TW200521218A - Thermal interface material and methode for making same - Google Patents

Thermal interface material and methode for making same Download PDF

Info

Publication number
TW200521218A
TW200521218A TW092136527A TW92136527A TW200521218A TW 200521218 A TW200521218 A TW 200521218A TW 092136527 A TW092136527 A TW 092136527A TW 92136527 A TW92136527 A TW 92136527A TW 200521218 A TW200521218 A TW 200521218A
Authority
TW
Taiwan
Prior art keywords
thermal interface
interface material
nano
silver
patent application
Prior art date
Application number
TW092136527A
Other languages
English (en)
Other versions
TWI253467B (en
Inventor
Charles Leu
Tai-Cherng Yu
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW092136527A priority Critical patent/TWI253467B/zh
Priority to US10/900,816 priority patent/US7183003B2/en
Publication of TW200521218A publication Critical patent/TW200521218A/zh
Application granted granted Critical
Publication of TWI253467B publication Critical patent/TWI253467B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Description

200521218 五、發明說明(1) 【發明所屬之技術領域】 本發明係關於一種熱介面材料及其製造方法,尤指_ 種利用奈米碳管導熱之熱介面材料及其製造方法。 【先前技術】 近年來’隨著半導體器件集成工藝之快速發展,半導 肢為件之集成化程度越來越高,惟,器件體積卻變得越來 越小’其對散熱之需求越來越高,已成為一個越來越重要 土 Η喊。為滿足δ亥需要,風扇散熱、水冷輔助散熱及熱管 散熱等各種散熱方式被廣泛運用,並取得一定之散熱效 j ’但因散熱器與半導體集成器件之接觸介面之不平整, 般相,互接觸面積不到2%,未有一個理想之接觸介面,從 =本上影響半導體器件向散熱器傳遞熱量之效果,故,於 j器與半導體器件之間增加一具較高熱傳遞係數之介面 材料以增加介面之接觸程度實為必要。 統熱介 形成複 或其他 質。其 為液態 為載體 陷係整 來越不 增加銀 互接觸 係將導熱係 ,如石墨、 。此種材料 脂、相變材 源表面浸潤 材料接觸熱 導熱係數較 半導體集成 之導熱顆粒 整個複合材 合材料 金屬等 中以油 能與熱 之複合 個材質 能適應 膠基體 以增加 I體以 在呂、銀 體之性 使用時 和橡膠 晋遍缺 已緩越 求’而 k ^:相 數較高之顆粒分散於銀膠 氮化硼、氧化矽、氧化 之導熱性能取決於銀膠基 料為基體之複合材料因其 故接觸熱阻較小,而石夕膠 阻相對較大。該類材料一 小,典型值為lW/mK,這 化程度之提高對散熱之需 含量使得顆粒與顆粒之間 料之導熱係數,如某些特
200521218 五、發明說明(2) --- 殊之介面材料因此可達到4 -8 W/mK,惟,銀膠基體之導熱 顆粒含量增加至一定程度時,會使銀膠基體头本 ’… 八丈席本之性 能,如油脂會變硬,從而浸潤效果變差,橡膠亦會變得較 硬,從而失去應有之柔韋刃性,這都將使熱介面材二2二二 大降低。
近來有一種熱介面材料,係將定向排列之導熱係數約 為1100 W/mK之碳纖維一端或整體用聚合物固定,從而於 熱介面材料之垂直方向形成定向排列之碳纖維陣列,以使 每一碳纖維均可形成一導熱通道,該方式可有效提高熱介 面材料之導熱係數,達到50-90 W/mK。惟,該類材料1個 缺點係厚度必須於4 0微米以上,而整個熱介面材料之導熱 係數與薄膜之厚度成反比,故當其熱阻降低至一定程度, 進一步降低之空間相當有限。 為改善熱介面材料之性能,提高其熱傳導係數,各種 材料被廣泛試驗。Savas Berber等人2 0 0 0年於美國物理 學會上發表一篇名為’’Unusually High Thermal
Conductivity of Carbon Nanotubes” 之文章指出,”ζπ 形 (1〇, 10)奈米碳管於室溫下導熱係數可達6 6 0 0 w/mK ,具
體内谷可參閱文獻 Phys. Rev. Lett(2000),Vol· 84 Ρ 4613 。 ·,· 美國專利第6, 407, 922號揭示一種利用奈米碳管導熱 之熱介面材料,其係將奈米碳管摻到銀膠基體結成一體, 通過注模方式製得熱介面材料,且該熱介面材料之兩導熱 表面之面積不等,其中與散熱器接觸一面之面積大於與熱
第7頁 200521218 五、發明說明(3) 源接觸一面之面積,這樣可有利於散熱器散熱,但該方法 製得之熱介面材料有不足之處,其一,注模方式製得熱介 面材料厚度較大,導致該熱介面材料之導熱係數較高,且 增加該熱介面材料之體積,與器件向小型化方向發展之趨 勢不相適應,且熱介面材料缺乏柔韌性;其二,奈米碳管 於基體材料中未有序排列,其於基體分佈之均勻性較難確 保,因而熱傳導之均勻性亦受到影響,且奈米碳管縱向導 熱之優勢未充分利用,影響熱介面材料之熱傳導係數。 有鑒於此,提供一種具優良之熱傳導效果、厚度薄、 柔韌性佳且熱傳導均勻之熱介面材料實為必要。 【内容】 為解決先前技術之問題,本發明之目的在於提供一種 導熱效果優良、厚度薄、柔韌性佳之熱介面材料。 本發明之另一目的係提供此種熱介面材料之製作方 法。 為實現本發明之目的,本發明提供一種熱介面材料, 其包括:一銀谬基體,該銀膠基體包括一第一表面及一相 對於第一表面之第二表面;及複數奈米碳管,該複數奈米 碳管分佈於該銀膠基體中;其中該銀膠材料包括奈米銀顆 粒、奈米氮化硼顆粒及合成油,該複數奈米碳管相互平行 且於該銀膠基體沿第一表面向第二表面延伸。 為實現本發明之另一目的,本發明熱介面材料之製造 方法包括以下步驟: 提供一奈米碳管陣列,該奈米碳管陣列置於一基底
200521218
用銀膠塗覆浸潤奈 冷卻固化,形成熱 與先前之熱介面材 因奈米碳管陣列具均句 每一根奈米碳管均可於 道,得到導熱係數較高 【實施方式】 米碳管陣列 "面材料。 料相比,本 夂向排列之 $直熱介面 之熱介面材 發明提供之 優點,該熱 材料方向形 料。 熱介面材料 介面材料之 成熱傳導通 請一併參閱第一圖與 第 沈積-催化劑層1 2,其方法^ :,係於—基底11均勾
濺射法完成。基底11之材料可用玻璃、石英 J今積或 銘。本實施例採用多切,其表面係—多孔>2乳化 極小,一般小於3奈米。催化劑層12之材料可曰匕之直徑 鎳及其合金’本實施方式選用鐵作為催化劑材料鐵鈷、 虱化催化劑層12,形成催化劑顆粒(圖未示), 分佈有催化劑之基底U置於反應爐中(圖未示)於?〇〇寻
\〇〇〇攝氏度下,通入碳源氣,生長出奈米碳管陣列,其中 碳源氣可為乙块、乙烯等氣體,奈米碳管陣列2 2之高度在 一定範圍内可通過控制其生長時間來控制,一般生長高度 為1〜1 0 0微米,本實施例之奈米碳管陣列2 2之生長高度為 1 0 0微米。有關奈米碳管陣列2 2之生長方法已較為成熟, 具體可參閱文獻Science, 1999,283,512-414及文獻 J·Am·Chem.Soc,20 0 1, 1 23, 1 1 50 2 - 1 1 5 0 3,此外美國專利 第6, 35 0, 488號亦公開一種大面積生長奈米碳管陣列之方
第9頁 200521218 五、發明說明(5) 法。 凊蒼閱第二圖、第四圖,用銀膠“塗覆浸潤生長完備 之定向棑列奈米碳管陣列22,待銀膠32完全浸潤奈米碳管 陣列22。該銀膠32材料包括奈米銀顆粒、奈米氮化硼顆粒 及合成油(PolysyntheUc 0US),其中,該奈米銀顆粒粒 徑為1〜9 0奈米’純度為9 9. 9 %,奈米氮化硼顆粒粒徑為工〜 3 0奈米。銀膠3 2之完全浸潤之時間同奈米碳管陣列2 2之高 度、密度以及整個奈米碳管陣列22之面積及銀膠32自身之 枯度有關。 將經銀膠3 2浸潤之奈米碳管陣列2 2冷卻固化,再將該 含奈米,碳管陣列22之銀膠32從基底11進行脫膜,形成熱介 面材料40,其厚度為100微米,與原先奈米碳管陣列22高 度一致。即熱介面材料40之厚度取決於所生長之奈米碳管 陣列2 2之高度,故,可通過控制奈米碳管陣列2 2之生長高 度製得所需不同厚度之熱介面材料40。 再請參閱第五圖,本發明之熱介面材料4 〇,奈米碳管 陣列2 2經銀膠3 2固結形成一體,奈米碳管陣列2 2於銀膠3 2 垂、均勻分佈,形成複數熱傳遞通道,所形成之熱介面材 料40具導熱係數較高,且導熱均勻之特點。 本發明製得之熱介面材料4 0,奈米碳管陣列2 2於熱介 面材料4 0之形態基本未變’即奈米碳管陣列2 2之奈米碳管 之間距未變,且奈米石炭管陣列未聚集成束,保持初始定向 排列之狀態。 本發明採用之銀膠3 2可為奈米銀顆粒、奈米氮化硼顆
第10頁 200521218
粒及合成油混合而成,其導熱係數較高,揮發性較 中,添加奈米氮化硼顆粒可有效改善埶傳導之稃味其 於銀膠32充分浸潤奈米碳管陣列22,直度 ς ’有利.π π ,、1又、贵來低於 請一併參閱 面材料4 0具有極 器(CPU)、功率 晶片在内之電子 與散熱器6 0之間 良介面熱接觸, 之表面.(未標示) 40之第二表面44 發明製得奈米碳 米級,故具較佳 不齊情勢之下, 80與散熱器60之 第六圖 佳導熱 電晶體 器件8 0 ,能提 熱介面 接觸, 與散熱 管陣列 之柔韋刃 係數, 、視頻 中,教 供電子 材料4 0 與第一 器60之 之熱介 性,即 本發明之熱介 間一良好熱接 明製得奈米碳管陣列 可廣泛應用於包括中 圖形陣列晶片(VGA) 介面材料40置於電子 器件80與散熱器60之 之第一表面42與電子 表面4 2相對應之熱介 底面(未標不)接觸。 面材料40極薄,其厚 便於電子器件8〇之表 面材料40亦能提供電 觸0 之熱介 央處理 、射頻 器件8 0 間一優 器件8 0 面材料 由於本 度僅微 面參差 子器件 綜上所述,本發明符合發明專利之要件,爰依法提出 專利申請。惟,以上所述者僅為本發明之較佳實施例,舉 凡熟悉本案技藝之人士,在援依本案發明精神所作之等二 修飾或變化,皆應包含於以下之申請專利範圍内。
200521218 圖式簡單說明 【圖式簡單說明】 第一圖係本發明含有催化劑薄膜之基底示意圖。 第二圖係於第一圖所示基底生長定向排列之奈米碳管 陣列示意圖。 第三圖係本發明銀膠塗覆浸潤奈米碳管陣列之示意 圖。 第四圖係本發明固化之奈米碳管陣列於基體被揭起之 過程示意圖。 第五圖係本發明含奈米碳管陣列之熱介面材料示意
圖。 第.六圖係本發明熱介面材料之應用示意圖。 【主要元件符號說明】 基底 11 催化劑層 12 奈米碳管陣列 22 銀膠 32 熱介面材料 40 第一表面 42 第二表面 44 散熱器 60 電子器件 80
第12頁

Claims (1)

  1. 200521218 六、申請專利範圍 1. 一熱介面材料,其包括: 一銀膠基體,該銀膠基體包括一第一表面及一相對 於第一表面之第二表面;及 複數奈米碳管,該複數奈米碳管分佈於該銀膠基體 中;其中 該銀膠材料包括奈米銀顆粒、奈米氮化硼顆粒及合 成油,該複數奈米碳管相互平行且於該銀膠基體沿第 一表面向第二表面延伸。 2. 如申請專利範圍第1項所述之熱介面材料,其中該奈米 銀顆粒粒徑為卜9 0奈米,純度為9 9 . 9%,奈米氮化硼顆 粒粒徑為1〜3 0奈米。 3. 如申請專利範圍第1項所述之熱介面材料,其中該熱介 面材料之第一表面與熱源相接觸,該第二表面與散熱 器相接觸。 4. 如申請專利範圍第1項所述之熱介面材料,其中該熱介 面材料厚度為1〜1 0 0微米。 5. 如申請專利範圍第1項所述之熱介面材料,其中該第一 表面與該第二表面相互平行。 6. 如申請專利範圍第1項所述之熱介面材料,其中該複數
    第13頁 200521218 六、申請專利範圍 奈米碳管垂直於熱介面材料之第一及第二表面。 7. —種熱介面材料之製造方法,其包括以下步驟: 提供一奈米碳管陣列,該奈米碳管陣列置於一基底; 用銀膠塗覆浸潤奈米碳管陣列; 固化浸潤奈米碳管陣列後之銀膠,形成熱介面材料。 8. 如申請專利範圍第7項所述之一種熱介面材料製造方 法,其中該奈米碳管陣列之形成方法包括化學氣相沈 積法。 9. 如申請專利範圍第7項所述之一種熱介面材料製造方 法,其中該銀膠材料包括奈米銀顆粒、奈米氮化硼顆 粒及合成油。 1 0.如申請專利範圍第7項所述之一種熱介面材料製造方 法,其中該奈米銀顆粒之純度為9 9. 9%,粒徑為卜9 0奈 米。 1 1.如申請專利範圍第7項所述之一種熱介面材料製造方 法,其中該奈米氮化硼顆粒粒徑為1〜3 0奈米。 1 2.如申請專利範圍第7項所述之一種熱介面材料製造方 法,其中該銀膠粘度低於1 OOmps。
    第14頁 200521218
    第15頁
TW092136527A 2003-12-23 2003-12-23 Thermal interface material and method for making same TWI253467B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW092136527A TWI253467B (en) 2003-12-23 2003-12-23 Thermal interface material and method for making same
US10/900,816 US7183003B2 (en) 2003-12-23 2004-07-27 Thermal interface material and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092136527A TWI253467B (en) 2003-12-23 2003-12-23 Thermal interface material and method for making same

Publications (2)

Publication Number Publication Date
TW200521218A true TW200521218A (en) 2005-07-01
TWI253467B TWI253467B (en) 2006-04-21

Family

ID=34676171

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092136527A TWI253467B (en) 2003-12-23 2003-12-23 Thermal interface material and method for making same

Country Status (2)

Country Link
US (1) US7183003B2 (zh)
TW (1) TWI253467B (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US7538422B2 (en) 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US20070114658A1 (en) * 2004-08-24 2007-05-24 Carlos Dangelo Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
TWI299358B (en) * 2004-03-12 2008-08-01 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
CN1841713A (zh) * 2005-03-31 2006-10-04 清华大学 热界面材料及其制作方法
CN100358132C (zh) * 2005-04-14 2007-12-26 清华大学 热界面材料制备方法
US7886813B2 (en) * 2005-06-29 2011-02-15 Intel Corporation Thermal interface material with carbon nanotubes and particles
CN1978583A (zh) * 2005-12-09 2007-06-13 富准精密工业(深圳)有限公司 热介面材料
US7661430B2 (en) * 2006-05-19 2010-02-16 Richard Mason Antimicrobial dental appliances including mouthguards and mouthpieces
EP2081869B1 (en) * 2006-07-10 2020-11-04 California Institute of Technology Method for selectively anchoring large numbers of nanoscale structures
US8846143B2 (en) 2006-07-10 2014-09-30 California Institute Of Technology Method for selectively anchoring and exposing large numbers of nanoscale structures
CN100591613C (zh) * 2006-08-11 2010-02-24 清华大学 碳纳米管复合材料及其制造方法
CA2666815C (en) * 2006-10-17 2013-05-28 Purdue Research Foundation Electrothermal interface material enhancer
DE102006050508B4 (de) * 2006-10-26 2009-04-09 Rainer Schmitt Heizkörper mit Wassertaschen
US7294560B1 (en) * 2006-11-28 2007-11-13 Motorola, Inc. Method of assembling one-dimensional nanostructures
DE102007006175A1 (de) * 2007-02-07 2008-08-14 Osram Opto Semiconductors Gmbh Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht
JP5355423B2 (ja) * 2007-02-22 2013-11-27 ダウ コーニング コーポレーション 伝導性フィルムを調製するためのプロセスおよびそのプロセスを用いて調製した物品
US7959969B2 (en) 2007-07-10 2011-06-14 California Institute Of Technology Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion
CN101343532B (zh) * 2007-07-13 2011-06-08 清华大学 碳纳米管复合热界面材料的制备方法
US7479590B1 (en) * 2008-01-03 2009-01-20 International Business Machines Corporation Dry adhesives, methods of manufacture thereof and articles comprising the same
CN101556089B (zh) * 2008-04-11 2011-03-30 鸿富锦精密工业(深圳)有限公司 太阳能集热器
CN101561194B (zh) 2008-04-18 2010-12-29 清华大学 太阳能集热器
CN101561189B (zh) 2008-04-18 2011-06-08 清华大学 太阳能集热器
US8622055B2 (en) 2008-04-11 2014-01-07 Tsinghua University Solar collector and solar heating system using same
US8695586B2 (en) 2008-04-11 2014-04-15 Tsinghua University Solar collector and solar heating system using same
US8339069B2 (en) * 2008-04-14 2012-12-25 Digital Lumens Incorporated Power management unit with power metering
TWI386609B (zh) * 2008-05-02 2013-02-21 Hon Hai Prec Ind Co Ltd 太陽能集熱器
CN101626674B (zh) * 2008-07-11 2015-07-01 清华大学 散热结构及其制备方法
CN102292114A (zh) 2009-01-27 2011-12-21 加州理工学院 通过具有从装置表面突出的排列的碳纳米管的纳米增强的装置促进的药物递送和物质传递
CN101814867B (zh) 2009-02-20 2013-03-20 清华大学 热电发电装置
WO2011127207A2 (en) 2010-04-07 2011-10-13 California Institute Of Technology Simple method for producing superhydrophobic carbon nanotube array
WO2012079066A2 (en) 2010-12-10 2012-06-14 California Institute Of Technology Method for producing graphene oxide with tunable gap
US8976507B2 (en) 2011-03-29 2015-03-10 California Institute Of Technology Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles
US8764681B2 (en) 2011-12-14 2014-07-01 California Institute Of Technology Sharp tip carbon nanotube microneedle devices and their fabrication
US9349543B2 (en) 2012-07-30 2016-05-24 California Institute Of Technology Nano tri-carbon composite systems and manufacture
US11430711B2 (en) 2019-11-26 2022-08-30 Aegis Technology Inc. Carbon nanotube enhanced silver paste thermal interface material
US11733749B2 (en) * 2020-05-29 2023-08-22 Qualcomm Incorporated Electronic device comprising thermally conductive connector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094769A (en) * 1988-05-13 1992-03-10 International Business Machines Corporation Compliant thermally conductive compound
US5052481A (en) * 1988-05-26 1991-10-01 International Business Machines Corporation High conduction cooling module having internal fins and compliant interfaces for vlsi chip technology
US5026748A (en) * 1990-05-07 1991-06-25 E. I. Du Pont De Nemours And Company Thermally conductive adhesive
US5989459A (en) * 1999-03-09 1999-11-23 Johnson Matthey, Inc. Compliant and crosslinkable thermal interface materials
EP1059266A3 (en) 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US6407922B1 (en) 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
US7013965B2 (en) * 2003-04-29 2006-03-21 General Electric Company Organic matrices containing nanomaterials to enhance bulk thermal conductivity
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes

Also Published As

Publication number Publication date
US20050136248A1 (en) 2005-06-23
US7183003B2 (en) 2007-02-27
TWI253467B (en) 2006-04-21

Similar Documents

Publication Publication Date Title
TW200521218A (en) Thermal interface material and methode for making same
CN100383213C (zh) 一种热界面材料及其制造方法
CN100345472C (zh) 一种热界面材料及其制造方法
TWI299358B (en) Thermal interface material and method for making same
US7674410B2 (en) Method for manufacturing a thermal interface material
US20100172101A1 (en) Thermal interface material and method for manufacturing the same
CN100543103C (zh) 热界面材料及其制备方法
CN1837147B (zh) 热界面材料及其制备方法
US8207016B2 (en) Methods of cooling semiconductor dies
CN101864280A (zh) 芯片封装与散热用热界面材料及其制法
JP2007009213A (ja) 熱伝導材料及びその製造方法
CN100364081C (zh) 散热器及其制造方法
CN1919961A (zh) 热界面材料及其制备方法
CN100356556C (zh) 一种热界面材料及其制造方法
CN1266247C (zh) 一种热界面材料及其制造方法
CN111434747B (zh) 一种三维石墨烯/弹性体热界面材料及其制备方法
CN100405587C (zh) 散热器及其制备方法
CN111961386B (zh) 一种散热结构
TWI233331B (en) Heat sink and a method for making the same
TW200533736A (en) Thermal interface material and method for making same
TW200427961A (en) Thermal interface material and method for making same
TWI378071B (en) Thermal interface material and method for making same
TW200536462A (en) Thermal interface material and methode for making same
TW201043909A (en) Thermal interface material and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees