TW200428309A - Organic EL display - Google Patents

Organic EL display Download PDF

Info

Publication number
TW200428309A
TW200428309A TW92115731A TW92115731A TW200428309A TW 200428309 A TW200428309 A TW 200428309A TW 92115731 A TW92115731 A TW 92115731A TW 92115731 A TW92115731 A TW 92115731A TW 200428309 A TW200428309 A TW 200428309A
Authority
TW
Taiwan
Prior art keywords
layer
color conversion
electrode
organic
coating
Prior art date
Application number
TW92115731A
Other languages
Chinese (zh)
Other versions
TWI272865B (en
Inventor
Kenya Sakurai
Yukinori Kawamura
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of TW200428309A publication Critical patent/TW200428309A/en
Application granted granted Critical
Publication of TWI272865B publication Critical patent/TWI272865B/en

Links

Abstract

The purpose of the present invention is to relieve application to an EL element of thermal stress due to the change of environmental temperature or mechanical stress or the like to an element, and to prevent generation of a void caused by the irregularity on the surface of the element. This color organic EL display has a top emission structure composed by sticking a transparent substrate with a color conversion filter formed to a substrate with thin film transistors formed. An overcoat layer for adjusting the gap between both substrates and a stress-relieving overcoat layer are formed between both substrates without forming a space between the EL element and them.

Description

200428309 Π) 玖、發明說明 【發明所屬之技術領域】 本發明係有關一種具有高精細、可靠性優、攜帶型終 端機和產業用計測器之顯示等能廣大應用範圍的有機電激 發光顯示器。 【先前技術】 近年開發使用薄膜電晶體(TFT)之驅動方式的彩色有 機電激發光顯示器。光取出至形成TFT的基板側的方式 乃利用配線部分的光之遮光效果,爲了不提高開口率,最 近則是將光取出至與形成TFT之基板相反的這一側,開 發出所謂的頂部發射方式。 一方面,於圖案化之螢光體吸收有機電激發光元件的 發光,進一步開發出由各個螢光體發出多色螢光的色彩變 換方式。該方式是藉著兼作TFT驅動使用的頂部發射方 式,進而包括能提供高精細、高亮度之有機電激發光顯示 器的可能性。揭示於日本特開平第1 1 — 2 5 1 0 5 9號公報、 特開平第2 0 0 0 — 7 7 1 9 1號公報的彩色顯示裝置係爲此種方 式之一例。 【發明內容】 [發明欲解決之課題] 使用色彩變換方式的頂部發射顯示器之構造係有機電 激發光元件和色彩變換濾光片(色彩變換層單體或彩色濾 -4- (2) (2)200428309 光片層與色彩變換層的積層體)是藉由配設在其間的柱狀 間隙調整層,面對有機電激發光元件之上部側的透明電極 ,具有一定間隙而配設的構造,揭示於日本特開平第11 —297477號公報中。並於該間隙塡充絕緣油等的構造乃 揭示於日本實開平第3 — 923 98號公報中。 但是藉由柱狀構造物(支柱)設有一定間隙的構成,在 有機電激發光層與色彩變換濾光片之間存在折射率大不相 同的氣體層(空隙),在氣體層與有機電激發光元件的界面 ,或是氣體層與色彩變換濾光片的界面的光之反射變大, 光的取出效率降低。而在間隙注入絕緣油等的構成,雖然 可緩和相關的反射問題,但顯示器之製造製程複雜化方面 ,會損及到原本完全固體裝置的有機電激發光顯示器之優 點的耐衝撃性,就稱不上是最佳的構成。 解決該些問題的構成係藉由透明樹脂層互相強固貼合 有機電激發光元件和面對該有機電激發光元件之上部的透 明電極的色彩變換濾光片的構成亦揭示於日本特許第 2766095號中。但於該構造中,接著有機電激發光元件與 色彩變換濾光片的工程,或是放置所形成的顯示器的環境 溫度變化等所產生的熱應力和振動、壓力等的機械性應力 ’而使電激發光元件受到剝離等損傷的問題。 更於日本特開平第;1丨—;! 2〗i 64號公報中揭示,於有 機電激發光元件與色彩變換濾光片之間,以結合層作爲色 彩變換濾光片側而積層屬於樹脂薄膜的基底薄膜、和同樣 屬於樹脂薄膜的結合層的構成。但於諸公報中記載當作結 -5- (3) (3)200428309 合層的作用,而平坦化色彩變換濾光片的段差,和作爲色 彩變換濾光片與基底薄膜的緩衝膜的功能。然而該公報並 未針對色彩變換濾光片與有機電激發光元件的間隙調整做 考量。而是只當作與基底薄膜的緩衝膜之功能,對於緩和 加諸在重要的有機電激發光元件的應力亦無啓發性。更如 本發明欲針對具備有TFT的有機電激發光顯示器解決固 有的問題,因爲該公報的發明本身並不具備TFT故未談 及。 [用以解決課題之手段] 若按照本發明,爲達成上述目的, 在基板上具備有:由源極及汲極所形成的薄膜電晶體 、和積層形成在該薄膜電晶體的上部由連接在前述源極或 汲極的導電性薄膜材料所形成的第一電極、至少由有機電 激發光層、透明導電性薄膜材料所形成的上部透明電極的 第二電極、至少一層以上鈍化層,利用前述薄膜電晶體驅 動的有機電激發光元件,形成在透明支持基板上的色彩變 換層單體或彩色濾光片層和色彩變換層的積層體是面對前 述有機電激發光元件的第二電極側而配置的有機電激發光 顯示器中, 其在色彩變換層單體或彩色濾光片層和色彩變換層的 積層體之前述第二電極側,積層而設有楊氏率相異之至少 兩種的被覆層,使該被覆層中的前述第二電極側的被覆層 密著於前述鈍化層的表面,同時密封接著前述基板與支持 -6- (4) (4)200428309 基板之外周所形成。尙且,使用彩色濾光片層與色彩變換 層的積層體的情形下,例如由有機電激發光元件發光的光 爲藍色的時候,對藍色而言,僅爲彩色濾光片層,對綠色 與紅色而言’爲彩色濾光片層與色彩變換層的積層體。 就本發明來看,楊氏率相異的至少兩種被覆層中,楊 氏率最小的被覆層,以在有機電激發光元件的顯示區域內 密著於前述鈍化層的表面所形成的爲佳。 像這樣,本發明係爲形成TFT的基板和至少形成屬 於色彩變換層的支持基板的透明基板,在兩者基板間於透 明基板側沒有空間的面對間隙調整用的被覆層,於基板側 (有機電激發光元件側)沒有空間的面對應力緩和用的被覆 層’特別是藉由楊氏率小的應力緩和用的被覆層,在與鈍 化層的界面,顯示性能不會受到不良影響,就能避免產生 氣體的空隙。亦即,楊氏率最小的被覆層是在顯示區域內 密著於鈍化層,埋設因TFT配線所引起的凹凸而產生的 空間’且針對有機電激發光顯示器緩和由環境所施加的熱 應力和機械性應力。因TF T基板之配線引起的凹凸爲1〜 2 μηι左右,埋設該凹凸的楊氏率最小之被覆層的厚度以2 〜4μηι最適合。 【實施方式】 [發明的實施形態] 針對本發明之有機電激發光顯示器於以下做說明° 以下說明中,說明第一電極爲陽極、第二電極爲陰極 (5) (5)200428309 的情形,但第一電極(下部電極)爲陰極、第二電極(上部 電極)爲陽極亦可。 1 :薄膜電晶體(TFT)基板與陽極 由玻璃、塑膠等所形成的絕緣性基板,或是在半導電 性、導電性基板形成絕緣性薄膜的基板上矩陣狀配置TFT ,於對應各像素的陽極連接源極電極。 TFT係爲將閘極電極設在閘極絕緣膜之下的底部閘極 型,而能動層是採用多結晶矽膜。 陽極是形成於形成在TFT上的平坦化絕緣膜上。通 常有機電激發光元件是透明、工作函數高的銦錫氧化物 (ITO)當作陽極材料使用,但爲頂部發射構造的情形下’ 在ITO之下使用反射率高的金屬電極(鋁、銀、鉬、鎢) 爲佳。 2 :有機電激發光元件 在有機電激發光元件採用由如下記的層構成所形成。 (1) 陽極/有機電激發光層/陰極 (2) 陽極/正電洞注入層/有機電激發光層/陰極 (3) 陽極/有機電激發光層/電子注入層/陰極 (4) 陽極/正電洞注入層/有機電激發光層/電子發 光層/陰極 (5) 陽極/正電洞注入層/正電洞傳遞層/有機電激 發光層/電子發光層/陰極 本實施形態的頂部發射色彩變換構造乃於上述層構成 中,陰極在有機電激發光層所 的光之波長區域,需爲透 -8- (6) (6)200428309 明(透過率約爲50%以上),介著該陰極而發光。尙且,在 本詳細說明書中稱爲有機電激發光層的情形,亦包括正電 洞注入層、正電洞傳遞層、電子注入層的情形。 透明的陰極是以鋰、鈉等的鹼金屬、鉀、鈣、鎂、緦 等的鹼土類金屬,或是由該些氟化物等所形成的電子注入 性的金屬、與其他金屬的合金和化合物的極薄膜(1 Onm以 下)作爲電子注入層,在其上形成ITO或是IZO等的透明 導電膜的構成。 有機電激發光層的各層材料係使用公開已知者。例如 有機電激發光層欲由藍色得到藍綠色的發光,例如最好使 用苯并噻唑系、苯并咪唑系、苯并噁唑系等的螢光增白劑 、金屬螯合化氧鑰化合物、苯乙烯基苯系化合物、芳香族 二次甲基系化合物等。 3 :鈍化層 有機電激發光元件上的鈍化層,使用具有電氣絕緣性 ’且相對於水份、低分子成份具有遮蔽性,可視區域之透 明性高(在 400〜700nm的範圍,透過率 50%以上),最好 具有2H以上之膜硬度的材料。 例如可使用 SiOx,SiNx,SiNxOy,AlOx,TiOx, TaOx ’ ZnOx等的無機氧化物、無機氮化物等。該鈍化層 的形成方法只要不會讓有機電激發光元件受到不良影響, 就沒有特別限制,可用濺鍍法、CVD法、真空蒸鍍法等 形成°只要對元件沒有直接影響,也可用浸塗法等慣用的 手法形成。 -9- (7) (7)200428309 上述的鈍化層也可爲單層,但複數的層是積層’水份 遮蔽等其效果更大。 積層的鈍化層厚度以0.1〜5 μ m爲佳。 4 =被覆層 被覆層也可形成在有機電激發光元件側,但有機電激 發光元件係利用對熱、紫外光較弱的材料所構成的緣故’ 對其上面形成的時候會發生各種限制。因而形成在對熱、 紫外光較強的色彩變換層上面會更理想。 鈍化層側最外的被覆層能不損及色彩變換層之功能的 形成在色彩變換層的上部,且具有高彈性者爲佳,可視區 域之透明性高(在400〜700nm的範圍,透過率 50%以上) 、Tgl〇〇°C以上、表面硬度以鉛筆硬度爲2H以上,在色 彩變換層上平滑的形成塗膜,只要是不會令色彩變換層的 功能降低的材料即可,例如舉例有:醯亞胺變性矽樹脂( 參考日本特開平第5 - 134112號公報等)、無機金屬化合 物(T1 Ο ’ A 1 2 Ο 3 ’ S i Ο 2等)分散於丙;):希基、聚醯亞胺、5夕樹 脂等中者(參考日本特開平第5— 119306號公報等)、紫外 線硬化型樹脂爲具有環氧變性丙烯酸酯樹脂(參考日本特 開平第7 - 48424號公報)、丙烯酸酯單體和低聚物與聚合 物的混合物的反應性乙烯基之樹脂、光阻劑樹脂(參考日 本特開平第6 — 3 009 1 0號公報、特開平9_33〇793號公報 等)、無機化合物的溶膠、凝膠法(參考日本月刊顯示器 1997年3卷7號等)、氟系樹脂(參考日本特開平第5 — 3 6475號公報等)等的光硬化型樹脂及/或熱硬化型樹脂 -10- (8) 200428309 。楊氏率以0.3 MPa以上爲佳。該被覆層是爲 目所述的間隙保持在一定的設計,楊氏率爲〇 的話’間隙會因外部應力而不能保持在一定。 鈍化層最外側的被覆層例如舉例有:像是 、尼龍6 - 6的聚醯胺樹脂,在單位構造中不 高分子材料、矽膠、凝膠、各種合成橡膠等。 以楊氏率〇 · 3 Μ P a以下的材料爲佳,更好是〇 的材料。但0.01 MPa以下,因在層之形成時無 ,所以須爲0.01 MPa以上的材料。 連光阻劑也當作原料,不含剛直基的直鏈 含有功能基數3以下的單體,硬化物之3次元 會太高就能使用。或是連上述以外的光阻劑, 射或加熱量減弱,且在交聯密度不會太高的狀 當作應力緩和層就很適用。 5 :色彩變換濾光片(色彩變換層中彩色濾j 1)有機螢光染料 於本發明中,用於色彩變換層中的有機螢 吸收從發光體發出之藍色至藍綠色區域的光, 域之螢光的螢光染料例如舉例有:鹼性蕊香紅 香紅3 B、驗性蕊香紅1 0 1、驗性蕊香紅1 1 〇、 紅、鹼性紫色1 1、鹼性紅色2等的鹼性蕊香 深藍系染料、1 一乙基一 2 — [4 一(p—二甲胺基 )一 1 3 —丁二烯]一吡啶鑰全氯乙烯(吡啶1)等 料,或是噁嗪系染料等。進而各種染料(直接 了將課題項 • 3 Μ P a以下 先用尼龍6 含剛直基白勺 具體而言, .1 MP a以下' 法保持形狀 狀低聚物和 交聯密度不 只要是光照 態下使用, 片) 光染料係爲 發出紅色區 B、鹼性蕊 硫驗性就、香 紅系染料、 苯基三羥基 的吡啶系染 料、酸性 -11 - (9) 200428309 染料、鹼性染料、分散染料等)亦只 〇 吸收從發光體發出之藍色至藍綠 發出綠色區域之螢光的螢光染料舉例 口坐基)一 7-二乙胺基香丑素(香丑素 ,或是屬於香豆素系染料系染料的藤 色溶劑 1 1、黃色溶劑 1 1 6等的萘二 進而各種染料(直接染料、酸性染料 料等)亦只要有螢光性就可使用。 2) 黑色遮罩樹脂 其次,用於本發明之色彩變換濾 光硬化性或光熱倂用型硬化性樹脂進 使其產生基種、離子種而予聚合或交 的樹脂。 3) 彩色濾光片層 只有色彩變換層無法得到充分的 濾光片層與上述色彩變換層的積層體 度以1〜1.5μηι爲佳。 實施例 以下參照第1圖說明本發明的一 發明實施例之有機電激發光顯示器的 是本發明的比較例。 [TFT 基板 1,2,3] 要有螢光性就可使用 色區域的光,而當作 丨有:3 -(2’一苯并噻 6)等的香豆素系染料 旨性黃色 5 1,甚至黃 甲醯亞胺系染料等。 、鹼性染料、分散染 光片的基體樹脂是將 行光及/或熱處理, 聯之不溶解、不融化 色純度時,形成彩色 。彩色濾光片層的厚 實施例。第1圖是本 斷面槪略圖。第2圖 -12- (10) (10)200428309 如第1圖所示,在玻璃基板1形成底部閘極型的TFT ,且在陽極3連接TFT之源極的構成。 陽極3是介著形成在圖未示的TFT上的絕緣膜之接 觸孔,於下部形成連接在源極的鋁,在其上部表面形成 IZO(InZnO)。 設鋁的目的是爲了反射來自發光層的發光,並自頂部 效率良好的放出光,同時減低電氣電阻。鋁膜的厚度爲 3 0 0nm。設有上部之IZO的目的是爲了提高工作函數,效 率良好的注入電洞。IZO的厚度爲200nm。 [有機電激發光層4] 利用陽極3 /正電洞注入層/正電洞傳遞層/有機電 激發光層/電子注入層/陰極5構成有機電激發光元件( 有機電激發光層4是由該構成,除了兩電極以外的四層構 成)。 將形成陽極3的基板1安裝在電阻加熱蒸鍍裝置內’ 且不破壞真空地依序成膜正電洞注入層、正電洞傳遞層' 有機電激發光層、電子注入層。於成膜之際,真空槽內® 會減壓至1 X 1 〇-4Pa。正電洞注入層是積層100nm的銅 菁(CuPc)。正電洞傳遞層是積層20nm的4,4 —雙(Ν—Π —萘基)—N —苯胺基)聯苯(a — NPD)。有機電激發光層是 積層30nm4,4 —雙 (2,2’一二苯基乙烯基)聯苯(DPVBi) 。電子注入層是積層2 0nm的鋁螯合(Alq)。 之後,用金屬遮罩,以不破壞真空地形成透明的_ ® -13- (11) (11)200428309 透明的陰極5係藉由利用共同蒸鍍法將電子注入所需 要之工作函數小的金屬Mg/ Ag成膜爲膜厚2nm,且在其 上利用濺鍍法將IZO膜成膜爲膜厚200 nm所形成。 [鈍化層6 ] 鈍化層6是利用濺鑛法將SiONx膜堆積3 00nm。 [彩色濾光片層9 ] 在透明(玻璃)基板1 2上利用旋塗法塗佈藍色濾光片 材料(富士 HANTOEREKUTORONIKUSUKUNOROJI 製:彩 色嵌鑲CB — 700 1 )後,利用微縮法實施圖案化,且形成膜 厚1 0 μ m的線條圖案。 以同樣的彩色濾光片材料系,將紅、綠的彩色濾光片 層(圖未示)利用旋塗法塗佈在上述透明基板1 2上後,利 用微縮法實施圖案化,且形成膜厚1.5nm的線條圖案。 [色彩變換層1〇] 綠色螢光染料是將香豆素6 ( 0 · 7重量部)溶解於溶劑的 乙酸乙二醇丁醚酯(PGM EA) 120重量部。加入光聚合性樹 脂的「V25gPA/ P5」100重量部(商品名、新日鐵化成工 業股份有限公司)使其溶解,得到塗佈液。將該塗佈溶液 用旋塗法塗佈在透明基板1 2上的綠色彩色濾光片上,且 利用微縮法實施圖案化,形成膜厚1 0 μηι的線條圖案。 紅色螢光染料是將香豆素6(0.6重量部)、驗性蕊香紅 6G(0.3重量SB)、鹼性紫色11(0.3重量部)溶解於溶劑的 PGMEA。力[]入光聚合性樹脂的V25gPA/P5之1〇〇重量部 使其溶解,得到塗佈液。將該塗佈溶液用旋塗法塗佈在透 -14- (12) (12)200428309 明基板1 2的紅色彩色濾光片上,且利用微縮法實施圖案 化,形成膜厚1 0 μ m的線條圖案。 在各色的色彩變換層1 〇之間形成黑色遮罩1 1 (厚度 1 0 μιη)。熱傳導率高的黑色遮罩是在色彩變換層壁面先利 用可形成格子狀圖案的遮罩的濺鍍法形成5 0 0 n m氧化絡 。其次,使用同樣的遮罩,利用濺鍍法將S iN膜,以同膜 厚的方式形成在R,G,B之子像素的周邊。像素的間距 爲0.3x0.3mm,各色的子像素形狀爲0.1x0.3mm。 [第一被覆層7] 在色彩變換層10的上面利用旋塗法塗佈ZPN1 100(日 本ΖΕΟΝ製)(楊氏率約5MP a),然後用微縮法圖案化,形 成在色彩變換層1 〇的上部。自色彩變換層1 0表面起的厚 度爲 j μ m ° [第二被覆層8] 將應力緩和用且覆蓋TFT配線之凹凸的矽凝膠(東麗 DAUKONINGU製)利用網版印刷法塗佈在第一被覆層7 之上(楊氏率約〇 · 〇 5 Μ P a)。網版印刷時爲4〜5 μ m的厚度 ’但經由施加壓力而貼合的工程,則成爲約1 / 2的厚度 〇 矽凝膠的塗佈方法並不限於網版印刷法,儘可能滴下 需要量即可,而且也能使用可形成薄層的邊緣塗佈、條紋 塗佈的手法。 [貼合] 將在如此所得到的TFT2形成有機電激發光元件與鈍 -15- (13) (13)200428309 化層6的基板1、和形成彩色濾光片層9、色彩變換層1 〇 、黑色遮罩11、第一被覆層7、第二被覆層8的透明基板 1 2,利用UV硬化型的密封樹脂1 3貼合。密封樹脂1 3可 使用像這樣的UV硬化型環氧樹脂或UV硬化型丙烯基樹 脂。 此時第二被覆層8係爲與鈍化層6密著但不接著的狀 態。此乃一旦接著的話,會在自外部受到應力時,密著力 最弱的電激發光元件側會形成剝離等缺陷的緣故。 尙且,本實施例係形成兩層被覆層,但進而形成楊氏 率小的第三被覆層而密著於鈍化層,更完整除去界面凹凸 之空間的構成亦可。 比較例 第一被覆層(透明樹脂接著層7)是用負型光阻劑JNPC 一 48 (JSR製),其次不設第二被覆層,而用聚碳酸酯接著 透明基板1 2與基板1。其他條件與實施例1相同。 評估 針對下記項目進行評估。結果於表1示之。 •熱循環試驗:製作的顯示器於熱循環試驗(-4 0 °C 〇 9 5 °C、120循環、溫度昇降時間5分鐘以內 )中,確認有無形狀異常。 -16- (14) 200428309 【表1】 實施例 比較例 熱循環 形狀沒有變化 發光元件發生剝離 [發明效果] 若按照本發明即可得到以下效果。 首先’色彩變換濾光片與黑色遮罩不一定要以相同的 厚度形成,而且雖然會在圖案化時產生位移,並在圖案與 圖案之間形成凹部,但相關的凹凸可藉由第一被覆層加以 平坦化。加上,可藉由該第一被覆層來調整色彩變換濾光 片(色彩變換層)與有機電激發光元件的間隙。 更藉由楊氏率小(靈敏)的第二被覆層,具有TFT之元 件所特有的問題,就能根據TFT基板的配線覆蓋細小的 凹凸,於鈍化層的界面,防止顯示性能受到不良影響產生 氣體空隙。更且,第二被覆層也具有應力緩和的作用,對 於因熱應力等的外部環境所產生的應力,提供可靠性高的 有機電激發光顯示器。 【圖式簡單說明】 第1圖係表示本發明之有機電激發光顯示器構成的斷 面槪略圖。 第2圖係表示本發明之比較例構成的斷面槪略圖。 -17- (15)200428309 [圖號說明] 1 基板 2 TFT 3 陽極 4 有機電激發光層 5 陰極 6 鈍化層 7 第一被覆層 8 第二被覆層 9 彩色濾光片層 10 色彩變換層 11 黑色遮罩 12 透明基板 13 密封樹脂200428309 Π) 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to an organic electroluminescence display having a wide range of applications, such as a display with high precision, excellent reliability, a portable terminal, and an industrial measuring instrument. [Prior technology] In recent years, a color organic electromechanical excitation light display using a thin film transistor (TFT) driving method has been developed. The way to take out light to the substrate side where the TFT is formed is to use the light-shielding effect of the wiring portion. In order not to increase the aperture ratio, recently, the light is taken out to the side opposite to the substrate where the TFT is formed. So-called top emission has been developed. the way. On the one hand, the patterned phosphor absorbs the light emitted by the organic electroluminescent element, and further develops a color conversion method of emitting multi-color fluorescent light from each phosphor. This method is a top emission method that also serves as a TFT driver, and further includes the possibility of providing a high-definition, high-brightness organic electroluminescent display. The color display devices disclosed in Japanese Patent Application Laid-Open Nos. 11 to 25 1 0 59 and Japanese Patent Application Laid-Open Nos. 2 0 0 to 7 7 1 9 are examples of such a method. [Summary of the Invention] [Problems to be Solved by the Invention] The structure of a top emission display using a color conversion method is an organic electroluminescent element and a color conversion filter (a color conversion layer alone or a color filter -4- (2) (2 ) 200428309 The laminated body of the light sheet layer and the color conversion layer) is a structure provided with a certain gap by a columnar gap adjustment layer disposed therebetween, facing the transparent electrode on the upper side of the organic electro-optic light emitting element, It is disclosed in Japanese Patent Application Laid-Open No. 11-297477. The structure filled with insulating oil in the gap is disclosed in Japanese Shikaihei No. 3-923 98. However, with a structure in which a columnar structure (pillar) is provided with a certain gap, there is a gas layer (gap) having a substantially different refractive index between the organic electro-excitation light layer and the color conversion filter. The reflection of light at the interface of the excitation light element or the interface of the gas layer and the color conversion filter becomes large, and the light extraction efficiency is reduced. The structure of injecting insulating oil into the gap can alleviate related reflection problems, but the complexity of the manufacturing process of the display will impair the impact resistance of the organic electroluminescent display of the original solid-state device. Not the best composition. The structure for solving these problems is a structure in which a transparent resin layer strongly adheres the organic electroluminescent device and the color conversion filter of the transparent electrode facing the upper part of the organic electroluminescent device, and is also disclosed in Japanese Patent No. 2766095. No. However, in this structure, following the process of organic electro-excitation light element and color conversion filter, or the thermal stress and vibration, pressure and other mechanical stress caused by the ambient temperature change of the display to be formed, etc., A problem that the electro-optical element is damaged by peeling or the like. More specifically, in Japanese Patent Application Laid-open No. 1 丨 — ;! 2〗 i 64, it is disclosed that between the organic electroluminescent device and the color conversion filter, a bonding layer is used as the color conversion filter side, and the layer is a resin The structure of the base film of the film and the bonding layer which also belongs to the resin film. However, it is described in various publications that it functions as a combined layer of -5- (3) (3) 200428309 to flatten the step of the color conversion filter and function as a buffer film of the color conversion filter and the base film. . However, this publication does not consider the adjustment of the gap between the color conversion filter and the organic electro-optical light emitting element. It is only used as a buffer film with the base film, and it is not instructive to alleviate the stress imposed on the important organic electro-optical light emitting element. More specifically, the present invention intends to solve an inherent problem with an organic electroluminescent display provided with a TFT, because the invention of the publication is not provided with the TFT, so it is not mentioned. [Means for Solving the Problems] According to the present invention, in order to achieve the above object, a substrate is provided with a thin film transistor formed of a source electrode and a drain electrode, and an upper layer formed on the thin film transistor is connected to the thin film transistor. The first electrode formed by the conductive thin film material of the source or the drain, at least one second electrode of the upper transparent electrode formed by the organic electro-excitation light layer, the transparent conductive thin film material, and at least one passivation layer. A thin-film transistor-driven organic electro-optic light-emitting element, and a color conversion layer alone or a laminated body of a color filter layer and a color conversion layer formed on a transparent support substrate face the second electrode side of the organic electro-light-excitation light element. In the configured organic electroluminescence display, at least two types having different Young's ratios are laminated on the second electrode side of the color conversion layer alone or the laminated body of the color filter layer and the color conversion layer. The coating layer of the coating layer makes the coating layer on the second electrode side in the coating layer closely adhere to the surface of the passivation layer, and simultaneously seals the substrate and the support -6- (4) (4) 200428309 The outer periphery of the substrate is formed. Moreover, in the case of using a laminated body of a color filter layer and a color conversion layer, for example, when the light emitted by the organic electroluminescent element is blue, for blue, it is only the color filter layer. For green and red, 'is a laminated body of a color filter layer and a color conversion layer. According to the present invention, among the at least two kinds of coating layers having different Young's ratios, the coating layer having the smallest Young's ratio is formed by closely adhering to the surface of the passivation layer in the display area of the organic electroluminescent device. good. As described above, the present invention is a substrate for forming a TFT and a transparent substrate for forming at least a support substrate belonging to a color conversion layer. There is no space between the two substrates on the transparent substrate side, and a covering layer for gap adjustment is provided on the substrate side ( The organic electroluminescence device side) has no space to face the stress-reducing coating layer, especially the stress-reducing coating layer with a small Young's rate, and the display performance at the interface with the passivation layer will not be adversely affected. It is possible to avoid gas voids. In other words, the coating layer with the smallest Young's rate is closely adhered to the passivation layer in the display area, and the space generated by the unevenness caused by the TFT wiring is buried ', and the thermal stress and Mechanical stress. The unevenness caused by the wiring of the TF T substrate is about 1 to 2 μηι, and the thickness of the coating layer having the smallest Young's rate in which the unevenness is buried is most suitable to be 2 to 4 μηι. [Embodiment] [Inventive Embodiment] The organic electroluminescent display of the present invention will be described below. In the following description, the case where the first electrode is an anode and the second electrode is a cathode (5) (5) 200428309 is described. However, the first electrode (lower electrode) may be a cathode, and the second electrode (upper electrode) may be an anode. 1: Thin-film transistor (TFT) substrate and anode made of glass, plastic, or other insulating substrates, or TFTs arranged in a matrix on a semi-conductive, conductive substrate forming an insulating thin film. The anode is connected to the source electrode. The TFT is a bottom gate type in which the gate electrode is provided under the gate insulating film, and the active layer is a polycrystalline silicon film. The anode is formed on a planarized insulating film formed on the TFT. Organic electroluminescent devices are usually made of indium tin oxide (ITO) with a transparent and high work function as the anode material, but in the case of a top emission structure, a metal electrode (aluminum, silver , Molybdenum, tungsten) is preferred. 2: Organic electroluminescence device The organic electroluminescence device is formed using a layer structure described below. (1) Anode / Organic electroluminescent layer / cathode (2) Anode / positive hole injection layer / organic electroluminescent layer / cathode (3) Anode / organic electroluminescent layer / electron injection layer / cathode (4) Anode / Positive hole injection layer / organic electroluminescent layer / electron light emitting layer / cathode (5) anode / positive hole injection layer / positive hole transfer layer / organic electroluminescent layer / electron light emitting layer / cathode The top emission color conversion structure is in the above layer structure. The wavelength range of the light emitted by the cathode in the organic electro-excitation light layer needs to be transparent (transmittance is about 50% or more). Light is emitted through the cathode. Moreover, the cases referred to as organic electro-excitation light layers in this detailed description also include the cases of a positive hole injection layer, a positive hole transfer layer, and an electron injection layer. Transparent cathodes are alkali metals such as lithium, sodium, alkaline earth metals such as potassium, calcium, magnesium, and thallium, or electron injecting metals formed from these fluorides, and alloys and compounds with other metals. A thin film (less than 1 Onm) is used as an electron injection layer, and a transparent conductive film such as ITO or IZO is formed thereon. The materials of the layers of the organic electroluminescent layer are publicly known. For example, if the organic electroluminescent layer is to obtain blue-green light emission from blue, for example, a benzothiazole-based, benzimidazole-based, benzoxazole-based fluorescent whitening agent, a metal chelated oxygen key compound is preferably used. , Styrylbenzene-based compounds, aromatic secondary methyl-based compounds, and the like. 3: Passivation layer The passivation layer on the organic electro-excitation light-emitting element is electrically insulating and has shielding properties against moisture and low-molecular components, and has high transparency in the visible area (in the range of 400 ~ 700nm, transmittance 50 % Or more), preferably having a film hardness of 2H or more. For example, inorganic oxides such as SiOx, SiNx, SiNxOy, AlOx, TiOx, TaOx 'ZnOx, and the like can be used. The formation method of the passivation layer is not particularly limited as long as it does not adversely affect the organic electro-optical light-emitting element. It can be formed by sputtering, CVD, or vacuum evaporation. As long as it has no direct impact on the element, dip coating can also be used Formed by conventional methods such as law. -9- (7) (7) 200428309 The above-mentioned passivation layer may be a single layer, but a plurality of layers are laminated, and the effect of water shielding is greater. The thickness of the laminated passivation layer is preferably 0.1 to 5 μm. 4 = Coating layer The coating layer can also be formed on the side of the organic electroluminescent device, but the organic electroluminescent device is made of a material that is weak to heat and ultraviolet light. Various restrictions may occur when it is formed on the organic electroluminescent device. Therefore, it is more desirable to form it on the color conversion layer which is strong to heat and ultraviolet light. The outermost coating layer on the passivation layer side can be formed on the upper part of the color conversion layer without impairing the function of the color conversion layer, and it is better to have high elasticity, and the transparency of the visible area is high (in the range of 400 ~ 700nm, transmittance) 50% or more), Tgl0 ° C or higher, surface hardness with a pencil hardness of 2H or more, and a coating film can be smoothly formed on the color conversion layer, as long as the material does not reduce the function of the color conversion layer, for example, an example There are: fluorene imine modified silicone resin (refer to Japanese Patent Application Laid-Open No. 5-134112, etc.), inorganic metal compounds (T1 〇 'A 1 2 Ο 3' S i Ο 2 etc.) are dispersed in C;): Hickey, Polyimide, Mayan resin, etc. (refer to Japanese Patent Application Laid-Open No. 5-119306, etc.), UV-curable resin is epoxy-modified acrylic resin (refer to Japanese Patent Application No. 7-48424), Reactive vinyl resins and photoresist resins that are a mixture of acrylate monomers and oligomers and polymers (see Japanese Patent Application Laid-Open No. 6-3009009, Japanese Patent Application Laid-Open No. 9_33〇793, etc.), Inorganic compounds Sol, gel method (refer to Japan Monthly Display 1997 Vol. 7, No. 7, etc.), fluorine-based resin (refer to Japanese Patent Application Laid-Open No. 5-3, 6475, etc.), light-curing resin and / or thermosetting resin -10- (8) 200428309. The Young's ratio is preferably 0.3 MPa or more. This coating layer is designed to maintain a constant gap as described above. If the Young's ratio is 0, the gap cannot be kept constant due to external stress. The outermost coating layer of the passivation layer is, for example, polyamine resin such as nylon, nylon 6-6. In the unit structure, it does not contain high-molecular materials, silicone, gel, and various synthetic rubbers. A material having a Young's rate of 0.3 MPa or less is preferred, and a material of 0 is more preferred. But below 0.01 MPa, there is no when forming the layer, so it must be above 0.01 MPa. Even photoresist is also used as a raw material. Straight chains that do not contain rigid or straight groups contain monomers with a functional group number of 3 or less. The third dimension of the hardened product will be too high to be used. Or, even with photoresist other than the above, the amount of radiation or heating is reduced, and the crosslinking density is not too high, which is very suitable as a stress relaxation layer. 5: Color conversion filter (color filter in color conversion layer 1) Organic fluorescent dye In the present invention, the organic fluorescent light in the color conversion layer absorbs light in the blue to blue-green region emitted from the luminous body. For example, the fluorescent dyes of the domain fluorescent are: basic rue red 3 B, rue red 1 0 1, rue red 1 1 0, red, basic purple 1 1, basic Red 2 and other basic scented dark blue dyes, 1 monoethyl-2 — [4 mono (p-dimethylamino) — 1 3 —butadiene], pyridine key perchloroethylene (pyridine 1), etc. Or oxazine dyes. Furthermore, various dyes (direct to the project items • 3 MPa or less, first use nylon 6 with rigid bases. Specifically, .1 MP or less' method to maintain the shape of oligomers and crosslinking density is not only the light state Used in the following) Photo dyes are red zone B, basic sulphur, fragrant red dyes, phenyltrihydroxy pyridine dyes, acidic -11-(9) 200428309 dyes, basic dyes, Disperse dyes, etc.) Also only fluorescein dyes that absorb blue to blue-green emission from the luminous body. Examples of fluorescent dyes are 7-diethylamino scumin Naphthalene solvents such as coumarin dyes 1 and yellow solvents 1 1 6 which are coumarin dyes, and various dyes (direct dyes, acid dyes, etc.) can also be used as long as they are fluorescent. 2) Black shade The cover resin is a resin used for the color conversion filter-hardening or photothermal curing type hardening resin of the present invention to generate a base species and ion species to be polymerized or cross-linked. 3) Color filter layer Only the color conversion layer cannot obtain a sufficient laminated body of the color filter layer and the color conversion layer described above, preferably from 1 to 1.5 μm. EXAMPLES An organic electroluminescent display according to an example of the present invention will be described below with reference to FIG. 1 as a comparative example of the present invention. [TFT substrates 1, 2, 3] If it is fluorescent, you can use the light in the color area, and use it as follows: 3-(2'-benzothia 6) and other coumarin dyes intended yellow 5 1. Even yellow formazan imine dyes. The base resin of the basic dye and the disperse dyeing sheet is colored and formed when the light and / or heat treatment is combined with insolubilization and melting. Example of a thick color filter layer. Figure 1 is a sketch of this section. Fig. 2 -12- (10) (10) 200428309 As shown in Fig. 1, a bottom-gate TFT is formed on the glass substrate 1, and a source of the TFT is connected to the anode 3. The anode 3 is a contact hole through an insulating film formed on a TFT (not shown). Aluminum is connected to the source at the lower portion, and IZO (InZnO) is formed on the upper surface. The purpose of the aluminum is to reflect the light emitted from the light-emitting layer, and to emit light from the top efficiently, while reducing the electrical resistance. The thickness of the aluminum film is 300 nm. The purpose of the upper IZO is to improve the work function and to inject holes with good efficiency. The thickness of IZO is 200 nm. [Organic electro-excitation light layer 4] An anode 3 / positive hole injection layer / positive hole transfer layer / organic electro-excitation light layer / electron injection layer / cathode 5 constitutes an organic electro-excitation light element (the organic electro-excitation light layer 4 is With this structure, there are four layers except two electrodes). The substrate 1 forming the anode 3 is installed in a resistance heating vapor deposition apparatus', and a positive hole injection layer, a positive hole transfer layer, an organic electro-excitation light layer, and an electron injection layer are sequentially formed without breaking the vacuum. At the time of film formation, the pressure in the vacuum chamber® will be reduced to 1 X 1 0-4Pa. The positive hole injection layer is a 100 nm layer of copper cyanide (CuPc). The positive hole transport layer is a layer of 4,4-bis (N-Π-naphthyl) -N-anilino) biphenyl (a-NPD) laminated at 20 nm. The organic electroluminescent layer is a 30nm layer of 4,4-bis (2,2'-diphenylvinyl) biphenyl (DPVBi). The electron injection layer is an aluminum chelate (Alq) layered at 20 nm. Then, a metal mask is used to form transparent _ ® -13- (11) (11) 200428309 The transparent cathode 5 is a metal with a small work function required to inject electrons by co-evaporation. The Mg / Ag film was formed to a thickness of 2 nm, and the IZO film was formed to a thickness of 200 nm by a sputtering method thereon. [Passivation layer 6] The passivation layer 6 is formed by depositing a SiONx film at 300 nm by a sputtering method. [Color filter layer 9] A blue filter material (manufactured by Fuji HANTOEREKUTORONIKUSUKUNOROJI: color mosaic CB — 700 1) is applied on a transparent (glass) substrate 12 by a spin coating method, and then patterned by a miniature method. And form a line pattern with a film thickness of 10 μm. Using the same color filter material system, a red and green color filter layer (not shown) was applied on the transparent substrate 12 by spin coating, and then patterned by a micro-film method to form a film. 1.5nm thick line pattern. [Color conversion layer 10] The green fluorescent dye is 120 parts by weight of ethylene glycol butyl ether acetate (PGM EA) in which coumarin 6 (0.7 parts by weight) is dissolved in a solvent. 100 parts by weight of a "V25gPA / P5" photopolymerizable resin (trade name, Nippon Steel & Chemical Co., Ltd.) was added and dissolved to obtain a coating solution. This coating solution was applied to a green color filter on the transparent substrate 12 by a spin coating method, and patterned by a microfabrication method to form a line pattern with a film thickness of 10 μm. The red fluorescent dye is PGMEA in which coumarin 6 (0.6 part by weight), physalis 6G (0.3 weight by SB), and basic purple 11 (0.3 part by weight) are dissolved in a solvent. A 100 weight part of V25 g PA / P5 of the photopolymerizable resin was dissolved and dissolved to obtain a coating solution. This coating solution was spin-coated on a red color filter through -14- (12) (12) 200428309 bright substrate 12 and patterned by a microfabrication method to form a film thickness of 10 μm. Line pattern. A black mask 11 (thickness 10 μm) is formed between the color conversion layers 10 of each color. A black mask with a high thermal conductivity is formed on the wall surface of the color conversion layer by a sputtering method that can form a grid-like pattern to form a 50 nm oxide complex. Next, using the same mask, a SiN film was formed around the sub-pixels of R, G, and B with the same film thickness by sputtering. The pixel pitch is 0.3x0.3mm, and the sub-pixel shape of each color is 0.1x0.3mm. [First coating layer 7] On the color conversion layer 10, ZPN1 100 (manufactured by ZOON Japan) (approximately 5MP a) was applied by a spin coating method, and then patterned by a miniature method to form the color conversion layer 1 〇 The upper part. The thickness from the surface of the color conversion layer 10 is j μ m ° [Second coating layer 8] A silicone gel (manufactured by Toray DAUKONINGU) for stress relief and covering the unevenness of the TFT wiring is applied by screen printing. On the first covering layer 7 (Young's rate is about 0.05 MPa). The thickness is 4 to 5 μm at the time of screen printing. However, the process of bonding by applying pressure becomes about 1/2 thickness. The coating method of the silicone gel is not limited to the screen printing method, and it is dripped as much as possible. The required amount is sufficient, and an edge coating method or a stripe coating method capable of forming a thin layer can also be used. [Lamination] On the TFT 2 thus obtained, an organic electroluminescence element and a passivation substrate -15 are formed. (13) (13) 200428309 The substrate 1 of the chemical conversion layer 6 is formed, and the color filter layer 9 and the color conversion layer 1 are formed. , The black mask 11, the first coating layer 7, and the transparent substrate 12 of the second coating layer 8 are bonded together by a UV-curable sealing resin 13. As the sealing resin 1 3, a UV-curable epoxy resin or a UV-curable acrylic resin such as this can be used. At this time, the second coating layer 8 is in a state of being in contact with the passivation layer 6 but not adhering to it. This is because when the stress is applied from the outside, defects such as peeling are formed on the side of the electro-optic element having the weakest adhesion force. In addition, in this embodiment, two coating layers are formed, but a third coating layer having a small Young's ratio is formed to adhere to the passivation layer, and a configuration in which the space of the interface unevenness can be removed more completely may be used. Comparative Example The first coating layer (transparent resin adhesive layer 7) was a negative photoresist JNPC-48 (manufactured by JSR). Secondly, a second coating layer was not provided, and the transparent substrate 12 and the substrate 1 were bonded with polycarbonate. The other conditions are the same as in Example 1. Evaluation Evaluate the following items. The results are shown in Table 1. • Thermal cycle test: In the thermal cycle test (-4 0 ° C 〇 95 ° C, 120 cycles, temperature rise time within 5 minutes), confirm the presence or absence of abnormal shape. -16- (14) 200428309 [Table 1] Example Comparative Example Thermal cycle No change in shape Light-emitting element peeling [Effects of the invention] According to the present invention, the following effects can be obtained. First of all, the color conversion filter and the black mask do not have to be formed with the same thickness, and although there will be displacement during patterning and a recess between the pattern and the pattern, the related unevenness can be covered by the first The layers are flattened. In addition, the gap between the color conversion filter (color conversion layer) and the organic electroluminescent device can be adjusted by the first coating layer. Furthermore, the second coating layer with a small Young's rate (sensitive) has the problems unique to TFT elements. It can cover fine unevenness according to the wiring of the TFT substrate and prevent the display performance from being adversely affected by the interface of the passivation layer. Gas void. Furthermore, the second coating layer also has a stress-relieving effect, and provides a highly reliable organic electroluminescent display for stress caused by an external environment such as thermal stress. [Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view showing the structure of an organic electroluminescent display of the present invention. Fig. 2 is a schematic cross-sectional view showing the structure of a comparative example of the present invention. -17- (15) 200428309 [Description of drawing number] 1 substrate 2 TFT 3 anode 4 organic electro-excitation light layer 5 cathode 6 passivation layer 7 first coating layer 8 second coating layer 9 color filter layer 10 color conversion layer 11 Black mask 12 Transparent substrate 13 Sealing resin

Claims (1)

(1) (1)200428309 拾、申請專利範圍 1 · 一種有機電激發光顯示器,乃屬於在基板上具備 有:由源極及汲極所形成的薄膜電晶體、和積層形成在該 溥膜電晶體的上部由連接在前述源極或汲極的導電性薄膜 材料所形成的第一電極、至少由有機電激發光層、透明導 電性薄膜材料所形成的上部透明電極的第二電極、至少一 層以上鈍化層,利用前述薄膜電晶體驅動的有機電激發光 元件,形成在透明支持基板上的色彩變換層單體或彩色濾 光片層和色彩變換層的積層體是面對前述有機電激發光元 件的第二電極側而配置的有機電激發光顯示器,其特徵爲 在色彩變換層單體或彩色濾光片層和色彩變換層的積 層體之前述第二電極側,積層而設有楊氏率相異之至少兩 種的被覆層,使該被覆層中的前述第二電極側的被覆層密 著於前述鈍化層的表面,同時密封接著前述基板與支持基 板之外周所形成。 2 ·如申請專利範圍第1項所記載的有機電激發光顯 示器,其中,楊氏率相異的至少兩種被覆層中,楊氏率最 小的被覆層是在有機電激發光兀件的顯示區域內密著於前 述鈍化層的表面所形成。(1) (1) 200428309 Patent application scope 1 · An organic electroluminescence display is provided on a substrate with a thin film transistor formed of a source electrode and a drain electrode, and a laminate formed on the film electrode. A first electrode formed of a conductive thin film material connected to the source or drain electrode on the upper part of the crystal, at least a second electrode of an upper transparent electrode formed of at least an organic electroluminescent layer, a transparent conductive film material, and at least one layer The above passivation layer uses the organic electro-optic light-emitting element driven by the thin-film transistor, and the color conversion layer alone or the multilayer of the color filter layer and the color conversion layer formed on the transparent supporting substrate faces the organic electro-excitation light. The organic electroluminescence display device disposed on the second electrode side of the element is characterized in that a Young's layer is provided on the second electrode side of the color conversion layer alone or the laminated body of the color filter layer and the color conversion layer. At least two kinds of coating layers having different rates, so that the coating layer on the second electrode side in the coating layer is in close contact with the surface of the passivation layer, and is sealed and then Addition to the substrate formed with the support base plate periphery. 2 · The organic electroluminescent display as described in item 1 of the scope of patent application, wherein the coating layer with the smallest Young's ratio among the at least two coating layers having different Young's ratios is a display on the organic electroluminescent device. The region is formed in close contact with the surface of the passivation layer.
TW92115731A 2002-03-26 2003-06-10 Organic EL display TWI272865B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085485A JP3775325B2 (en) 2002-03-26 2002-03-26 Organic EL display

Publications (2)

Publication Number Publication Date
TW200428309A true TW200428309A (en) 2004-12-16
TWI272865B TWI272865B (en) 2007-02-01

Family

ID=29232440

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92115731A TWI272865B (en) 2002-03-26 2003-06-10 Organic EL display

Country Status (2)

Country Link
JP (1) JP3775325B2 (en)
TW (1) TWI272865B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297547A (en) * 2002-03-28 2003-10-17 Idemitsu Kosan Co Ltd Organic el display device
KR20050051699A (en) * 2002-10-16 2005-06-01 이데미쓰 고산 가부시키가이샤 Organic electroluminescent display and method for manufacturing same
JP4552424B2 (en) * 2003-11-26 2010-09-29 凸版印刷株式会社 Manufacturing method of full-color organic EL display panel
JP4676168B2 (en) * 2004-06-11 2011-04-27 大日本印刷株式会社 Filter substrate and color display using the same
WO2010104184A1 (en) * 2009-03-13 2010-09-16 三菱化学株式会社 Process for manufacturing organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
US9935289B2 (en) 2010-09-10 2018-04-03 Industrial Technology Research Institute Institute Environmental sensitive element package and encapsulation method thereof
TWI647109B (en) * 2013-05-21 2019-01-11 Lg化學股份有限公司 Encapsulation film and method of encapsulating organic electronic device using the same
US9847509B2 (en) 2015-01-22 2017-12-19 Industrial Technology Research Institute Package of flexible environmental sensitive electronic device and sealing member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793048B2 (en) * 1991-02-22 1998-09-03 三井化学株式会社 Organic light emitting device sealing method
JP3704720B2 (en) * 1993-12-22 2005-10-12 ソニー株式会社 Disc loading device
JP3578417B2 (en) * 1994-10-21 2004-10-20 出光興産株式会社 Organic EL device
JPH10289784A (en) * 1997-04-14 1998-10-27 Mitsubishi Chem Corp Organic electroluminescnet element
JPH11251059A (en) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd Color display device
JPH11297477A (en) * 1998-04-08 1999-10-29 Tdk Corp Organic el color display
JP2003109750A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Organic electroluminescent element

Also Published As

Publication number Publication date
TWI272865B (en) 2007-02-01
JP2003282261A (en) 2003-10-03
JP3775325B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
US7119409B2 (en) Organic el display
JP3224352B2 (en) Multicolor light emitting device
TWI272871B (en) Organic light-emitting display
KR100529450B1 (en) Organic electroluminescent display device
CN103022381B (en) Organic LED display device and manufacture method thereof
US8063553B2 (en) Organic electroluminescence display device and method of manufacturing the same
CN1685769B (en) Organic el display
KR101492630B1 (en) Organic light emitting diodde desplay device
JP2008021653A (en) Organic light emitting display device, and method for manufacturing the same
JPWO2014038158A1 (en) Organic electroluminescent display device and manufacturing method thereof
JP2011119223A (en) Organic light-emitting display device
KR20100081772A (en) Organic light emitting diode display
WO2014034051A1 (en) Manufacturing method for organic el display device, and organic el display device manufactured by such method
GB2417598A (en) Organic EL display
JP2003243153A (en) Organic el display
KR102096887B1 (en) Organic light emitting display device and method manufacturing the same
TW200428309A (en) Organic EL display
KR20140041315A (en) Method for manufacturing of organic light emitting display device
JP2004103519A (en) Color conversion color filter substrate and organic color display using this
KR102094143B1 (en) Fabricating Method Of Organic Light Emitting Diode Display
KR20100033866A (en) Flexible organic electro-luminescence display device and manufacturing method thereof
JP2004281189A (en) Top face light-emitting organic electroluminescent display device and its manufacturing method
JP2010225325A (en) Top-emission organic el display and method for manufacturing the same
KR100795627B1 (en) Organic el display
JP2006107836A (en) Color conversion filter, its manufacturing method, and organic el display using it

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees