TW200524267A - Hyper-ring oscillator - Google Patents

Hyper-ring oscillator Download PDF

Info

Publication number
TW200524267A
TW200524267A TW93122743A TW93122743A TW200524267A TW 200524267 A TW200524267 A TW 200524267A TW 93122743 A TW93122743 A TW 93122743A TW 93122743 A TW93122743 A TW 93122743A TW 200524267 A TW200524267 A TW 200524267A
Authority
TW
Taiwan
Prior art keywords
node
ring oscillator
loop
signal
circuit
Prior art date
Application number
TW93122743A
Other languages
Chinese (zh)
Other versions
TWI254506B (en
Inventor
Kyu-Hyoun Kim
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020030064241A external-priority patent/KR100541549B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200524267A publication Critical patent/TW200524267A/en
Application granted granted Critical
Publication of TWI254506B publication Critical patent/TWI254506B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • H03K3/0322Ring oscillators with differential cells

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Dram (AREA)

Abstract

A ring oscillator has a first logic circuit forming a first loop. The ring oscillator also has a second logic circuit forming a second loop, such that phase interpolation occurs at a node common to the first and second loops. The phase interpolation results in an output signal with a high frequency.

Description

200524267 九、發明說明: 本申請案主張2003年9月16日提出的韓國專利申請案第 P2003-64241號的優先權,本文以引用的方式將其併入。 【發明所屬之技術領域】 本發明係關於一環振盪器及其相關的方法。 【先前技術】 需要内部時脈的電料能會使用時脈產生器來產生週期 信號作為時脈。或者,可利用計數器或其它構件來分割頻 率’將該時脈產生器所產生的週期信號轉換成較慢的時 脈。於另-應用中,可能會利用該時脈產生器作為一記憶 體裝置之時脈產生器的相鎖迴圈。 【發明内容】 舉例來說,動態記憶體需要更新信號,來確保該等記憶 體單元中的漏電現象不會使得該等記憶體單元遺失盆資 料。時脈產生器可用來產生一週期的更新信號。於部份範 例中,可將該週期信號饋送至一計數器,並且於預設數量 的計數之後,該計數器便可輸出一更新信號。 可用來產生6亥週期信號的其中一種電路便係環振盈器。 於2〇00年1 2 3 4月4日提出的作為示範之美國專利案第6,1〇〇 763 號,及测年1M5日提出的作^範之相率 94876.doc 1200524267 IX. Description of the Invention: This application claims the priority of Korean Patent Application No. P2003-64241 filed on September 16, 2003, which is incorporated herein by reference. [Technical Field to which the Invention belongs] The present invention relates to a ring oscillator and related methods. [Prior art] Electric materials that require an internal clock can use a clock generator to generate a periodic signal as a clock. Alternatively, a counter or other component can be used to divide the frequency ' to convert the periodic signal generated by the clock generator into a slower clock. In another application, the clock generator may be used as a phase locked loop of the clock generator of a memory device. [Summary of the Invention] For example, the dynamic memory needs to update signals to ensure that the leakage of electricity in the memory units will not cause the memory units to lose pot data. The clock generator can be used to generate a periodic update signal. In some examples, the cycle signal can be fed to a counter, and after a preset number of counts, the counter can output an update signal. One of the circuits that can be used to generate a 6-h period signal is a ring oscillator. U.S. Patent No. 6,100,763, which was filed on April 4, 2000 as an example, and the phase ratio of the work, which was filed on the 1M5 date of the year 94876.doc 1

,一號中皆可發現該些振盈器類型的範例。一般J 2 說,該些方式皆合佔田丨 3 ϋ電路。& # ' —由奇數個反向器所組成的單迴 4 曰1出信號被回饋至至該迴圈的輸人時,該輸 200524267 出信號便會被反向,從而會產生一在高信號與低信號間改 變的信號。如此便會造成具有定義良好且穩定之循環的週 期信號。藉由提高功率的大小便可減少該輸出信號的週 期,因而可提高頻率。此作法可供可調整之頻率來使用。 另一種方式可在S.J· Lee於1997年2月在IEEE J0urnai 〇f SolidState Circuits,第 289-291 頁中所發表的 r A N〇velExamples of these vibrator types can be found in No. 1. Generally speaking, J 2 says that these methods are all combined in the circuit. &# '—When a single signal consisting of an odd number of inverters is returned to the input of the loop, the output signal of 200524267 will be reversed, which will produce a high-pass signal. A signal that changes between a signal and a low signal. This results in a periodic signal with a well-defined and stable cycle. By increasing the power, the period of the output signal can be reduced, and the frequency can be increased. This method can be used with adjustable frequency. Another way is in r A Novel, published by S.J. Lee in February 1997 in IEEE J0urnai 〇f SolidState Circuits, pages 289-291.

High-Speed Ring Oscillator for Multiphase Clock Generation using Negative Skewed Delay Scheme」中發現。Lee使用偏 斜延遲技術來運用不同相位的信號以產生一多相信號。不 過,該方式所產生的信號並不會顯著地快於先前技術所產 生的信號。 隨著記憶體與其它技術的演進,更新信號、系統時脈、 相鎖迴圈等工作皆需要更快速的振盪時脈信號。上面的解 決方式,以及目前技術的其它解決方式所提供的信號頻率 皆不夠高而無法配合新穎的電路技術。 【實施方式】 圖1為一環振盪器之先前技術具體實施例示意圖。從圖中 可以看出,輸出Vosc會被送返至反向器η,讓該信號於高 位準與低位準間產生雙態觸變。此信號的週期對應的係該 專反向器對该荨#號進行處理所造成的延遲。圖1 &中所示 的係先前技術環振盪器之替代具體實施例,其係使用差動 放大器來取代反向器。不論其設計方式為何(例如採用反向 器或差動放大器),該些組件皆將被稱為反向級。圖以與^ 中每個具體實施例皆具有三個反向級。高信號與低信號間 94876.doc 200524267 之雙態觸變的總週期係取決於級的數量以及每級處的延 遲。 注意圖la與lb中任一圖中的節點A、,吾人可決定 每個節點處之輸入信號與輸出信號的數量。圖2為一節點分 析圖,圖中顯示出每個節點處皆有一個輸入信號與—個輸 出信號。可以使用不同信號間的相位混合來產生一週期遠 減圖巾環振iff之的㈣。不過,於先前技術具體 實施例中,任何該等節點處並無任何的相位混合,而且該 輸出信號的週期會被該等輸入信號與輸出信號間的反向級 數量固定。 圖3所不的係對應該等振盪器之先前技術具體實施例的 時序圖。當每個反向器的寬度/長度大小皆相同時,那麼節 點A與B之間的輸入信號下降緣與輸出信號上升緣間的延 遲時間D便會實質等於節點取之間的輸入信號上升緣與 輸3出信號下降緣間的延遲時間De該等節點間的延遲時間 4乎相同。如此便會產生具有上面所討論之限制的週期輸 出信號。 圖4為本發明之具體實施例,其會對輸出信號進行相位混 合,從而產生週期較短且頻率較高的信號,但卻不會顯= 地增加該電路的複雜度。圖5為本發明之替代具體實^例。 圖4中的具體實施例係運用反向器作為反向級,而圖5中的 具體實施例則係運用差動放大器作為反向級。作為反向級 的特殊組件並不受限於該些範例,不過都係常見且可更清 楚解釋本發明的組件。 94876.doc 200524267 該電路具有兩個電路迴圈,第一電路迴圈為反向器η、 12與13’而第二電路迴圈為反向器^…。與…兩個迴 圈的信號會在節點Α處產生混合。於此節點處,源自節點C 的輸出信號已經經過第二迴圈的兩個反向級,並且僅經過 第一迴圈的一個反向級。由於節點A處該等信號間的差異的 2係,所以會發生相位混合。如本文所使用般,相位混合 意謂著同一節點處至少兩個不同相位的信號的混合。 圖6為圖4與圖5之具體實施例的節點分析。從圖中可以看 出,節點B與D各具有一個輸入與一個輸出。節點B會輸出 號給節點C,並且從節點八接收一輸入信號。節點〇會 從節點C接收-輸出信號並且提供—輸人信號給節點a。和 先前技術不同的係,節點C會提供兩個輸出信號,一個給節 點A而一個給節點D,並且會從節點B接收一個輸入信號。 同樣和先前技術不同的係,節點A會接收兩個輸入信號,一High-Speed Ring Oscillator for Multiphase Clock Generation using Negative Skewed Delay Scheme. " Lee uses a skew delay technique to apply signals of different phases to produce a polyphase signal. However, the signal generated by this method is not significantly faster than the signal generated by the prior art. With the evolution of memory and other technologies, tasks such as updating signals, system clocks, and phase-locked loops need to oscillate clock signals more quickly. The above solutions, as well as other solutions provided by the current technology, are not high enough to match the novel circuit technology. [Embodiment] FIG. 1 is a schematic diagram of a prior art embodiment of a ring oscillator. It can be seen from the figure that the output Vosc will be sent back to the inverter η, so that the signal will have a two-state thixotropy between the high and low levels. The period of this signal corresponds to the delay caused by the special inverter to process the Xun #. The <RTIgt; < / RTI > shown in Fig. 1 is an alternative embodiment of a prior art ring oscillator, which uses a differential amplifier instead of an inverter. Regardless of their design (for example, using an inverter or a differential amplifier), these components will be referred to as a reverse stage. Each specific embodiment in the figures and ^ has three reverse stages. The total period of the bi-state thixotropy between high signal and low signal 94876.doc 200524267 depends on the number of stages and the delay at each stage. Pay attention to the nodes A, in any of the graphs la and lb. We can determine the number of input signals and output signals at each node. Figure 2 is a node analysis diagram, which shows that each node has an input signal and an output signal. Phase mixing between different signals can be used to generate a chirp with a period of far less ring vibration. However, in the specific embodiment of the prior art, there is no phase mixing at any of these nodes, and the period of the output signal is fixed by the number of inverse stages between the input signal and the output signal. FIG. 3 is a timing diagram corresponding to the prior art specific embodiment of these oscillators. When the width / length of each inverter is the same, the delay time D between the falling edge of the input signal and the rising edge of the output signal between nodes A and B will be substantially equal to the rising edge of the input signal between nodes. The delay time De between the falling edge of the output signal 3 and the delay time 4 between these nodes is almost the same. This produces a periodic output signal with the limitations discussed above. FIG. 4 is a specific embodiment of the present invention, which performs phase mixing on the output signal to generate a signal with a shorter period and a higher frequency, but does not significantly increase the complexity of the circuit. FIG. 5 is an alternative specific embodiment of the present invention. The specific embodiment in FIG. 4 uses an inverter as a reverse stage, and the specific embodiment in FIG. 5 uses a differential amplifier as a reverse stage. The special components as the reverse stage are not limited to these examples, but are common and can explain the components of the present invention more clearly. 94876.doc 200524267 This circuit has two circuit loops, the first circuit loop is the inverters η, 12 and 13 ′ and the second circuit loop is the inverter ^. The signals from and two loops are mixed at node A. At this node, the output signal originating from node C has passed through two reverse stages of the second loop, and only passed through one reverse stage of the first loop. Due to the 2 series of the difference between these signals at node A, phase mixing will occur. As used herein, phase mixing means the mixing of signals of at least two different phases at the same node. FIG. 6 is a node analysis of the specific embodiments of FIGS. 4 and 5. It can be seen from the figure that nodes B and D each have one input and one output. Node B will output the number to node C and receive an input signal from node eight. Node 0 will receive-output signals from node C and provide-input signals to node a. Different from the previous technology, node C will provide two output signals, one for node A and one for node D, and it will receive an input signal from node B. Also different from the previous technology, node A will receive two input signals, one

個來自郎點D而一個來自節點C,光B么认I 丨U +曰即點L並且會輸出一個輸出信號 給節點B。 接收兩個不同相位輸入信號便會於節點A處造成相位混 合:所生成的信號時序圖如圖〜所示。節點之間的輸 4口號下降緣與輸出j吕號上升緣間的延遲時間D等於節點 B與C之間的輸入信號上升緣與輸出信號下降緣間的延遲 時間D〇C下降時間與A的上升時間之間的延遲時間d小於延 遲時間⑽係因為輸人信號Αι與A"會於此節點處進行插 補。信號A’係信號D經過反向器15的反向信號,而",的信號 則係信號C經過反向器n的反向信號。當利用至少兩個迴圈 94876.doc 200524267 來設計-環振盪器時,便可利用每個節點的不同數值來控 制節點間的延遲時間。 觀察圖7b中所示之各節點處之信號的時序圖便可更容易 瞭解節點分析結果。當源自節點C的信號為高位準時,節點 A處的信號便會於某一延遲之後經由第一迴圈而變低位 準。節點D處的信號也係低位準。節點A處的信號會經由反 向器15而進入高位準。節點A處的插補信號係顯示於最後一 條線上。於兩條虛線之間可以看出,該插補信號的週期較 短。 圖8a為本發明之替代具體實施例。圖心具有三個迴圈。 和圖6之具體實施例相同的係,第一電路迴圈具有奇數個反 向級,而第二電路迴圈則具有偶數個反向級。總生成反向 級數通常應該係奇數,方能產生必要的振廬信號。於圖以 的具體實施例中會加入一具有奇數個反向級的第三迴圈。 於此具體實施例中,第一電路迴圈係由三個反向級n、 12與13所組成。第二電路迴圈係由四個反向器14、15、。與 13所組成。第三電路迴圈係由節點B、c、D與B之間的三個 反向級13、14與16所組成。於此具體實施例中,會於節點a 與B處發生相位插補現象。節點A處,該等兩個輸入信號係 來自反向器II與反向器15。節點叹,該等兩個輸入信號係 來自反向器12與反向器10。如此所產生的輸出脈衝頻率會比 以前還快。 曰 從圖8b的節點分析中可以看出’節點皆會接收兩個 輸入信號。同樣地,圖8c的時序圖顯示出2個節點處之插補 94876.doc 200524267 結果的生成信號。節點八與3每一者處的振盪脈衝的上升時 間與下降時間皆快過節點C與D處之振盪脈衝的其中一 者。該輸出脈衝之頻率會比較快的原因係因為該等兩個節 點處的延遲較短的關係。如此所產生的輸出信號會比以前 還快。 圖9a中所示的係另—具體實施例,其會於所有節點處運 用相位插補現象。於本文所示之任何具體實施例中,該輸 出脈衝的頻率最快。除非不需要高速的脈衝,否則所有/ = 點處的相位混合似乎係吾人最滿意的方式。速度與電路^ 雜度間的設計取捨結果會使得於低於所有節點處進行插補 變成比較令人滿意的方式,只要該插補結果所產生之輸出 脈衝的頻率足以符合該系統之需要即可。不過,一般來說, 具有最高頻率的輸入信號將會被視為比較滿意的結果。 圖9a之電路的節點分析如圖处所示。從圖中可以看出, 二斤有^點皆會接收兩個輸人信號且產生兩個輸出信號。於 每個節點處的該等兩個輸入信號中皆會發生相位插補或混 合的現象。該等輸出信號通常不會被設計成兩個實際的輸 出,號。該等輸出信號通常會係如同欲被送至兩條線路上 的早一輸出信號。舉例來說,反向器114的輸出係一輸出信 號’其僅會被提供給反向器115與118的輸入,所以便會稱為 兩個輸出信號。 討論至此,相位混合皆係由某一特殊節點處的兩個信號 所組成。於圖1()a的具體實施例中,相位混合皆係由四個輸 入信號所造成。舉例來說’節點八處有接收自四個反向器 94876.doc 200524267 125、13 0、132與133每一者處的四個輸入信號。於插補現象 中會使用到該些四個輸入信號,讓該等四個輸入信號進行 相位混合,用於產生一高頻的輸出信號。 依此方式,相位混合可以產生能夠使用於許多不同應用 中的更快速輸出信號。舉例來說,一記憶體系統可能會使 用該高頻輸出信號作為時脈產生器中的相鎖迴圈,以便用 來產生一輸出緩衝器的内部時脈或是再新該記憶體或是進 行時脈定址或是對該記憶體進行資料存取。圖丨丨所示的便 疋此種系統的範例。時脈產生器1 〇具有一脈衝產生器12及 一相鎖迴圈14,該相鎖迴圈運用的係根據上面本發明任何 具體實施例的環振盪器16。 圖12為该糸統之替代具體實施例。圖12中,該環振盪器 係由5己憶體模組20内部一部份的DRAM裝置19a與19b所製 成’當作環振盪器16a與16b。記憶體模組2〇可能包括複數 個記憶體裝置19a與19b。於此具體實施例中,該ριχ係位於 用於叹置该§己憶體模組2 0的記憶體裝置之中。位於該記憶 體裝置處的DLL(延遲鎖定迴圈)也可能包含根據本發明的 裱振盪器。接著便可將所生成的時脈信號送往記憶體控制 器18及記憶體模組2〇,而所生成的PLL(或dll)時脈信號則 可被送往位於該記憶體裝置處的輸出緩衝器。 雖然已經圖解且說明本發明之具體實施例的原理,不 過’熟習本技術的人士便應該很容易明白本發明的配置與 細節部份皆可進行修改,而不會脫離此等原理。本文主張 落在隨附申請專利範圍之精神與範疇中的所有修改例。 94876.doc -11 - 200524267 【圖式簡單說明】 從前面參考下面圖式之具體實施例的詳細說明中將會很 容易明白本發明的前述與其它目的、特點、以及優點。 圖1a~b為環振盪器之先前技術具體實施例。 圖2為環振盪器之先前技術具體實施例之該等節點處的 輸入/輸出信號的關係圖。 圖3為環振盪器之先前技術具體實施例之時序圖。 圖4為一環振盪器之具體實施例示意圖。 圖5為一環振盪器之替代具體實施例示意圖。 圖6為環振盪器之先前技術具體實施例之該等節點處的 輸入/輸出信號的關係圖。 圖7a-7b為環振盪器之該等節點處的信號時序圖。 圖8a-c為一環振盪器之替代具體實施例示意圖、一輸入/ 輸出信號關係圖以及一時序圖。 圖9a與9b為一環振盪器之替代具體實施例以及一相應的 輸入/輸出信號關係圖。 圖l〇a與9b為一環振盪器之替代具體實施例以及一相應 的輸入/輸出信號關係圖。 圖11為一具有一時脈產生器之系統的具體實施例示意 圖,該時脈產生器係運用-環振盪器作為-相鎖迴圈。 圖12為一具有一環振盪器之系統的替代具體實施例示意 圖。 【主要元件符號說明】 II 反向器 94876.doc 】2· 200524267 12 反向器 13 反向器 14 反向器 15 反向器 16 反向器 110 反向器 111 反向器 112 反向器 113 反向器 114 反向器 115 反向器 116 反向器 117 反向器 118 反向器 119 反向器 120 反向器 121 反向器 122 反向器 123 反向器 124 反向器 125 反向器 126 反向器 127 反向器 128 反向器One from Lang point D and one from node C. Light B recognizes I 丨 U + that is point L and will output an output signal to node B. Receiving two input signals with different phases will cause phase mixing at node A: The generated signal timing diagram is shown in Figure ~. The delay time D between the falling edge of the input 4 slogan between the nodes and the rising edge of the output j is equal to the delay time between the rising edge of the input signal and the falling edge of the output signal between nodes B and C. The delay time d between the rise times is smaller than the delay time because the input signals Aι and A " are interpolated at this node. The signal A 'is a reverse signal of the signal D passing through the inverter 15, and the signal of "" is a reverse signal of the signal C passing through the inverter n. When using at least two loops 94876.doc 200524267 to design a ring oscillator, different values of each node can be used to control the delay time between nodes. Observing the timing diagram of the signals at each node shown in Figure 7b makes it easier to understand the results of the node analysis. When the signal from node C is at a high level, the signal at node A will go to a low level through the first loop after a delay. The signal at node D is also at a low level. The signal at node A goes high via inverter 15. The interpolation signal at node A is shown on the last line. It can be seen between the two dashed lines that the period of the interpolation signal is short. Figure 8a is an alternative embodiment of the invention. The graph center has three loops. As in the embodiment of Fig. 6, the first circuit loop has an odd number of reverse stages, and the second circuit loop has an even number of reverse stages. The total generated reverse series should usually be an odd number in order to generate the necessary vibration signal. In the embodiment shown in the figure, a third loop with an odd number of reverse stages is added. In this specific embodiment, the first circuit loop is composed of three reverse stages n, 12 and 13. The second circuit loop is composed of four inverters 14,15 ,. With 13. The third circuit loop is composed of three reverse stages 13, 14 and 16 between nodes B, c, D and B. In this specific embodiment, a phase interpolation phenomenon occurs at nodes a and B. At node A, the two input signals are from inverter II and inverter 15. The node sighs that these two input signals come from the inverter 12 and the inverter 10. The resulting output pulse frequency will be faster than before. It can be seen from the analysis of the node in Fig. 8b that both nodes will receive two input signals. Similarly, the timing diagram in Figure 8c shows the signal generated by the interpolation at the two nodes. The rise time and fall time of the oscillating pulses at each of nodes eight and 3 are faster than one of the oscillating pulses at nodes C and D. The reason why the frequency of the output pulse is faster is because of the short delay between the two nodes. The resulting output signal will be faster than before. The system shown in Fig. 9a is another embodiment, which uses the phase interpolation phenomenon at all nodes. In any of the specific embodiments shown herein, the frequency of the output pulse is the fastest. Unless high-speed pulses are not needed, phase mixing at all / = points seems to be the most satisfactory way for us. The design trade-off result between speed and circuit ^ will make interpolation below all nodes a more satisfactory way, as long as the frequency of the output pulses generated by the interpolation result is sufficient to meet the needs of the system . However, in general, the input signal with the highest frequency will be considered a more satisfactory result. The node analysis of the circuit of Figure 9a is shown in the figure. It can be seen from the figure that there are two points in the two jacks that will receive two input signals and generate two output signals. Phase interpolation or mixing occurs in the two input signals at each node. These output signals are usually not designed as two actual outputs. These output signals are usually the earlier output signals that are intended to be sent to two lines. For example, the output of inverter 114 is an output signal ' which will only be provided to the inputs of inverters 115 and 118, so it will be referred to as two output signals. At this point, phase mixing consists of two signals at a particular node. In the specific embodiment of FIG. 1 () a, the phase mixing is caused by four input signals. For example, the 'node has four input signals received at each of the four inverters at 94876.doc 200524267 125, 13 0, 132, and 133. The four input signals are used in the interpolation phenomenon, and the four input signals are phase-mixed to generate a high-frequency output signal. In this way, phase mixing can produce faster output signals that can be used in many different applications. For example, a memory system may use the high-frequency output signal as a phase-locked loop in a clock generator, so as to generate the internal clock of an output buffer or renew the memory or perform Clock addressing or data access to this memory. An example of such a system is shown in Figure 丨 丨. The clock generator 10 has a pulse generator 12 and a phase-locked loop 14. The phase-locked loop uses a ring oscillator 16 according to any specific embodiment of the present invention above. FIG. 12 shows an alternative embodiment of the system. In FIG. 12, the ring oscillator is made of DRAM devices 19a and 19b, which are part of the internal memory module 20, as ring oscillators 16a and 16b. The memory module 20 may include a plurality of memory devices 19a and 19b. In this specific embodiment, the ρχ is located in a memory device for exposing the §memory module 20. A DLL (Delay Locked Loop) located at the memory device may also contain a framed oscillator according to the present invention. The generated clock signal can then be sent to the memory controller 18 and the memory module 20, and the generated PLL (or dll) clock signal can be sent to the output at the memory device buffer. Although the principle of the specific embodiment of the present invention has been illustrated and described, those skilled in the art will readily understand that the configuration and details of the present invention can be modified without departing from these principles. This article claims all modifications that fall within the spirit and scope of the scope of the accompanying patent application. 94876.doc -11-200524267 [Brief description of the drawings] The foregoing and other objects, features, and advantages of the present invention will be easily understood from the detailed description of the specific embodiments with reference to the following drawings. Figures 1a-b show a prior art embodiment of a ring oscillator. Fig. 2 is a relationship diagram of input / output signals at the nodes of the prior art embodiment of the ring oscillator. FIG. 3 is a timing diagram of a prior art embodiment of a ring oscillator. FIG. 4 is a schematic diagram of a specific embodiment of a ring oscillator. FIG. 5 is a schematic diagram of an alternative embodiment of a ring oscillator. Fig. 6 is a relationship diagram of input / output signals at the nodes of the prior art embodiment of the ring oscillator. Figures 7a-7b are timing diagrams of the signals at the nodes of the ring oscillator. 8a-c are schematic diagrams of alternative embodiments of a ring oscillator, an input / output signal relationship diagram, and a timing diagram. Figures 9a and 9b are alternative embodiments of a ring oscillator and a corresponding input / output signal relationship diagram. Figures 10a and 9b are alternative embodiments of a ring oscillator and a corresponding input / output signal relationship diagram. Fig. 11 is a schematic diagram of a specific embodiment of a system having a clock generator, which uses a -ring oscillator as a -phase locked loop. Fig. 12 is a schematic diagram of an alternative embodiment of a system having a ring oscillator. [Description of Symbols of Main Components] II Inverter 94876.doc] 2 · 200524267 12 Inverter 13 Inverter 14 Inverter 15 Inverter 16 Inverter 110 Inverter 111 Inverter 112 Inverter 113 Inverter 114 Inverter 115 Inverter 116 Inverter 117 Inverter 118 Inverter 119 Inverter 120 Inverter 121 Inverter 122 Inverter 123 Inverter 124 Inverter 125 Inverter 126 Inverter 127 Inverter 128 Inverter

94876.doc -13- 200524267 129 反向器 130 反向器 131 反向器 132 反向器 133 反向器 134 反向器 DAI 差動放大器 DA2 差動放大器 DA3 差動放大器 DA4 差動放大器 DA5 差動放大器 10 時脈產生器 12 脈衝產生器 14 相鎖迴圈 16 環振盪器 16a 環振盪器 16b 環振盪器 18 記憶體控制器 19a DRAM裝置 19b DRAM裝置 20 記憶體模組94876.doc -13- 200524267 129 Inverter 130 Inverter 131 Inverter 132 Inverter 133 Inverter 134 Inverter DAI Differential amplifier DA2 Differential amplifier DA3 Differential amplifier DA4 Differential amplifier DA5 Differential Amplifier 10 Clock generator 12 Pulse generator 14 Phase locked loop 16 Ring oscillator 16a Ring oscillator 16b Ring oscillator 18 Memory controller 19a DRAM device 19b DRAM device 20 Memory module

94876.doc 1494876.doc 14

Claims (1)

200524267 十、申請專利範圍·· L 一種環振盈器,其包括: 二第一邏輯電路’用以形成一第一迴圈;以及 卜卜、輯電路,用以形成一第二迴圈,致使於該等 第咬二第一迴圈的共同節點處會發生相位插補的現象。 ,員1之環振盪器,該第一邏輯電路進一步包括和該 第一邏輯電路共享的至少一個電路元件。 3·如明求項2之環振盪器,該電路元件係由一反向器或一差 動放大器所組成。 月求員1之環振盪器,該第一邏輯電路進一步包括奇數 個反向、、及,而该第二邏輯電路進一步包括偶數個反向級。 5.如明求項4之環振盪器,該等反向級進一步包括複數個反 向器。 6 ·如明求項4之環振盪器,該等反向級進一步包括複數個差 動放大器。 7. 一種環振盪器,其包括: 一第一邏輯電路,用以形成一具有第一奇數個反向級 的第一迴圈;以及 第一邏輯電路’用以形成一第二迴圈,致使於該等 第一與第二迴圈的第一共同節點處會發生相位插補的現 象; 一苐二邏輯電路’用以形成一具有第二奇數個反向級 的第一迴圈’致使於該等第二與第二迴圈共有的第二節 點處會發生相位插補的現象。 94876.doc 200524267 8. 外的電路迴 點處發生相 如請求項7之環振盪器,其包括至少兩個額 圈’該等迴圈係被配置成於至少三個不同節 位插補現象。 9·如請求項7之環振盪器,其包括一相鎖迴圈。 ίο· —種環振i器,其包括·· 第一與第二電路迴圈;以及 一該等第一與第二電路迴圈所共有的節點,於該節點 處會發生相位插補現象,用以產生一高頻的第一振盪信 號,其頻率高於單獨由該第一迴圈所提供的振盪信號。 11.如請求項10之環振盪器,其進一步包括一第三迴圈以及 一會發生相位插補現象的第二節點,該振盪器會產生一 頻率高於該第一振盪信號的振盪信號。 12·如請求項1〇之環振盪器,其進一步包括至少兩個額外電 路迴圈,該振盪器會產生一頻率高於該第一振蘯信號的 振盪器信號。 13 · —種環振盪器,其包括: 一位於第一與第二電路迴圈之共同輸出處的第一節點; 一第二節點,其係位於該第一節點前方一反向級之位 置; 一第三節點’其係位於該第一節點後方一反向級之位 置;以及 一第四節點’其位置係至少兩個電路迴圈所共有,致 使會於該第四郎點處發生相位插補現象。 14.如請求項13之環振盪器,該第一電路迴圈進一步包括和 94876.doc -2 - 200524267 該第二電路迴圈共享的至少_個電路元件。 15.如請求項13之環振盪器,其進一步包括一第三電路迴 圈,其係被配置成讓該第二節點係該等第二與第三電路 迴圈所共有’並且會於該節點處發生相位插補現象。 16·如請求項13之環振盈器,其進-步包括至少兩㈣外電 路迴圈,其係被配置成讓至少三個節點係至少兩個該等 迴圈所共有,並且會於該等三個節點之每個節 相位插補現象。 17. —種方法,其包括: 於一第一節點處產生一罝古贫 於-第-節點處產生一::第目;的第一輸出信號; 於第-節點處插補,等第::的第二輪出信號; 第一“认 與第二相位,用以產生- -輸出信二::。’該輸出信號的輸出頻率高於該等第 18.如請求項17之方法,該方法進一步包括·· 第二節點處產生—具有第三相位的第三輸出信號 將該第三輸出信號和該等第一 其中一者於 … /、弟一輸出仏號中至少 出C —即點處作插補,用以產生一第- 出㈣,該輪出信號的頻率^該第―第—生成輸 I9· 一種系統,其包括·· "弟生成輪出信號。 二器’用以產生複數個命令與位址信號; 體控制益的該等複數個命令與位址信號; 94876.doc 200524267 用以儲存資料的每個該等記憶體裝置皆包括: 用以儲存該資料的複數個記憶體單元; 一針對一相鎖迴圈來運作的環振盪器,該環振盪器包 括: 一第一邏輯電路,用以形成一第一迴圈;以及 弟一邏輯電路’用以形成一第二迴圈,致使於該等 第與第二迴圈的共同節點處會發生相位插補的現象。 20·如請求項19之系統,該記憶體裝置進一步包括由下面所 組成之群中所選出的其中一者:靜態隨機存取記憶體、 動態隨機存取記憶體、以及唯讀記憶體。 21 ·如明求項丨9之系統,該第一邏輯電路進一步包括奇數個 反向級。 22. 如請求項19之系統’該第二邏輯電路進—步包括偶數個 反向級。 23. 如請求項21之系統,該等反向級進一步包括複數個反向 器。 24. 如請求項21之系統,該等反向級進一步包括複數個差動 放大器。 25. 如請求項22之系統,該等反向級進一步包括複數個反向 器。 26·如請求項22之系統,該等5合你、仓 止a , 寻汉向級進一步包括複數個差動 放大器。 2 7 · —種系統,其包括: -記憶體控制器’用以產生複數個命令與位址信號, 94876.doc 200524267 並且接收一第一時脈信號; -記憶體模組,其包括複數個記憶體裝置,並且接收 源自該記憶體控制器的該等複數個命令與位址信號; 一時脈產生器,用以產生該第一時脈信號並且將該第 一時脈乜號傳輸給該記憶體控制器,該時脈產生器包括 一時脈源及一含有一環振盪器的相鎖迴圈; 該環振盪器包括: 一第一邏輯電路,用以形成一第一迴圈;以及 一第二邏輯電路,用以形成一第二迴圈,致使於該等 第一與第二迴圈的共同節點處會發生相位插補的現象。 28·如請求項27之系統,該時脈產生器係直接被安裝於主機 板之上。 94876.doc200524267 X. Patent application scope · A ring vibrator including: two first logic circuits' for forming a first loop; and a circuit for forming a second loop, so that Phase interpolation occurs at the common nodes of the second and second loops. As a ring oscillator, the first logic circuit further includes at least one circuit element shared with the first logic circuit. 3. If the ring oscillator of claim 2 is specified, the circuit element is composed of an inverter or a differential amplifier. In the ring oscillator of Month Seeker 1, the first logic circuit further includes an odd number of reverse stages, and the second logic circuit further includes an even number of reverse stages. 5. If the ring oscillator of claim 4 is specified, the inverter stages further include a plurality of inverters. 6 · If the ring oscillator of claim 4 is specified, the inverting stages further include a plurality of difference amplifiers. 7. A ring oscillator comprising: a first logic circuit for forming a first loop with a first odd number of reverse stages; and a first logic circuit for forming a second loop so that Phase interpolation will occur at the first common nodes of the first and second loops; one or two logic circuits 'used to form a first loop with a second odd number of reverse stages' cause Phase interpolation will occur at the second nodes shared by the second and second loops. 94876.doc 200524267 8. A ring oscillator similar to claim 7 includes at least two loops. The loops are configured to interpolate at least three different nodes. 9. The ring oscillator of claim 7 including a phase locked loop. ίο · —a ring oscillator, which includes the first and second circuit loops; and a node common to the first and second circuit loops, where phase interpolation occurs at the node, The first oscillating signal is used for generating a high frequency, and its frequency is higher than the oscillating signal provided by the first loop alone. 11. The ring oscillator of claim 10, further comprising a third loop and a second node where phase interpolation occurs, the oscillator generating an oscillation signal having a frequency higher than the first oscillation signal. 12. The ring oscillator of claim 10, further comprising at least two additional circuit loops, the oscillator generating an oscillator signal having a frequency higher than the first oscillation signal. 13. A ring oscillator comprising: a first node located at a common output of the first and second circuit loops; a second node located at a reverse stage in front of the first node; A third node 'is located at a reverse level behind the first node; and a fourth node' is located at least two circuit loops in common, causing phase interpolation to occur at the fourth Lang point Make up. 14. The ring oscillator of claim 13, the first circuit loop further includes at least one circuit element shared with the 94876.doc -2-200524267 second circuit loop. 15. The ring oscillator of claim 13, further comprising a third circuit loop configured to make the second node common to the second and third circuit loops' and to be at the node Phase interpolation occurs everywhere. 16. The ring vibrator of claim 13, further comprising at least two external circuit loops, which are configured so that at least three nodes are common to at least two such loops, and Wait for phase interpolation of each node of the three nodes. 17. A method, comprising: generating a puppet at a first node-generating a first output signal at the first node at the -th node; interpolating at the first node, and ranking: : The second round of output signals; the first "recognition and the second phase, used to generate--output signal two ::. 'The output frequency of the output signal is higher than the method described in clause 18. If the method of claim 17, this method It further includes that the second node generates a third output signal with a third phase, and the third output signal and the first one are at least C out of the number of the first output signal-that is, the point Interpolation is used to generate a first-output signal, the frequency of the round-out signal ^ the first-first-generation input I9. A system that includes ... " Younger generation of the round-out signal. Two devices are used to generate A plurality of commands and address signals; a plurality of commands and address signals of the physical control; 94876.doc 200524267 each such memory device for storing data includes: a plurality of memories for storing the data Body unit; a ring oscillator that operates against a phase-locked loop, The ring oscillator includes: a first logic circuit to form a first loop; and a first logic circuit to form a second loop, so that a common node at the common nodes of the first and second loop Phenomenon of phase interpolation occurs. 20. As in the system of claim 19, the memory device further includes one selected from the group consisting of: static random access memory, dynamic random access memory, And read-only memory. 21 · If the system seeks the item 9 explicitly, the first logic circuit further includes an odd number of reverse stages. 22. If the system of claim 19 'the second logic circuit further includes an even number of steps Reverse stage. 23. If the system of claim 21, the reverse stages further include a plurality of inverters. 24. If the system of claim 21, the reverse stages further include a plurality of differential amplifiers. 25. If the system of item 22 is requested, the inversion stages further include a plurality of inverters. 26. If the system of item 22 is requested, the 5 go-to-go, warehouse stop a, the Han-Xun stage further includes a plurality of differential amplifiers 2 7 · -A system comprising:-a memory controller 'for generating a plurality of command and address signals, 94876.doc 200524267 and receiving a first clock signal;-a memory module comprising a plurality of memory devices And receive the plurality of commands and address signals from the memory controller; a clock generator for generating the first clock signal and transmitting the first clock signal to the memory control The clock generator includes a clock source and a phase-locked loop including a ring oscillator; the ring oscillator includes: a first logic circuit for forming a first loop; and a second logic circuit , Used to form a second loop, causing phase interpolation to occur at the common node of the first and second loops. 28. The system of claim 27, wherein the clock generator is mounted directly on the motherboard. 94876.doc
TW93122743A 2003-09-16 2004-07-29 Ring oscillator, memory system comprising the same, and method for generating oscillating signals TWI254506B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030064241A KR100541549B1 (en) 2003-09-16 2003-09-16 Ring oscillator
US10/841,866 US7135935B2 (en) 2003-09-16 2004-05-06 Hyper-ring oscillator

Publications (2)

Publication Number Publication Date
TW200524267A true TW200524267A (en) 2005-07-16
TWI254506B TWI254506B (en) 2006-05-01

Family

ID=34315810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93122743A TWI254506B (en) 2003-09-16 2004-07-29 Ring oscillator, memory system comprising the same, and method for generating oscillating signals

Country Status (4)

Country Link
JP (1) JP2005094754A (en)
CN (1) CN1327613C (en)
DE (1) DE102004042900B4 (en)
TW (1) TWI254506B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901978B2 (en) 2011-08-15 2014-12-02 Nanya Technology Corp. Multi phase clock signal generator, signal phase adjusting loop utilizing the multi phase clock signal generator, and multi phase clock signal generating method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006028966B4 (en) * 2005-06-21 2016-03-24 Samsung Electronics Co., Ltd. Phase locked loop circuit, phase lock method, memory device and memory system
US7890561B2 (en) 2005-08-16 2011-02-15 International Business Machines Corporation Random number generator
WO2007063965A1 (en) 2005-12-02 2007-06-07 Matsushita Electric Industrial Co., Ltd. Multi-phase oscillator
JP2007235800A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Ring oscillation circuit, pll oscillation circuit using this, and high frequency receiving device using this pll oscillation circuit
JP2007274431A (en) 2006-03-31 2007-10-18 Sony Corp Oscillation circuit
US7612621B2 (en) 2007-05-16 2009-11-03 International Business Machines Corporation System for providing open-loop quadrature clock generation
US7642868B2 (en) * 2007-06-15 2010-01-05 Kabushiki Kaisha Toshiba Wide range interpolative voltage controlled oscillator
JP5275508B1 (en) * 2012-12-21 2013-08-28 彰 滝沢 Oscillation method and oscillation circuit
JP6217087B2 (en) * 2013-01-31 2017-10-25 株式会社ソシオネクスト Ring oscillator and semiconductor device
CN104426540B (en) * 2013-08-27 2017-08-11 苏州中科集成电路设计中心有限公司 Produce the VCO equipment of balanced duty cycle signals
CN105406863B (en) * 2015-12-09 2018-02-27 无锡中感微电子股份有限公司 Ring oscillator
JP2022050172A (en) * 2020-09-17 2022-03-30 彰 滝沢 Oscillation circuit of multiple phases
CN112615589B (en) * 2020-12-15 2023-03-24 海光信息技术股份有限公司 Method and device for adjusting frequency of ring oscillator, storage medium and equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105950A (en) * 1976-09-13 1978-08-08 Rca Corporation Voltage controlled oscillator (VCO) employing nested oscillating loops
JPS6165620A (en) * 1984-09-07 1986-04-04 Nec Corp Oscillating circuit
CH684140A5 (en) * 1991-01-10 1994-07-15 Lem Liaisons Electron Mec Control device for power transistor e.g. IGBT type in current supply circuits
JP2990863B2 (en) * 1991-06-26 1999-12-13 日本電気株式会社 Oscillation circuit
DE69315010T2 (en) * 1992-08-20 1998-04-16 Koninkl Philips Electronics Nv Oscillator with multi-phase outputs
DE69415378T2 (en) * 1993-04-05 1999-06-17 Koninklijke Philips Electronics N.V., Eindhoven Digital phase locked loop
JP2867889B2 (en) * 1994-08-30 1999-03-10 日本電気株式会社 Voltage controlled oscillator
JP3613779B2 (en) * 1997-08-27 2005-01-26 日本プレシジョン・サーキッツ株式会社 Oscillator circuit
US6075419A (en) * 1999-01-29 2000-06-13 Pmc-Sierra Ltd. High speed wide tuning range multi-phase output ring oscillator
US6137369A (en) * 1999-03-03 2000-10-24 Lucent Technologies Inc. Ring oscillator clock generator network
US6100763A (en) * 1999-03-29 2000-08-08 Motorola, Inc. Circuit for RF buffer and method of operation
US6278334B1 (en) * 1999-11-29 2001-08-21 Arm Limited Voltage controlled oscillator with accelerating and decelerating circuits
CA2308820A1 (en) * 2000-05-15 2001-11-15 The Governors Of The University Of Alberta Wireless radio frequency technique design and method for testing of integrated circuits and wafers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901978B2 (en) 2011-08-15 2014-12-02 Nanya Technology Corp. Multi phase clock signal generator, signal phase adjusting loop utilizing the multi phase clock signal generator, and multi phase clock signal generating method
TWI491176B (en) * 2011-08-15 2015-07-01 Nanya Technology Corp Multi phase clock signal generator, signal phase adjusting loop utilizing the multi phase clock signal generator, and multi phase clock signal generating method

Also Published As

Publication number Publication date
TWI254506B (en) 2006-05-01
DE102004042900A1 (en) 2005-04-14
JP2005094754A (en) 2005-04-07
CN1327613C (en) 2007-07-18
DE102004042900B4 (en) 2010-12-30
CN1599247A (en) 2005-03-23

Similar Documents

Publication Publication Date Title
TW200524267A (en) Hyper-ring oscillator
JP3549751B2 (en) Semiconductor integrated circuit device
TW440836B (en) Delay locked loop and delay locking method
JP4309392B2 (en) Delay locked loop and semiconductor memory device having the same
TWI320880B (en) Spread spectrum clock generating apparatus
US7633326B2 (en) Timing controller and controlled delay circuit for controlling timing or delay time of a signal by changing phase thereof
JP2001117666A (en) Noninteger frequency dividing device
US6252441B1 (en) Synchronous data sampling circuit
JP6612500B2 (en) Clock generation circuit
CA2874459C (en) Differential clock signal generator
JP4297552B2 (en) Self-timing control circuit
JP2010093771A (en) Dll circuit
TW200400696A (en) Clock divider and method for dividing clock signal in DLL circuit
JPH10303743A (en) Phase-locked loop having voltage controlled oscillator outputting plural frequencies
US7135935B2 (en) Hyper-ring oscillator
JP5656179B2 (en) Complex data level shifter and deskew device
JP2015192158A (en) semiconductor device
KR102553855B1 (en) Shift register
JP2000187986A (en) Data input buffering method and its device for high-speed semiconductor memory
JPH08181587A (en) Pulse signal shaping circuit
CN117439577A (en) Logic control circuit, flip-flop and pulse generation circuit
JP2002184864A (en) Semiconductor device
JP2007081656A (en) Periodic pulse generation circuit
JP2001126474A5 (en)
JP2002132377A (en) Clock signal distributor circuit and distribution signal method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees