TW200529251A - Thin-film composite material, and wiring board material using the same, wiring board, electronic part material and electronic part, and process for production thereof - Google Patents

Thin-film composite material, and wiring board material using the same, wiring board, electronic part material and electronic part, and process for production thereof Download PDF

Info

Publication number
TW200529251A
TW200529251A TW093128029A TW93128029A TW200529251A TW 200529251 A TW200529251 A TW 200529251A TW 093128029 A TW093128029 A TW 093128029A TW 93128029 A TW93128029 A TW 93128029A TW 200529251 A TW200529251 A TW 200529251A
Authority
TW
Taiwan
Prior art keywords
thin film
metal oxide
film layer
composite metal
composite
Prior art date
Application number
TW093128029A
Other languages
Chinese (zh)
Inventor
Yoshitaka Hirata
Yasushi Kumashiro
Shin Takanezawa
Yasushi Shimada
Yuusuke Kondou
Masanori Yamaguchi
Yuichi Shimayama
Kazunori Yamamoto
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW200529251A publication Critical patent/TW200529251A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

A thin-film composite material with which a capacitor can be formed without need to conduct processing at high temperature; and a wiring board material using the same, wiring board, electronic part material and electronic part; and a process for producing them. There is provided a process for producing a thin-film composite material, comprising the step of forming a metallic thin film layer of at least one metal selected from the group consisting of Cr, Ni, Au, Ag and alloys of these on one major surface of a copper foil; the step of forming a first composite metal oxide thin-film layer consisting of an amorphous composite metal oxide containing Ti and further Ba and/or Sr as constituent elements on the surface of the metallic thin-film layer; and the step of forming a second composite metal oxide thin-film layer comprising at least a crystalline composite metal oxide containing Ti and further Ba and/or Sr as constituent elements on the surface of the first composite metal oxide thin-film layer, characterized in that in the step of forming the first composite metal oxide thin-film layer, heat treatment is carried out at 400 DEG C or below.

Description

200529251 (1) 九、發明說明 【發明所屬之技術領域] 本發明係有關適用於配線板等電子零件的薄膜複合材 料暨使用其之配線板用材料、配線板、電子零件用材料、 電子零件及其製造方法。 【先前技術】 自昔以來’電子機器藉由增加功能,並且減少大小、 重量,開拓並發展新市場。 亦在使用於此電子機器的配線板中,按裝載於配線板 的各種零件的高密度實際安裝的要求,推展配線板的多層 化,更已知有亦如日本特開 200 1 — 1 60672號公報所記 載,於其內層形成電路元件(電容器、電感器、電阻)的 多層配線板。 特別是爲形成有期望靜電容的電容器,有人提議較習 知更多樣化的方法,例如於前述日本特開 2 0 0 1 — 1 6 0 6 7 2 號公報中記載藉由形成電介質,以其上下相向的方式形成 電極,形成電容器。 就形成此電介質的方法而言,於前述日本特開200 1 -1 606 72號公報中記載附着並燒結電介質膏於可撓性金 屬基板上,在燒結的膏面上塗以黏着劑層的有機層,燒結 的膏面以埋入黏着劑中的方式附着。 又,就形成此電介質的方法而言,已知如日本特開8 -24 5 263號公報所記載,混合複數種特定金屬的烷氧化 200529251 (2) 合物有機溶媒溶液,塗覆於基板上,加以熱處理,形成複 合金屬氧化物作爲電介質。 又,於前述日本特開2003— 526880號公報中記載具 備金屬箔基板及結晶性電介質層的複層薄膜複合體,就其 製造方法記載藉由將複數金屬的烷氧化合物有機溶媒溶液 塗覆於基板並加以熱處理,形成複數金屬氧化物的結晶性 電介質層,利用所謂溶膠凝膠法、濺射蒸鍍法、有機金屬 化學蒸汽沉積法,形成結晶性電介質層於金屬基板上的方 法。 就此種電介質而言,於前述日本特開2001— 160672 號公報中記載使用鈦酸鋇、氧化鈦膏,於前述日本特開8 —2452 63號公報記載使用選自周期表IA族、IIA族、 ΙΠΑ族、IVB族及VB族的金屬以及選自周期表IVA族、 V A族的金屬的氧化物,於日本特平2 0 0 3 — 5 2 6 8 8 0號公報 中記載使用PZT,於日本特開1 1 一 2 5 1 1 8 5號公報中記載 使用 Pb (鉛)、Zr (銷)、Ti、Sr。 【發明內容】 而於日本特開2 0 0 1 — 1 6 0 6 7 2號公報中記載的方法爲 燒結電介質膏,在高溫下進行熱處理。然而,在使用銅箔 於金屬基板情形下,若在高溫下進行熱處理,即有銅氧 化,導電性降低的問題。 又,即使是於日本特開8 - 24 5 26 3號公報中記載的方 法,仍有必要的燒結溫度高達4 5 0 °C以上,在使用銅作爲 -6 - 200529251 (3) 金屬箱情形下,因銅的氧化而絕緣性降低,無法獲得可靠 性高,靜電容大的電容器的問題。 本發明目的爲提供可不在如此高的溫度下處理,形成 電容器的薄膜複合材料暨使用其之配線板用材料、配線 板、電子零件用材料、電子零件及其製造方法。 亦即,本發明提供一種薄膜複合材料,其特徵爲:具 有:銅箔;金屬薄膜層,係形成於前述銅箔之一表面,包 含由選自Cr、Ni、Au、Ag及其合金所組成的群中一種以 上的金屬(Cr及/或Ni及/或Au及/或Ag及/或其合 金);第一複合金屬氧化物薄膜層,係形成於前述金屬薄 膜層表面,由含有作爲構成元素的Ba及/或Sr、Ti的非 晶形複合金屬氧化物構成;以及第二複合金屬氧化物薄膜 層,係形成於前述第一複合金屬氧化物薄膜層,至少包含 含有作爲構成元素的B a及/或S r、T i的結晶性金屬氧化 物。 又,本發明提供特徵爲:前述金屬薄膜層的厚度爲 5 0 n m〜1 μ m範圍的上述薄膜複合材料。 又,本發明提供特徵爲:前述第一複合金屬氧化物薄 膜層的厚度爲l〇nm〜200nm範圍的上述薄膜複合材料。 又’本發明提供特徵爲:前述第一複合金屬氧化物薄 膜層的厚度與前述第二複合金屬氧化物薄膜層的厚度的和 爲3 0 n m〜2 μ m範圍的上述薄膜複合材料。 又,本發明提供特徵爲:前述第二複合金屬氧化物薄 膜層進一步包含含有此非晶形複合金屬氧化物含有作爲構 200529251 (4) 成元素的Ba及/或Sr、Ti的非晶形複合金屬氧 述薄膜複合材料。 又’本發明提供特徵爲:於上述本發明薄膜複 的銅箔的另一表面形成絕緣材料層,於前述第二複 氧化物薄膜層的表面形成導體層的配線板用材料。 又’本發明提供特徵爲:於上述本發明薄膜複 的銅箔的另一表面形成絕緣材料層,於前述第二複 氧化物薄膜層的表面形成導體圖型的配線板。 又’本發明提供特徵爲:於上述本發明薄膜複 的前述第二複合金屬氧化物薄膜層的表面形成導體 子零件用材料。 又’本發明提供特徵爲:於上述本發明薄膜複 的銅箔的另一表面形成絕緣材料層,於前述第二複 氧化物薄膜層的表面形成電容電極的電子零件。 本發明進一步提供一種薄膜複合材料之製造方 特徵爲:包括:於銅箔之一表面上形成含有選自 Ni、Au、A g及其合金所構成的群中一種以上的金 屬薄膜層的步驟;於前述金屬薄膜層表面形成含有 成元素的B a及/或S r、T i的非晶形複合金屬氧化 成的第一複合金屬氧化物薄膜層的步驟;以及於前 複合金屬氧化物薄膜層的表面形成至少包含含有作 元素的Ba及/或Sr、Ti的結晶性金屬氧化物的第 金屬氧化物薄膜層的步驟,至少於前述第一複合金 物薄膜層的形成步驟中,在4 〇 〇 °C以下進行熱處理 物的上 合材料 合金屬 合材料 合金屬 合材料 層的電 合材料 合金屬 法,其 Cr、 屬的金 作爲構 物所構 述第一 爲構成 二複合 屬氧化 200529251 (5) 又,本發明提供特徵爲:形成前述金屬薄膜層的厚度 於5 0 nm〜1μηι範圍的上述薄膜複合材料之製造方法。 又,本發明提供特徵爲:形成前述第一複合金屬氧化 物薄膜層的厚度於l〇nm〜200nm範圍的上述薄膜複合材 料之製造方法。 又,本發明提供特徵爲:以前述第一複合金屬氧化物 薄膜層的厚度與前述第二複合金屬氧化物薄膜層的厚度合 計爲3〇nm〜2μιη範圍的方式分別形成的上述薄膜複合材 料之製造方法。 又’本發明提供特徵爲:前述第二複合金屬氧化物薄 月旲層進一步包含含有作爲構成元素的Ba及/或Sr、Ti的 非晶形複合金屬氧化物的上述薄膜複合材料之製造方法。 又’本發明提供特徵爲:包括:於藉由上述本發明製 胆方法製造的薄膜複合材料的銅箔另一表面形成絕緣材料 層的步驟;以及於第二複合金屬氧化物薄膜層的表面形成 導體層的步驟的配線板用材料之製造方法。 又’本發明提供特徵爲:包括:於藉由上述本發明製 迫方法製造的薄膜複合材料的銅箔另一表面形成絕緣材料 層的步驟;以及於第二複合金屬氧化物薄膜層的表面形成 導體圖型的步驟的配線板之製造方法。 又’本發明提供特徵爲:包括於藉由上述本發明製造 方法製造的薄膜複合材料的第二複合金屬氧化物薄膜層的 表面形成導體層的步驟的電子零件用材料之製造方法。 又’本發明提供特徵爲:包括:於藉由上述本發明製 -9- 200529251 (6) 造方法製造的薄膜複合材料的第二複合金屬氧化 的表面形成導體層的步驟;於銅箔另〜袠面形成 層的步驟;以及蝕刻除去無需前述導體層的部位 容電極的步驟的電子零件之製造方法。 根據本發明,可提供能在4〇(rc以下的低溫 處理’能於銅箔上形成可靠性高,靜電容大的電 膜複合材料。又,使用本發明薄膜複合材料可提供 靠性高,靜電容大的電容器的配線板及電子零件。 本申請案是根據同申請人早先提出的日本特許 2004— 042749號(申請日2004年2月19日)附 權主張的案件,謹附其說明書於此供參考。 【實施方式】 以下就本發明實施形態詳細說明。 本發明薄膜複合材料的特徵爲:具有:銅箔; 月旲層’係形成於刖述銅箱之一'表面,含有由選自 N i、A U、A g及其合金所組成的群中一種以上的金 一複合金屬氧化物薄膜層,係形成於前述金屬薄 面’由含有作爲構成元素的Ba及/或Sr、Ti的非 合金屬氧化物構成;以及第二複合金屬氧化物薄膜 形成於前述第一複合金屬氧化物薄膜層,至少包含 成元素的Ba及/或Sr、Ti的結晶性金屬氧化物。 必須含有作爲構成元素的Ba及/或Sr、Ti的 屬氧化物即使於陶瓷中仍具有特別高的介電常數( 薄膜層 緣材料 形成電 進行熱 益的薄 具備可 申請案 帶優先 金屬薄 I Cr > 屬;第 膜層表 晶形複 層,係 含有構 複合金 例如於 •10- 200529251 (7)200529251 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a thin film composite material suitable for electronic parts such as wiring boards and materials for wiring boards, wiring boards, materials for electronic parts, electronic parts, and Its manufacturing method. [Previous Technology] Since the past, electronic devices have expanded and developed new markets by increasing their functions and reducing their size and weight. Also in the wiring board used in this electronic device, according to the requirements for high-density actual installation of various parts mounted on the wiring board, the multilayering of the wiring board is promoted, and it is also known as Japanese Patent Laid-Open No. 200 1-1 60672 The publication describes a multilayer wiring board in which circuit elements (capacitors, inductors, and resistors) are formed on the inner layer. In particular, in order to form a capacitor having a desired static capacitance, there have been proposed more diversified methods than conventional ones. For example, it is described in the aforementioned Japanese Patent Laid-Open No. 2 0 1-1 6 0 6 7 2 The electrodes are formed facing each other to form a capacitor. The method of forming this dielectric is described in Japanese Patent Application Laid-Open No. 200 1 -1 606 72 described above. A dielectric paste is adhered to and sintered on a flexible metal substrate, and an organic layer of an adhesive layer is coated on the sintered paste surface. , The sintered paste surface is attached in a manner of being buried in an adhesive. In addition, as for a method of forming this dielectric, as described in Japanese Patent Application Laid-Open No. 8-24-5263, it is known that an alkoxylated 200529251 (2) compound organic solvent solution of a plurality of specific metals is mixed and coated on a substrate. , Heat treatment to form a composite metal oxide as a dielectric. Further, in the aforementioned Japanese Patent Application Laid-Open No. 2003-526880, it is described that a multi-layer thin film composite including a metal foil substrate and a crystalline dielectric layer, and its production method is described by applying an organic solvent solution of a plurality of metal alkoxy compounds to The substrate is heat-treated to form a crystalline dielectric layer of a plurality of metal oxides. A method of forming a crystalline dielectric layer on a metal substrate by a so-called sol-gel method, sputtering evaporation method, or organometallic chemical vapor deposition method. For such a dielectric, the use of barium titanate and titanium oxide paste is described in the aforementioned Japanese Patent Application Laid-Open No. 2001-160672, and the use of a material selected from the group consisting of Groups IA, IIA, The oxides of metals of Groups IIIA, IVB, and VB and metals selected from Groups IVA and VA of the periodic table are described in Japanese Patent Publication Nos. 2003- 5 2 6 8 8 0 and the use of PZT. Japanese Patent Application Laid-Open No. 1 1 to 2 5 1 1 8 5 describes the use of Pb (lead), Zr (pin), Ti, and Sr. [Summary of the Invention] The method described in Japanese Patent Application Laid-Open No. 2000-1-1620 is a method of sintering a dielectric paste and performing a heat treatment at a high temperature. However, in the case where a copper foil is used for a metal substrate, if heat treatment is performed at a high temperature, there is a problem that copper is oxidized and the conductivity is lowered. In addition, even in the method described in Japanese Patent Application Laid-Open No. 8-24 5 26 3, the necessary sintering temperature is as high as 4 50 ° C or more. When copper is used as a -6-200529251 (3) metal box Due to the oxidation of copper, the insulation property is lowered, and a problem that a capacitor with high reliability and a large static capacitance cannot be obtained. An object of the present invention is to provide a thin film composite material capable of forming a capacitor without being processed at such a high temperature and a material for a wiring board using the same, a wiring board, a material for an electronic part, an electronic part, and a method for manufacturing the same. That is, the present invention provides a thin film composite material, comprising: a copper foil; a metal thin film layer formed on one of the surfaces of the foregoing copper foil, and comprising a member selected from the group consisting of Cr, Ni, Au, Ag, and an alloy thereof One or more metals (Cr and / or Ni and / or Au and / or Ag and / or an alloy thereof) in the group; the first composite metal oxide thin film layer is formed on the surface of the aforementioned metal thin film layer and is composed of containing Elemental Ba and / or Sr, Ti amorphous composite metal oxide composition; and a second composite metal oxide thin film layer formed on the aforementioned first composite metal oxide thin film layer and containing at least B a as a constituent element And / or crystalline metal oxides of S r and T i. The present invention also provides the thin-film composite material, wherein the thickness of the metal thin-film layer is in a range of 50 nm to 1 μm. The present invention also provides the thin-film composite material characterized in that the thickness of the first composite metal oxide thin-film layer is in a range of 10 nm to 200 nm. The present invention also provides the thin-film composite material characterized in that the sum of the thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer is in the range of 30 nm to 2 m. In addition, the present invention is characterized in that the second composite metal oxide thin film layer further includes an amorphous composite metal oxide containing the amorphous composite metal oxide and containing Ba and / or Sr, Ti as a constituent element of the structure 200529251 (4). Mentioned thin film composite material. The present invention also provides a wiring board material characterized in that an insulating material layer is formed on the other surface of the copper foil coated with the thin film of the present invention, and a conductor layer is formed on the surface of the second multiple oxide thin film layer. The present invention also provides a wiring board characterized by forming an insulating material layer on the other surface of the copper foil coated with the thin film of the present invention and forming a conductor pattern on the surface of the second multiple oxide thin film layer. The present invention also provides a material for forming a conductor sub-component on the surface of the second composite metal oxide thin film layer of the thin film of the present invention. The present invention also provides an electronic component characterized in that an insulating material layer is formed on the other surface of the copper foil coated with the thin film of the present invention, and a capacitor electrode is formed on the surface of the second multiple oxide thin film layer. The invention further provides a manufacturing method of a thin film composite material, comprising: forming a step of forming at least one metal thin film layer on a surface of a copper foil containing one or more metal films selected from the group consisting of Ni, Au, Ag, and alloys thereof; Forming a first composite metal oxide thin film layer formed by oxidizing an amorphous composite metal containing elemental B a and / or S r, T i on the surface of the aforementioned metal thin film layer; and The step of forming a second metal oxide thin film layer containing at least a crystalline metal oxide containing Ba and / or Sr, Ti as an element is at least 400 ° in the step of forming the first composite gold thin film layer. C. The material of the composite material and the metal composite material and the metal composite material layer of the heat-treated material under C. The method of Cr and the metal of the metal as the structure is described. The first is to constitute the two complex metal oxides. 200529251 (5) In addition, the present invention provides a method for manufacturing the thin film composite material, wherein the thickness of the metal thin film layer is in a range of 50 nm to 1 μm. The present invention also provides a method for manufacturing the thin film composite material, wherein the first composite metal oxide thin film layer has a thickness in the range of 10 nm to 200 nm. In addition, the present invention provides a feature of forming the thin film composite material such that the total thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer are in a range of 30 nm to 2 μm. Production method. The present invention also provides the method for manufacturing the thin-film composite material, wherein the second composite metal oxide thin moon layer further includes an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements. According to another aspect of the present invention, the present invention includes: a step of forming an insulating material layer on the other surface of the copper foil of the thin film composite material manufactured by the method for making a gallbladder according to the present invention; A method for manufacturing a wiring board material in a step of a conductor layer. According to another aspect of the present invention, the present invention includes: a step of forming an insulating material layer on the other surface of the copper foil of the thin-film composite material manufactured by the forcing method of the present invention; and forming the second composite metal oxide thin film layer on the surface. A method for manufacturing a wiring board in the step of a conductor pattern. The present invention also provides a method for manufacturing a material for an electronic component, which includes a step of forming a conductor layer on a surface of a second composite metal oxide thin film layer of the thin film composite material manufactured by the manufacturing method of the present invention. The invention also provides a feature including: a step of forming a conductor layer on an oxidized surface of the second composite metal of the thin-film composite material manufactured by the above-mentioned method of the invention-9-200529251 (6) manufacturing method; A step of forming a layer; and a method of manufacturing an electronic part by etching and removing the step of accommodating an electrode that does not require the conductive layer. According to the present invention, it is possible to provide a high-reliability and large-capacitance electrical film composite material capable of being processed at a low temperature of 40 ° C or lower. Moreover, the film composite material of the present invention can provide high reliability. Wiring board and electronic parts of capacitors with large capacitance. This application is based on the Japanese Patent No. 2004-042749 (filed on February 19, 2004) filed earlier by the same applicant. This is for reference. [Embodiment] The embodiment of the present invention will be described in detail below. The film composite material of the present invention is characterized by: having: copper foil; One or more gold-composite metal oxide thin film layers in the group consisting of Ni, AU, Ag, and alloys thereof are formed on the aforementioned thin metal surface, and are formed of non-metals containing Ba and / or Sr and Ti as constituent elements. A composite metal oxide film; and a second composite metal oxide thin film formed on the first composite metal oxide thin film layer and including at least elemental Ba and / or Sr, Ti crystalline metal oxide. Must contain Ba and / or Sr, Ti metal oxides as constituent elements have a particularly high dielectric constant even in ceramics. Cr >genus; the surface layer of the crystal layer of the second film layer, which contains structural composite gold, such as • 10- 200529251 (7)

BaTi03中爲1500左右,於SrTi〇3中爲2〇〇左右),適於 用來作爲電容器材料。當然,添加其他元素或金屬氧化物 的複合金屬氧化物,例如添加BaTi03於La (鑭)來進一 步謀求高介電常數化的複合金屬氧化物,或添加CaTi0 3 於BaTi〇3來調整特性的複合金屬氧化物亦可適用。 上述第一複合金屬氧化物薄膜層由含有作爲構成元素 的B a及/或Sr、Ti的非晶形複合金屬氧化物構成。由於 與上述金屬薄膜層接觸的界面爲非晶形,故可減少金屬薄 膜層的格子常數與複合金屬氧化物的格子常數不一致所造 成的缺陷,確保絕緣性。在與金屬薄膜層間的界面爲結晶 領域情形下’由於金屬薄膜層的格子常數與複合金屬氧化 物的格子常數不一致,故於複合金屬氧化物薄膜層形成時 加熱造成的熱應變缺陷大多發生在與金屬薄膜層間的界 面,絕緣性顯著降低。又,爲了與金屬薄膜層的格子常數 一致,外延結晶複合金屬氧化物,需要高溫的熱處理,導 致銅箔的氧化而不適當。 第一複合金屬氧化物薄膜層的厚度以10nm〜200nm 的範圍較佳,以20nm〜]50nm的範圍尤佳。第一複合金 屬氧化物薄膜層的厚度不滿1 Oum,即有設置第一複合金 屬氧化物薄膜層確保電容器的效果變小之虞,若厚度超過 2 0 0 nm,即有因非晶形複合金屬氧化物的介電常數一般較 結晶領域與非晶形領域所構成的複合金屬氧化物的介電常 數低,故有電容器的靜電容變小之虞。 上述第二複合金屬氧化物薄膜層至少包含含有作爲構 -11 - 200529251 (8) 成元素的B a及/或S r、T i的結晶性金屬氧化物,較佳的 是包含含有作爲構成元素的B a及/或S r、T i的非晶形金 屬氧化物以及包含含有作爲構成元素的Ba及/或Sr、Ti 的結晶性金屬氧化物二者,亦即包含結晶領域及非晶形領 域。由於在全部爲結晶領域情形下,需要例如600 °C以上 的高溫於複合金屬氧化物薄膜層的形成,容易發生銅箔的 氧化,難以獲得絕緣性高的電容器。由於在全部爲非晶形 領域情形下,複合金屬氧化物的介電常數低,故難以獲得 靜電容大的電容器。由於結晶領域及非晶形領域所構成複 合金屬氧化物薄膜層的形成於較低溫度下進行,故可抑制 銅箔的氧化,同時,可獲得介電常數高的薄膜。複合金屬 氧化物薄膜層的結晶領域及非晶形領域可使用透射型電子 顯微鏡(TEM ),藉由暗視野像觀察辨識。又,前述第二 複合金屬氧化物薄膜層可爲包括由前述結晶領域及非晶形 領域所構成的複合金屬氧化物薄膜層以及全部由非晶形領 域所構成的複合金屬氧化物薄膜層的層疊構造。 第二複合金屬氧化物薄膜層與第一複合金屬氧化物薄 膜層一致的厚度以30nm〜2μηι範圍爲宜,以 50nm〜 1·5μιη範圍較佳,尤佳者爲l〇〇nm〜Ιμηι範圍。在第二複 合金屬氧化物薄膜層的厚度不滿3 Onm情形下,有複合金 屬氧化物薄膜層的耐電場強度低,電容器的可適用用途受 限之虞,若厚度超過2μηι,即有無法獲得大靜電容的電容 器之虞。 上述金屬薄膜層含有選自Cr、Ni、Au、Ag及其合金 -12- 200529251 (9) 所組成的群中一種以上的金屬,從成本方面看來,以C r 及/或Ni爲宜,從環境污染性方面看來,以Ni較佳。 由於Cr及Ni本身形成穩定的氧化膜,又由於Αιι及Ag 本身難以氧化,故抑制複合金屬氧化物薄膜層形成時的銅 箔氧化,有助於電容器的絕緣性的確保。在此外金屬,例 如大多使用於Si02基板以抑制氧化的Pt (鉛)、Ti、Pd (鈀)如本發明形成於銅箔上情形下,容易於複合金屬氧 化物薄膜層發生斷裂,難以獲得可靠性高的電容器。就合 金而言,以在合金中含有80重量%以上的選自Cr、Ni、 Au或Ag的至少一種或複數成分較佳。於此種合金中例如 有Ni— P (磷)合金、Ni— B (硼)合金、Ni—P - B合 金、Ni— Co (銘)合金、Ni— Cr 合金、Ni— Cr— A1 合 金、Ni—Cr— Si合金、Ag— Nd (鈸)合金。在選自 Cr、 Ni、Au或Ag的至少一種或複數成分的含有率不滿80重 量%情形下,有電容器的絕緣性確保效果降低之虞。從成 本方面及形成容易度方面看來以Ni - P合金較佳。 金屬薄膜層的厚度以 50nm〜1 μηι範圍較佳,以 1 0 0 n m〜8 0 0 n m範圍尤佳。在厚度不滿 5 0 n m情形下,有 絕緣性降低的傾向,若厚度超過1 μ m,一般即會於成本方 面不利。 金屬薄膜層的厚度以聚焦離子束加工裝置(FIB )控出, 可藉由以掃瞄離子顯微鏡(SIM )觀察,對所得截面測長 來計測。 複合金屬氧化物薄膜層的形成方法與第二層、第一層 -13- 200529251 do) 無關’可適用例如溶膠凝膠法、濺射蒸鍍法、有機金屬化 學蒸汽沉積法(CVD )。在容易將複合金屬氧化物調整成 期望組成方面以溶膠凝膠法較佳。爲抑制於複合金屬氧化 物薄膜層形成時的銅箔氧化,形成溫度以在4 〇 〇 °C以下較 佳,尤佳者在3 5 0 °C以下。 开夕成金屬薄0吴層於銅范上的方法雖未特別限定,可例 如適用電鍍法、蒸鍍法、濺射法等。 銅箔若是一般使用的銅箔,即未特別限定,例如,可 適用基於耐熱或防銹目的表面施以Ζη (鋅)或鉻酸鹽處 理者 '爲提高接合性而表面粗糙化者、基於改善特性的目 的添加微量的其他元素例如S η (錫)者等的任一種。銅 箔的厚度雖未特別限定,不過,從操作性方面看來,以 ΙΟμηι 〜ΙΟΟμπι 較佳。 本發明配線板用材料的特徵爲:於上述本發明薄膜複 合材料的銅箔另一表面形成絕緣材料層,於前述第二複合 金屬氧化物薄膜層的表面形成導體層。用於絕緣材料層的 絕緣材料可使用周知者作爲配線板用材料,上述導體層可 藉由例如電鍍法、蒸鍍法、濺射法等周知金屬層形成手段 來形成。 又,本發明配線板的特徵爲:於上述本發明薄膜複合 材料的銅箔的另一表面形成絕緣材料層,於前述第二複合 金屬氧化物薄膜層的表面形成導體圖型。上述導體圖型可 藉由例如電鍍法、蒸鍍法、濺射法等周知金屬層形成手段 及周知蝕刻手段形成。 -14- 200529251 (11) 本發明電子零件用材料的特徵爲:於上述本發明薄膜 複合材料的前述第二複合金屬氧化物薄膜層的表面形成= 體層。 、 又’本發明電子零件的特徵爲:於上述本發明薄膜複 合材料的銅箔的另一表面形成絕緣材料層,於前述第二複 合金屬氧化物薄膜層的表面形成電容電極。用於絕緣材料 層的絕緣材料可使用周知者作爲電子零件用材料。電容電 極可藉由例如電鍍法、蒸鍍法、擺射法等周知金屬層形成 手段及周知蝕刻手段形成。 ® 本發明配線板用材料、配線板、電子零件用材料及電 子零件可藉由使用周知黏着劑、黏着片或預浸黏着劑材料 等與其他基板黏接,使之多層化,製成具備電容器的功能 的多層配線板、電子零件。又,亦可藉由進一步反覆層 疊’提供電容器埋入內層的多層配線板。 其次,使用圖式說明本發明薄膜複合材料的幾個形態 以及本發明配線板。 Φ 第1圖是範示本發明薄膜複合材料之一實施形態的剖 視圖。且,雖然於此載明,不過,使用於本說明書的剖視 圖畢竟是範式圖,其爲可明確掌握成層構造而記載,因 此’圖中各層的厚度不是對應於實際製品的厚度。薄膜複 _ 合材料1包含須含有作爲構成元素的Ba及/或Sr、Ti的 第二複合金屬氧化物薄膜層2、由含有作爲構成元素的Ba 及/或Sr、Ti的非晶形複合金屬氧化物構成的第一複合 金屬氧化物薄膜層3、金屬薄膜層4以及銅箔5。於此, -15- 200529251 (12) 第二複合金屬氧化物薄膜層2由結晶領域2 a及非晶形領 域2 b構成。 第2圖是範示本發明薄膜複合材料之另一實施形態的 剖視圖。第二複合金屬氧化物薄膜層6層疊必須含有作爲 構成元素的Ba及/或Sr、Ti並包含結晶領域及非晶形領 域的複合金屬氧化物薄膜層6a,以及含有作爲構成元素 的Ba及/或Sr、Ti的非晶形複合金屬氧化物所構成的另 一複合金屬氧化物薄膜層6b。 第3圖是範示本發明薄膜複合材料之再另一實施形態 的剖視圖。第二複合金屬氧化物薄膜層7層疊含有作爲構 成元素的Ba及/或Sr、Ti並包含結晶領域及非晶形領域 的複合金屬氧化物薄膜層7 a、包含結晶領域及非晶形領 域且構成元素及/或組成異於7 a的另一複合金屬氧化物 薄膜層7b以及構成元素及/或組成異於7a及7b的非晶 形複合金屬氧化物所構成的其他複合金屬氧化物薄膜層 7 c ° 第4圖是範示在構成上含有本發明薄膜複合材料的配 線板之一實施形態的剖視圖。配線板8具備:電極丨2, 係以黏着片1 1層疊本發明薄膜複合材料9與基板1 〇,進 一步藉由例如電鍍法、蒸鍍法、濺射法、蝕刻或其組合等 形成於本發明薄膜複合材料9的第二複合金屬氧化物薄膜 層9 a上;以及電容器,係藉由蝕刻等加工形成本發明薄 膜複合材料9所含銅箔9d,以對向電極1 2的電極1 3作 爲構成電極。且,第二複合金屬氧化物薄膜層、第一 -16- 200529251 (13) 複合金屬氧化物薄膜層9b以及金屬薄膜層9c的不需要部 分藉由鈾刻等除去。 其次,雖然藉實施例具體說明本發明,本發明卻不限 於此。 (實施例1 ) 將 Ba(OC2H5)2 及 Ti(0— i— C3H7)4 溶解於藉分 子篩脫水的2 —甲氧基乙醇,使Ba與Ti的摩爾比成爲 1 : 1,獲得 〇. 6 Μ的溶液。其次,一面攪拌此溶液,一面 在1 2CTC下回流1 8小時,獲得複合金屬烷氧化合物: BaTi ( OC2H4 OC2H3 ) 6 的溶液 A。 其次,獲得以2 —甲氧基乙醇稀釋溶液A的一部分, 溶液濃度成爲0.2M的溶液B。另一方面,添加與Ti的比 爲1 : 1的水及1 : 〇. 1 5的氨於溶液A的一部分,在1 0 0 °C下攪拌3小時後,以2—甲氧基乙醇稀釋成爲0.2M,獲 得含結晶性金屬氧化物粒子的溶液C。以體積比爲1:1 的方式混合此調製成〇 · 2 Μ的二種溶液B與溶液C,獲得 溶液D (複合金屬烷氧化合物的總合/結晶性金屬氧化物 粒子二 50mol%/50mol%)。 另一方面,藉由濺射法,於1 〇 cm X 1 0 cm大小,厚度 7 0 μηι的銅箔(例如三井金屬礦業(股)製3 E C — V L P — 70 )的光澤面側形成厚度5 00 nm的Ni薄膜層,獲得帶Ni 薄膜層的銅箔。 其次,於此帶N i薄膜層的銅箔的N i薄膜層側旋轉塗 -17- 200529251 覆溶液B。藉由於3 5 0 °C的熱板上乾燥4分鐘後,再度旋 轉塗覆溶液B,同樣乾燥,形成第一複合金屬氧化物層。 進一步藉由反覆進行旋轉塗覆溶液D於該第一複合金屬 氧化物層上,同樣乾燥的操作8次,形成第二複合金屬氧 化物層。此後,於3 5 0 °C的熱板上焙燒2小時,獲得薄膜 複合材料1。 (比較例1 ) 將形成於銅箔表面的金屬薄膜層的種類從改、 pt,其他與實施例丨相同,獲得薄膜複合材料2。 ® (比較例2 ) 不形成Ni B,其他與實施例BaTi03 is about 1500 and SrTi03 is about 200), which is suitable for use as a capacitor material. Of course, a composite metal oxide containing other elements or metal oxides, such as a composite metal oxide in which BaTi03 is added to La (lanthanum) to further increase the dielectric constant, or a composite in which CaTi0 3 is added to BaTi03 to adjust characteristics Metal oxides are also suitable. The first composite metal oxide thin film layer is composed of an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements. Since the interface with the metal thin film layer is amorphous, defects caused by the lattice constant of the metal thin film layer and the lattice constant of the composite metal oxide can be reduced, and insulation can be ensured. In the case where the interface with the metal thin film layer is in a crystalline domain ', since the lattice constant of the metal thin film layer and the lattice constant of the composite metal oxide are not consistent, thermal strain defects caused by heating during the formation of the composite metal oxide thin film layer mostly occur with The interface between the metal thin film layers is significantly reduced in insulation. In addition, in order to be consistent with the lattice constant of the metal thin film layer, the epitaxial crystalline composite metal oxide requires a high-temperature heat treatment, which leads to an inappropriate oxidation of the copper foil. The thickness of the first composite metal oxide thin film layer is preferably in a range of 10 nm to 200 nm, and more preferably in a range of 20 nm to 50 nm. The thickness of the first composite metal oxide thin film layer is less than 1 Oum, that is, there may be a risk that the effect of the capacitor is reduced by providing the first composite metal oxide thin film layer. If the thickness exceeds 200 nm, the amorphous composite metal may be oxidized. The dielectric constant of a substance is generally lower than that of a composite metal oxide composed of a crystalline domain and an amorphous domain, so there is a possibility that the static capacitance of a capacitor becomes smaller. The second composite metal oxide thin film layer contains at least a crystalline metal oxide containing B a and / or S r and T i as a constituent element, and preferably contains a constituent metal element as a constituent element. The amorphous metal oxide of B a and / or S r and T i and the crystalline metal oxide containing Ba and / or Sr and Ti as constituent elements include both a crystalline field and an amorphous field. In the case of all crystalline fields, it is necessary to form a composite metal oxide film layer at a high temperature of, for example, 600 ° C or higher, which oxidizes copper foil easily, and it is difficult to obtain a capacitor with high insulation. Since the dielectric constant of the composite metal oxide is low in the case of all amorphous regions, it is difficult to obtain a capacitor having a large static capacitance. Since the formation of the composite metal oxide thin film layer formed in the crystalline domain and the amorphous domain is performed at a relatively low temperature, the oxidation of the copper foil can be suppressed, and at the same time, a thin film having a high dielectric constant can be obtained. The crystalline and amorphous areas of the composite metal oxide thin film layer can be identified by observation with a dark field image using a transmission electron microscope (TEM). The second composite metal oxide thin film layer may have a laminated structure including the composite metal oxide thin film layer composed of the crystal domain and the amorphous domain and the composite metal oxide thin film layer composed entirely of the amorphous domain. The thickness of the second composite metal oxide thin film layer and the first composite metal oxide thin film layer is preferably in a range of 30 nm to 2 μm, more preferably in a range of 50 nm to 1.5 μm, and more preferably in a range of 100 nm to 1 μm. When the thickness of the second composite metal oxide thin film layer is less than 3 Onm, the electric field strength of the composite metal oxide thin film layer is low, and the applicable application of the capacitor may be limited. If the thickness exceeds 2 μηι, the large The risk of electrostatic capacitors. The above metal thin film layer contains one or more metals selected from the group consisting of Cr, Ni, Au, Ag and its alloys-12-200529251 (9). From the viewpoint of cost, it is preferable to use Cr and / or Ni. From the viewpoint of environmental pollution, Ni is preferred. Since Cr and Ni form a stable oxide film, and because Alm and Ag are difficult to oxidize, the oxidation of the copper foil during the formation of the composite metal oxide film layer is suppressed, which helps to ensure the insulation of the capacitor. In addition, metals such as Pt (lead), Ti, and Pd (palladium), which are mostly used in Si02 substrates to suppress oxidation, are easily formed on the copper foil when the present invention is formed on a copper foil, which is difficult to obtain reliability High-capacity capacitor. The alloy preferably contains at least one or more components selected from the group consisting of Cr, Ni, Au, and Ag in the alloy in an amount of 80% by weight or more. Examples of such alloys include Ni—P (phosphorus) alloy, Ni—B (boron) alloy, Ni—P – B alloy, Ni—Co (ming) alloy, Ni—Cr alloy, Ni—Cr—A1 alloy, Ni—Cr—Si alloy, Ag—Nd (钹) alloy. When the content rate of at least one or plural components selected from the group consisting of Cr, Ni, Au, and Ag is less than 80% by weight, there is a possibility that the effect of ensuring the insulation of the capacitor is reduced. In terms of cost and ease of formation, Ni-P alloy is preferred. The thickness of the metal thin film layer is preferably in a range of 50 nm to 1 μm, and more preferably in a range of 100 nm to 80 nm. When the thickness is less than 50 nm, the insulation property tends to decrease. If the thickness exceeds 1 μm, it is generally disadvantageous in terms of cost. The thickness of the metal thin film layer is controlled by a focused ion beam processing device (FIB), and can be measured by observing with a scanning ion microscope (SIM) and measuring the length of the obtained cross section. The method for forming the composite metal oxide thin film layer has nothing to do with the second layer and the first layer -13- 200529251 do) ′. For example, a sol-gel method, a sputtering evaporation method, and an organometallic chemical vapor deposition method (CVD) can be applied. The sol-gel method is preferable in that the composite metal oxide can be easily adjusted to a desired composition. In order to suppress the oxidation of the copper foil during the formation of the composite metal oxide film layer, the formation temperature is preferably below 400 ° C, and more preferably below 350 ° C. Although the method for forming a thin metal layer on a copper substrate is not particularly limited, for example, a plating method, a vapor deposition method, a sputtering method, or the like can be applied. The copper foil is not particularly limited as long as it is generally used. For example, those who are treated with Zn (zinc) or chromate on the surface for heat resistance or rust prevention purposes can be used. For the purpose of characteristics, any of trace amounts of other elements such as S η (tin) is added. Although the thickness of the copper foil is not particularly limited, from the viewpoint of operability, it is preferably 10 μm to 100 μm. The wiring board material of the present invention is characterized in that an insulating material layer is formed on the other surface of the copper foil of the thin film composite material of the present invention, and a conductor layer is formed on the surface of the second composite metal oxide thin film layer. As the insulating material for the insulating material layer, a known material can be used as a material for a wiring board, and the conductor layer can be formed by a known metal layer forming method such as a plating method, a vapor deposition method, or a sputtering method. The wiring board of the present invention is characterized in that an insulating material layer is formed on the other surface of the copper foil of the thin film composite material of the present invention, and a conductor pattern is formed on the surface of the second composite metal oxide thin film layer. The conductor pattern can be formed by a known metal layer forming means such as a plating method, a vapor deposition method, and a sputtering method, and a known etching method. -14- 200529251 (11) The material for electronic parts of the present invention is characterized in that a bulk layer is formed on the surface of the second composite metal oxide thin film layer of the thin film composite material of the present invention. The electronic part of the present invention is characterized in that an insulating material layer is formed on the other surface of the copper foil of the thin film composite material of the present invention, and a capacitor electrode is formed on the surface of the second composite metal oxide thin film layer. As the insulating material for the insulating material layer, a known material can be used as a material for electronic parts. The capacitor electrode can be formed by a known metal layer forming method such as a plating method, a vapor deposition method, or a swing method, and a known etching method. ® The wiring board materials, wiring boards, electronic parts materials, and electronic parts of the present invention can be bonded to other substrates by using known adhesives, adhesive sheets, or prepreg adhesive materials, etc., to make them multilayered to make capacitors. Functions of multilayer wiring boards and electronic parts. Further, a multilayer wiring board in which the capacitor is buried in the inner layer can be provided by further lamination. Next, several aspects of the thin film composite material of the present invention and the wiring board of the present invention will be described using drawings. Φ Figure 1 is a cross-sectional view illustrating an embodiment of the thin film composite material of the present invention. Moreover, although it is described here, the cross-sectional view used in this specification is a paradigm diagram after all, and it is described to clearly understand the layered structure. Therefore, the thickness of each layer in the '' diagram does not correspond to the thickness of the actual product. Thin film composite material 1 includes a second composite metal oxide thin film layer which must contain Ba and / or Sr, Ti as constituent elements, and 2 is oxidized by an amorphous composite metal containing Ba and / or Sr, Ti as constituent elements. The first composite metal oxide thin film layer 3, the metal thin film layer 4, and the copper foil 5 are made of an object. Here, -15-200529251 (12) The second composite metal oxide thin film layer 2 is composed of a crystalline domain 2 a and an amorphous domain 2 b. Fig. 2 is a cross-sectional view illustrating another embodiment of the thin film composite material of the present invention. The second composite metal oxide thin film layer 6 must be stacked to contain Ba and / or Sr, Ti as a constituent element, a composite metal oxide thin film layer 6a including a crystalline field and an amorphous field, and Ba and / or as a constituent element. Another composite metal oxide thin film layer 6b composed of an amorphous composite metal oxide of Sr and Ti. Fig. 3 is a sectional view illustrating still another embodiment of the film composite material of the present invention. The second composite metal oxide thin film layer 7 is composed of a composite metal oxide thin film layer 7 containing Ba and / or Sr, Ti as constituent elements and including a crystalline field and an amorphous field, and a constituent element including a crystalline field and an amorphous field. And / or another composite metal oxide thin film layer 7b having a composition different from 7 a and other composite metal oxide thin film layers 7 c consisting of constituent elements and / or amorphous composite metal oxides having a composition different from 7 a and 7 b FIG. 4 is a cross-sectional view illustrating an embodiment of a wiring board including a thin film composite material of the present invention in its configuration. The wiring board 8 includes electrodes 2 and a thin film composite material 9 of the present invention and a substrate 10 laminated with an adhesive sheet 11 and further formed on the substrate by, for example, an electroplating method, a vapor deposition method, a sputtering method, etching, or a combination thereof. The second composite metal oxide thin film layer 9a of the thin film composite material 9 of the present invention; and the capacitor is formed by etching or the like to form a copper foil 9d contained in the thin film composite material 9 of the present invention to oppose the electrode 1 2 of the electrode 1 3 As a constituent electrode. In addition, unnecessary portions of the second composite metal oxide thin film layer, the first -16-200529251 (13) composite metal oxide thin film layer 9b, and the metal thin film layer 9c are removed by uranium etching or the like. Next, although the present invention is specifically described by way of examples, the present invention is not limited thereto. (Example 1) Ba (OC2H5) 2 and Ti (0-i-C3H7) 4 were dissolved in 2-methoxyethanol dehydrated by a molecular sieve, so that the molar ratio of Ba to Ti was 1: 1, and 0.6 was obtained. M solution. Next, while stirring the solution, it was refluxed at 12 CTC for 18 hours to obtain a solution A of a composite metal alkoxide: BaTi (OC2H4 OC2H3) 6. Next, a part of the solution A diluted with 2-methoxyethanol was obtained, and a solution B having a solution concentration of 0.2 M was obtained. On the other hand, water having a ratio of 1: 1 to Ti and ammonia of 1: 0.15 were added to a part of the solution A, stirred at 100 ° C for 3 hours, and then diluted with 2-methoxyethanol. It became 0.2M, and the solution C containing the crystalline metal oxide particle was obtained. The two solutions B and C prepared as 0.2 M were mixed in a volume ratio of 1: 1 to obtain a solution D (total of composite metal alkoxy compounds / crystalline metal oxide particles 50 mol% / 50 mol. %). On the other hand, a thickness of 10 cm × 10 cm and a thickness of 70 μm copper foil (for example, 3 EC — VLP — 70 made by Mitsui Metals Mining Co., Ltd.) is formed by a sputtering method to a thickness of 5 00 nm Ni thin film layer to obtain a copper foil with a Ni thin film layer. Next, the solution B was spin-coated on the side of the Ni film layer of the copper foil with the Ni film layer. After drying on a hot plate at 350 ° C for 4 minutes, the coating solution B was rotated again and dried in the same manner to form a first composite metal oxide layer. Further, spin coating solution D was repeatedly applied on the first composite metal oxide layer, and the same drying operation was performed 8 times to form a second composite metal oxide layer. Thereafter, it was fired on a hot plate at 350 ° C for 2 hours to obtain a thin film composite material 1. (Comparative Example 1) The type of the metal thin film layer formed on the surface of the copper foil was changed from pt to pt, and the others were the same as in Example 丨 to obtain a thin film composite material 2. ® (Comparative Example 2) Ni B was not formed.

(比較例3 ) 省略溶液B的旋轉塗覆, 薄膜複合材料4。 其他與實施例 相同 獲得 (實施例2 ) 5 Γ ,r(Comparative Example 3) The spin coating of the solution B was omitted, and the thin film composite 4 was used. Others are the same as in Example. (Example 2) 5 Γ, r

於銅箔表面形成: 其他與實施例丨相同, (實施例3 ) -18- 200529251 (15) 將溶液B的旋轉塗覆次數自2次變成6次,其他與實 施例1相同,獲得薄膜複合材料6。 (實施例4 ) 將溶液D的旋轉塗覆次數自8次變成24次,其他與 實施例1相同,獲得薄膜複合材料7。 (實施例5 ) 將Sr(〇C2H5)2及Ti(〇〜卜c3H7)4溶解於藉分 子篩脫水的2 —甲氧基乙醇,使與Ti的摩爾比成爲 1 · 1,獲得〇 · 6 Μ的溶液。其次,一面攪拌此溶液,一面 在1 2 0 C下回流1 8小時,獲得複合金屬院氧化合物:S r T i (〇C2H4 OCH3 ) 6 的溶液 E。 其次,獲得以2 -甲氧基乙醇稀釋溶液e的一部分, 溶液濃度成爲0 · 2 Μ的溶液F。另一方面,添加與T i的比 爲1 : 1的水及1 ·· 0 · 1 5的氨於溶液e的一部分,在1 〇 〇 °C下攪拌3小時後,以2 —甲氧基乙醇稀釋成爲〇. 2 Μ,獲 得含結晶性金屬氧化物粒子的溶液G。以體積比爲1 : } 的方式混合此調製成0 · 2 Μ的二種溶液F與溶液G,獲得 溶液Η (複合金屬烷氧化合物的總合/結晶性金屬氧化物 粒子==50mol% / 50mol% )。Formed on the surface of copper foil: Others are the same as in Example 丨, (Example 3) -18- 200529251 (15) The number of spin coatings of solution B was changed from 2 to 6 times, and the others were the same as in Example 1 to obtain a thin film composite Material 6. (Example 4) The number of spin coatings of solution D was changed from 8 times to 24 times, and the others were the same as in Example 1 to obtain a thin film composite material 7. (Example 5) Sr (〇C2H5) 2 and Ti (〇 ~ 卜 c3H7) 4 were dissolved in 2-methoxyethanol dehydrated with a molecular sieve so that the molar ratio with Ti was 1.1, and 0.6 M was obtained. The solution. Next, while stirring the solution, it was refluxed at 120 ° C for 18 hours to obtain a solution E of a composite metal compound: S r T i (〇C2H4 OCH3) 6. Next, a part of the solution e diluted with 2-methoxyethanol was obtained, and a solution F having a solution concentration of 0.2 M was obtained. On the other hand, water having a ratio of 1: 1 to T i and 1 ·· 0 · 15 of ammonia were added to a part of the solution e, and the mixture was stirred at 100 ° C for 3 hours, followed by 2-methoxy Diluted with ethanol to 0.2 M to obtain a solution G containing crystalline metal oxide particles. The two solutions F and G prepared at a volume ratio of 1: 2 were mixed to obtain a solution Η (total of composite metal alkoxy compounds / crystalline metal oxide particles == 50 mol% / 50mol%).

另一方面’藉由濺射法,於1 〇 cm X 1 0 cm大小,厚度 7〇μηι的銅箔(例如三井金屬礦業(股)製3EC—vLP — 7 〇 )的光澤面側形成厚度5 0 0 n m的N i薄膜層,獲得帶N J 200529251 (16) 薄膜層的銅箔。 其次,於此帶N i薄膜層的銅箔的n i薄膜 覆溶液F。藉由於3 5 0 °C的熱板上乾燥4分鐘 轉塗覆溶液F,同樣乾燥,形成第一複合金屬 進一步藉由反覆進行旋轉塗覆溶液Η於該第 氧化物層上,同樣乾燥的操作8次,形成第二 化物層。此後,於3 5 0 °C的熱板上焙燒2小時 複合材料8。 (實施例6 ) 將 Ba ( 〇C2H5) 2 暨 Sr ( OC2H5) 2 及 C3H7 ) 4溶解於藉分子篩脫水的2—甲氧基乙g Sr與Ti的摩爾比成爲1 : 1 : 2,獲得0·6Μ 次,一面攪拌此溶液,一面在1 2 0 °C下回流1 得複合金屬烷氧化合物:BaG.5Sr〇.5Ti (OC2H4 溶液I。 其次,獲得以2 -甲氧基乙醇稀釋溶液I 溶液濃度成爲〇·2Μ的溶液J。另一方面,添力 爲1 : 1的水及1 : 〇 · 1 5的氨於溶液1的一部分 下攪拌3小時後,以2 -甲氧基乙醇稀釋成爲 含結晶性金屬氧化物粒子的溶液K °以體積比 方式混合此調製成〇·2Μ的二種溶液J與溶液 液L (複合金屬醇烷氧合物的總合7結晶性金 子二 50mol%/5〇mol%)。 層側旋轉塗 後,再度旋 氧化物層。 一複合金屬 複合金屬氧 ,獲得薄膜On the other hand, a thickness of 10 cm × 10 cm and a thickness of 70 μm (for example, 3EC—vLP — 7 by Mitsui Metals Mining Co., Ltd.) is used to form a thickness of 5 on the shiny side by a sputtering method. A Ni thin film layer of 0 0 nm, to obtain a copper foil with a NJ 200529251 (16) thin film layer. Next, the n i film of the copper foil with the N i film layer was coated with the solution F. The coating solution F was dried by drying on a hot plate at 350 ° C for 4 minutes and dried similarly to form a first composite metal. The coating solution was further spin-coated on the second oxide layer, and the same drying operation was performed. Eight times, a second compound layer was formed. Thereafter, the composite material 8 was fired on a hot plate at 350 ° C for 2 hours. (Example 6) Ba (〇C2H5) 2 and Sr (OC2H5) 2 and C3H7) 4 were dissolved in a 2-methoxyethylg dehydrated molecular sieve with a molar ratio of Sr to Ti of 1: 1 to obtain 0. 6M times, while stirring this solution, while refluxing at 120 ° C for 1 time to obtain a composite metal alkoxy compound: BaG.5Sr0.5Ti (OC2H4 solution I. Second, a solution of 2-methoxyethanol diluted solution I was obtained The solution concentration was 0.2M solution J. On the other hand, water with an addition force of 1: 1 and ammonia of 1: 0.15 were stirred under a portion of solution 1 for 3 hours, and then diluted with 2-methoxyethanol. The solution K ° containing crystalline metal oxide particles is mixed in a volume ratio with the two solutions J and solution L prepared as 0.2M (the total of the composite metal alcohol alkoxide 7 crystalline gold two 50 mol% / 5〇mol%). After spin coating on the side of the layer, spin the oxide layer again. A composite metal and metal oxide were obtained to obtain a thin film.

Ti ( Ο - i -享,使Ba、 的溶液。其 8小時,獲 〇CH3 ) 6 的 的一部分, α與τη的比 ,在 100〇C 0.2 Μ,獲得 爲1 : 1的 Κ,獲得溶 屬氧化物粒 200529251 (17) 力 方面’ _日由灑射法’於1 〇 cm χ 1 〇⑽大小,厚度 7〇μπι的銅箔(例如三井金屬礦業(股)製3EC— vLP — 7 〇 )的光澤面側形成厚度5 0 0 n m的N i薄膜層,獲得帶N j 薄膜層的銅箔。 其次,於此帶Ni薄膜層的銅箔的薄膜層側旋轉塗 覆溶液J。藉由於3 5 0 °C的熱板上乾燥4分鐘後,再度旋 轉塗覆溶液J,同樣乾燥,形成第一複合金屬氧化物層。 進一步藉由反覆進行旋轉塗覆溶液L於該第一複合金屬氧 化物層上,同樣乾燥的操作8次,形成第二複合金屬氧化 物層。此後,於35〇t的熱板上焙燒2小時,獲得薄膜複 合材料9。 (實施例7 ) 除了藉由電鍍法(例如使用奧野製藥工業(股)製 ICP尼克隆U的無電解鍍),形成含有率93重量%的 600nm Ni — p薄膜來替代Ni薄膜層之外,與實施例1相 同’獲得薄膜複合材料i 〇。 奉昔由Au的蒸鑛形成1誦X 1画大小的上部電極於如 此獲得的各薄膜複合材料1〜丨〇的複合金屬氧化物薄膜層 ί則$ ® ^又’藉金剛石筆挖掘此上部電極附近的複合金屬 氧化物薄膜層及金屬薄膜層,露出銅箔,以此作爲下部電 @ ° ί妾著’將上部電極與下部電極間的靜電容視爲電容器 的靜電容’測定此電容。靜電容的測定使用阿吉連特技術 公司製42 8 5 Α型精密· LCR計測定25〇C下頻率1MHz (千 -21 - 200529251 (18) 赫)的値。製作並測定3 0處中各處的上部電極及下部電 極組。 又5使用聚焦離子束加工裝置(FIB )挖掘各薄膜複 合材料1〜1 〇,藉掃瞄離子顯微鏡觀察露出的截面,測定 薄fe複合材料中複合金屬氧化物薄膜層及金屬薄膜層的厚 度。進一步使用透射型電子顯微鏡(TEM )就複合金屬氧 化物薄腠層的截面觀察暗視野像,觀察有無結晶領域。 彙集各結果,顯示於表!。Ti (Ο-i-i, make Ba, a solution. 8 hours to obtain a part of 〇CH3) 6, the ratio of α to τη, at 100 ℃ 0.2 Μ, to obtain 1: 1 K, to obtain a solution Metal oxide particles 200529251 (17) In terms of force, the copper foil with a size of 10cm x 1〇 1 and a thickness of 70μm (for example, 3EC-vLP- 7 made by Mitsui Metals Mining Co., Ltd.) A Ni thin film layer with a thickness of 500 nm was formed on the glossy surface side of) to obtain a copper foil with a Nj thin film layer. Next, the coating solution J was spin-coated on the film layer side of the copper foil with the Ni film layer. After drying on a hot plate at 350 ° C for 4 minutes, the coating solution J was rotated again and dried in the same manner to form a first composite metal oxide layer. Further, the spin coating solution L was repeatedly applied on the first composite metal oxide layer, and the same drying operation was performed 8 times to form a second composite metal oxide layer. Thereafter, it was fired on a hot plate of 350,000 tons for 2 hours to obtain a thin film composite material 9. (Example 7) Instead of the Ni thin film layer, a 600 nm Ni-p thin film having a content of 93% by weight was formed by an electroplating method (for example, electroless plating using ICP Niclone U manufactured by Okano Pharmaceutical Industry Co., Ltd.), The same as in Example 1 was obtained to obtain a thin film composite material i 0. The upper electrode was formed from the steamed ore of Au in 1 × 1, and the composite metal oxide thin film layer of each thin film composite material 1 ~ 丨 was obtained in this way. Then the upper electrode was excavated with a diamond pen. The nearby composite metal oxide thin film layer and metal thin film layer exposed the copper foil, and used this as the lower part of the battery to measure the capacitance of the capacitor as the capacitance of the capacitor. The capacitance was measured using a 42 8 5 type A precision LCR meter manufactured by Agilent Technology Co., Ltd. to measure the radon at a frequency of 1 MHz (thousands -21-200529251 (18) Hz) at 25 ° C. The upper electrode and the lower electrode group at 30 places were fabricated and measured. Another 5 uses a focused ion beam processing device (FIB) to excavate each thin film composite material 1 to 10, and observe the exposed cross section by a scanning ion microscope to measure the thickness of the composite metal oxide thin film layer and the metal thin film layer in the thin fe composite material. Further, a transmission electron microscope (TEM) was used to observe a dark field image on the cross section of the thin composite metal oxide layer, and to observe the presence or absence of a crystal field. The results are compiled and displayed in a table! .

-22- 200529251 (19) 表1 TEM觀察結果 層厚(nm) 薄膜複 良 靜電容 金屬薄膜層 第二複合 第一複合 第二複合金 第一複合金 金屬 合材料 率 (pF) 的金屬種類 金屬氧化 金屬氧化 屬氧化物層 屬氧化物層 薄膜 物層 物層 層 1 29 740 Ni 結晶+非晶形 僅非晶形 400 80 500 不能測定 2 0 (斷裂) Pt 結晶+非晶形 僅非晶形 400 80 500 不能測定 3 0 (導通) — 結晶+非晶形 僅非晶形 400 80 — 4 3 630 Ni 結晶+非晶形 400 500 5 27 580 Cr 結晶+非晶形 僅非晶形 400 80 50 6 30 390 Ni 結晶+非晶形 僅非晶形 400 240 500 7 30 350 Ni 結晶+非晶形 僅非晶形 1200 80 500 8 28 460 Ni 結晶+非晶形 僅非晶形 400 80 500 9 27 900 Ni 結晶+非晶形 僅非晶形 400 80 500 10 28 890 Ni-P合金 結晶+非晶形 僅非晶形 400 80 600 -23- 200529251 (20) 於表1中,良率顯示各3 0個製成的電容器中可測定 靜電容的數目。又,靜電容顯示可測定的電容器的平均 値。 由表1可知’本發明實施例(薄膜複合材料1、5、 6 7、8、9、1 〇 )均獲得靜電容大的電容器。比較例 (薄膜複合材料2 )於金屬薄膜層並於複合金屬氧化物薄 月吴層發生斷裂,無法形成電容器。由於比較例2 (薄膜複 合材料3 )未形成金屬薄膜層,故絕緣性低,靜電容無法 測疋。由於比較例3 (薄膜複合材料4 )不形成非晶形複 合金屬氧化物構成的第~複合金屬氧化物層,故絕緣性 低,良率不佳。 (實施例8 ) 使用前述實施例1的薄膜複合材料1製作配線板。使 用黏着片(日立化成工業(股)製GF — 3 600 )黏接薄膜 複合材料1的銅箔側與黏着銅的層疊板(日立化成工業 (股)製MCL— BE - 67G(H)),獲得多層板Μ。黏著 條件是於高溫真空壓力下,以溫度175。(:、壓力iMPa (千帕)壓接1小時。接著,藉由無電解Ni — P鍍形成 〇 · 5 μ m厚度的N i — P薄膜層於多層板μ的薄膜複合材料】 的第二複合金屬氧化物薄膜層側的表面,其次,以此{乍_ 供電層,藉由銅電鑛形成厚度20μηα的Cu厚膜。其次, 藉由光微刻法,形成鹼性顯影型抗蝕劑(日立化成χ _ (股)製Η — 9〇4〇),以10重量%的氯化鐵水溶液触刻 -24- 200529251 (21)-22- 200529251 (19) Table 1 TEM observation results Layer thickness (nm) Thin film compound capacitance Metal film layer Second composite first composite Second composite gold First composite gold metal composite material ratio (pF) Metal type metal Metal oxide Oxide oxide layer oxide layer film layer layer layer 1 29 740 Ni crystalline + amorphous only amorphous 400 80 500 cannot be measured 2 0 (fracture) Pt crystalline + amorphous only amorphous 400 80 500 cannot Measurement 3 0 (Continuity) — crystalline + amorphous only 400 80 — 4 3 630 Ni crystalline + amorphous 400 500 5 27 580 Cr crystalline + amorphous only 400 400 50 50 6 30 390 Ni crystalline + amorphous only Amorphous 400 240 500 7 30 350 Ni Crystal + Amorphous Only Amorphous 1200 80 500 8 28 460 Ni Crystal + Amorphous Only Amorphous 400 80 500 9 27 900 Ni Crystal + Amorphous Only Amorphous 400 80 500 10 28 890 Ni-P alloy crystalline + amorphous only amorphous 400 80 600 -23- 200529251 (20) In Table 1, the yield shows the number of measurable static capacitances in each of the 30 capacitors made. In addition, the capacitance shows the average 値 of the measurable capacitor. From Table 1, it can be known that 'the examples of the present invention (thin film composite materials 1, 5, 6, 7, 8, 9, and 10) all obtained capacitors having a large static capacitance. Comparative Example (Thin Film Composite 2) The metal thin film layer and the composite metal oxide thin film layer were fractured, and a capacitor could not be formed. In Comparative Example 2 (thin film composite 3), no metal thin film layer was formed, so the insulation was low, and the capacitance could not be measured. Since Comparative Example 3 (thin-film composite material 4) did not form the first composite metal oxide layer composed of an amorphous composite metal oxide, the insulating properties were low and the yield was not good. (Example 8) A wiring board was produced using the thin-film composite material 1 of Example 1 described above. Adhesive sheet (GF-3600, manufactured by Hitachi Chemical Industries, Ltd.) was used to bond the copper foil side of film composite material 1 and a copper-clad laminate (MCL-BE-67G (H), manufactured by Hitachi Chemical Industries, Ltd.), A multilayer plate M was obtained. Adhesive conditions are under high temperature vacuum pressure to a temperature of 175. (:, Pressure iMPa (kPa) crimping for 1 hour. Next, a 0.5 μm-thick Ni—P thin film layer formed on the multilayer plate μ by electroless Ni—P plating] was the second thin film composite material] The surface on the side of the composite metal oxide thin film layer is followed by the {{__ power supply layer}, which forms a Cu thick film with a thickness of 20 μηα from copper ore. Secondly, an alkaline developing resist is formed by photolithography (Hitachi Kasei Co., Ltd. 9—904), engraved with a 10% by weight ferric chloride aqueous solution-24-200529251 (21)

Cu厚膜及Ni - P薄膜層,形成電容器的上部電極。在以 5重量%氫氧化鈉水溶液剝離抗鈾劑後,再度藉由光微刻 法,形成鹼性顯影型抗蝕劑,以添加〇。1 Μ的乙胺四乙 酸·鈉鹽(EDTA · 2Na )的 3 0重量%的過氧化氫水蝕刻 第一及第二複合金屬氧化物薄膜層。在以5重量%氫氧化 鈉水溶液剝離抗鈾劑後,再度藉由光微刻法,形成鹼性顯 影型抗蝕劑,以1 0重量%的氯化鐵水溶液蝕刻Ni — P薄 膜層及銅箔,形成電容器的下部電極及配線層。以5重量 %氫氧化鈉水溶液剝離抗蝕劑,獲得具備電容器的多層配 線板。 使用阿吉連特技術公司製4 2 8 5 A型精密.L C R計, 以2 5 °C下的頻率1 MHz測定此電容器的靜電容。可就3 0 個電容器全數加以測定,其平均値爲720PF (微微法拉 第)。 (實施例9 ) 使用前述實施例6的薄膜複合材料9製作配線板。藉 由無電解Νι-Ρ鍍形成〇·5μηι厚度的Ni— P薄膜層於薄 膜複合材料9的第二複合金屬氧化物薄膜層側的表面,其 次’以此作爲供電層,藉由銅電鍍形成厚度2〇μηι的Cu 厚膜。接著’使用黏着片(日立化成工業(股)製〇 F — 3 6 00 )黏接薄膜複合材料9的銅箔側與黏着銅的層疊板 (曰ϋ化成工業(股)製MCL— BE - 67G(H)),獲得 多層板N。黏着條件是於高溫真空壓力下,以溫度1 7 5 -25- 200529251 (22) °C、壓力1 Μ P a (千帕)壓接1小時。其次,藉由光微刻 法,形成鹼性顯影型抗蝕劑(日立化成工業(股)製Η -9040 ),以10重量%的氯化鐵水溶液蝕刻Cii厚膜及Ni - P薄膜層,形成電容器的上部電極。在以5重量%氫氧 化鈉水溶液剝離抗蝕劑後,再度藉由光微刻法,形成鹼性 顯影型抗蝕齊1J ,以添加 〇. 1 Μ的乙胺四乙酸·鈉鹽 (EDTA · 2Na )的3 0重量%的過氧化氫水鈾刻第一及第 二複合金屬氧化物薄膜層。在以5重量%氫氧化鈉水溶液 剝離抗蝕劑後,再度藉由光微刻法,形成鹼性顯影型抗蝕 劑,以1 〇重量%的氯化鐵水溶液蝕刻Ni - P薄膜層及銅 箔,形成電容器的下部電極及配線層。以5重量%氫氧化 鈉水溶液剝離抗蝕劑,獲得具備電容器的多層配線板。 使用阿吉連特技術公司製428 5A型精密· LCR計, 以25 t下的頻率1MHz測定此電容器的靜電容。可就30 個電容器中的2 9個加以測定,其平均値爲8 9 5 p F。 該業者當明白,前述內容是本發明的較佳實施態樣, 可在不悖離本發明的精神及範圍下實施多數變更及修正。 【圖式簡單說明】 第1圖是圖示本發明一實施形態的剖視圖。 第2圖是圖示本發明另一實施形態的剖視圖。 第3圖是圖示本發明再另一實施形態的剖視圖。 第4圖是範示在構成上含有本發明薄膜複合材料的配 線板之一實施形態的剖視圖。 -26- 200529251 (23) 【主要元 件符 號 說 明 ] 1 薄 膜 複 合 材 料 2 第 二 複 α 金 屬 氧 化 物 薄 膜 層 2a 結 晶 領 域 2b 非 晶 形 領 域 3 第 一 複 合 金 屬 氧 化 物 薄 膜 層 4 金 屬 薄 膜 層 5 銅 箔 6 第 二 複 合 金 屬 氧 化 物 薄 膜 層 6a、6 b 複 合 金 屬 氧 化 物 薄 膜 層The Cu thick film and Ni-P thin film layer form the upper electrode of the capacitor. After the anti-uranium agent was stripped with a 5% by weight sodium hydroxide aqueous solution, a photolithography method was used again to form an alkaline developing resist to add 0. The first and second composite metal oxide thin film layers were etched with 30% by weight of hydrogen peroxide in water by 1 M of ethylamine tetraacetic acid · sodium salt (EDTA · 2Na). After stripping the anti-uranium agent with a 5% by weight sodium hydroxide aqueous solution, an alkaline developing resist was formed again by photolithography, and the Ni—P thin film layer and copper were etched with a 10% by weight ferric chloride aqueous solution. The foil forms the lower electrode and wiring layer of the capacitor. The resist was stripped with a 5 wt% sodium hydroxide aqueous solution to obtain a multilayer wiring board including a capacitor. The capacitance of this capacitor was measured at a frequency of 1 MHz at 25 ° C using a 4 2 8 5 A precision .LCR meter manufactured by Agilent Technology. All 30 capacitors can be measured, and the average 値 is 720PF (pico faraday). (Example 9) A wiring board was produced using the thin-film composite material 9 of Example 6 described above. A 0.5 μm-thick Ni—P thin film layer was formed on the surface of the second composite metal oxide thin film layer side of the thin film composite material 9 by electroless Ni-P plating, followed by 'using this as a power supply layer and forming it by copper plating. Cu thick film with a thickness of 20 μm. Next, 'adhesive sheet (Hitachi Chemical Industry Co., Ltd. 0F-3,600) was used to bond the copper foil side of the thin film composite material 9 and the copper-clad laminate (referred to as MCL-BE-67G) (H)) to obtain a multilayer board N. Adhesive conditions are crimping under high temperature vacuum pressure for 1 hour at a temperature of 17 5 -25- 200529251 (22) ° C and a pressure of 1 MPa (kPa). Next, an alkaline developing resist (, -9040 manufactured by Hitachi Chemical Industries, Ltd.) was formed by photolithography, and a Cii thick film and a Ni-P thin film layer were etched with a 10% by weight ferric chloride aqueous solution. Form the upper electrode of the capacitor. After stripping the resist with a 5% by weight aqueous sodium hydroxide solution, the photolithography method was used to form an alkaline developing resist 1J again, and 0.1 M of ethylamine tetraacetic acid · sodium salt (EDTA · 2Na) 30% by weight of hydrogen peroxide in water and uranium is etched into the first and second composite metal oxide thin film layers. After stripping the resist with a 5% by weight sodium hydroxide aqueous solution, the photolithography method was used to form an alkaline developing resist. The Ni-P thin film layer and copper were etched with a 10% by weight ferric chloride aqueous solution. The foil forms the lower electrode and wiring layer of the capacitor. The resist was removed with a 5% by weight sodium hydroxide aqueous solution to obtain a multilayer wiring board including a capacitor. The static capacitance of this capacitor was measured at a frequency of 1 MHz at 25 t using a 428 5A type precision LCR meter manufactured by Agilent Technologies. It can be measured for 29 out of 30 capacitors, with an average 値 of 8 9 5 p F. The practitioner should understand that the foregoing is a preferred embodiment of the present invention, and that many changes and modifications can be implemented without departing from the spirit and scope of the present invention. [Brief Description of the Drawings] FIG. 1 is a cross-sectional view illustrating an embodiment of the present invention. Fig. 2 is a sectional view showing another embodiment of the present invention. FIG. 3 is a cross-sectional view illustrating still another embodiment of the present invention. Fig. 4 is a cross-sectional view illustrating an embodiment of a wiring board including a thin film composite material of the present invention in its configuration. -26- 200529251 (23) [Description of main component symbols] 1 Thin film composite material 2 Second complex α metal oxide thin film layer 2a Crystal field 2b Amorphous field 3 First composite metal oxide film layer 4 Metal film layer 5 Copper foil 6 Second composite metal oxide thin film layer 6a, 6 b Composite metal oxide thin film layer

7 第二複合金屬氧化物薄膜層 7a、7b、7c 複合金屬氧化物薄膜層 8 配線板 9 薄膜複合材料7 Second composite metal oxide film layer 7a, 7b, 7c Composite metal oxide film layer 8 Wiring board 9 Thin film composite material

9a 第二複合金屬氧化物薄膜層 9b 第一複合金屬氧化物薄膜層 9c 金屬薄膜層 9d 銅箔 10 基板 11 黏著片 12" 13 電極 -27-9a Second composite metal oxide thin film layer 9b First composite metal oxide thin film layer 9c Metal thin film layer 9d Copper foil 10 Substrate 11 Adhesive sheet 12 " 13 Electrode -27-

Claims (1)

200529251 (1) 十、申請專利範圍 1 · 一種薄膜複合材料,其特徵爲:具有: 銅箔; 金屬薄膜層,係形成於前述銅箔之一表面,含有由選 自Cr、Ni、Au、Ag及其合金所組成的群中一種以上的金 屬; 第一複合金屬氧化物薄膜層,係形成於前述金屬薄膜 層表面,由含有作爲構成元素的Ba及/或Sr、Ti的非晶 形複合金屬氧化物構成;以及 弟一複合金屬氧化物薄膜層,係形成於前述第一複合 金屬氧化物薄膜層表面,至少包含含有作爲構成元素的 Ba及/或Sr、Ti的結晶性金屬氧化物。 2 ·如申請專利範圍第1項所記載之薄膜複合材料,其 中則述金屬薄膜層的厚度爲50nm〜Ιμηι範圍。 3 ·如申請專利範圍第1或2項所記載之薄膜複合材料 ,其中前述第一複合金屬氧化物薄膜層的厚度爲l〇nm〜 2 0 0 n m範圍。 4 ·如申請專利範圍第1或2項所記載之薄膜複合材料 ,其中前述第一複合金屬氧化物薄膜層的厚度與前述第二 複合金屬氧化物薄膜層的厚度的和爲30nm〜範圍。 5 ·如申請專利範圍第1或2項所記載之薄膜複合材料 ’其中前述第二複合金屬氧化物薄膜層進一步包含含有作 爲構成元素的B a及/或s r、τ丨的非晶形複合金屬氧化 物。 -28- 200529251 (2) 6. —種配線板用材料,其特徵爲:於薄膜複合材料的 前述銅箔的另一表面形成絕緣材料層,於前述第二複合金 屬氧化物薄膜層的表面形成導體層,該薄膜複合材料具 有·銅泊,金屬溥膜層,係形成於前述銅箱之一表面,含 有由選自C r、N i、A u、A g及其合金所組成的群中〜種以 上的金屬;第一複合金屬氧化物薄膜層,係形成於前述金 屬薄膜層表面,由含有作爲構成元素的Ba及/或Sr、Ti 的非晶形複合金屬氧化物構成;以及第二複合金屬氧化物 薄膜層,係形成於前述第一複合金屬氧化物薄膜層,至少 包含含有作爲構成元素的Ba及/或Sr、Ti的結晶性金屬 氧化物。 7·如申請專利範圍第6項所記載之配線板用材料,其 中則述金屬薄膜層的厚度爲50nm〜Ιμιη範圍。 8·如申請專利範圍第6或7項所記載之配線板用材料 ’其中前述第一複合金屬氧化物薄膜層的厚度爲10 nm〜 2 0 0 n m範圍。 9 ·如申請專利範圍第6或7項所記載之配線板用材 料’其中前述第一複合金屬氧化物薄膜層的厚度與前述第 一複合金屬氧化物薄膜層的厚度的和爲3 0 n m〜2 μ m範 圍。 1 〇 ·如申請專利範圍第6或7項所記載之配線板用材 料’其中前述第二複合金屬氧化物薄膜層進一步包含含有 作爲構成元素的Ba及/或Sr、Ti的非晶形複合金屬氧化 物。 -29- 200529251 (3) 1 1 · 一種配線板,其特徵爲:於薄膜複合材料的前述 銅箔的另一表面形成絕緣材料層,於前述第二複合金屬氧 化物薄膜層的表面形成導體圖型,該薄膜複合材料具有: 銅箔;金屬薄膜層,係形成於前述銅箔之一表面,含有*由 运自Cr、Ni、Ail、Ag及其合金所組成的群中—種以上的 金屬,弟一'複合金屬氧化物薄fl吴層’係形成於前述金屬薄 膜層表面,由含有作爲構成元素的Ba及/或Sr、Ti的非 晶形複合金屬氧化物構成;以及第二複合金屬氧化物薄膜 層,係形成於前述第一複合金屬氧化物薄膜層表面,至少 包含含有作爲構成元素的B a及/或S r、Ti的結晶性金屬 氧化物。 1 2 ·如申請專利範圍第1 1項所記載之配線板,其中前 述金屬薄膜層的厚度爲50nm〜Ιμηι範圍。 1 3 ·如申請專利範圍第1 1或1 2項所記載之配線板, 其中前述第一複合金屬氧化物薄膜層的厚度爲10 nm〜 2 0 0 n m範圍〇 1 4 ·如申請專利範圍第i 1或1 2項所記載之配線板, 其中前述第一複合金屬氧化物薄膜層的厚度與前述第二複 合金屬氧化物薄膜層的厚度的和爲30nm〜2μηι範圍。 1 5 ·如申請專利範圍第1 1或1 2項所記載之配線板, 其中前述第二複合金屬氧化物薄膜層進一步包含含有作爲 構成元素的Ba及/或Sr、Ti的非晶形複合金屬氧化物。 1 6 · —種電子零件用材料,其特徵爲:於薄膜複合材 料的前述第二複合金屬氧化物薄膜層的表面形成導體層’ -30- 200529251 (4) 該薄膜複合材料具有:銅箔;金屬薄膜層,係形成於前述 銅范之一表面’含有由選自Cr、Ni、An、Ag及其合金所 組成的群中一種以上的金屬;第一複合金屬氧化物薄膜 層’係开^成於則述金屬薄膜層表面,由含有作爲構成元素 的Ba及/或Sr、Ti的非晶形複合金屬氧化物構成;以及 第二複合金屬氧化物薄膜層,係形成於前述第一複合金屬 氧化物薄膜層表面,至少包含含有作爲構成元素的Ba及 /或Sr、Ti的結晶性金屬氧化物。 1 7 ·如申請專利範圍第1 6項所記載之電子零件用材 料,其中前述金屬薄膜層的厚度爲50nm〜 1μηι範圍。 1 8 .如申請專利範圍第1 6或1 7項所記載之電子零件 用材料,其中前述第一複合金屬氧化物薄膜層的厚度爲 10nm 〜200nm 範圍。 1 9 .如申請專利範圍第1 6或丨7項所記載之電子零件 用材料,其中前述第一複合金屬氧化物薄膜層的厚度與前 述第二複合金屬氧化物薄膜層的厚度的和爲3〇nm〜2^切 範圍。 20·如申請專利範圍第16或I?項所記載之電子零件 用材料,其中前述第二複合金屬氧化物薄膜層進一步包食 含有作爲構成兀素的Ba及/或Sr、Ti的非晶形複合金_ 氧化物。 2 1 . —種電子零件,其特徵爲:於薄膜複合材料的騎 述銅箔的另一表面形成絕緣材料層,於前述第二複合金_ 氧化物薄膜層的表面形成電容電極,該薄膜複合材料錢 200529251 (5) 有:銅箔;金屬薄膜層,係形成於前述銅箔之一表面,含 有由選自Cr、Ni、An、Ag及其合金所組成的群中一種以 上的金屬;第一複合金屬氧化物薄膜層,係形成於前述金 屬薄膜層表面,由含有作爲構成元素的Ba及/或Sr、Ti 的非晶形複合金屬氧化物構成·,以及第二複合金屬氧化物 薄膜層’係形成於前述第一複合金屬氧化物薄膜層表面, 至少包含含有作爲構成元素的Ba及/或Sr、Ti的結晶性 金屬氧化物。 22·如申請專利範圍第21項所記載之電子零件,其中 前述金屬薄膜層的厚度爲50nm〜Ιμηι範圍。 23·如申請專利範圍第21或22項所記載之電子零 件,其中前述第一複合金屬氧化物薄膜層的厚度爲1 〇nm 〜2 0 0 n m範圍。 2 4 ·如申請專利範圍第2 1或2 2項所記載之電子零 件,其中前述第一複合金屬氧化物薄膜層的厚度與前述第 二複合金屬氧化物薄膜層的厚度的和爲30nm〜2μηι範 圍。 2 5 ·如申請專利範圍第2 1或2 2項所記載之電子零 件,其中前述第二複合金屬氧化物薄膜層進一步包含含有 作爲構成元素的Ba及/或Sr、Ti的非晶形複合金屬氧化 物。 2 6. —種溥膜複合材料之製造方法,其特徵爲:包 括: 於銅箔之一表面上形成含有選自Cr、Ni、Au、Ag及 -32- 200529251 (6) 其合金所構成的群中一種以上的金屬的金屬薄膜層的步 驟; 於則述金屬薄膜層表面形成含有作爲構成元素的Ba 及/或Sr、Ti的非晶形複合金屬氧化物所構成的第一複 合金屬氧化物薄膜層的步驟;以及 於前述第一複合金屬氧化物薄膜層的表面形成至少包 含含有作爲構成元素的B a及/或S r、Ti的結晶性金屬氧 化物的第二複合金屬氧化物薄膜層的步驟; 至少於前述第一複合金屬氧化物薄膜層形成步驟中, 在400°C以下進行熱處理。 27.如申請專利範圍第26項所記載之薄膜複合材料之 製造方法,其中形成前述金屬薄膜層的厚度於5 0nm〜 1 μηι範圍 。 28·如申請專利範圍第26或27項所記載之薄膜複合 材料之製造方法,其中形成前述第一複合金屬氧化物薄膜 層的厚度於10nm〜200nm範圍。 2 9.如申請專利範圍第26或27項所記載之薄膜複合 材料之製造方法,其中以前述第一複合金屬氧化物薄膜層 的厚度與前述第二複合金屬氧化物薄膜層的厚度合計爲 3 0nm〜2μιη範圍的方式分別形成。 3 0.如申請專利範圍第26或27項所記載之薄膜複合 材料之製造方法,其中前述第二複合金屬氧化物薄膜層進 一步包含含有作爲構成元素的Ba及/或Sr、Ti的非晶形 複合金屬氧化物。 -33- 200529251 (7) 3 1 . —種配線板用材料之製造方法,其特徵爲··包 括: 於銅范之一表面上形成含有選自Cr、Ni、Au、Ag及 其合金所構成的群中一種以上的金屬的金屬薄膜層的步 驟; - 於前述金屬薄膜層表面形成含有作爲構成元素的Ba . 及/或Sr、Ti的非晶形複合金屬氧化物所構成的第一複 合金屬氧化物薄膜層的步驟; φ 於前述第一複合金屬氧化物薄膜層的表面形成至少包 含含有作爲構成元素的Ba及/或Sr、Ti的結晶性金屬氧 化物的第二複合金屬氧化物薄膜層的步驟; 於前述銅箔的另一表面形成絕緣材料層的步驟;以及 於前述第二複合金屬氧化物薄膜層的表面形成導體層 的步驟; 至少於前述第一複合金屬氧化物薄膜層形成步驟中, 在40CTC以下進行熱處理。 φ 3 2 ·如申請專利範圍第3 1項所記載之配線板用材料之 製造方法,其中形成前述金屬薄膜層的厚度於 50 nm〜 1 μ m範圍。 3 3 ·如申請專利範圍第3 1或3 2項所記載之配線板用 〜 材料之製造方法,其中形成前述第一複合金屬氧化物薄膜 層的厚度於l〇nm〜200nm範圍。 3 4 .如申請專利範圍第3 1或3 2項所記載之配線板用 材料之製造方法,其中以前述第一複合金屬氧化物薄膜層 -34- 200529251 (8) 的厚度與前述第二複合金屬氧化物薄膜層的厚度合計爲 3 0nm〜2μηι範圍的方式分別形成。 3 5 .如申請專利範圍第3 1或3 2項所記載之配線板用 材料之製造方法,其中前述第二複合金屬氧化物薄膜層進 一步包含含有作爲構成元素的Ba及/或Sr、Ti的非晶形 複合金屬氧化物。 3 6.—種配線板之製造方法,其特徵爲:包括: 於銅箔之一表面上形成含有選自Cr、Ni、Au、Ag及 其合金所構成的群中一種以上的金屬的金屬薄膜層的步 驟; 於前述金屬薄膜層表面形成含有作爲構成元素的Ba 及/或Sr、Ti的非晶形複合金屬氧化物所構成的第一複 合金屬氧化物薄膜層的步驟; 於前述第一複合金屬氧化物薄膜層的表面形成至少包 含含有作爲構成元素的B a及/或S r、Ti的結晶性金屬氧 化物的第二複合金屬氧化物薄膜層的步驟; 於前述銅箔的另一表面形成絕緣材料層的步驟;以及 於前述第二複合金屬氧化物薄膜層的表面形成導體圖 形的步驟; 至少於前述第一複合金屬氧化物薄膜層形成步驟中, 在40CTC以下進行熱處理。 3 7 .如申請專利範圍第3 6項所記載之配線板之製造方 法,其中形成前述金屬薄膜層的厚度於5 0nm〜1μπι範 圍。 -35- 200529251 (9) 3 8 .如申請專利範圍第3 6或3 7項所記載之配線板之 製造方法,其中形成前述第一複合金屬氧化物薄膜層的厚 度於10nm〜200nm範圍。 3 9 .如申請專利範圍第3 6或3 7項所記載之配線板之 製造方法’其中以前述第一複合金屬氧化物薄膜層的厚度 與前述第二複合金屬氧化物薄膜層的厚度合計爲3〇nm〜 2 μηι範圍的方式分別形成。 4 0.如申請專利範圍第36或37項所記載之配線板之 製造方法,其中前述第二複合金屬氧化物薄膜層進一步包 含含有作爲構成元素的B a及/或S r、Ti的非晶形複合金 屬氧化物。 4 1 · 一種電子零件用材料之製造方法,其特徵爲:包 括: 於銅箔之一表面上形成含有選自Cr、Ni、Au、Ag及 其合金所構成的群中一種以上的金屬的金屬薄膜層的步 驟; 於則述金屬薄0吴層表面形成含有作爲構成元素的B a 及/或Sr、Ti的非晶形複合金屬氧化物所構成的第一複 合金屬氧化物薄膜層的步驟; 於前述第一複合金屬氧化物薄膜層的表面形成至少包 含含有作爲構成元素的Ba及/或Sr、Ti的結晶性金屬氧 化物的第二複合金屬氧化物薄膜層的步驟;以及 於前述第二複合金屬氧化物薄膜層的表面形成導體層 的步驟; -36- 200529251 (10) 至少於前述第一複合金屬氧化物薄膜層形成步驟中, 在400 °C以下進行熱處理。 42 ·如申請專利範圍第4丨項所記載之電子零件用材料 之製造方法,其中形成前述金屬薄膜層的厚度於5〇nm〜 1 μ m範圍。 4 3.如申請專利範圍第41或42項所記載之電子零件 用材料之製造方法,其中形成前述第一複合金屬氧化物薄 膜層的厚度於l〇nm〜200nm範圍。 44·如申請專利範圍第41或42項所記載之電子零件 用材料之製造方法’其中以前述第一複合金屬氧化物薄膜 層的厚度與前述第二複合金屬氧化物薄膜層的厚度合計爲 3 0nm〜2μηι範圍的方式分別形成。 4 5 ·如申請專利範圍第4 1或4 2項所記載之電子零件 用材料之製造方法’其中前述第二複合金屬氧化物薄膜層 進一步包含含有作爲構成元素的Ba及/或Sr、Ti的非晶 形複合金屬氧化物。 46·—種電子零件之製造方法,其特徵爲:包括: 於銅箔之一表面上形成含有選自Cr、Ni、Au、Ag及 其合金所構成的群中一種以上的金屬的金屬薄膜層的步 驟; 於前述金屬薄膜層表面形成含有作爲構成元素的Ba 及/或S r、T i的非晶形複合金屬氧化物所構成的第一複 合金屬氧化物薄膜層的步驟; 於前述第一複合金屬氧化物薄膜層的表面形成至少包 -37- 200529251 (11) 含含有作爲構成兀素的B a及/或S r、T i的結晶性金屬氧 化物的第二複合金屬氧化物薄膜層的步驟; 於前述第二複合金屬氧化物薄膜層的表面形成導體層 的步驟; 於前述銅箔的另一表面形成絕緣材料層的步驟;以及 蝕刻除去無需前述導體層的部位,形成電容電極的步 驟; 至少於前述第一複合金屬氧化物薄膜層形成步驟中, 在400°C以下進行熱處理。 47.如申請專利範圍第46項所記載之電子零件之製造 方法,其中形成前述金屬薄膜層的厚度於50nm〜1 μιη範 圍。 4 8.如申請專利範圍第46或47項所記載之電子零件 之製造方法,其中形成前述第一複合金屬氧化物薄膜層的 厚度於10nm〜200nm範圍。 4 9.如申請專利範圍第46或47項所記載之電子零件 之製造方法,其中以前述第一複合金屬氧化物薄膜層的厚 度與前述第二複合金屬氧化物薄膜層的厚度合計爲30nm 〜2 μηι範圍的方式分別形成。 5 0 ·如申請專利範圍第4 6或4 7項所記載之電子零件之製 造方法,其中前述第二複合金屬氧化物薄膜層進一步包含 含有作爲構成元素的Ba及/或Si*、Ti的非晶形複合金屬氧 化物。200529251 (1) X. Patent application scope 1 · A thin film composite material, which is characterized by having: a copper foil; a metal thin film layer formed on one of the surfaces of the foregoing copper foil and containing a material selected from the group consisting of Cr, Ni, Au, and Ag One or more metals in the group consisting of alloys and alloys thereof; the first composite metal oxide thin film layer is formed on the surface of the aforementioned metal thin film layer and is oxidized by an amorphous composite metal containing Ba and / or Sr, Ti as constituent elements And a first composite metal oxide thin film layer formed on the surface of the first composite metal oxide thin film layer and including at least a crystalline metal oxide containing Ba and / or Sr and Ti as constituent elements. 2. The thin film composite material according to item 1 of the scope of the patent application, wherein the thickness of the metal thin film layer is in the range of 50 nm to 1 μm. 3. The thin film composite material according to item 1 or 2 of the scope of application for a patent, wherein the thickness of the first composite metal oxide thin film layer is in a range of 10 nm to 2000 nm. 4. The thin film composite material according to item 1 or 2 of the scope of patent application, wherein the sum of the thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer is in a range of 30 nm to. 5. The thin film composite material described in item 1 or 2 of the scope of the patent application, wherein the second composite metal oxide thin film layer further includes an amorphous composite metal oxide containing B a and / or sr, τ 丨 as constituent elements. Thing. -28- 200529251 (2) 6. A wiring board material characterized by forming an insulating material layer on the other surface of the copper foil of the thin film composite material, and forming a surface of the second composite metal oxide thin film layer. Conductor layer, the thin film composite material has a copper layer, a metal rhenium layer, is formed on one surface of the copper box, and contains a group selected from the group consisting of Cr, Ni, Au, Ag, and alloys thereof More than one metal; a first composite metal oxide thin film layer formed on the surface of the aforementioned metal thin film layer, and composed of an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements; and a second composite The metal oxide thin film layer is formed on the first composite metal oxide thin film layer, and includes at least a crystalline metal oxide containing Ba and / or Sr and Ti as constituent elements. 7. The material for a wiring board according to item 6 of the scope of patent application, wherein the thickness of the metal thin film layer is in a range of 50 nm to 1 μm. 8. The material for a wiring board according to item 6 or 7 of the scope of the patent application, wherein the thickness of the first composite metal oxide thin film layer is in a range of 10 nm to 2000 nm. 9 · The wiring board material according to item 6 or 7 of the scope of the patent application, wherein the sum of the thickness of the first composite metal oxide thin film layer and the thickness of the first composite metal oxide thin film layer is 30 nm to 2 μm range. 1 〇 The material for a wiring board according to item 6 or 7 of the scope of the patent application, wherein the second composite metal oxide thin film layer further includes an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements. Thing. -29- 200529251 (3) 1 1 · A wiring board characterized in that an insulating material layer is formed on the other surface of the copper foil of the thin film composite material, and a conductor pattern is formed on the surface of the second composite metal oxide thin film layer. Type, the thin film composite material has: a copper foil; a metal thin film layer formed on one of the surfaces of the foregoing copper foil and containing * more than one metal in a group consisting of Cr, Ni, Ail, Ag, and alloys thereof The first composite metal oxide thin fl layer is formed on the surface of the aforementioned metal thin film layer and is composed of an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements; and a second composite metal oxide The thin film layer is formed on the surface of the first composite metal oxide thin film layer, and includes at least a crystalline metal oxide containing B a and / or S r and Ti as constituent elements. 1 2. The wiring board according to item 11 of the scope of patent application, wherein the thickness of the metal thin film layer is in a range of 50 nm to 1 μm. 1 3 · The wiring board as described in item 11 or 12 of the scope of patent application, wherein the thickness of the first composite metal oxide thin film layer is in the range of 10 nm to 2 0 0 nm. 0 · 4 The wiring board according to item 1 or 12, wherein the sum of the thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer is in a range of 30 nm to 2 μm. 15 · The wiring board according to item 11 or 12 in the scope of the patent application, wherein the second composite metal oxide thin film layer further includes an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements. Thing. 1 ··· A material for electronic parts, characterized in that a conductor layer is formed on the surface of the second composite metal oxide thin film layer of the thin film composite material. -30- 200529251 (4) The thin film composite material has: copper foil; A metal thin film layer is formed on one of the surfaces of the aforementioned copper layer, and contains 'one or more metals selected from the group consisting of Cr, Ni, An, Ag, and alloys thereof; the first composite metal oxide thin film layer' is opened ^ It is formed on the surface of the metal thin film layer and is composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements; and a second composite metal oxide thin film layer is formed on the first composite metal oxide. The surface of the thin film layer contains at least a crystalline metal oxide containing Ba and / or Sr and Ti as constituent elements. 17 · The material for electronic parts as described in item 16 of the scope of patent application, wherein the thickness of the aforementioned metal thin film layer is in a range of 50 nm to 1 μm. 18. The material for electronic parts according to item 16 or 17 of the scope of patent application, wherein the thickness of the first composite metal oxide thin film layer is in a range of 10 nm to 200 nm. 19. The material for electronic parts according to item 16 or 7 of the scope of the patent application, wherein the sum of the thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer is 3 〇nm ~ 2 ^ cut range. 20. The material for electronic parts according to item 16 or I? Of the scope of the patent application, wherein the second composite metal oxide thin film layer further includes an amorphous composite containing Ba and / or Sr and Ti as constituent elements. Gold_ oxide. 2 1. An electronic component, characterized in that an insulating material layer is formed on the other surface of the copper foil of the thin film composite material, and a capacitor electrode is formed on the surface of the second composite gold oxide film layer, and the thin film composite Material money 200529251 (5): copper foil; metal thin film layer formed on one of the surfaces of the aforementioned copper foil and containing one or more metals selected from the group consisting of Cr, Ni, An, Ag, and alloys thereof; A composite metal oxide thin film layer is formed on the surface of the foregoing metal thin film layer, and is composed of an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements, and a second composite metal oxide thin film layer ' It is formed on the surface of the first composite metal oxide thin film layer, and includes at least a crystalline metal oxide containing Ba and / or Sr and Ti as constituent elements. 22. The electronic component according to item 21 of the scope of patent application, wherein the thickness of the metal thin film layer is in a range of 50 nm to 1 μm. 23. The electronic component as described in claim 21 or 22, wherein the thickness of the first composite metal oxide thin film layer is in the range of 10 nm to 2000 nm. 2 4 · The electronic component described in item 21 or 22 of the scope of the patent application, wherein the sum of the thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer is 30 nm to 2 μηι range. 2 5 · The electronic component described in item 21 or 22 of the scope of the patent application, wherein the second composite metal oxide thin film layer further includes an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements. Thing. 2 6. —A method for manufacturing a rhenium film composite material, comprising: forming on one surface of a copper foil a material containing Cr, Ni, Au, Ag, and -32-200529251 (6) A step of forming a metal thin film layer of one or more metals in the group; forming a first composite metal oxide thin film composed of an amorphous composite metal oxide containing Ba and / or Sr, Ti as constituent elements on the surface of the metal thin film layer A step of forming a layer; and forming a second composite metal oxide thin film layer containing at least a crystalline metal oxide containing B a and / or S r and Ti as constituent elements on the surface of the first composite metal oxide thin film layer. Step: At least in the foregoing first step of forming the composite metal oxide thin film layer, heat treatment is performed at a temperature of 400 ° C or lower. 27. The method for manufacturing a thin-film composite material according to item 26 of the scope of the patent application, wherein the thickness of the aforementioned metal thin-film layer is in a range of 50 nm to 1 μm. 28. The method for manufacturing a thin film composite material according to item 26 or 27 of the scope of the patent application, wherein the thickness of the first composite metal oxide thin film layer is in the range of 10 nm to 200 nm. 2 9. The method for manufacturing a thin-film composite material according to item 26 or 27 of the scope of application for a patent, wherein the total thickness of the first composite metal oxide thin film layer and the second composite metal oxide thin film layer is 3 0nm ~ 2μηη range are formed separately. 30. The method for manufacturing a thin film composite material according to item 26 or 27 of the scope of the patent application, wherein the second composite metal oxide thin film layer further includes an amorphous composite containing Ba and / or Sr, Ti as constituent elements. Metal oxide. -33- 200529251 (7) 3 1. A method for manufacturing a wiring board material, characterized in that it comprises: forming on a surface of a copper alloy a material containing a material selected from the group consisting of Cr, Ni, Au, Ag and its alloys A step of forming a metal thin film layer of one or more metals in the group;-forming a first composite metal oxide composed of an amorphous composite metal oxide containing Ba. And / or Sr, Ti as a constituent element on the surface of the metal thin film layer; Step of forming a thin film layer; φ forming a second composite metal oxide thin film layer containing at least a crystalline metal oxide containing Ba and / or Sr, Ti as constituent elements on the surface of the first composite metal oxide thin film layer. A step of forming an insulating material layer on the other surface of the copper foil; a step of forming a conductor layer on the surface of the second composite metal oxide film layer; at least in the first composite metal oxide film layer forming step , Heat treatment below 40CTC. φ 3 2 · The method for manufacturing a wiring board material according to item 31 of the scope of patent application, wherein the thickness of the aforementioned metal thin film layer is in a range of 50 nm to 1 μm. 3 3 · The method for manufacturing a wiring board material according to item 31 or 32 of the scope of application for a patent, wherein the thickness of the first composite metal oxide thin film layer is in the range of 10 nm to 200 nm. 3 4. The method for manufacturing a wiring board material according to item 31 or 32 of the scope of the patent application, wherein the thickness of the first composite metal oxide film layer -34- 200529251 (8) is the same as that of the second composite The total thickness of the metal oxide thin film layer is formed separately in a range of 30 nm to 2 μm. 35. The method for manufacturing a material for a wiring board according to item 31 or 32 in the scope of the patent application, wherein the second composite metal oxide thin film layer further contains Ba and / or Sr, Ti as constituent elements. Amorphous composite metal oxide. 3 6. A method for manufacturing a wiring board, comprising: forming a metal thin film containing one or more metals selected from the group consisting of Cr, Ni, Au, Ag, and an alloy thereof on one surface of a copper foil; A step of forming a layer; a step of forming a first composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements on the surface of the metal thin film layer; on the first composite metal A step of forming a second composite metal oxide thin film layer including at least a crystalline metal oxide of B a and / or S r and Ti as constituent elements on the surface of the oxide thin film layer; and forming the second composite metal oxide thin film layer on the other surface of the copper foil An insulating material layer step; and a step of forming a conductor pattern on the surface of the second composite metal oxide thin film layer; at least in the first composite metal oxide thin film layer forming step, heat treatment is performed at 40 CTC or less. 37. The method for manufacturing a wiring board according to item 36 of the scope of patent application, wherein the thickness of the aforementioned metal thin film layer is in a range of 50 nm to 1 μm. -35- 200529251 (9) 3 8. The method for manufacturing a wiring board according to item 36 or 37 of the scope of application for a patent, wherein the thickness of the aforementioned first composite metal oxide film layer is in a range of 10 nm to 200 nm. 39. The method for manufacturing a wiring board according to item 36 or 37 in the scope of the patent application, wherein the total thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer is Formed in the range of 30nm to 2 μm. 40. The method for manufacturing a wiring board according to item 36 or 37 of the scope of the patent application, wherein the second composite metal oxide thin film layer further includes an amorphous material containing B a and / or S r and Ti as constituent elements. Composite metal oxide. 4 1 · A method for manufacturing a material for electronic parts, comprising: forming on a surface of a copper foil a metal containing one or more metals selected from the group consisting of Cr, Ni, Au, Ag, and alloys thereof A step of forming a thin film layer; a step of forming a first composite metal oxide thin film layer composed of an amorphous composite metal oxide containing B a and / or Sr and Ti as constituent elements on the surface of the thin metal layer; and A step of forming a second composite metal oxide thin film layer on the surface of the first composite metal oxide thin film layer including at least a crystalline metal oxide containing Ba and / or Sr and Ti as constituent elements; and The step of forming a conductor layer on the surface of the metal oxide thin film layer; -36- 200529251 (10) At least the heat treatment is performed at a temperature of 400 ° C or lower in the step of forming the first composite metal oxide thin film layer. 42. The method for manufacturing a material for electronic parts according to item 4 丨 in the scope of the patent application, wherein the thickness of the aforementioned metal thin film layer is within a range of 50 nm to 1 μm. 4 3. The method for manufacturing a material for electronic parts according to item 41 or 42 of the scope of the patent application, wherein the thickness of the aforementioned first composite metal oxide thin film layer is in the range of 10 nm to 200 nm. 44. The method for manufacturing a material for electronic parts as described in item 41 or 42 of the scope of the patent application, wherein the thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer are 3 Formed in the range of 0nm ~ 2μm. 4 5 · The method for manufacturing a material for an electronic component as described in item 41 or 42 of the scope of the patent application, wherein the second composite metal oxide thin film layer further includes a layer containing Ba and / or Sr, Ti as constituent elements. Amorphous composite metal oxide. 46 · A method for manufacturing an electronic part, comprising: forming a metal thin film layer containing one or more metals selected from the group consisting of Cr, Ni, Au, Ag, and an alloy thereof on a surface of a copper foil; A step of forming a first composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or S r and Ti as constituent elements on the surface of the metal thin film layer; The surface of the metal oxide thin film layer is formed to include at least -37- 200529251 (11) a second composite metal oxide thin film layer containing a crystalline metal oxide containing B a and / or S r, T i as a constituent element Steps: a step of forming a conductor layer on the surface of the second composite metal oxide thin film layer; a step of forming an insulating material layer on the other surface of the copper foil; and a step of forming a capacitor electrode by etching to remove a portion that does not require the conductor layer ; At least in the foregoing first step of forming the composite metal oxide thin film layer, heat treatment is performed at a temperature of 400 ° C or lower. 47. The method for manufacturing an electronic component according to item 46 of the scope of patent application, wherein the thickness of the metal thin film layer is in a range of 50 nm to 1 μm. 4 8. The method for manufacturing an electronic component according to item 46 or 47 of the scope of the patent application, wherein the thickness of the aforementioned first composite metal oxide thin film layer is in a range of 10 nm to 200 nm. 4 9. The method for manufacturing an electronic component according to item 46 or 47 of the scope of the patent application, wherein the thickness of the first composite metal oxide thin film layer and the thickness of the second composite metal oxide thin film layer are 30 nm in total ~ 2 μηι ranges were formed separately. 5 0 · The method for manufacturing an electronic component as described in item 46 or 47 of the scope of the patent application, wherein the second composite metal oxide thin film layer further contains a non-metal containing Ba and / or Si * and Ti as constituent elements. Crystal form composite metal oxide.
TW093128029A 2004-02-19 2004-09-16 Thin-film composite material, and wiring board material using the same, wiring board, electronic part material and electronic part, and process for production thereof TW200529251A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042749 2004-02-19

Publications (1)

Publication Number Publication Date
TW200529251A true TW200529251A (en) 2005-09-01

Family

ID=34879274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093128029A TW200529251A (en) 2004-02-19 2004-09-16 Thin-film composite material, and wiring board material using the same, wiring board, electronic part material and electronic part, and process for production thereof

Country Status (3)

Country Link
JP (1) JP4148293B2 (en)
TW (1) TW200529251A (en)
WO (1) WO2005080073A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760801B (en) * 2018-07-27 2021-09-28 浙江清华柔性电子技术研究院 Energy storage ceramic film and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989027B2 (en) * 1994-07-12 2007-10-10 テキサス インスツルメンツ インコーポレイテツド Capacitor and manufacturing method thereof
JPH08245263A (en) * 1994-11-24 1996-09-24 Fuji Xerox Co Ltd Thin oxide film and its production
JP3476932B2 (en) * 1994-12-06 2003-12-10 シャープ株式会社 Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JPH0897532A (en) * 1995-09-11 1996-04-12 Hitachi Ltd Thin-film capacitor
WO2003002782A1 (en) * 2001-06-28 2003-01-09 Energenius, Inc. Method of making a nickel-coated copper substrate and thin film composite containing the same

Also Published As

Publication number Publication date
JPWO2005080073A1 (en) 2008-01-10
JP4148293B2 (en) 2008-09-10
WO2005080073A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
JP6350971B2 (en) Printed wiring board substrate and method for manufacturing printed wiring board substrate
WO2010122918A1 (en) Substrate for printed wiring board, printed wiring board, and methods for producing same
JP5434714B2 (en) Thin film capacitor and electronic circuit board
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
TWI633817B (en) Coreless assembly support substrate
JP2013058718A (en) Multilayer ceramic electronic component and manufacturing method therefor
JP4375395B2 (en) Thin film composite material and manufacturing method thereof, and multilayer wiring board and electronic component using the thin film composite material
TW200425186A (en) Laminated type parts for electronics and manufacturing method thereof
JP2012525719A (en) Passive electrical goods
WO2016039314A1 (en) Printed circuit board substrate, printed circuit board, and production method for printed circuit board substrate
JP3744439B2 (en) Conductive paste and multilayer ceramic electronic components
JP2007262493A (en) Material for flexible printed board and method of manufacturing the same
KR20000028837A (en) Nickel composite particle and production process therefor
JP2006248074A (en) Composite substrate with high dielectric constant, composite sheet with high dielectric constant, and methods for producing them
JP6484026B2 (en) Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
TWI251536B (en) Material for multilayer printed circuit board with built-in capacitor, substrate for multilayer printed circuit board, multilayer printed circuit board and methods for producing those
JP2008258555A (en) Thin film composite material, method for manufacturing the same, electronic component material using thin film composite material, method for manufacturing electronic component, electronic component, and method for manufacturing the same
JP2002275511A (en) Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
JP4952332B2 (en) CAPACITOR LAYER FORMING MATERIAL, MANUFACTURING METHOD THEREOF, AND PRINTED WIRING BOARD
TW200529251A (en) Thin-film composite material, and wiring board material using the same, wiring board, electronic part material and electronic part, and process for production thereof
JP2002289456A (en) Ceramic laminate and method for manufacturing the same
CN115810487A (en) Ceramic electronic component, method of manufacturing the same, and method of manufacturing dielectric powder
JP2002299145A (en) Ceramic laminate and method of manufacturing the same
TW200829099A (en) Capacitor layer-forming material, method for producing capacitor layer-forming material, and printed wiring board comprising built-in capacitor obtained by using the capacitor layer-forming material
CN110648844B (en) Preparation method of metallized film