200524267 九、發明說明: 本申請案主張2003年9月16日提出的韓國專利申請案第 P2003-64241號的優先權,本文以引用的方式將其併入。 【發明所屬之技術領域】 本發明係關於一環振盪器及其相關的方法。 【先前技術】 需要内部時脈的電料能會使用時脈產生器來產生週期 信號作為時脈。或者,可利用計數器或其它構件來分割頻 率’將該時脈產生器所產生的週期信號轉換成較慢的時 脈。於另-應用中,可能會利用該時脈產生器作為一記憶 體裝置之時脈產生器的相鎖迴圈。 【發明内容】 舉例來說,動態記憶體需要更新信號,來確保該等記憶 體單元中的漏電現象不會使得該等記憶體單元遺失盆資 料。時脈產生器可用來產生一週期的更新信號。於部份範 例中,可將該週期信號饋送至一計數器,並且於預設數量 的計數之後,該計數器便可輸出一更新信號。 可用來產生6亥週期信號的其中一種電路便係環振盈器。 於2〇00年1 2 3 4月4日提出的作為示範之美國專利案第6,1〇〇 763 號,及测年1M5日提出的作^範之相率 94876.doc 1200524267 IX. Description of the Invention: This application claims the priority of Korean Patent Application No. P2003-64241 filed on September 16, 2003, which is incorporated herein by reference. [Technical Field to which the Invention belongs] The present invention relates to a ring oscillator and related methods. [Prior art] Electric materials that require an internal clock can use a clock generator to generate a periodic signal as a clock. Alternatively, a counter or other component can be used to divide the frequency ' to convert the periodic signal generated by the clock generator into a slower clock. In another application, the clock generator may be used as a phase locked loop of the clock generator of a memory device. [Summary of the Invention] For example, the dynamic memory needs to update signals to ensure that the leakage of electricity in the memory units will not cause the memory units to lose pot data. The clock generator can be used to generate a periodic update signal. In some examples, the cycle signal can be fed to a counter, and after a preset number of counts, the counter can output an update signal. One of the circuits that can be used to generate a 6-h period signal is a ring oscillator. U.S. Patent No. 6,100,763, which was filed on April 4, 2000 as an example, and the phase ratio of the work, which was filed on the 1M5 date of the year 94876.doc 1
,一號中皆可發現該些振盈器類型的範例。一般J 2 說,該些方式皆合佔田丨 3 ϋ電路。& # ' —由奇數個反向器所組成的單迴 4 曰1出信號被回饋至至該迴圈的輸人時,該輸 200524267 出信號便會被反向,從而會產生一在高信號與低信號間改 變的信號。如此便會造成具有定義良好且穩定之循環的週 期信號。藉由提高功率的大小便可減少該輸出信號的週 期,因而可提高頻率。此作法可供可調整之頻率來使用。 另一種方式可在S.J· Lee於1997年2月在IEEE J0urnai 〇f SolidState Circuits,第 289-291 頁中所發表的 r A N〇velExamples of these vibrator types can be found in No. 1. Generally speaking, J 2 says that these methods are all combined in the circuit. &# '—When a single signal consisting of an odd number of inverters is returned to the input of the loop, the output signal of 200524267 will be reversed, which will produce a high-pass signal. A signal that changes between a signal and a low signal. This results in a periodic signal with a well-defined and stable cycle. By increasing the power, the period of the output signal can be reduced, and the frequency can be increased. This method can be used with adjustable frequency. Another way is in r A Novel, published by S.J. Lee in February 1997 in IEEE J0urnai 〇f SolidState Circuits, pages 289-291.
High-Speed Ring Oscillator for Multiphase Clock Generation using Negative Skewed Delay Scheme」中發現。Lee使用偏 斜延遲技術來運用不同相位的信號以產生一多相信號。不 過,該方式所產生的信號並不會顯著地快於先前技術所產 生的信號。 隨著記憶體與其它技術的演進,更新信號、系統時脈、 相鎖迴圈等工作皆需要更快速的振盪時脈信號。上面的解 決方式,以及目前技術的其它解決方式所提供的信號頻率 皆不夠高而無法配合新穎的電路技術。 【實施方式】 圖1為一環振盪器之先前技術具體實施例示意圖。從圖中 可以看出,輸出Vosc會被送返至反向器η,讓該信號於高 位準與低位準間產生雙態觸變。此信號的週期對應的係該 專反向器對该荨#號進行處理所造成的延遲。圖1 &中所示 的係先前技術環振盪器之替代具體實施例,其係使用差動 放大器來取代反向器。不論其設計方式為何(例如採用反向 器或差動放大器),該些組件皆將被稱為反向級。圖以與^ 中每個具體實施例皆具有三個反向級。高信號與低信號間 94876.doc 200524267 之雙態觸變的總週期係取決於級的數量以及每級處的延 遲。 注意圖la與lb中任一圖中的節點A、,吾人可決定 每個節點處之輸入信號與輸出信號的數量。圖2為一節點分 析圖,圖中顯示出每個節點處皆有一個輸入信號與—個輸 出信號。可以使用不同信號間的相位混合來產生一週期遠 減圖巾環振iff之的㈣。不過,於先前技術具體 實施例中,任何該等節點處並無任何的相位混合,而且該 輸出信號的週期會被該等輸入信號與輸出信號間的反向級 數量固定。 圖3所不的係對應該等振盪器之先前技術具體實施例的 時序圖。當每個反向器的寬度/長度大小皆相同時,那麼節 點A與B之間的輸入信號下降緣與輸出信號上升緣間的延 遲時間D便會實質等於節點取之間的輸入信號上升緣與 輸3出信號下降緣間的延遲時間De該等節點間的延遲時間 4乎相同。如此便會產生具有上面所討論之限制的週期輸 出信號。 圖4為本發明之具體實施例,其會對輸出信號進行相位混 合,從而產生週期較短且頻率較高的信號,但卻不會顯= 地增加該電路的複雜度。圖5為本發明之替代具體實^例。 圖4中的具體實施例係運用反向器作為反向級,而圖5中的 具體實施例則係運用差動放大器作為反向級。作為反向級 的特殊組件並不受限於該些範例,不過都係常見且可更清 楚解釋本發明的組件。 94876.doc 200524267 該電路具有兩個電路迴圈,第一電路迴圈為反向器η、 12與13’而第二電路迴圈為反向器^…。與…兩個迴 圈的信號會在節點Α處產生混合。於此節點處,源自節點C 的輸出信號已經經過第二迴圈的兩個反向級,並且僅經過 第一迴圈的一個反向級。由於節點A處該等信號間的差異的 2係,所以會發生相位混合。如本文所使用般,相位混合 意謂著同一節點處至少兩個不同相位的信號的混合。 圖6為圖4與圖5之具體實施例的節點分析。從圖中可以看 出,節點B與D各具有一個輸入與一個輸出。節點B會輸出 號給節點C,並且從節點八接收一輸入信號。節點〇會 從節點C接收-輸出信號並且提供—輸人信號給節點a。和 先前技術不同的係,節點C會提供兩個輸出信號,一個給節 點A而一個給節點D,並且會從節點B接收一個輸入信號。 同樣和先前技術不同的係,節點A會接收兩個輸入信號,一High-Speed Ring Oscillator for Multiphase Clock Generation using Negative Skewed Delay Scheme. " Lee uses a skew delay technique to apply signals of different phases to produce a polyphase signal. However, the signal generated by this method is not significantly faster than the signal generated by the prior art. With the evolution of memory and other technologies, tasks such as updating signals, system clocks, and phase-locked loops need to oscillate clock signals more quickly. The above solutions, as well as other solutions provided by the current technology, are not high enough to match the novel circuit technology. [Embodiment] FIG. 1 is a schematic diagram of a prior art embodiment of a ring oscillator. It can be seen from the figure that the output Vosc will be sent back to the inverter η, so that the signal will have a two-state thixotropy between the high and low levels. The period of this signal corresponds to the delay caused by the special inverter to process the Xun #. The <RTIgt; < / RTI > shown in Fig. 1 is an alternative embodiment of a prior art ring oscillator, which uses a differential amplifier instead of an inverter. Regardless of their design (for example, using an inverter or a differential amplifier), these components will be referred to as a reverse stage. Each specific embodiment in the figures and ^ has three reverse stages. The total period of the bi-state thixotropy between high signal and low signal 94876.doc 200524267 depends on the number of stages and the delay at each stage. Pay attention to the nodes A, in any of the graphs la and lb. We can determine the number of input signals and output signals at each node. Figure 2 is a node analysis diagram, which shows that each node has an input signal and an output signal. Phase mixing between different signals can be used to generate a chirp with a period of far less ring vibration. However, in the specific embodiment of the prior art, there is no phase mixing at any of these nodes, and the period of the output signal is fixed by the number of inverse stages between the input signal and the output signal. FIG. 3 is a timing diagram corresponding to the prior art specific embodiment of these oscillators. When the width / length of each inverter is the same, the delay time D between the falling edge of the input signal and the rising edge of the output signal between nodes A and B will be substantially equal to the rising edge of the input signal between nodes. The delay time De between the falling edge of the output signal 3 and the delay time 4 between these nodes is almost the same. This produces a periodic output signal with the limitations discussed above. FIG. 4 is a specific embodiment of the present invention, which performs phase mixing on the output signal to generate a signal with a shorter period and a higher frequency, but does not significantly increase the complexity of the circuit. FIG. 5 is an alternative specific embodiment of the present invention. The specific embodiment in FIG. 4 uses an inverter as a reverse stage, and the specific embodiment in FIG. 5 uses a differential amplifier as a reverse stage. The special components as the reverse stage are not limited to these examples, but are common and can explain the components of the present invention more clearly. 94876.doc 200524267 This circuit has two circuit loops, the first circuit loop is the inverters η, 12 and 13 ′ and the second circuit loop is the inverter ^. The signals from and two loops are mixed at node A. At this node, the output signal originating from node C has passed through two reverse stages of the second loop, and only passed through one reverse stage of the first loop. Due to the 2 series of the difference between these signals at node A, phase mixing will occur. As used herein, phase mixing means the mixing of signals of at least two different phases at the same node. FIG. 6 is a node analysis of the specific embodiments of FIGS. 4 and 5. It can be seen from the figure that nodes B and D each have one input and one output. Node B will output the number to node C and receive an input signal from node eight. Node 0 will receive-output signals from node C and provide-input signals to node a. Different from the previous technology, node C will provide two output signals, one for node A and one for node D, and it will receive an input signal from node B. Also different from the previous technology, node A will receive two input signals, one
個來自郎點D而一個來自節點C,光B么认I 丨U +曰即點L並且會輸出一個輸出信號 給節點B。 接收兩個不同相位輸入信號便會於節點A處造成相位混 合:所生成的信號時序圖如圖〜所示。節點之間的輸 4口號下降緣與輸出j吕號上升緣間的延遲時間D等於節點 B與C之間的輸入信號上升緣與輸出信號下降緣間的延遲 時間D〇C下降時間與A的上升時間之間的延遲時間d小於延 遲時間⑽係因為輸人信號Αι與A"會於此節點處進行插 補。信號A’係信號D經過反向器15的反向信號,而",的信號 則係信號C經過反向器n的反向信號。當利用至少兩個迴圈 94876.doc 200524267 來設計-環振盪器時,便可利用每個節點的不同數值來控 制節點間的延遲時間。 觀察圖7b中所示之各節點處之信號的時序圖便可更容易 瞭解節點分析結果。當源自節點C的信號為高位準時,節點 A處的信號便會於某一延遲之後經由第一迴圈而變低位 準。節點D處的信號也係低位準。節點A處的信號會經由反 向器15而進入高位準。節點A處的插補信號係顯示於最後一 條線上。於兩條虛線之間可以看出,該插補信號的週期較 短。 圖8a為本發明之替代具體實施例。圖心具有三個迴圈。 和圖6之具體實施例相同的係,第一電路迴圈具有奇數個反 向級,而第二電路迴圈則具有偶數個反向級。總生成反向 級數通常應該係奇數,方能產生必要的振廬信號。於圖以 的具體實施例中會加入一具有奇數個反向級的第三迴圈。 於此具體實施例中,第一電路迴圈係由三個反向級n、 12與13所組成。第二電路迴圈係由四個反向器14、15、。與 13所組成。第三電路迴圈係由節點B、c、D與B之間的三個 反向級13、14與16所組成。於此具體實施例中,會於節點a 與B處發生相位插補現象。節點A處,該等兩個輸入信號係 來自反向器II與反向器15。節點叹,該等兩個輸入信號係 來自反向器12與反向器10。如此所產生的輸出脈衝頻率會比 以前還快。 曰 從圖8b的節點分析中可以看出’節點皆會接收兩個 輸入信號。同樣地,圖8c的時序圖顯示出2個節點處之插補 94876.doc 200524267 結果的生成信號。節點八與3每一者處的振盪脈衝的上升時 間與下降時間皆快過節點C與D處之振盪脈衝的其中一 者。該輸出脈衝之頻率會比較快的原因係因為該等兩個節 點處的延遲較短的關係。如此所產生的輸出信號會比以前 還快。 圖9a中所示的係另—具體實施例,其會於所有節點處運 用相位插補現象。於本文所示之任何具體實施例中,該輸 出脈衝的頻率最快。除非不需要高速的脈衝,否則所有/ = 點處的相位混合似乎係吾人最滿意的方式。速度與電路^ 雜度間的設計取捨結果會使得於低於所有節點處進行插補 變成比較令人滿意的方式,只要該插補結果所產生之輸出 脈衝的頻率足以符合該系統之需要即可。不過,一般來說, 具有最高頻率的輸入信號將會被視為比較滿意的結果。 圖9a之電路的節點分析如圖处所示。從圖中可以看出, 二斤有^點皆會接收兩個輸人信號且產生兩個輸出信號。於 每個節點處的該等兩個輸入信號中皆會發生相位插補或混 合的現象。該等輸出信號通常不會被設計成兩個實際的輸 出,號。該等輸出信號通常會係如同欲被送至兩條線路上 的早一輸出信號。舉例來說,反向器114的輸出係一輸出信 號’其僅會被提供給反向器115與118的輸入,所以便會稱為 兩個輸出信號。 討論至此,相位混合皆係由某一特殊節點處的兩個信號 所組成。於圖1()a的具體實施例中,相位混合皆係由四個輸 入信號所造成。舉例來說’節點八處有接收自四個反向器 94876.doc 200524267 125、13 0、132與133每一者處的四個輸入信號。於插補現象 中會使用到該些四個輸入信號,讓該等四個輸入信號進行 相位混合,用於產生一高頻的輸出信號。 依此方式,相位混合可以產生能夠使用於許多不同應用 中的更快速輸出信號。舉例來說,一記憶體系統可能會使 用該高頻輸出信號作為時脈產生器中的相鎖迴圈,以便用 來產生一輸出緩衝器的内部時脈或是再新該記憶體或是進 行時脈定址或是對該記憶體進行資料存取。圖丨丨所示的便 疋此種系統的範例。時脈產生器1 〇具有一脈衝產生器12及 一相鎖迴圈14,該相鎖迴圈運用的係根據上面本發明任何 具體實施例的環振盪器16。 圖12為该糸統之替代具體實施例。圖12中,該環振盪器 係由5己憶體模組20内部一部份的DRAM裝置19a與19b所製 成’當作環振盪器16a與16b。記憶體模組2〇可能包括複數 個記憶體裝置19a與19b。於此具體實施例中,該ριχ係位於 用於叹置该§己憶體模組2 0的記憶體裝置之中。位於該記憶 體裝置處的DLL(延遲鎖定迴圈)也可能包含根據本發明的 裱振盪器。接著便可將所生成的時脈信號送往記憶體控制 器18及記憶體模組2〇,而所生成的PLL(或dll)時脈信號則 可被送往位於該記憶體裝置處的輸出緩衝器。 雖然已經圖解且說明本發明之具體實施例的原理,不 過’熟習本技術的人士便應該很容易明白本發明的配置與 細節部份皆可進行修改,而不會脫離此等原理。本文主張 落在隨附申請專利範圍之精神與範疇中的所有修改例。 94876.doc -11 - 200524267 【圖式簡單說明】 從前面參考下面圖式之具體實施例的詳細說明中將會很 容易明白本發明的前述與其它目的、特點、以及優點。 圖1a~b為環振盪器之先前技術具體實施例。 圖2為環振盪器之先前技術具體實施例之該等節點處的 輸入/輸出信號的關係圖。 圖3為環振盪器之先前技術具體實施例之時序圖。 圖4為一環振盪器之具體實施例示意圖。 圖5為一環振盪器之替代具體實施例示意圖。 圖6為環振盪器之先前技術具體實施例之該等節點處的 輸入/輸出信號的關係圖。 圖7a-7b為環振盪器之該等節點處的信號時序圖。 圖8a-c為一環振盪器之替代具體實施例示意圖、一輸入/ 輸出信號關係圖以及一時序圖。 圖9a與9b為一環振盪器之替代具體實施例以及一相應的 輸入/輸出信號關係圖。 圖l〇a與9b為一環振盪器之替代具體實施例以及一相應 的輸入/輸出信號關係圖。 圖11為一具有一時脈產生器之系統的具體實施例示意 圖,該時脈產生器係運用-環振盪器作為-相鎖迴圈。 圖12為一具有一環振盪器之系統的替代具體實施例示意 圖。 【主要元件符號說明】 II 反向器 94876.doc 】2· 200524267 12 反向器 13 反向器 14 反向器 15 反向器 16 反向器 110 反向器 111 反向器 112 反向器 113 反向器 114 反向器 115 反向器 116 反向器 117 反向器 118 反向器 119 反向器 120 反向器 121 反向器 122 反向器 123 反向器 124 反向器 125 反向器 126 反向器 127 反向器 128 反向器One from Lang point D and one from node C. Light B recognizes I 丨 U + that is point L and will output an output signal to node B. Receiving two input signals with different phases will cause phase mixing at node A: The generated signal timing diagram is shown in Figure ~. The delay time D between the falling edge of the input 4 slogan between the nodes and the rising edge of the output j is equal to the delay time between the rising edge of the input signal and the falling edge of the output signal between nodes B and C. The delay time d between the rise times is smaller than the delay time because the input signals Aι and A " are interpolated at this node. The signal A 'is a reverse signal of the signal D passing through the inverter 15, and the signal of "" is a reverse signal of the signal C passing through the inverter n. When using at least two loops 94876.doc 200524267 to design a ring oscillator, different values of each node can be used to control the delay time between nodes. Observing the timing diagram of the signals at each node shown in Figure 7b makes it easier to understand the results of the node analysis. When the signal from node C is at a high level, the signal at node A will go to a low level through the first loop after a delay. The signal at node D is also at a low level. The signal at node A goes high via inverter 15. The interpolation signal at node A is shown on the last line. It can be seen between the two dashed lines that the period of the interpolation signal is short. Figure 8a is an alternative embodiment of the invention. The graph center has three loops. As in the embodiment of Fig. 6, the first circuit loop has an odd number of reverse stages, and the second circuit loop has an even number of reverse stages. The total generated reverse series should usually be an odd number in order to generate the necessary vibration signal. In the embodiment shown in the figure, a third loop with an odd number of reverse stages is added. In this specific embodiment, the first circuit loop is composed of three reverse stages n, 12 and 13. The second circuit loop is composed of four inverters 14,15 ,. With 13. The third circuit loop is composed of three reverse stages 13, 14 and 16 between nodes B, c, D and B. In this specific embodiment, a phase interpolation phenomenon occurs at nodes a and B. At node A, the two input signals are from inverter II and inverter 15. The node sighs that these two input signals come from the inverter 12 and the inverter 10. The resulting output pulse frequency will be faster than before. It can be seen from the analysis of the node in Fig. 8b that both nodes will receive two input signals. Similarly, the timing diagram in Figure 8c shows the signal generated by the interpolation at the two nodes. The rise time and fall time of the oscillating pulses at each of nodes eight and 3 are faster than one of the oscillating pulses at nodes C and D. The reason why the frequency of the output pulse is faster is because of the short delay between the two nodes. The resulting output signal will be faster than before. The system shown in Fig. 9a is another embodiment, which uses the phase interpolation phenomenon at all nodes. In any of the specific embodiments shown herein, the frequency of the output pulse is the fastest. Unless high-speed pulses are not needed, phase mixing at all / = points seems to be the most satisfactory way for us. The design trade-off result between speed and circuit ^ will make interpolation below all nodes a more satisfactory way, as long as the frequency of the output pulses generated by the interpolation result is sufficient to meet the needs of the system . However, in general, the input signal with the highest frequency will be considered a more satisfactory result. The node analysis of the circuit of Figure 9a is shown in the figure. It can be seen from the figure that there are two points in the two jacks that will receive two input signals and generate two output signals. Phase interpolation or mixing occurs in the two input signals at each node. These output signals are usually not designed as two actual outputs. These output signals are usually the earlier output signals that are intended to be sent to two lines. For example, the output of inverter 114 is an output signal ' which will only be provided to the inputs of inverters 115 and 118, so it will be referred to as two output signals. At this point, phase mixing consists of two signals at a particular node. In the specific embodiment of FIG. 1 () a, the phase mixing is caused by four input signals. For example, the 'node has four input signals received at each of the four inverters at 94876.doc 200524267 125, 13 0, 132, and 133. The four input signals are used in the interpolation phenomenon, and the four input signals are phase-mixed to generate a high-frequency output signal. In this way, phase mixing can produce faster output signals that can be used in many different applications. For example, a memory system may use the high-frequency output signal as a phase-locked loop in a clock generator, so as to generate the internal clock of an output buffer or renew the memory or perform Clock addressing or data access to this memory. An example of such a system is shown in Figure 丨 丨. The clock generator 10 has a pulse generator 12 and a phase-locked loop 14. The phase-locked loop uses a ring oscillator 16 according to any specific embodiment of the present invention above. FIG. 12 shows an alternative embodiment of the system. In FIG. 12, the ring oscillator is made of DRAM devices 19a and 19b, which are part of the internal memory module 20, as ring oscillators 16a and 16b. The memory module 20 may include a plurality of memory devices 19a and 19b. In this specific embodiment, the ρχ is located in a memory device for exposing the §memory module 20. A DLL (Delay Locked Loop) located at the memory device may also contain a framed oscillator according to the present invention. The generated clock signal can then be sent to the memory controller 18 and the memory module 20, and the generated PLL (or dll) clock signal can be sent to the output at the memory device buffer. Although the principle of the specific embodiment of the present invention has been illustrated and described, those skilled in the art will readily understand that the configuration and details of the present invention can be modified without departing from these principles. This article claims all modifications that fall within the spirit and scope of the scope of the accompanying patent application. 94876.doc -11-200524267 [Brief description of the drawings] The foregoing and other objects, features, and advantages of the present invention will be easily understood from the detailed description of the specific embodiments with reference to the following drawings. Figures 1a-b show a prior art embodiment of a ring oscillator. Fig. 2 is a relationship diagram of input / output signals at the nodes of the prior art embodiment of the ring oscillator. FIG. 3 is a timing diagram of a prior art embodiment of a ring oscillator. FIG. 4 is a schematic diagram of a specific embodiment of a ring oscillator. FIG. 5 is a schematic diagram of an alternative embodiment of a ring oscillator. Fig. 6 is a relationship diagram of input / output signals at the nodes of the prior art embodiment of the ring oscillator. Figures 7a-7b are timing diagrams of the signals at the nodes of the ring oscillator. 8a-c are schematic diagrams of alternative embodiments of a ring oscillator, an input / output signal relationship diagram, and a timing diagram. Figures 9a and 9b are alternative embodiments of a ring oscillator and a corresponding input / output signal relationship diagram. Figures 10a and 9b are alternative embodiments of a ring oscillator and a corresponding input / output signal relationship diagram. Fig. 11 is a schematic diagram of a specific embodiment of a system having a clock generator, which uses a -ring oscillator as a -phase locked loop. Fig. 12 is a schematic diagram of an alternative embodiment of a system having a ring oscillator. [Description of Symbols of Main Components] II Inverter 94876.doc] 2 · 200524267 12 Inverter 13 Inverter 14 Inverter 15 Inverter 16 Inverter 110 Inverter 111 Inverter 112 Inverter 113 Inverter 114 Inverter 115 Inverter 116 Inverter 117 Inverter 118 Inverter 119 Inverter 120 Inverter 121 Inverter 122 Inverter 123 Inverter 124 Inverter 125 Inverter 126 Inverter 127 Inverter 128 Inverter
94876.doc -13- 200524267 129 反向器 130 反向器 131 反向器 132 反向器 133 反向器 134 反向器 DAI 差動放大器 DA2 差動放大器 DA3 差動放大器 DA4 差動放大器 DA5 差動放大器 10 時脈產生器 12 脈衝產生器 14 相鎖迴圈 16 環振盪器 16a 環振盪器 16b 環振盪器 18 記憶體控制器 19a DRAM裝置 19b DRAM裝置 20 記憶體模組94876.doc -13- 200524267 129 Inverter 130 Inverter 131 Inverter 132 Inverter 133 Inverter 134 Inverter DAI Differential amplifier DA2 Differential amplifier DA3 Differential amplifier DA4 Differential amplifier DA5 Differential Amplifier 10 Clock generator 12 Pulse generator 14 Phase locked loop 16 Ring oscillator 16a Ring oscillator 16b Ring oscillator 18 Memory controller 19a DRAM device 19b DRAM device 20 Memory module
94876.doc 1494876.doc 14