a structure in which a laminate including the positive electrode 10, the negative electrode 11, and the separator 12 disposed between the positive electrode 10 and the negative electrode 11 is wound into a flat shape. Formed in
  • the positive electrode 10 includes a current collector, and a positive electrode layer supported on one or both surfaces of the current collector and containing an active material.
  • the current collector examples thereof include a conductive substrate.
  • the metal forming the conductive substrate include aluminum, stainless steel, nickel, and the like.
  • the conductive substrate may have a porous structure or a non-porous structure.
  • the positive electrode layer contains a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material those commonly used in this field can be used, such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel-cobalt oxide, and lithium-containing iron.
  • Oxides metal oxides such as vanadium oxides containing lithium, titanium disulfide, Chalcogen compounds such as molybdenum sulfide; Among them, lithium-containing organic cobalt oxide (e.g. L i C o O 2), lithium-containing nickel cobalt oxides (e.g. L i N i 8 C o 0 .
  • Richiumuma manganese composite oxide (for example if It is preferable to use L i M n 2 ⁇ 4 and L i M n 0 2 ) because a high voltage can be obtained.
  • One kind of the positive electrode active material can be used alone, or two or more kinds can be used in combination.
  • the conductive agent those commonly used in this field can be used, and examples thereof include acetylene black, carbon black, and graphite.
  • One kind of the conductive agent can be used alone, or two or more kinds can be used in combination as needed.
  • binder those commonly used in this field can be used, and examples thereof include polytetrafluoroethylene, polyvinylidene fluoride, polyethersulfone, ethylene-propylene-one-gen copolymer, and styrene-butadiene rubber.
  • One kind of binder can be used alone, or two or more kinds can be used in combination as needed.
  • the mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder. .
  • the positive electrode 10 is produced, for example, by suspending a positive electrode active material, a conductive agent, and a binder in a suitable solvent, applying the suspension to a current collector, and drying to form a thin plate.
  • the negative electrode 11 includes a current collector and a negative electrode layer supported on one or both surfaces of the current collector.
  • the current collector examples thereof include a conductive substrate.
  • the metal constituting the conductive substrate include copper, stainless steel, nickel, and the like.
  • the conductive substrate may have a porous structure or a non-porous structure.
  • the negative electrode layer contains a negative electrode active material and a binder.
  • a material that absorbs and releases lithium ions can be used, for example, a graphite material or a carbonaceous material such as graphite, coatas, carbon fiber, spherical carbon, pyrolytic gas-phase carbonaceous material, and resin fired body.
  • a non-aqueous electrolyte secondary battery provided with a negative electrode containing such a graphite material as a negative electrode active material has significantly improved battery capacity and large current discharge characteristics.
  • the negative electrode active material one type can be used alone, or two or more types can be used in combination.
  • binder those commonly used in this field can be used, and examples thereof include polytetraphenylene ethylene, polyvinylidene fluoride, ethylene-propylene-one-gen copolymer, styrene-butadiene rubber, and carboxymethinoresenolerose. You. One type of binder can be used alone, or two or more types can be used in combination.
  • the compounding ratio of the negative electrode active material and the binder is preferably in the range of 80 to 98% by weight of the carbonaceous material and 2 to 20% by weight of the binder.
  • the negative electrode 11 is prepared, for example, by mixing a negative electrode active material and a binder in the presence of an appropriate solvent, applying the obtained suspension to a current collector, drying the resultant, and then pressing once at a desired pressure. Or it is produced by multi-stage pressing 2 to 5 times.
  • the separator 12 those commonly used in this field can be used, and examples thereof include a microporous membrane, a woven fabric, and a nonwoven fabric, and a laminate of the same material or different materials among them. Above all, when the temperature of the electrode group 3 rises abnormally due to heat generation due to overcharging or the like, the microporous membrane plastically deforms the constituent resin and closes the fine pores. This is preferable because it shuts off, prevents further heat generation, and can safely end the overcharged state.
  • the material forming the separator 12 include polyethylene, polypropylene, an ethylene-propylene copolymer, and an ethylenebutene copolymer. These materials can be used alone or in combination of two or more.
  • Electrode group 3 includes, for example, (1) a positive electrode 10 and a negative electrode 11 (1) Positive electrode (10) and negative electrode (11) are spirally wound with separator (12) between them, and then compressed radially Or (3) the force of bending the positive electrode 10 and the negative electrode 11 one or more times with the separator 12 interposed therebetween, or (4) the force between the positive electrode 10 and the negative electrode 11 with the separator 12 interposed therebetween. It is produced by a lamination method.
  • the electrode group 3 need not be pressed, but may be pressed to increase the integrated strength of the positive electrode 10, the negative electrode 11, and the separator 12. It is also possible to perform heating during pressing.
  • Electrode group 3 can contain an adhesive polymer compound in order to increase the integration strength of positive electrode 10, negative electrode 11 and separator 12.
  • the adhesive polymer compound is preferably one that can maintain high adhesiveness while holding the non-aqueous electrolyte, and more preferably has high lithium ion conductivity.
  • Specific examples include polyacrylonitrile, polyatalylate, polyvinylidene fluoride, polyvinyl chloride, and polyethylene oxide.
  • Electrode group 3 is impregnated with the non-aqueous electrolyte of the present invention and held.
  • the cover plate 4 is formed of a laminate film including an outer protective layer 7, an inner protective layer 8, and a metal layer 9 disposed between the outer protective layer 7 and the inner protective layer 8.
  • the same laminating film as the laminating film of the container body 2 can be used as the laminating film.
  • One end of the positive electrode tab 5 is connected to the positive electrode 10, passes between the container body 2 and the cover plate 4, and the other end 5 a is drawn out of the container body 2, and functions as a positive electrode terminal.
  • Materials commonly used in this field can be used as the material constituting the positive electrode tab 5, and examples thereof include aluminum, nickel, and titanium.
  • One end of the negative electrode tab 6 is connected to the negative electrode 11, passes between the container body 2 and the cover plate 4, and the other end 6 a is drawn out of the container body 2, and functions as a negative electrode terminal.
  • the material constituting the negative electrode tab 6 those commonly used in this field can be used, and examples thereof include copper, nickel, and a laminate in which a nickel layer is formed on a copper foil by plating or the like.
  • the nonaqueous electrolyte secondary battery 1 can be manufactured in the same manner as the conventional battery manufacturing method.
  • the positive electrode tab 5 and the negative electrode tab 6 are connected to the electrode group 3, and the electrode group 3 is mounted in the container body 2 so that a part of each of the positive electrode tab 5 and the negative electrode tab 6 is outside the container body 2. Place.
  • the cover plate 4 and the container body 2 are overlapped so that the inner protective layer 8 of the cover plate 4 and the inner protective layer 8 of the edge 2a of the container body 2 are in contact with each other, and the portion is bonded by heat sealing or the like.
  • the electrode group 3 is hermetically sealed in the container body 2, and the nonaqueous electrolyte battery 1 is obtained.
  • non-electrolyte secondary battery of the present invention is not limited to the form of the non-electrolyte battery 1, but may be various forms of batteries such as a cylindrical form, a square form, and a coin form. .
  • the non-aqueous electrolyte secondary battery of the present invention can be used for the same applications as those to which a non-aqueous electrolyte secondary battery is conventionally applied.
  • Examples include various electronic devices, especially mobile electronic devices, such as mobile communication devices such as mobile phones and mopiles, portable personal computers such as notebook personal computers and palmtop personal computers, and the like. It can be suitably used as a power source for cameras, digital cameras, integrated video cameras, portable CD (MD) players, etc.
  • Lithium cobalt oxide (L i x C o O 2 ; however, X is 0 rather X 1) to 9 0 parts by weight powder powder, acetylene black 5 parts by weight, dimethylformamidine de polyvinylidene fluoride 5 parts by weight
  • the solution was added and mixed to prepare a slurry.
  • This slurry is applied to both sides of a 15 ⁇ thick aluminum foil (positive electrode current collector), dried, and pressed to carry a 60 / im thick positive electrode layer on both sides of the current collector.
  • a positive electrode having the structure described above was produced.
  • the plane distance d002 of the (002) plane of the carbonaceous material was determined from the powder X-ray diffraction spectrum by the half-width width midpoint method. At this time, scattering correction such as Lorentz scattering was not performed.
  • a microporous polyethylene membrane having a thickness of 25 ⁇ and a porosity of 45% was used.
  • a positive electrode lead made of strip-shaped aluminum foil (thickness: 100 zm) was ultrasonically welded to the positive electrode current collector, and a negative electrode lead made of strip-shaped nickel foil (thickness: 100 / im) was ultrasonically welded to the negative electrode current collector. Thereafter, the positive electrode and the negative electrode were spirally wound therebetween with a separator interposed therebetween to prepare an electrode group.
  • the electrode group was pressed into a flat shape by heating with a press machine.
  • Ethylene carbonate (EC), ⁇ -butyrolataton (GBL), ⁇ -chlorotoluene ( ⁇ -CT; oxidation potential with respect to lithium metal 4.8 V) and tris (trioctyl) phosphate are weight ratio (EC : GBL: o-CT: TOP) was adjusted to 35: 59.5: 5: 0.5 to prepare a non-aqueous solvent.
  • Lithium tetrafluoroborate (L i BF 4 ) was dissolved in the obtained non-aqueous solvent so as to have a concentration of 1.5 mol ZL to prepare a non-aqueous electrolyte solution of the present invention. From the results of gas chromatography analysis, the non-aqueous solvent contained 2-aminotoluene as an aminated benzene, and the content was 30 ppm or less.
  • a 100 / Zm-thick laminating film in which both sides of aluminum foil are covered with polyethylene is formed into a rectangular cup shape by a press machine, and the electrode group is placed in the obtained container. Stowed.
  • a non-aqueous electrolyte secondary battery having the structure shown in FIGS. 1 and 2 and having a thickness of 3.6 mm, a width of 35 mm, a height of 62 mm, and a nominal capacity of 0.65 Ah was assembled.
  • the non-aqueous electrolyte secondary battery was subjected to constant current and constant voltage charging to 4.2 V at 0.2 C at room temperature for 15 hours as an initial charge / discharge process, and then to 3 V at room temperature at 0.2 C. 0 V to produce a nonaqueous electrolyte secondary battery.
  • 1 C is the current required to discharge the nominal capacity (Ah) in one hour. Therefore, 0.2 C is the current value required to discharge the nominal capacity (Ah) in 5 hours.
  • a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1, except that the composition of the non-aqueous solvent and the content of the aminated benzenes were changed as shown in Table 1.
  • o_FT is o-fluorotoluene (oxidation potential with respect to lithium metal 4.9 V)
  • p-CT is p-chlorotoluene (oxidation potential with respect to lithium metal 4.8 V) )
  • 2 FPX is 2-fluoro-] p-xylene (oxidation potential with respect to lithium metal 4.7 V).
  • TOP of the minor component is tris (trioctyl) phosphate
  • VC is vinylene carbonate
  • ? 3 indicates 1,3-propane sultone
  • SBAH indicates sulfobenzoic anhydride
  • DVSU indicates divinylsulfone
  • PRS indicates 3-hydroxy-1-1-pentopensurenoleic acid- ⁇ -snorethone.
  • 2-AT of aminated benzene indicates 2-aminotoluene and 2-APX indicates 2-amino-p-xylene.
  • a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except for the above.
  • the secondary batteries of Examples 1-22 using a non-aqueous solvent containing halogenated benzenes and containing less than 100 ppm of aminated benzenes are as follows. Of the 10 batteries that underwent the overcharge test, few generated abnormal heat, and at most two batteries (20% or less) had a large effect of safely terminating the overcharged state. In particular, the content of aminated benzenes is 50 ppm or less.
  • One CT, p - secondary battery CT N o-Examples 1 to 4 FT was added, the content of the amination benzenes as compared with the secondary batteries of Example 5 9 0 ppm, further overcharge The effect of safely terminating the state is great.
  • the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 11 using halogenated benzenes and containing nonaqueous solvents having an aminated benzene content of 100 ppm or more were all 1 ° C. Three or more of the individuals developed abnormal fever.
  • the nonaqueous electrolyte and the nonaqueous electrolyte secondary battery of the present invention have a remarkably low rate of abnormal heat generation during overcharge and have extremely high safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a nonaqueous electrolyte secondary battery wherein safety during overcharge is further improved. Specifically disclosed is a nonaqueous electrolyte secondary battery having such a structure that an electrode group (3) including a positive electrode (10), a negative electrode (11) and a separator (12) is arranged within a space hermetically sealed by a container body (2) and a covering plate (4), and a nonaqueous electrolyte is injected into the electrode group(3). In this secondary battery, it is used a nonaqueous electrolyte obtained by dissolving an electrolyte in a nonaqueous solvent which contains halogenated benzenes while having the aminated benzene content, as impurities, of less than 100 ppm.

Description

明 細 書  Specification
非水電解質および非水電解質二次電池  Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
【技術分野】  【Technical field】
本発明は、 非水電解質および非水電解質二次電池に関する。  The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery.
【背景技術】  [Background Art]
近年、 移動体通信機、 ノートブック型パソコン、 パームトップ型パソコン、 一 体型ビデオカメラ、 ポータブル C D (M D ) プレーヤー、 コードレス電話などの 電子機器の小形化、 軽量化を図る上で、 これらの電子機器の電源として、 特に小 型で大容量の電池が求められる。  In recent years, in order to reduce the size and weight of electronic devices such as mobile communication devices, notebook computers, palmtop computers, integrated video cameras, portable CD (MD) players, and cordless telephones, In particular, small and large-capacity batteries are required as a power source.
これら電子機器の電源として普及している電池としては、 アル力リマンガン電 池のような一次電池、 ニッケルカドミウム電池、 鉛蓄電池などの二次電池が挙げ られる。 その中でも、 正極にリチウム複合酸化物を用い、 かつ負極にリチウムィ オンを吸蔵■放出できる炭素質材料を用いた非水電解質二次電池が、 小型軽量で 単電池電圧が高く、 高エネルギー密度を得られることから注目されている。  Batteries that are widely used as power sources for these electronic devices include primary batteries such as lithium-manganese batteries, and secondary batteries such as nickel-cadmium batteries and lead-acid batteries. Among these, non-aqueous electrolyte secondary batteries using lithium composite oxide for the positive electrode and carbonaceous material capable of occluding and releasing lithium ions for the negative electrode are small, lightweight, have high cell voltage, and have high energy density. Is attracting attention.
ところで、 最近の電池においては、 高エネルギー密度化にともない.、 過充電時 における安全性を保ち、 電池温度の著しい上昇ひいては電池の熱暴走を防止する ことが一層困難になりつつある。 過充電時の安全化に係る先行文献および特許文 献はこれまでに多く知られており、 電池の構造を改良して安全化するもの、 非水 電解質に過充電添加剤を加えて安全性向上を図るものなどが主である。 中でも、 非水電解質に過充電添加剤を加える場合には、 構造上の制約も少ないことから、 種々の提案がなされている。  By the way, with the recent increase in energy density of batteries, it is becoming more and more difficult to maintain safety during overcharge and to prevent a significant rise in battery temperature and, consequently, thermal runaway of batteries. There are many prior literatures and patent documents related to safety at the time of overcharging, which improve the safety of the battery by improving the structure of the battery, and improve safety by adding an overcharge additive to the non-aqueous electrolyte. The main thing is to plan. In particular, various proposals have been made when adding an overcharge additive to a non-aqueous electrolyte, since there are few structural restrictions.
過充電添加剤としては、 4ーメ トキシトルエン、 2 , 6—メ トキシトルエン、 3, 4, 5—トリメ トキシトルエンなどの、 メチル基とメ トキシ基とを有するベ ンゼン類であって、 酸化還元電位が 4 . 8〜4 . 9 V程度であるレドックスシャ トルが知られている (たとえば、 特開平 7— 3 0 2 6 1 4号公報参照) 。  Benzenes having a methyl group and a methoxy group, such as 4-methoxytoluene, 2,6-methoxytoluene, and 3,4,5-trimethoxytoluene, are used as overcharge additives. A redox shuttle having a reduction potential of about 4.8 to 4.9 V is known (for example, see Japanese Patent Application Laid-Open No. Hei 7-32014).
さらに、 2—クロ口一 ρ—キシレン、 4—ブロモ _ m—キシレンなどの、 アル キル基とハロゲン原子とを有するベンゼン類が知られている (たとえば、 特開平 9 - 5 0 8 2 2号公報参照) 。 特開平 9— 5 0 8 2 2号公報の実施例には、 この ようなベンゼン類を非水電解液に添加した電池の発熱開始電圧が 4. 45〜4. 75 Vの範囲内にあることが記載される。 Furthermore, benzenes having an alkyl group and a halogen atom, such as 2-chloro-p-xylene and 4-bromo_m-xylene, are known (for example, see Japanese Patent Application Laid-Open No. 9-50822). Gazette). Examples of Japanese Patent Application Laid-Open No. 9-50882 It is described that the heat generation starting voltage of a battery obtained by adding such benzenes to a non-aqueous electrolyte is in the range of 4.45 to 4.75 V.
さらに、 1, 2—ジメ トキシベンゼン、 1 , 2—ジメ トキシ一 4ーフノレオ口べ ンゼンなどの、 ハロゲン原子およぴァルコキシ基が置換したべンゼン類が知られ ている (たとえば、 特開 2000— 1 56 243号参照) 。  Further, benzenes substituted with a halogen atom and a alkoxy group, such as 1,2-dimethoxybenzene and 1,2-dimethoxy-14-phenolenobenzene, are known (for example, see Japanese Patent Application Laid-Open No. 1 56 243).
特開平 7— 3026 1 4号公報、 特開平 9— 508 2 2号公報、 特開 2000 - 1 56 243号公報に記載のベンゼン類は、 いずれも、 非水電解液電池の満充 電時の正極電位よりも貴な電池電位に可逆性酸化還元電位を有するものであり、 これらを非水電解質に添加することによって、 過充電状態の際に生じる非水溶媒 の酸化分解反応が促進され、 この酸化分解反応による発熱を利用して過充電電流 が遮断される。  The benzenes described in JP-A-7-3026-14, JP-A-9-50822, and JP-A-2000-156243 are all available when the non-aqueous electrolyte battery is fully charged. It has a reversible oxidation-reduction potential at a more noble battery potential than the positive electrode potential. By adding these to the non-aqueous electrolyte, the oxidative decomposition reaction of the non-aqueous solvent that occurs during an overcharged state is promoted. The overcharge current is cut off using the heat generated by the oxidative decomposition reaction.
また、 フッ素原子と炭素数 1〜1 0の炭化水素基とを有するベンゼン類を、 非 水電解液に含有させることが提案されている (たとえば、 特開平 1 1一 3 2 94 96号公報参照) 。 特開平 1 1一 32 94 96号公報は、 該ベンゼン類が正極と 非水電解液との反応速度を抑えて発熱反応を抑制することを記載する。  Further, it has been proposed that benzenes having a fluorine atom and a hydrocarbon group having 1 to 10 carbon atoms be contained in a non-aqueous electrolyte solution (for example, see Japanese Patent Application Laid-Open No. H11-329496). ). Japanese Patent Application Laid-Open No. 11-3294996 describes that the benzenes suppress the exothermic reaction by suppressing the reaction rate between the positive electrode and the non-aqueous electrolyte.
さらに、 電解質であるリチウム塩と、 エチレンカーボネート 20〜60体積0 /0、 ジアルキルカーボネート 20〜 70体積0 /0およびフッ素化されたトルエン (2— フゾレオロ トノレェン、 3—フノレオロ トノレェン、 4ーフノレ才ロ トノレェンなど) 5〜3 0体積%を含む有機溶媒とを含有する有機電解液が提案されている (たとえば、 特開 2001— 2 5 6 9 96号公報参照) 。 特開 200 1— 2 56 9 96号公報 によれば、 該有機電解液を用いることにより、 高温で長時間放置する際の電池の 内圧上昇が抑制され、 電池、 特にベント部分の破損が防止され、 電池の安定性が 向上する。 Furthermore, a lithium salt as the electrolyte, ethylene carbonate 20-60 volume 0/0, dialkyl carbonate 20-70 volume 0/0 and fluorinated toluene (2 Fuzoreoro Tonoreen, 3 Funoreoro Tonoreen, 4 Funore silo Tonoreen An organic electrolyte containing 5 to 30% by volume of an organic solvent has been proposed (see, for example, JP-A-2001-256996). According to Japanese Patent Application Laid-Open No. 2001-256996, the use of the organic electrolyte suppresses an increase in the internal pressure of the battery when left at a high temperature for a long time, thereby preventing the battery, particularly the vent portion, from being damaged. The stability of the battery is improved.
このように、 特開平 7— 30 26 1 4号公報、 特開平 9— 50 8 2 2号公報、 特開 2000— 1 5 6 24 3号公報、 特開平 1 1一 3 2 949 6号公報、 特開 2 00 1 - 256 9 96号公報には、 ベンゼン環上にメチル基、 メ トキシ基、 ハロ ゲン原子などを有するベンゼン類を非水電解質 (または非水電解液) に添加する ことにより、 電池の安全性、 安定性などが向上することが記載される。 しかしな がら、 過充電時の安全性が一層向上した電池が切望されている。 As described above, Japanese Patent Application Laid-Open No. Hei 7-302614, Japanese Patent Application Laid-Open No. 9-508222, Japanese Patent Laid-Open No. 2000-156423, Japanese Patent Application Laid-Open No. 11-329496, Japanese Patent Application Laid-Open No. 2001-256996 describes that a benzene having a methyl group, a methoxy group, a halogen atom or the like on a benzene ring is added to a non-aqueous electrolyte (or a non-aqueous electrolyte). It is described that the safety and stability of the battery are improved. But However, there is a strong need for batteries that have improved safety during overcharge.
なお、 特開平 7— 3 0 2 6 1 4号公報、 特開平 9一 5 0 8 2 2号公報、 特開 2 0 0 0— 1 5 6 2 4 3号公報、 特開平 1 1一 3 2 9 4 9 6号公報、 特開 2 0 0 1 - 2 5 6 9 9 6号公報のいずれにも、 非水電解質に含まれる不純物成分について 言及する記載はない。  Note that Japanese Patent Application Laid-Open Nos. Hei 7-3202614, Hei 9-51082, Japanese Patent Laid-Open No. 2000-1563243, Hei 1-132 Neither the publication No. 9496 nor the publication of Japanese Patent Application Laid-Open No. 2001-256696 describes a description of impurity components contained in the non-aqueous electrolyte.
【発明の開示】  DISCLOSURE OF THE INVENTION
本発明の目的は、 過充電時の安全性が顕著に高い非水電解質および非水電解質 二次電池を提供することである。  An object of the present invention is to provide a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery with remarkably high safety during overcharge.
本発明者は、 上記課題を解決するための研究過程で、 電池の充電がそれ以上進 行することを防止する作用のある過充電添加剤として、 メチル基およびハロゲン 原子を有するベンゼン類を含む非水電解質においては、 該ベンゼン類の製造原料 であるアミノ化ベンゼン類が不純物として存在し、 電池の過充電時の安全性に悪 影響を及ぼすことを見出した。  In the course of research for solving the above-mentioned problems, the present inventor has proposed a non-charge additive containing a benzene having a methyl group and a halogen atom as an overcharge additive that has an effect of preventing further progress of charging of a battery. In water electrolytes, it has been found that aminated benzenes, which are raw materials for producing the benzenes, exist as impurities and adversely affect the safety of the battery during overcharge.
このような知見に基づいてさらに研究を重ねた結果、 非水電解質中のァミノ化 ベンゼン類の含有量が非水電解質二次電池の過充電時の安全性に特に大きな影響 を与えることを見出し、 本発明を完成するに至った。  As a result of further research based on these findings, they found that the content of aminated benzenes in the nonaqueous electrolyte had a particularly large effect on the safety of nonaqueous electrolyte secondary batteries during overcharge. The present invention has been completed.
本発明は、 非水溶媒および電解質を含有する非水電解質において、 非水溶媒が ハロゲン化ベンゼン類を含み、 かつ非水溶媒中に不純物として含まれるアミノ化 ベンゼン類の含有量が 1 0 0 p p m未満であることを特徴とする非水電解質であ る。  The present invention provides a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte, wherein the non-aqueous solvent contains halogenated benzenes and the content of aminated benzenes contained as impurities in the non-aqueous solvent is 100 ppm. A non-aqueous electrolyte characterized by being less than
また本発明の非水電解質は、 前述の非水溶媒が、 ハロゲン化ベンゼン類ととも に、 カーボネート類および/または γ—プチ口ラタ トンを含有することを特徴と する。  Further, the non-aqueous electrolyte of the present invention is characterized in that the non-aqueous solvent contains carbonates and / or γ-petit mouth ratatones together with halogenated benzenes.
さらに本発明の非水電解質は、 前述のハロゲン化ベンゼン類が、 塩素原子およ び/またはフッ素原子を 1または 2以上有するハロゲン化トルエンおよびハロゲ ン化キシレンから選ばれる少なくとも 1種であることを特徴とする。  Further, the non-aqueous electrolyte of the present invention is characterized in that the halogenated benzene is at least one selected from halogenated toluene and halogenated xylene having one or more chlorine atoms and / or fluorine atoms. Features.
さらに本発明の非水電解質は、 前述のハロゲン化ベンゼン類が、 ο—クロロ ト ノレェン、 ρ—クロ口 トルエンおよび ο—フノレオ口 トルエンから選ばれる少なくと も 1種であることを特徴とする。 Further, in the non-aqueous electrolyte of the present invention, the above-mentioned halogenated benzenes are at least selected from ο-chlorotoluene, ρ-chlorotoluene and ο-funoleotoluene. It is also characterized by one kind.
さらに本発明の非水電解質は、 前述のアミノ化ベンゼン類が、 アミノ化トルェ ンおよぴァミノ化キシレンから選ばれる少なくとも 1種であることを特徴とする。 さらに本発明の非水電解質は、 前述のアミノ化ベンゼン類が、 2—アミノ トル ェン、 4ーァミノ トルエンおよびァミノキシレンから選ばれる少なくとも 1種で あることを特徴とする。  Further, the non-aqueous electrolyte of the present invention is characterized in that the aminated benzene is at least one selected from aminated toluene and xamino xylene. Further, the nonaqueous electrolyte of the present invention is characterized in that the aminated benzene is at least one selected from 2-aminotoluene, 4-aminotoluene and aminoxylene.
また本発明は、 正極と、 負極と、 前述のいずれか 1つの非水電解質とを含むこ とを特徴とする非水電解質二次電池である。  Further, the present invention is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and any one of the above nonaqueous electrolytes.
【図面の簡単な説明】  [Brief description of the drawings]
本発明の目的、 特色、 および利点は、 下記の詳細な説明と図面とからより明確 になるであろう。  The objects, features and advantages of the present invention will become more apparent from the following detailed description and drawings.
図 1は、 本発明の実施の第 1形態である非水電解質二次電池の構成を概略的に 示す斜視図である。  FIG. 1 is a perspective view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to a first embodiment of the present invention.
図 2は、 図 1に示す切断面線 I I一 I Iから見た部分断面図である。  FIG. 2 is a partial cross-sectional view taken along the line II-II of FIG.
【発明を実施するための最良の形態】  BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を参考にして本発明の好適な実施例を詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
〔非水電解質〕  (Non-aqueous electrolyte)
本発明の非水電解質は、 非水溶媒と電解質とを含み、 非水溶媒がハロゲン化べ ンゼン類および不純物としてアミノ化ベンゼン類を含み、 非水溶媒におけるアミ ノ化ベンゼン類の含有量が 1 0 0 p p m未満であることを特徴とする。  The nonaqueous electrolyte of the present invention contains a nonaqueous solvent and an electrolyte, the nonaqueous solvent contains halogenated benzenes and aminated benzenes as impurities, and the content of the aminated benzenes in the nonaqueous solvent is 1%. It is characterized by being less than 0 ppm.
本発明の非水電解質は、 好ましくは、 非水溶媒が、 ハロゲン化ベンゼン類とと もにカーボネート類および または γ—プチロラク トンを含有する。 カーボネー ト類および γ—プチ口ラタ トンは、 非水電解質のイオン伝導性、 酸化還元安定性 などを向上させることができる。  In the non-aqueous electrolyte of the present invention, the non-aqueous solvent preferably contains carbonates and / or γ-butyrolactone together with halogenated benzenes. Carbonates and γ-petit mouth ratatones can improve the ionic conductivity and redox stability of the nonaqueous electrolyte.
本発明の非水電解質は、 過充電時の正極との反応性が比較的低いため、 電流遮 断後、 正極と非水電解質との反応が速やかに終了する。 したがって、 非水電解質 二次電池が熱暴走に至るのを回避することができる。  Since the non-aqueous electrolyte of the present invention has relatively low reactivity with the positive electrode during overcharge, the reaction between the positive electrode and the non-aqueous electrolyte immediately ends after the current is cut off. Therefore, it is possible to prevent the nonaqueous electrolyte secondary battery from causing thermal runaway.
本発明の非水電解質において、 非水溶媒に含まれるハロゲン化ベンゼン類とし ては公知のものを使用でき、 その中でも、 ベンゼン環上に置換基としてハロゲン 原子おょぴメチル基をそれぞれ 1または 2以上有するハロゲン化べンゼン類が好 ましい。 このようなハロゲン化ベンゼン類の中でも、 ハロゲン化トルエン、 ハロ ゲン化キシレンなどが好ましい。 なお、 ハロゲン原子としては、 塩素およぴフッ 素が好ましい。 ヨウ素おょぴ臭素は、 電池中で分解しやすいので好ましくない。 ハロゲン化トノレェンの具体例としては、 o—クロ口 トルエン、 m—クロロ トノレ ェン、 p—クロロ トノレェン、 o—フノレオロ トノレェン、 m _フスレオロ トノレェン、 2 , , 3—ジクロロ トノレェン、 2, 4ージクロロ トノレェン、 2 , 5—ジクロロトノレェン、 2 , 6—ジクロロ トノレェン、 3 , 4—ジクロロ トノレェン、 2, 3—ジフノレオロ ト ノレェン、 2, 4一ジフノレオ口 トノレェン、 2, 5—ジフノレオ口 トルエン、 2, 6一 ジフノレオロ トノレェン、 2—クロ口 _ 4—フノレオロ トノレェン、 2—クロロー 6—フ ルォロ トルエンなどの、 ベンゼン環上に 1種または 2種のハロゲン原子が 1また は 2以上置換したハロゲン化トルエンが挙げられる。 In the non-aqueous electrolyte of the present invention, the halogenated benzenes contained in the non-aqueous solvent Known ones can be used, and among them, halogenated benzenes having one or two or more halogen atoms or methyl groups as substituents on a benzene ring are preferable. Among such halogenated benzenes, halogenated toluene, halogenated xylene and the like are preferable. As the halogen atom, chlorine and fluorine are preferred. Iodine and bromine are not preferred because they are easily decomposed in batteries. Specific examples of halogenated tonolenes include o-chlorotoluene, m -chlorotonolene, p-chlorotonolene, o-funorelotone, m_hustreolotonolene, 2, ,, 3-dichlorotonolene and 2,4-dichlorotonolene. 2,5-Dichlorotonolene, 2,6-Dichlorotonolene, 3,4-Dichlorotonolene, 2,3-Diphnolelotonelene, 2,4-Diphnoletone Tonolene, 2,5-Diphnoletone Toluene, 2, 6-1 Halogenated toluene, in which one or two or more halogen atoms are substituted on the benzene ring by one or two or more, such as diphnolelothenolene, 2-chloro mouth_4 -phneolelothonolene, 2-chloro-6-fluorotoluene No.
ハロゲン化キシレンの具体例としては、 2—クロロー p—キシレン、 2—クロ ロー: m—キシレン、 3—クロ口一 o—キシレン、 4一クロ口一 o—キシレン、 2 , 5—ジクロロ一 p—キシレン、 2—フノレオロー p—キシレン、 2—フノレオ口 _ m ーキシレン、 3—フノレ才ロー o—キシレン、 4—フノレ才ロー o—キシレン、 2, 5ージフルオロー: p—キシレンなどの、 ベンゼン環上に 1種または 2種以上のハ ロゲン原子が 1または 2以上置換したハロゲン化キシレンが挙げられる。  Specific examples of halogenated xylene include 2-chloro-p-xylene, 2-chloro: m-xylene, 3-chloro-one o-xylene, 4-chloro-one o-xylene, 2,5-dichloro-p -Xylene, 2-funoleollow p-xylene, 2-funoleol mouth _ m-xylene, 3-funolene low o-xylene, 4-funolene low o-xylene, 2,5-difluoro: p-xylene, etc. on the benzene ring And halogenated xylene in which one or more halogen atoms are substituted with one or more halogen atoms.
ハ口ゲン化べンゼン類は、 1種を単独で使用できまたは 2種以上を併用できる。 ハ口ゲン化べンゼン類の非水溶媒における含有量は特に制限されないけれども、 好ましくは非水溶媒全量の 0 . 1 〜 1 5重量%、 さらに好ましくは 0 . 5〜 1 0 重量%、 特に好ましくは 1 〜 8重量%である。  One kind of the benzenes can be used alone or two or more kinds can be used in combination. Although the content of the lipophilic benzenes in the non-aqueous solvent is not particularly limited, it is preferably 0.1 to 15% by weight, more preferably 0.5 to 10% by weight, and particularly preferably 0.5 to 10% by weight of the total amount of the non-aqueous solvent. Is 1 to 8% by weight.
ハロゲン化ベンゼン類とともに用いられるカーボネート類としては公知のもの でよく、 たとえば、 環状カーボネート、 鎖状カーボネートなどが挙げられる。 環状カーボネートとしては、 エチレンカーボネート、 プロピレンカーボネート などが好ましく用いられる。 また、 鎖状カーボネートとしては、 ジメチルカーボ ネート、 ェチルメチルカーボネート、 ジェチルカーボネートなどが好ましく用い られる。 Known carbonates may be used together with the halogenated benzenes, and examples thereof include cyclic carbonates and chain carbonates. As the cyclic carbonate, ethylene carbonate, propylene carbonate and the like are preferably used. As the chain carbonate, dimethyl carbonate, ethyl methyl carbonate, getyl carbonate and the like are preferably used. Can be
カーボネート類は 1種を単独で使用できまたは 2種以上を併用できる。  One type of carbonate can be used alone or two or more types can be used in combination.
カーボネート類の非水溶媒における含有量は特に制限されないけれども、 好ま しくはエチレンカーボネートの含有量が非水溶媒全量の 1 9 . 9〜 5 9 . 9重 量0 /0、 さらに好ましくは 2 5〜 5 0重量%、 特に好ましくは 2 5〜 4 5重量%で ある。 1 9 . 9重量%を大きく下回ると、 本発明の非水電解質を含む二次電池に おいて、 特に高温環境下での負極と非水電解質との反応を抑えられなくなる虞が ある。 また、 5 9 . 9重量%を大幅に超えると、 低温で固化しやすくなるなどの 問題が起こる虞がある。 Although it is not particularly limited content of nonaqueous solvent carbonates, preferred properly 1 content of ethylene carbonate in the nonaqueous solvent total amount from 9.9 to 5 9.9 by weight 0/0, more preferably 2 5 It is 50% by weight, particularly preferably 25 to 45% by weight. If the content is significantly lower than 19.9% by weight, in the secondary battery containing the nonaqueous electrolyte of the present invention, there is a possibility that the reaction between the negative electrode and the nonaqueous electrolyte in a high-temperature environment may not be suppressed. If the content exceeds 59.9% by weight, problems such as easy solidification at low temperatures may occur.
また、 ハロゲン化ベンゼン類とともに用いられる γ—ブチロラク トンの非水溶 媒における含有量は特に制限されないけれども、 好ましくは非水溶媒全量の 4 0 〜 8 0重量%、 さらに好ましくは 5 0〜 8 0重量%、 特に好ましくは 5 5〜 7 5 重量%である。  The content of γ-butyrolactone in the non-aqueous solvent used together with the halogenated benzenes is not particularly limited, but is preferably 40 to 80% by weight, more preferably 50 to 80% by weight of the whole non-aqueous solvent. %, Particularly preferably 55 to 75% by weight.
本発明では、 カーボネート類の 1種または y—ブチロラタ トンをそれぞれ単独 で用いることができるけれども、 2種以上のカーボネート類の併用またはカーボ ネート類とツープチロラク トンとの併用が好ましい。  In the present invention, one of the carbonates or y-butyrolataton can be used alone, but a combination of two or more carbonates or a combination of the carbonates and dibutyrolactone is preferred.
特に、 本発明の非水電解質を含む二次電池において、 高温保存時の容量維持率 を向上させるという面からは、 環状カーボネートと鎖状カーボネートとの組み合 わせ、 2種以上の環状カーボネートの組み合わせなどが好ましい。 高温保存時の ガス発生抑制の面からは、 環状カーボネートと γ —ブチロラタ トンとの組み合わ せ、 2種以上の環状カーボネートの組み合わせなどが好ましい。 安全性向上の面 からは、 環状カーボネートと γ—プチ口ラタ トンとの組み合わせが好ましい。 さ らに、 高温保存特性と安全性の両立の面からは、 エチレンカーボネートと γ—ブ チロラタ トンとの組み合わせ、 エチレンカーボネートとプロピレンカーボネート との組み合わせ、 エチレンカーボネートとェチルメチルカーボネートとの組み合 わせ、 エチレンカーボネートとェチノレメチノレカーボネートとジェチノレカーボネー トとの組み合わせなどが好ましい。  In particular, in the secondary battery containing the non-aqueous electrolyte of the present invention, from the viewpoint of improving the capacity retention during high-temperature storage, a combination of a cyclic carbonate and a chain carbonate, a combination of two or more cyclic carbonates Are preferred. From the viewpoint of suppressing gas generation during high-temperature storage, a combination of a cyclic carbonate and γ-butyrolatatone, a combination of two or more cyclic carbonates, and the like are preferable. From the viewpoint of improving safety, a combination of a cyclic carbonate and γ-petit mouth ratatone is preferable. Furthermore, from the viewpoint of compatibility between high-temperature storage characteristics and safety, a combination of ethylene carbonate and γ-butyrolatatone, a combination of ethylene carbonate and propylene carbonate, and a combination of ethylene carbonate and ethyl methyl carbonate Preferred are a combination of ethylene carbonate, ethynolemethine carbonate and ethynolecarbonate.
本発明の非水電解質において、 非水溶媒に、 不純物として含まれるァミノ化べ ンゼン類は、 ベンゼン環上に置換基としてアミノ基を有するベンゼン類である。 このようなベンゼン類は多くのものが知られているけれども、 その中でも、 アミ ノ化トルエン、 アミノ化キシレンなどの、 ベンゼン環上に置換基としてアミノ基 および 1または 2以上のメチル基を有するベンゼン類が、 本発明の非水電解質を 含む二次電池における過充電時の安全性に、 特に悪い影響を及ぼすことが、 本発 明者の研究により判明した。 In the non-aqueous electrolyte of the present invention, the non-aqueous solvent contains an amination compound contained as an impurity. Zenzens are benzenes having an amino group as a substituent on a benzene ring. Although many such benzenes are known, benzenes having an amino group and one or more methyl groups as substituents on the benzene ring, such as aminated toluene and aminated xylene, are among them. It has been found by the inventors of the present invention that these types of batteries have a particularly bad effect on the safety of the secondary battery containing the nonaqueous electrolyte of the present invention during overcharge.
アミノ化トルエンおよびアミノ化キシレンは、 いずれも、 ハロゲン化ベンゼン 類の原料化合物として用いられるものであり、 反応条件、 精製度合いなどによつ て、 ハロゲン化トルェンおよぴハロゲン化キシレン中に未反応のまま残留し易い。 商業的に入手できるハロゲン化ベンゼン類には、 一般に、 アミノ化トルエンおよ ぴ またはアミノ化キシレンが含まれる。 たとえば、 和光純薬工業社製の o—フ ルォロ トルエン中には、 2—ァミノ トルエン ( o― ト /レイジン) 力 1 0 0 0 p p m残留していた。  Both aminated toluene and aminated xylene are used as raw material compounds for halogenated benzenes, and do not react with halogenated toluene and xylene halide depending on the reaction conditions and the degree of purification. It is easy to remain as it is. Commercially available halogenated benzenes generally include aminated toluene and / or aminated xylene. For example, in o-fluorotoluene manufactured by Wako Pure Chemical Industries, 2-aminotoluene (auto / laizin) power of 1000 ppm remained.
アミノ化トルエンの具体例としては、 2—ァミノ トルエン、 3 _アミノ トルェ ン、 4—ァミノ トルエン、 2, 3—ジァミノ トルエン、 2, 4ージアミノ トルェ ン、 2, 5—ジァミノ トルエン、 2, 6—ジァミノ トルエン、 3 . 4—ジァミノ トルエンなどが挙げられる。  Specific examples of aminated toluene include 2-aminotoluene, 3-aminotoluene, 4-aminotoluene, 2,3-diaminotoluene, 2,4-diaminotoluene, 2,5-diaminotoluene, and 2,6-aminotoluene. And diaminotoluene and 3.4-diaminotoluene.
また、 アミノ化キシレンの具体例としては、 2—ァミノ一 p—キシレン、 2— ァミノ一: m—キシレン、 3—ァミノ一 o—キシレン、 4—ァミノ _ o—キシレン、 2, 5—ジアミノー p—キシレンなどが挙げられる。  Specific examples of aminated xylene include 2-amino-p-xylene, 2-amino-m: xylene, 3-amino-o-xylene, 4-amino_o-xylene, and 2,5-diamino-p. —Xylene and the like.
アミノ化トルエンおよびアミノ化キシレンは、 それぞれ、 1種または 2種以上 が非水溶媒中に含まれることがある。 また、 1種または 2種以上のアミノ化トル ェンと、 1種または 2種以上のアミノ化キシレンとが同時に非水溶媒中に含まれ ることがある。  One or more of aminated toluene and aminated xylene may each be contained in a non-aqueous solvent. In addition, one or more aminated toluene and one or more aminated xylene may be simultaneously contained in the nonaqueous solvent.
アミノ化ベンゼン類の非水溶媒における含有量は、 その合計量として 1 0 0 p p m未満であることが必須であり、 さらに好ましくは 5 0 p 以下である。 非 水溶媒中に 1 O O p p m以上含まれると、 本発明の非水電解質を含む二次電池に おいて、 過充電時に異常発熱が発生する頻度が高くなり、 安全性が低下する虞が ある。 The total content of the aminated benzenes in the non-aqueous solvent must be less than 100 ppm, more preferably 50 p or less. If the nonaqueous solvent contains 100 ppm or more, abnormal heat generation at the time of overcharging occurs more frequently in the secondary battery containing the nonaqueous electrolyte of the present invention, and the safety may be reduced. is there.
アミノ化ベンゼン類の非水溶媒における含有量を 1 0 0 p p m未満にするため には、 たとえば、 ハロゲン化ベンゼン類に高度精製を施せばよい。 高度精製の方 法として、 融点が 5 0 °C未満のハロゲン化ベンゼン類については、 蒸留精製が適 用できる。 その際、 蒸留段数 5段以上の蒸留能力を有する設備を使用することが 好ましい。 また、 融点 5 0 °C以上のハロゲン化ベンゼン類については、 晶析法に よる精製が適用できる。  In order to make the content of the aminated benzenes in the non-aqueous solvent less than 100 ppm, for example, the halogenated benzenes may be highly purified. As a method for advanced purification, distillation purification can be applied to halogenated benzenes having a melting point of less than 50 ° C. At that time, it is preferable to use equipment having a distillation capacity of 5 or more distillation stages. For halogenated benzenes having a melting point of 50 ° C or higher, purification by crystallization can be applied.
本発明の非水電解質における非水溶媒は、 ハロゲン化ベンゼン類を必須成分と して含有し、 好ましくはハロゲン化ベンゼン類と共に、 カーボネート類おょぴノ または γ—ブチロラタ トンを含有する。  The non-aqueous solvent in the non-aqueous electrolyte of the present invention contains halogenated benzenes as an essential component, and preferably contains carbonates or γ-butyrolataton together with the halogenated benzenes.
本発明の非水電解質においては、 非水溶媒と共に、 副成分として、 非水溶媒以 外の溶媒を用いることができる。 副成分としては、 二次電池用の非水電解質に用 いられるものをいずれも使用でき、 たとえば、 ビニレンカーボネート、 ビエルェ チレンカーボネート、 フエニルエチレンカーボネート、 γ—バレロラク トン、 プ 口ピオン酸メチル、 プロピオン酸ェチル、 酢酸ェチル、 ァセ トニトリル、 2—メ チノレフラン、 フラン、 チォフェン、 力テコーノレカーボネート、 エチレンサノレファ イ ト、 1 2—クラウン一 4、 テ トラエチレングリ コーノレジメチノレエーテノレ、 1, 3—プロパンスルトン、 無水スルホ安息香酸、 ジビニルスルホン、 3—ヒ ドロキ シー 1一プロペンスルホン酸一 γ—スルトン、 トリス (トリオクチル) ホスフエ ートなどが挙げられる。  In the non-aqueous electrolyte of the present invention, a solvent other than the non-aqueous solvent can be used as an auxiliary component together with the non-aqueous solvent. As the auxiliary component, any of those used in non-aqueous electrolytes for secondary batteries can be used. For example, vinylene carbonate, bierethylene carbonate, phenylethylene carbonate, γ-valerolactone, methyl methyl pionate, propion Ethyl acid, ethyl acetate, acetonitrile, 2-methinofuran, furan, thiophene, teconocarbonate, ethylenesanolefite, 12-crown-14, tetraethyleneglycone reginomethinolate Examples include 3-propane sultone, sulfobenzoic anhydride, divinyl sulfone, 3-hydroxyl-l-propenesulfonic acid-gamma-sultone, and tris (trioctyl) phosphate.
このような副成分の中でも、 ビニレンカーボネート、 1, 3—プロパンスルト ン、 無水スルホ安息香酸、 ジビニルスルホン、 3—ヒ ドロキシ一 1一プロペンス ルホン酸一 γ—スルトンなどは、 本発明の非水電解質を含む二次電池において、 負極表面に緻密な保護皮膜を生成するため、 負極と非水電解質との反応性をさら に低くすることが可能になり、 放置放電特性や高温保存時の安定性を改善するこ とができるので好ましい。 副成分は 1種を単独で使用できまたは 2種以上を併用 できる。  Among such subcomponents, vinylene carbonate, 1,3-propanesultone, sulfobenzoic anhydride, divinylsulfone, 3-hydroxy-11-propenesulfonate-γ-sultone, etc. are the non-aqueous electrolytes of the present invention. In a secondary battery containing, a dense protective film is formed on the negative electrode surface, making it possible to further reduce the reactivity between the negative electrode and the nonaqueous electrolyte, and to improve the discharge characteristics during storage and the stability during high-temperature storage. It is preferable because it can be improved. As the accessory component, one type can be used alone, or two or more types can be used in combination.
副成分の使用量は特に制限されないけれども、 好ましくは非水溶媒全重量に対 して 1 0重量%以下、 さらに好ましくは 0· 0 1〜5重量%、 特に好ましくは 0. 1〜 3重量%の範囲内から選択することが望ましい。 副成分を 1 0重量%よりも 多く使用すると、 負極表面の保護皮膜のイオン透過性が低下して低温放電特性が 大幅に損なわれる虞がある。 Although the amount of the auxiliary component is not particularly limited, it is preferably based on the total weight of the nonaqueous solvent. It is desirable to select from the range of 10% by weight or less, more preferably 0.1% to 5% by weight, particularly preferably 0.1% to 3% by weight. If more than 10% by weight of the subcomponent is used, the ion permeability of the protective film on the negative electrode surface may be reduced, and the low-temperature discharge characteristics may be significantly impaired.
非水溶媒に溶解される電解質としては、 この分野で常用されるものを使用でき、 たとえば、 過塩素酸リチウム (L i C 104) 、 六フッ化リン酸リチウム (L i P F6) 、 四フッ化ホウ酸リチウム (L i BF4) 、 六フッ化砒素リチウム (L i A s F 6) 、 トリフルォロメタスルホン酸リチウム (L i CF3S03) 、 ビス トリフルォロメチルスルホエルイミ ドリチウム (L i N (C F 3 S 02) 2) 、 ビ スペンタフルォロェチルスルホニルイミ ドリチウム (L i N (C2F5 S〇2) 2) などのリチウム塩が挙げられる。 電解質は 1種を単独で使用できまたは 2種 以上を併用できる。 特に L i B F4と L i P F6とを含有する混合塩を用いると、 本発明の非水電解質を含む二次電池において、 高温でのサイクル寿命を一層向上 させることができる。 As the electrolyte to be dissolved in a non-aqueous solvent, it can be one commonly used in this field, for example, lithium perchlorate (L i C 10 4), lithium hexafluorophosphate (L i PF 6), four lithium fluoride borate (L i BF 4), lithium hexafluoroarsenate (L i A s F 6) , triflumizole Ruo b meth lithium sulfonate (L i CF 3 S0 3) , bis triflate Ruo b methylsulfonyl El Imi Dorichiumu (L i N (CF 3 S 0 2) 2), bi scan penta full O Roe chill sulfonyl Imi Dorichiumu (L i N (C 2 F 5 S_〇 2) 2) include lithium salts such as. One type of electrolyte can be used alone, or two or more types can be used in combination. In particular, when a mixed salt containing Li BF 4 and Li PF 6 is used, the cycle life at a high temperature of the secondary battery including the nonaqueous electrolyte of the present invention can be further improved.
電解質の非水溶媒に対する溶解量は特に制限されず広い範囲から適宜選択でき るけれども、 好ましくは 0. 5〜2. 5モル ZL、 さらに好ましくは 1〜2. 5 モル// Lの範囲とすることが望ましい。  The amount of the electrolyte dissolved in the non-aqueous solvent is not particularly limited and can be appropriately selected from a wide range, but is preferably in the range of 0.5 to 2.5 mol ZL, and more preferably in the range of 1 to 2.5 mol // L. It is desirable.
本発明の非水電解質は、 たとえば、 ハロゲン化ベンゼン類に必要に応じてカー ポネート類おょぴノまたは γ—プチ口ラタ トンを加えて非水溶媒を調製し、 これ に電解質を溶解させることによって製造できる。 非水電解質は、 たとえば、 液状 (非水電解液) 、 ゲル状などの所望の形態にすることができる。  The non-aqueous electrolyte of the present invention is prepared, for example, by adding a carbonate or γ-petit mouth ratato to halogenated benzenes as necessary to prepare a non-aqueous solvent, and dissolving the electrolyte therein. Can be manufactured by The non-aqueous electrolyte can be in a desired form such as a liquid (non-aqueous electrolyte) or a gel.
非水電解液の使用量は特に制限されないけれども、 好ましくは電池単位容量 1 O OmAh当たり 0. 2〜0. 6 g、 さらに好ましくは 0. 25〜0. 5 5 gで ある。  Although the amount of the non-aqueous electrolyte used is not particularly limited, it is preferably 0.2 to 0.6 g, more preferably 0.25 to 0.55 g, per 1 O OmAh of the battery unit capacity.
〔非水電解質二次電池〕  (Non-aqueous electrolyte secondary battery)
本発明の非水電解質二次電池は、 正極と、 負極と、 本発明の非水電解質とを含 むことを特徴とする。  A non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present invention.
すなわち、 本発明の非水電解質二次電池は、 非水電解質として本発明の非水電 解質を使用する以外は、 従来から知られる非水電解質電池と同様の構造を採るこ とができる。 That is, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte of the present invention as a non-aqueous electrolyte. Except for the use of disintegration, the same structure as a conventionally known nonaqueous electrolyte battery can be adopted.
本発明の非水電解質二次電池によれば、 これを内蔵する携帯機器の充電器の故 障などにより過充電状態となって正極の電位が上昇した際に、 セパレータによる シャットダウンを確実に生じさせることができるため、 過充電状態を安全に終了 させることができる。 すなわち、 過充電状態において、 ハロゲン化ベンゼン類の 酸化反応による発熱反応を生じさせることによって、 電池温度をセパレータのシ ャットダウン温度まで速やかに上昇させることができるため、 過充電電流を早期 に遮断することができる。 そのためにアミノ化ベンゼン類の含有量を 1 0 0 p p m未満にして円滑な酸化反応を行い、 それによつて熱暴走を回避することができ る。  ADVANTAGE OF THE INVENTION According to the non-aqueous electrolyte secondary battery of this invention, when overcharged by the failure of the charger of the portable device in which this is built-in, etc., and the electric potential of a positive electrode rises, the shutdown by a separator is reliably produced. Therefore, the overcharge state can be safely terminated. In other words, in an overcharged state, an exothermic reaction is caused by the oxidation reaction of halogenated benzenes, so that the battery temperature can be quickly raised to the shutdown temperature of the separator. Can be. For this reason, the content of aminated benzenes is reduced to less than 100 ppm to perform a smooth oxidation reaction, thereby avoiding thermal runaway.
非水溶媒中にアミノ化ベンゼン類が 1 0 0 p p m以上含まれると、 ハロゲン化 ベンゼン類よりも早く酸化反応を起こし始めるので、 ハロゲン化ベンゼン化合物 単独よりも全体の発熱反応が緩慢となる。 このような状況では、 電池温度がセパ レータのシャツ トダウン温度まで速やかに上昇せず、 セパレータシャツトダウン が不完全な状態となり、 過充電電流を完全に遮断することができず、 さらに、 過 充電電流が流れつづけると、 熱暴走に至る危険がある。  If the nonaqueous solvent contains more than 100 ppm of aminated benzene, the oxidation reaction starts to occur earlier than the halogenated benzene, so that the entire exothermic reaction is slower than the halogenated benzene compound alone. In such a situation, the battery temperature does not quickly rise to the separator shutdown temperature, the separator shutdown is incomplete, and the overcharge current cannot be completely cut off. If the air continues to flow, there is a risk of thermal runaway.
以下、 図面を参照しつつ、 本発明の非水電解質二次電池について説明する。 図 1は、 本発明の実施の第 1形態である非水電解質二次電池 1の構成を概略的に示 す斜視図である。 図 2は、 図 1に示す切断面線 I I一 I Iから見た部分断面図で ある。  Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view schematically showing a configuration of a nonaqueous electrolyte secondary battery 1 according to a first embodiment of the present invention. FIG. 2 is a partial cross-sectional view as viewed from the section line II-II shown in FIG.
非水電解質二次電池 1は、 矩形のカップ状に形成される容器本体 2と、 容器本 体 2内に収納される電極群 3と、 容器本体 2を密閉する蓋板 4と、 容器本体 2と 蓋板 4との間に挿入され、 電極群 3内の正極 1 0に接続される正極タブ 5と、 容 器本体 2と蓋板 4との間に挿入され、 電極群 3内の負極 1 1に接続される負極タ プ 6とを含んで構成される。  The nonaqueous electrolyte secondary battery 1 includes a container body 2 formed in a rectangular cup shape, an electrode group 3 housed in the container body 2, a lid plate 4 for sealing the container body 2, and a container body 2 A positive electrode tab 5 inserted between the electrode plate 3 and the positive electrode 10 in the electrode group 3, and a negative electrode 1 inserted between the container body 2 and the lid plate 4 and connected to the positive electrode 10 in the electrode group 3. And a negative electrode tap 6 connected to 1.
容器本体 2は、 外部保護層 7と、 内部保護層 8と、 外部保護層 7と内部保護層 8との間に配置される金属層 9とを含むラミネートフイルムにより形成される。 外部保護層 7および内部保護層 8は、 熱可塑性樹脂、 好ましくは耐熱性熱可塑性 樹脂を主成分とする樹脂フィルムである。 熱可塑性樹脂の具体例としては、 たと えば、 ポリエチレン、 ポリプロピレン、 環状ポリオレフインなどのポリオレフィ ン、 ポリアミ ド、 ポリエステル、 結晶性ポリエステル、 高密度ポリエチレン、 低 密度ポリエチレン、 線状低密度ポリエチレン、 エチレン一酢酸ビニル共重合体、 ポリアクリロエトリル、 ポリ塩化ビニリデンなどが挙げられる。 樹脂フィルムはThe container body 2 is formed of a laminate film including an outer protective layer 7, an inner protective layer 8, and a metal layer 9 disposed between the outer protective layer 7 and the inner protective layer 8. The outer protective layer 7 and the inner protective layer 8 are resin films mainly composed of a thermoplastic resin, preferably a heat-resistant thermoplastic resin. Specific examples of the thermoplastic resin include, for example, polyethylene, polypropylene, polyolefin such as cyclic polyolefin, polyamide, polyester, crystalline polyester, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ethylene-vinyl acetate. Copolymers, polyacryloetrile, polyvinylidene chloride, and the like. Resin film
2種以上の異なる熱可塑性樹脂を含む樹脂フィルムの積層体であってもよい。 金 属層 9を構成する金属としては、 たとえば、 アルミニウム、 ステンレス鋼、 鉄、 銅、 ニッケル、 チタン、 モリブデン、 金などの金属、 酸化珪素、 酸化アルミユウ ムなどの金属酸化物などが挙げられる。 また、 ラミネートフィルムの厚さは広い 範囲から適宜選択できるけれども、 好ましくは 5 0〜 3 0 0 / mである。 なお、 容器本体 2の縁部 2 aは幅広になっており、 この縁部 2 aによって、 容器本体 2 と蓋板 4とが接着される。 It may be a laminate of resin films containing two or more different thermoplastic resins. Examples of the metal constituting the metal layer 9 include metals such as aluminum, stainless steel, iron, copper, nickel, titanium, molybdenum, and gold, and metal oxides such as silicon oxide and aluminum oxide. Although the thickness of the laminate film can be appropriately selected from a wide range, it is preferably 50 to 300 / m. The edge 2a of the container body 2 is wide, and the container body 2 and the cover plate 4 are bonded by the edge 2a.
電極群 3は、 正極 1 0、 負極 1 1およぴセパレータ 1 2を組合せて形成される。 具体的には、 電極群 3は、 正極 1 0と、 負極 1 1 と、 正極 1 0と負極 1 1の間に 配置されるセパレータ 1 2とを含む積層物が偏平形状に捲回された構造に形成さ れる。  Electrode group 3 is formed by combining positive electrode 10, negative electrode 11 and separator 12. Specifically, the electrode group 3 has a structure in which a laminate including the positive electrode 10, the negative electrode 11, and the separator 12 disposed between the positive electrode 10 and the negative electrode 11 is wound into a flat shape. Formed in
正極 1 0は、 集電体と、 集電体の片面または両面に担持され、 活物質を含む正 極層とを含む。  The positive electrode 10 includes a current collector, and a positive electrode layer supported on one or both surfaces of the current collector and containing an active material.
集電体としては、 この分野で常用されるものを使用でき、 たとえば、 導電性基 板などが挙げられる。 導電性基板を構成する金属としては、 たとえば、 アルミ二 ゥム、 ステンレス鋼、 ニッケルなどが挙げられる。 導電性基板は、 多孔質構造で もよくまたは無孔のものでもよい。  As the current collector, those commonly used in this field can be used, and examples thereof include a conductive substrate. Examples of the metal forming the conductive substrate include aluminum, stainless steel, nickel, and the like. The conductive substrate may have a porous structure or a non-porous structure.
正極層は、 正極活物質、 導電剤および結着剤を含む。  The positive electrode layer contains a positive electrode active material, a conductive agent, and a binder.
正極活物質としてはこの分野で常用されるものを使用でき、 たとえば、 二酸化 マンガン、 リチウムマンガン複合酸化物、 リチウム含有ニッケル酸化物、 リチウ ム含有コバルト酸化物、 リチウム含有ニッケルコバルト酸化物、 リチウム含有鉄 酸化物、 リチウムを含むバナジウム酸化物などの金属酸化物、 二硫化チタン、 二 硫化モリブデンなどのカルコゲン化合物などが挙げられる。 中でも、 リチウム含 有コバルト酸化物 (たとえば L i C o O 2 ) 、 リチウム含有ニッケルコバルト酸 化物 (たとえば L i N i 8 C o 0. 2 O 2 ) 、 リチウムマ,ンガン複合酸化物 (た とえば L i M n 24、 L i M n 0 2 ) を用いると、 高電圧が得られるために好ま しい。 正極活物質は 1種を単独で使用できまたは 2種以上を併用できる。 As the positive electrode active material, those commonly used in this field can be used, such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel-cobalt oxide, and lithium-containing iron. Oxides, metal oxides such as vanadium oxides containing lithium, titanium disulfide, Chalcogen compounds such as molybdenum sulfide; Among them, lithium-containing organic cobalt oxide (e.g. L i C o O 2), lithium-containing nickel cobalt oxides (e.g. L i N i 8 C o 0 . 2 O 2), Richiumuma, manganese composite oxide (for example if It is preferable to use L i M n 24 and L i M n 0 2 ) because a high voltage can be obtained. One kind of the positive electrode active material can be used alone, or two or more kinds can be used in combination.
導電剤としてはこの分野で常用されるものを使用でき、 たとえば、 アセチレン ブラック、 カーボンブラック、 黒鉛などが挙げられる。 導電剤は 1種を単独で使 用できまたは必要に応じて 2種以上を併用できる。  As the conductive agent, those commonly used in this field can be used, and examples thereof include acetylene black, carbon black, and graphite. One kind of the conductive agent can be used alone, or two or more kinds can be used in combination as needed.
結着剤としてもこの分野で常用されるものを使用でき、 たとえば、 ポリテトラ フルォロエチレン、 ポリフッ化ビニリデン、 ポリエーテルサルフォン、 エチレン 一プロピレン一ジェン共重合体、 スチレン一ブタジエンゴムなどが挙げられる。 結着剤は 1種を単独で使用できまたは必要に応じて 2種以上を併用できる。  As the binder, those commonly used in this field can be used, and examples thereof include polytetrafluoroethylene, polyvinylidene fluoride, polyethersulfone, ethylene-propylene-one-gen copolymer, and styrene-butadiene rubber. One kind of binder can be used alone, or two or more kinds can be used in combination as needed.
正極活物質、 導電剤および結着剤の配合割合は、 正極活物質 8 0 〜 9 5重量%、 導電剤 3〜 2 0重量%、 結着剤 2 〜 7重量%の範囲にすることが好ましい。  The mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder. .
正極 1 0は、 たとえば、 正極活物質、 導電剤および結着剤を適当な溶媒に懸濁 し、 この懸濁物を集電体に塗布、 乾燥して薄板状にすることにより作製される。 負極 1 1は、 集電体と、 集電体の片面もしくは両面に担持される負極層とを含 む。  The positive electrode 10 is produced, for example, by suspending a positive electrode active material, a conductive agent, and a binder in a suitable solvent, applying the suspension to a current collector, and drying to form a thin plate. The negative electrode 11 includes a current collector and a negative electrode layer supported on one or both surfaces of the current collector.
集電体としては、 この分野で常用されるものを使用でき、 たとえば、 導電性基 板などが挙げられる。 導電性基板を構成する金属としては、 たとえば、 銅、 ステ ンレス鋼、 ニッケルなどが挙げられる。 導電性基板は、 多孔質構造でもよくまた は無孔のものでもよい。  As the current collector, those commonly used in this field can be used, and examples thereof include a conductive substrate. Examples of the metal constituting the conductive substrate include copper, stainless steel, nickel, and the like. The conductive substrate may have a porous structure or a non-porous structure.
負極層は、 負極活物質および結着剤を含む。  The negative electrode layer contains a negative electrode active material and a binder.
負極活物質としては、 リチウムイオンを吸蔵■放出する材料を使用でき、 たと えば、 黒鉛、 コータス、 炭素繊維、 球状炭素、 熱分解気相炭素質物、 樹脂焼成体 などの黒鉛質材料もしくは炭素質材料、 熱硬化性樹脂、 等方性ピッチ、 メソフ ーズピッチ系炭素、 メソフェーズピッチ系炭素繊維、 メソフェーズ小球体など (特に、 メソフェーズピッチ系炭素繊維が容量ゃ充放電サイクル特性が高くなり 好ましい) を 5 0 0〜 3 0 0 0 °Cで熱処理することにより得られる黒鉛質材料も しくは炭素質材料、 二硫化チタン、 二硫化モリブデン、 セレン化ニオブなどの力 ルコゲン化合物、 アルミニウム、 アルミニウム合金、 マグネシウム合金、 リチウ ム、 リチウム合金などの軽金属もしくはその合金などが挙げられる。 中でも、As the negative electrode active material, a material that absorbs and releases lithium ions can be used, for example, a graphite material or a carbonaceous material such as graphite, coatas, carbon fiber, spherical carbon, pyrolytic gas-phase carbonaceous material, and resin fired body. , Thermosetting resin, isotropic pitch, mesophase pitch-based carbon, mesophase pitch-based carbon fiber, mesophase spheroids, etc. (Especially, mesophase pitch-based carbon fiber has higher capacity / charge-discharge cycle characteristics. (Preferably) by heating at 500 to 300 ° C., or a graphite material, a carbonaceous material, or a lucogen compound such as titanium disulfide, molybdenum disulfide, or niobium selenide, aluminum, or aluminum. Light metals such as alloys, magnesium alloys, lithium and lithium alloys or alloys thereof. Among them,
( 0 0 2 ) 面の面間隔 d 0 0 2が好ましくは 0 . 3 4 n m以下、 さらに好ましく は 0 . 3 3 7 11 m以下である黒鉛結晶を含む黒鉛質材料が望ましい。 このような 黒鉛質材料を負極活物質として含む負極を備える非水電解質二次電池は、 電池容 量おょぴ大電流放電特性が大幅に向上する。 負極活物質は 1種を単独で使用でき または 2種以上を併用できる。 It is desirable to use a graphitic material containing graphite crystals having a (002) plane spacing d002 of preferably 0.34 nm or less, more preferably 0.33711 m or less. A non-aqueous electrolyte secondary battery provided with a negative electrode containing such a graphite material as a negative electrode active material has significantly improved battery capacity and large current discharge characteristics. As the negative electrode active material, one type can be used alone, or two or more types can be used in combination.
結着剤としてはこの分野で常用されるものを使用でき、 たとえば、 ポリテトラ フノレオ口エチレン、 ポリフッ化ビニリデン、 エチレン一プロピレン一ジェン共重 合体、 スチレン一ブタジエンゴム、 カルボキシメチノレセノレロースなどが挙げられ る。 結着剤は 1種を単独で使用できまたは 2種以上を併用できる。  As the binder, those commonly used in this field can be used, and examples thereof include polytetraphenylene ethylene, polyvinylidene fluoride, ethylene-propylene-one-gen copolymer, styrene-butadiene rubber, and carboxymethinoresenolerose. You. One type of binder can be used alone, or two or more types can be used in combination.
負極活物質および結着剤の配合割合は、 炭素質物 8 0〜9 8重量%、 結着剤 2 〜 2 0重量%の範囲であることが好ましい。  The compounding ratio of the negative electrode active material and the binder is preferably in the range of 80 to 98% by weight of the carbonaceous material and 2 to 20% by weight of the binder.
負極 1 1は、 たとえば、 負極活物質と結着剤とを適当な溶媒の存在下で混合し、 得られる懸濁物を集電体に塗布し、 乾燥した後、 所望の圧力で 1回プレスまたは 2〜 5回多段階プレスすることにより作製される。  The negative electrode 11 is prepared, for example, by mixing a negative electrode active material and a binder in the presence of an appropriate solvent, applying the obtained suspension to a current collector, drying the resultant, and then pressing once at a desired pressure. Or it is produced by multi-stage pressing 2 to 5 times.
セパレータ 1 2としてはこの分野で常用されるものを使用でき、 たとえば、 微 多孔性膜、 織布、 不織布、 これらのうち同一材または異種材の積層物などが挙げ られる。 中でも、 微多孔性膜は、 過充電などによる発熱により電極群 3の温度が 異常に上昇すると、 構成樹脂が塑性変形して微細な孔が塞がる、 いわゆるシャツ トダウン現象を起こし、 リチウムイオンの流れを遮断し、 それ以上の発熱を防止 し、 過充電状態を安全に終了させることができるので好ましい。 セパレータ 1 2 を形成する材料としては、 ポリエチレン、 ポリプロピレン、 エチレン一プロピレ ン共重合ポリマー、 エチレンープテン共重合ポリマーなどが挙げられる。 これら の材料は 1種を単独で使用できまたは 2種以上を併用できる。  As the separator 12, those commonly used in this field can be used, and examples thereof include a microporous membrane, a woven fabric, and a nonwoven fabric, and a laminate of the same material or different materials among them. Above all, when the temperature of the electrode group 3 rises abnormally due to heat generation due to overcharging or the like, the microporous membrane plastically deforms the constituent resin and closes the fine pores. This is preferable because it shuts off, prevents further heat generation, and can safely end the overcharged state. Examples of the material forming the separator 12 include polyethylene, polypropylene, an ethylene-propylene copolymer, and an ethylenebutene copolymer. These materials can be used alone or in combination of two or more.
電極群 3は、 たとえば、 (1 ) 正極 1 0および負極 1 1をその間にセパレータ 1 2を介在させて偏平形状または渦巻き状に捲回するか、 (2 ) 正極 1 0および 負極 1 1をその間にセパレータ 1 2を介在させて渦巻き状に捲回した後、 径方向 に圧縮するか、 (3 ) 正極 1 0および負極 1 1をその間にセパレータ 1 2を介在 させて 1回以上折り曲げる力、 あるいは (4 ) 正極 1 0と負極 1 1とをその間に セパレータ 1 2を介在させながら積層する方法により作製される。 Electrode group 3 includes, for example, (1) a positive electrode 10 and a negative electrode 11 (1) Positive electrode (10) and negative electrode (11) are spirally wound with separator (12) between them, and then compressed radially Or (3) the force of bending the positive electrode 10 and the negative electrode 11 one or more times with the separator 12 interposed therebetween, or (4) the force between the positive electrode 10 and the negative electrode 11 with the separator 12 interposed therebetween. It is produced by a lamination method.
電極群 3には、 プレスを施さなくても良いが、 正極 1 0、 負極 1 1およびセパ レータ 1 2の一体化強度を高めるためにプレスを施しても良い。 また、 プレス時 に加熱を施すことも可能である。  The electrode group 3 need not be pressed, but may be pressed to increase the integrated strength of the positive electrode 10, the negative electrode 11, and the separator 12. It is also possible to perform heating during pressing.
電極群 3は、 正極 1 0、 負極 1 1およびセパレータ 1 2の一体化強度を高める ために、 接着性高分子化合物を含有することができる。 接着性高分子化合物は、 非水電解質を保持した状態で高い接着性を維持できるものであることが望ましく、 リチウムイオン伝導性が高いものがより好ましい。 具体的には、 ポリアクリロニ トリノレ、 ポリアタリレート、 ポリフッ化ビユリデン、 ポリ塩化ビュル、 またはポ リエチレンォキサイドなどが挙げられる。  Electrode group 3 can contain an adhesive polymer compound in order to increase the integration strength of positive electrode 10, negative electrode 11 and separator 12. The adhesive polymer compound is preferably one that can maintain high adhesiveness while holding the non-aqueous electrolyte, and more preferably has high lithium ion conductivity. Specific examples include polyacrylonitrile, polyatalylate, polyvinylidene fluoride, polyvinyl chloride, and polyethylene oxide.
電極群 3は、 本発明の非水電解質が含浸され、 保持される。  Electrode group 3 is impregnated with the non-aqueous electrolyte of the present invention and held.
蓋板 4は、 外部保護層 7、 内部保護層 8および、 外部保護層 7と内部保護層 8 との間に配置される金属層 9とを含むラミネートフイルムにより形成される。 ラ ミネ一トフイルムとしては、 容器本体 2のラミネ一トフイルムと同様のものを使 甩できる。  The cover plate 4 is formed of a laminate film including an outer protective layer 7, an inner protective layer 8, and a metal layer 9 disposed between the outer protective layer 7 and the inner protective layer 8. The same laminating film as the laminating film of the container body 2 can be used as the laminating film.
正極タブ 5は、 一端が正極 1 0に接続され、 容器本体 2と蓋板 4との間を通過 して、 容器本体 2の外部に他端 5 aが引き出され、 正極端子として機能する。 正 極タブ 5を構成する材料としてはこの分野で常用されるものを使用でき、 たとえ ば、 アルミエゥム、 ニッケル、 チタンなどが挙げられる。  One end of the positive electrode tab 5 is connected to the positive electrode 10, passes between the container body 2 and the cover plate 4, and the other end 5 a is drawn out of the container body 2, and functions as a positive electrode terminal. Materials commonly used in this field can be used as the material constituting the positive electrode tab 5, and examples thereof include aluminum, nickel, and titanium.
負極タブ 6は、 一端が負極 1 1に接続され、 容器本体 2と蓋板 4との間を通過 して、 容器本体 2の外部に他端 6 aが引き出され、 負極端子として機能する。 負 極タブ 6を構成する材料としてはこの分野で常用されるものを使用でき、 たとえ ば、 銅、 ニッケル、 銅箔にめっきなどによりニッケル層を形成した積層体などが 挙げられる。 非水電解質二次電池 1は、 従来の電池製造法と同様にして製造できる。 たとえ ば、 電極群 3に正極タブ 5および負極タブ 6を接続し、 正極タブ 5および負極タ ブ 6のそれぞれ一部が容器本体 2の外部に出るように電極群 3を容器本体 2内に 載置する。 さらに蓋板 4の内部保護層 8と容器本体 2の縁部 2 aの内部保護層 8 とが接するように、 蓋板 4と容器本体 2に重ね合せ、 その部分をヒートシールな どにより接着し、 固定化することによって、 容器本体 2内に電極群 3が密閉され、 非水電解質電池 1が得られる。 One end of the negative electrode tab 6 is connected to the negative electrode 11, passes between the container body 2 and the cover plate 4, and the other end 6 a is drawn out of the container body 2, and functions as a negative electrode terminal. As the material constituting the negative electrode tab 6, those commonly used in this field can be used, and examples thereof include copper, nickel, and a laminate in which a nickel layer is formed on a copper foil by plating or the like. The nonaqueous electrolyte secondary battery 1 can be manufactured in the same manner as the conventional battery manufacturing method. For example, the positive electrode tab 5 and the negative electrode tab 6 are connected to the electrode group 3, and the electrode group 3 is mounted in the container body 2 so that a part of each of the positive electrode tab 5 and the negative electrode tab 6 is outside the container body 2. Place. Further, the cover plate 4 and the container body 2 are overlapped so that the inner protective layer 8 of the cover plate 4 and the inner protective layer 8 of the edge 2a of the container body 2 are in contact with each other, and the portion is bonded by heat sealing or the like. By immobilization, the electrode group 3 is hermetically sealed in the container body 2, and the nonaqueous electrolyte battery 1 is obtained.
なお、 本発明の非電解質二次電池は、 非電解質電池 1のような形態に限定され るものではなく、 たとえば、 円筒形、 角形、 コイン型などの、 種々の形態の電池 とすることができる。  It should be noted that the non-electrolyte secondary battery of the present invention is not limited to the form of the non-electrolyte battery 1, but may be various forms of batteries such as a cylindrical form, a square form, and a coin form. .
本発明の非水電解質二次電池は、 従来から非水電解質二次電池が適用されるの と同様の用途に用いることができる。 その一例としては、 たとえば、 各種の電子 機器類、 その中でも特に携帯用電子機器類、 たとえば、 携帯電話、 モパイルなど の移動体通信機、 ノートプック型パソコン、 パームトップ型パソコンなどの携帯 可能なパソコン、 カメラ、 デジタルカメラ、 一体型ビデオカメラ、 ポータブル C D (MD ) プレーヤーなどの電源として好適に使用できる。  The non-aqueous electrolyte secondary battery of the present invention can be used for the same applications as those to which a non-aqueous electrolyte secondary battery is conventionally applied. Examples include various electronic devices, especially mobile electronic devices, such as mobile communication devices such as mobile phones and mopiles, portable personal computers such as notebook personal computers and palmtop personal computers, and the like. It can be suitably used as a power source for cameras, digital cameras, integrated video cameras, portable CD (MD) players, etc.
【実施例】  【Example】
以下に実施例および比較例を挙げ、 本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
(実施例 1 )  (Example 1)
<正極の作製 >  <Preparation of positive electrode>
リチウムコバルト酸化物 ( L i x C o O 2 ;但し、 Xは 0く X 1である) 粉 末 9 0重量部に、 アセチレンブラック 5重量部と、 ポリフッ化ビニリデン 5重量 部のジメチルホルムアミ ド溶液とを加えて混合し、 スラリーを調製した。 このス ラリーを厚さ 1 5 μ πιのアルミニウム箔 (正極集電体) の両面に塗布し、 乾燥し、 プレスすることにより、 厚さ 6 0 /i mの正極層が集電体の両面に担持された構造 の正極を作製した。 Lithium cobalt oxide (L i x C o O 2 ; however, X is 0 rather X 1) to 9 0 parts by weight powder powder, acetylene black 5 parts by weight, dimethylformamidine de polyvinylidene fluoride 5 parts by weight The solution was added and mixed to prepare a slurry. This slurry is applied to both sides of a 15 μππ thick aluminum foil (positive electrode current collector), dried, and pressed to carry a 60 / im thick positive electrode layer on both sides of the current collector. A positive electrode having the structure described above was produced.
<負極の作製 >  <Preparation of negative electrode>
炭素質材料として 3 0 0 0 °Cで熱処理したメソフェーズピッチ系炭素繊維 (粉 末 X線回折により求められる (00 2) 面の面間隔 (d 00 2) が 0. 3 36 η m) の粉末を 9 5重量部と、 ポリフッ化ビニリデン 5重量部のジメチルホルムァ ミ ド溶液とを混合し、 スラリーを調製した。 このスラリーを厚さ 1 2 μπιの銅箔 (負極集電体) の両面に塗布し、 乾燥し、 プレスすることにより、 厚さ の負極層が集電体の両面に担持された構造の負極を作製した。 Mesophase pitch-based carbon fiber heat-treated at 300 ° C as a carbonaceous material (powder 95 parts by weight of a powder having a (002) plane spacing (d 00 2) of 0.336 η m) determined by X-ray diffraction and 5 parts by weight of polyvinylidene fluoride in dimethylformamide solution Was mixed to prepare a slurry. This slurry was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 12 μπι, dried, and pressed to form a negative electrode having a structure in which a negative electrode layer having a thickness of about 12 μπι was supported on both surfaces of the current collector. Produced.
なお、 炭素質物の (002) 面の面間隔 d 00 2は、 粉末 X線回折スぺク トル から半値幅中点法により求めた。 この際、 ローレンツ散乱などの散乱補正は、 行 わなかった。  The plane distance d002 of the (002) plane of the carbonaceous material was determined from the powder X-ray diffraction spectrum by the half-width width midpoint method. At this time, scattering correction such as Lorentz scattering was not performed.
<セノ レータ >  <Senerator>
厚さ 2 5 ιη、 多孔度 45%の微多孔性ポリエチレン膜を使用した。  A microporous polyethylene membrane having a thickness of 25 ιη and a porosity of 45% was used.
ぐ電極群の作製〉  Preparation of electrode group
正極集電体に帯状アルミニウム箔 (厚さ 1 00 zm) からなる正極リードを超 音波溶接し、 負極集電体に帯状ニッケル箔 (厚さ 100 /im) からなる負極リー ドを超音波溶接した後、 正極および負極をその間にセパレータを介して渦卷き状 に捲回し、 電極群を作製した。 この電極群を加熱下にプレス機で加圧することに より、 偏平状に成形した。  A positive electrode lead made of strip-shaped aluminum foil (thickness: 100 zm) was ultrasonically welded to the positive electrode current collector, and a negative electrode lead made of strip-shaped nickel foil (thickness: 100 / im) was ultrasonically welded to the negative electrode current collector. Thereafter, the positive electrode and the negative electrode were spirally wound therebetween with a separator interposed therebetween to prepare an electrode group. The electrode group was pressed into a flat shape by heating with a press machine.
<非水電解液の調製 >  <Preparation of non-aqueous electrolyte>
エチレンカーボネート (EC) 、 γ—ブチロラタトン (GB L) 、 ο—クロ口 トルエン (ο— CT ;対金属リチウムでの酸化電位 4. 8 V) およびトリス (ト リォクチル) ホスフエ一トを重量比率 (E C : GB L : o -CT : TOP) が 3 5 : 5 9. 5 : 5 : 0. 5になるように混合して非水溶媒を調製した。 得られた 非水溶媒に四フッ化ホウ酸リチウム (L i BF4) をその濃度が 1. 5モル ZL になるように溶解させて、 本発明の非水電解液を調製した。 なお、 ガスクロマト グラフ分析の結果から、 非水溶媒は、 アミノ化ベンゼン類として 2—ァミノ トル ェンを含有し、 その含有量は 30 p pm以下であった。 Ethylene carbonate (EC), γ-butyrolataton (GBL), ο-chlorotoluene (ο-CT; oxidation potential with respect to lithium metal 4.8 V) and tris (trioctyl) phosphate are weight ratio (EC : GBL: o-CT: TOP) was adjusted to 35: 59.5: 5: 0.5 to prepare a non-aqueous solvent. Lithium tetrafluoroborate (L i BF 4 ) was dissolved in the obtained non-aqueous solvent so as to have a concentration of 1.5 mol ZL to prepare a non-aqueous electrolyte solution of the present invention. From the results of gas chromatography analysis, the non-aqueous solvent contained 2-aminotoluene as an aminated benzene, and the content was 30 ppm or less.
<非水電解質二次電池の製造 >  <Manufacture of non-aqueous electrolyte secondary batteries>
アルミエゥム箔の両面をポリエチレンで覆った厚さ 1 00 /Z mのラミネ一トフ イルムを、 プレス機により矩形のカップ状に成形し、 得られた容器内に電極群を 収納した。 A 100 / Zm-thick laminating film in which both sides of aluminum foil are covered with polyethylene is formed into a rectangular cup shape by a press machine, and the electrode group is placed in the obtained container. Stowed.
次いで、 容器内の電極群に 80°Cで真空乾燥を 1 2時間施すことにより、 電極 群およびラミネートフィルムに含まれる水分を除去した。  Next, moisture contained in the electrode group and the laminate film was removed by subjecting the electrode group in the container to vacuum drying at 80 ° C. for 12 hours.
容器内の電極群に非水電解液を電池容量 1 Ah当たりの量が 4. 8 gとなるよ うに注入した後、 容器の上面に前記と同様のラミネートフィルムを載せ、 ヒート シールにより封止し、 図 1、 2に示す構造を有し、 厚さ 3. 6 mm, 幅 3 5mm、 高さ 6 2mm、 公称容量 0. 6 5 A hの非水電解質二次電池を組み立てた。  After injecting the non-aqueous electrolyte into the electrode group in the container so that the amount per 1 Ah of battery capacity becomes 4.8 g, the same laminated film as above is placed on the upper surface of the container and sealed by heat sealing. A non-aqueous electrolyte secondary battery having the structure shown in FIGS. 1 and 2 and having a thickness of 3.6 mm, a width of 35 mm, a height of 62 mm, and a nominal capacity of 0.65 Ah was assembled.
この非水電解質二次電池に対し、 初充放電工程として、 室温下 0. 2 Cで 4. 2 Vまで定電流 ·定電圧充電を 1 5時間行い、 その後、 室温下 0. 2 Cで 3. 0 Vまで放電し、 非水電解質二次電池を製造した。  The non-aqueous electrolyte secondary battery was subjected to constant current and constant voltage charging to 4.2 V at 0.2 C at room temperature for 15 hours as an initial charge / discharge process, and then to 3 V at room temperature at 0.2 C. 0 V to produce a nonaqueous electrolyte secondary battery.
ここで、 1 Cとは公称容量 (Ah) を 1時間で放電するために必要な電流値で ある。 よって、 0. 2 Cは、 公称容量 (Ah) を 5時間で放電するために必要な 電流値である。  Here, 1 C is the current required to discharge the nominal capacity (Ah) in one hour. Therefore, 0.2 C is the current value required to discharge the nominal capacity (Ah) in 5 hours.
(実施例 2〜 2 2 )  (Examples 2 to 22)
非水溶媒の組成およびアミノ化ベンゼン類の含有量を、 表 1に示すように変更 する以外は、 実施例 1と同様にして非水電解質二次電池を製造した。  A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1, except that the composition of the non-aqueous solvent and the content of the aminated benzenes were changed as shown in Table 1.
なお、 表 1中、 o _ F Tは o—フルォロ トルエン (対金属リチウムでの酸化電 位 4. 9 V) 、 p— C Tは p—クロ口 トルエン (対金属リチウムでの酸化電位 4. 8 V) 、 2 F P Xは 2—フルオロー] p—キシレン (対金属リチウムでの酸化電位 4. 7 V) である。  In Table 1, o_FT is o-fluorotoluene (oxidation potential with respect to lithium metal 4.9 V), p-CT is p-chlorotoluene (oxidation potential with respect to lithium metal 4.8 V) ), 2 FPX is 2-fluoro-] p-xylene (oxidation potential with respect to lithium metal 4.7 V).
また表 1中、 副成分の TOPは、 トリス (トリオクチル) ホスフェート、 VC はビニレンカーボネート、 ? 3は1, 3—プロパンスルトン、 S BAHは無水ス ルホ安息香酸、 D V S Uはジビニルスルホン、 P R Sは 3—ヒ ドロキシ一 1—プ 口ペンスノレホン酸一 γ —スノレトンを示す。  In Table 1, TOP of the minor component is tris (trioctyl) phosphate, VC is vinylene carbonate,? 3 indicates 1,3-propane sultone, SBAH indicates sulfobenzoic anhydride, DVSU indicates divinylsulfone, and PRS indicates 3-hydroxy-1-1-pentopensurenoleic acid-γ-snorethone.
また表 1中、 アミノ化ベンゼンの 2—ATは 2—ァミノ トルエン、 2— APX は 2—アミノー p—キシレンを示す。  In Table 1, 2-AT of aminated benzene indicates 2-aminotoluene and 2-APX indicates 2-amino-p-xylene.
(比較例;!〜 1 1 )  (Comparative example:! ~ 1 1)
非水溶媒の組成およびアミノ化ベンゼン類の含有量を表 1に示すように変更す る以外は、 実施例 1と同様にして非水電解質二次電池を製造した。 Change the composition of the non-aqueous solvent and the content of aminated benzenes as shown in Table 1. A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except for the above.
(試験例 1 )  (Test Example 1)
実施例 1〜2 2および比較例 1〜1 1で得られた非水電解質二次電池の各 1 0 個ずつについて、 過充電試験を行った。 過充電試験は、 電流値 2 Cで充電を続け その際に異常な発熱または発火を生じた非水電解質二次電池の数を記録するもの である。 異常な発熱または発火を生じた電池個数の全体に占める割合 (異常発熱 発生率、 %) を表 1に示す。 An overcharge test was performed on each of the 10 nonaqueous electrolyte secondary batteries obtained in Examples 1 to 22 and Comparative Examples 1 to 11. The overcharge test is to record the number of non-aqueous electrolyte secondary batteries that continue to charge at a current value of 2 C and generate abnormal heat or fire. Table 1 shows the ratio (abnormal heat generation rate,%) of the total number of batteries that generated abnormal heat or ignition.
【表 1】 【table 1】
Figure imgf000020_0001
Figure imgf000020_0001
で用いた。 表 1から明らかなように、 ハロゲン化ベンゼン類を含みかつァミノ化ベンゼン 類の含有量が 1 0 0 p p m未満の非水溶媒を用いた実施例 1〜 2 2の二次電池は 過充電試験を行った 1 0個のうち異常な発熱を生じたものはほとんどなく、 多く ても 2個 (2 0 %以下) で、 過充電状態を安全に終了させる効果が大きい。 特に、 アミノ化ベンゼン類の含有量が 5 0 p p m以下の。一C T、 p - C T N o— F T を添加した実施例 1〜4の二次電池は、 アミノ化ベンゼン類の含有量が 9 0 p p mの実施例 5の二次電池に比べて、 さらに過充電状態を安全に終了させる効果が 大きい。 Used in As is evident from Table 1, the secondary batteries of Examples 1-22 using a non-aqueous solvent containing halogenated benzenes and containing less than 100 ppm of aminated benzenes are as follows. Of the 10 batteries that underwent the overcharge test, few generated abnormal heat, and at most two batteries (20% or less) had a large effect of safely terminating the overcharged state. In particular, the content of aminated benzenes is 50 ppm or less. One CT, p - secondary battery CT N o-Examples 1 to 4 FT was added, the content of the amination benzenes as compared with the secondary batteries of Example 5 9 0 ppm, further overcharge The effect of safely terminating the state is great.
これに対し、 ハロゲン化ベンゼン類を含みかつアミノ化ベンゼン類の含有量が 1 0 0 p p m以上の非水溶媒を用いる比較例 1〜 1 1の非水電解質二次電池は、 いずれも、 1◦個のうち 3個以上が異常な発熱を生じた。  On the other hand, the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 11 using halogenated benzenes and containing nonaqueous solvents having an aminated benzene content of 100 ppm or more were all 1 ° C. Three or more of the individuals developed abnormal fever.
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな 形態で実施できる。 したがって、 前述の実施形態はあらゆる点で単なる例示に過 ぎず、 本発明の範囲は特許請求の範囲に示すものであって、 明細書本文には何ら 拘束されない。 さらに、 特許請求の範囲に属する変形や変更は全て本発明の範囲 内のものである。  The present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above-described embodiment is merely an example in every respect, and the scope of the present invention is set forth in the appended claims, and is not limited by the specification. Further, all modifications and changes belonging to the claims are within the scope of the present invention.
【産業上の利用可能性】  [Industrial applicability]
本発明の非水電解質および非水電解質二次電池は、 過充電時の異常発熱発生率 が著しく低く、 非常に高い安全性を有する。  INDUSTRIAL APPLICABILITY The nonaqueous electrolyte and the nonaqueous electrolyte secondary battery of the present invention have a remarkably low rate of abnormal heat generation during overcharge and have extremely high safety.
移動体通信機、 ノートブック型パソコン、 パームトップ型パソコン、 一体型ビ デォカメラ、 ポータブル C D (MD ) プレーヤー、 コードレス電話などの電子機 器の、 安全に使用可能な電源として利用できる。  It can be used as a safe power supply for electronic devices such as mobile communication devices, notebook computers, palmtop computers, integrated video cameras, portable CD (MD) players, and cordless phones.

Claims

請 求 の 範 囲 The scope of the claims
1、 非水溶媒および電解質を含有する非水電解質において、  1, in a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte,
非水溶媒がハロゲン化ベンゼン類を含み、 かつ非水溶媒中に不純物として含ま れるァミノ化ベンゼン類の含有量が 1 0 0 p p m未満であることを特徴とする非 水電解質。  A non-aqueous electrolyte characterized in that the non-aqueous solvent contains halogenated benzenes and the content of aminated benzenes contained as impurities in the non-aqueous solvent is less than 100 ppm.
2、 非水溶媒が、 ハロゲン化ベンゼン類とともに、 カーボネート類およびノま たは γ—プチ口ラク トンを含有することを特徴とする請求項 1記載の非水電解質。  2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous solvent contains, in addition to the halogenated benzenes, carbonates and lactones.
3、 ハロゲン化ベンゼン類が、 塩素原子おょぴ またはフッ素原子を 1または 2以上有するハロゲン化トルェンおよびハロゲン化キシレンから選ばれる少なく とも 1種であることを特徴とする請求項 1または 2記載の非水電解質。  3. The method according to claim 1, wherein the halogenated benzene is at least one selected from halogenated toluene and halogenated xylene having one or more chlorine atoms or fluorine atoms. Non-aqueous electrolyte.
4、 ノヽロゲンィ匕ベンゼン類が、 ο—クロロ トノレェン、 ρ—クロロ トノレ工ンおよ び。一フルォロトルエンから選ばれる少なくとも 1種であることを特徴とする請 求項 1〜 3のいずれか 1つに記載の非水電解質。  4. Norogeni-dani benzenes include ο-chlorotonolene, ρ-chlorotonolene and others. The non-aqueous electrolyte according to any one of claims 1 to 3, wherein the non-aqueous electrolyte is at least one selected from one fluorotoluene.
5、 アミノ化ベンゼン類が、 アミノ化トルエンおよびアミノ化キシレンから選 ばれる少なくとも 1種であることを特徴とする請求項 1〜 4のいずれか 1つに記 載の非水電解質。  5. The non-aqueous electrolyte according to any one of claims 1 to 4, wherein the aminated benzene is at least one selected from aminated toluene and aminated xylene.
6、 アミノ化ベンゼン類が、 2—ァミノ トルエン、 4—ァミノ トルエンおよび アミノキシレンから選ばれる少なくとも 1種であることを特徴とする請求項 1〜 5のいずれか 1つに記載の非水電解質。  6. The nonaqueous electrolyte according to any one of claims 1 to 5, wherein the aminated benzene is at least one selected from 2-aminotoluene, 4-aminotoluene and aminoxylene.
7、 正極と、 負極と、 請求項 1〜6のいずれか 1つの非水電解質とを含むこと を特徴とする非水電解質二次電池。  7. A non-aqueous electrolyte secondary battery comprising: a positive electrode; a negative electrode; and the non-aqueous electrolyte according to any one of claims 1 to 6.
PCT/JP2005/003677 2004-02-27 2005-02-25 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery WO2005083828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004053284A JP4580662B2 (en) 2004-02-27 2004-02-27 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2004-053284 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005083828A1 true WO2005083828A1 (en) 2005-09-09

Family

ID=34908732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003677 WO2005083828A1 (en) 2004-02-27 2005-02-25 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Country Status (5)

Country Link
JP (1) JP4580662B2 (en)
KR (1) KR100811917B1 (en)
CN (1) CN1965437A (en)
TW (1) TWI265651B (en)
WO (1) WO2005083828A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187746B2 (en) 2008-05-16 2012-05-29 Uchicago Argonne, Llc Surface modification agents for lithium batteries
US8492033B2 (en) 2009-06-18 2013-07-23 Uchicago Argonne, Llc Fast cure gel polymer electrolytes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824578B2 (en) 2005-09-15 2010-11-02 Lg Chem, Ltd. Additives for non-aqueous electrolytes and electrochemical device using the same
KR100812056B1 (en) * 2005-10-24 2008-03-07 주식회사 엘지화학 Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same
KR100760763B1 (en) * 2006-10-17 2007-10-04 삼성에스디아이 주식회사 Electrolyte for high voltage lithium rechargeable battery and high voltage lithium rechargeable rechargeable battery employing the same
US20080134492A1 (en) * 2006-12-11 2008-06-12 Uchicago Argonne, Llc Poly(ethyleneoxide) siloxane gel electrolytes
KR101376414B1 (en) * 2008-07-30 2014-03-20 다이킨 고교 가부시키가이샤 Solvent for dissolution of electrolytic salt of lithium secondary battery
JP4992921B2 (en) * 2009-02-19 2012-08-08 ソニー株式会社 Non-aqueous electrolyte secondary battery
KR101310730B1 (en) * 2010-01-15 2013-09-24 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5708977B2 (en) * 2010-07-06 2015-04-30 トヨタ自動車株式会社 Assembled battery
KR101485792B1 (en) 2012-05-31 2015-01-22 주식회사 엘지화학 A lithium secondary battery
JP7159864B2 (en) * 2016-09-26 2022-10-25 株式会社Gsユアサ NONAQUEOUS ELECTROLYTE STORAGE ELEMENT AND USAGE THEREOF
KR102183664B1 (en) 2017-09-21 2020-11-26 주식회사 엘지화학 Electrolyte for lithium-secondary battery and lithium-sulfur battery comprising thereof
CN115064769B (en) * 2022-07-26 2022-11-08 华中科技大学 Electrolyte compatible with graphite cathode and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308236A (en) * 1997-05-08 1998-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JP2004071459A (en) * 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery and non-aqueous electrolytic solution
JP2005005154A (en) * 2003-06-12 2005-01-06 Mitsubishi Chemicals Corp Electrolytic solution for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710099B2 (en) * 1999-12-28 2011-06-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR100325868B1 (en) * 2000-03-06 2002-03-07 김순택 Organic electrolytic solution and lithium secondary battery adopting the same
JP2003022809A (en) * 2001-07-09 2003-01-24 Nec Corp Battery and electrode for battery
JP4476530B2 (en) * 2001-12-21 2010-06-09 三星エスディアイ株式会社 Electrolyte, lithium secondary battery, and method for manufacturing lithium secondary battery
JP4321015B2 (en) * 2002-07-09 2009-08-26 日本電気株式会社 Secondary battery
KR100463189B1 (en) * 2002-07-15 2004-12-23 삼성에스디아이 주식회사 A lithium secondary battery and a method for preparing the same
JP3748843B2 (en) * 2002-08-20 2006-02-22 日立マクセル株式会社 Organic electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308236A (en) * 1997-05-08 1998-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JP2004071459A (en) * 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery and non-aqueous electrolytic solution
JP2005005154A (en) * 2003-06-12 2005-01-06 Mitsubishi Chemicals Corp Electrolytic solution for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187746B2 (en) 2008-05-16 2012-05-29 Uchicago Argonne, Llc Surface modification agents for lithium batteries
US8292974B2 (en) 2008-05-16 2012-10-23 Uchicago Argonne, Llc Surface modification agents for lithium batteries
US9065115B2 (en) 2008-05-16 2015-06-23 Uchicago Argonne, Llc Surface modification agents for lithium batteries
US9825287B2 (en) 2008-05-16 2017-11-21 Uchicago Argonne, Llc Surface modification agents for lithium batteries
US8492033B2 (en) 2009-06-18 2013-07-23 Uchicago Argonne, Llc Fast cure gel polymer electrolytes

Also Published As

Publication number Publication date
TW200532963A (en) 2005-10-01
CN1965437A (en) 2007-05-16
JP2005243490A (en) 2005-09-08
JP4580662B2 (en) 2010-11-17
KR20060116852A (en) 2006-11-15
TWI265651B (en) 2006-11-01
KR100811917B1 (en) 2008-03-10

Similar Documents

Publication Publication Date Title
WO2005083828A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2010128584A1 (en) Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
US20050221180A1 (en) Nonaqueous electrolyte secondary battery
JP2007188777A (en) Separator and nonaqueous electrolytic solution battery
WO2002078113A1 (en) Battery
WO2003063269A1 (en) Nonaqueous secondary cell and electronic device incorporating same
JP3642487B2 (en) Secondary battery and electrolyte used therefor
JP4993159B2 (en) Secondary battery
JP4836415B2 (en) Nonaqueous electrolyte secondary battery
JP2004265792A (en) Battery
JP2004095383A (en) Nonaqueous electrolyte secondary battery
JP6226055B2 (en) Separator and battery
JP5825374B2 (en) Separator and non-aqueous electrolyte battery
JP4177621B2 (en) Nonaqueous electrolyte secondary battery
JP4395071B2 (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2002073731A1 (en) Battery
JP4834284B2 (en) Nonaqueous electrolyte secondary battery
JP4599050B2 (en) Nonaqueous electrolyte secondary battery
JP2004063144A (en) Nonaqueous electrolyte secondary battery
JP4346395B2 (en) Nonaqueous electrolyte secondary battery
JP6064926B2 (en) Separator and battery
JP2005267938A (en) Nonaqueous electrolyte secondary battery
JP4746275B2 (en) Nonaqueous electrolyte secondary battery
JP2004095351A (en) Non-aqueous electrolyte secondary battery
WO2020138317A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067016744

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580005946.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067016744

Country of ref document: KR

122 Ep: pct application non-entry in european phase