TW200426920A - Film formation method, manufacturing method of electronic apparatus, film formation apparatus, electronic apparatus and electronic machine - Google Patents

Film formation method, manufacturing method of electronic apparatus, film formation apparatus, electronic apparatus and electronic machine Download PDF

Info

Publication number
TW200426920A
TW200426920A TW093110097A TW93110097A TW200426920A TW 200426920 A TW200426920 A TW 200426920A TW 093110097 A TW093110097 A TW 093110097A TW 93110097 A TW93110097 A TW 93110097A TW 200426920 A TW200426920 A TW 200426920A
Authority
TW
Taiwan
Prior art keywords
ions
substrate
electrode
film forming
voltage
Prior art date
Application number
TW093110097A
Other languages
Chinese (zh)
Other versions
TWI242236B (en
Inventor
Yoichi Imamura
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of TW200426920A publication Critical patent/TW200426920A/en
Application granted granted Critical
Publication of TWI242236B publication Critical patent/TWI242236B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The subject of the present invention is to provide a film formation method, which is capable of using material efficiently to form high quality organic thin film, film formation apparatus, the electronic apparatus and electronic machine manufactured by using the same. The invented organic film formation apparatus 10 is provided with the followings: liquid supplying portion 11; gas supplying portion 12; soft ionization portion 13; ion sorting portion 14; deflection portion 15; and film formation portion 16. Fine liquid droplet of the organic material for forming the film is formed in the soft ionization portion 13, and is ionized or charged; after that, the liquid droplet is vaporized to generate gas-shape pseudo molecular ion. In addition, the organic material pseudo molecular ions are sorted from the pseudo ions in the ion sorting-portion 14. Furthermore, the adhered voltage is given to plural electrodes formed in the electronic device substrate formed with organic thin film by using the circuit formed in advance in the electronic device substrate such that the pseudo molecular ion of the organic material can selectively adhere to the regulated electrodes.

Description

200426920 (1) 狄、發明說明 【發明所屬之技術領域】 本發明是有關膜形成方法,膜形成裝置及使用彼來製 造的電子裝置,電子機器。 【先前技術】 以往,有使用膜厚1 μιη以下的有機薄膜之電子裝置 ,例如有機EL顯示器,有機TFT的電子裝置。一般,上 述有機薄膜是以依照構成有機薄膜的有機材料爲高分子系 有機材料或低分子系有機材料而有所不同的形成方法來形 成。例如爲有機EL顯示器裝置時,對高分子系有機材料 而言是以噴墨法(例如參照專利文獻1 )或旋轉塗佈法來 形成,對低分子系有機材料而言是以真空蒸鍍法(例如參 照專利文獻2 )來形成。 〔專利文獻1〕專利3 0 3 6 4 3 6號公報 〔專利文獻2〕特開平^-:126691號公報200426920 (1) Description of the invention [Technical field to which the invention belongs] The present invention relates to a film forming method, a film forming apparatus, and an electronic device and an electronic device manufactured using the same. [Prior art] In the past, there have been electronic devices using organic thin films having a thickness of 1 μm or less, such as organic EL displays and organic TFT electronic devices. Generally, the above-mentioned organic thin film is formed by a different forming method depending on whether the organic material constituting the organic thin film is a polymer organic material or a low molecular organic material. For example, in the case of an organic EL display device, the polymer organic material is formed by an inkjet method (for example, refer to Patent Document 1) or a spin coating method, and the low molecular organic material is formed by a vacuum evaporation method. (See, for example, Patent Document 2). [Patent Document 1] Patent No. 3 0 3 6 4 3 6 [Patent Document 2] Japanese Patent Laid-Open No. ^-: 126691

【發明內容】 (發明所欲解決的課題) 但’在上述噴墨法中會有來自其有機材料墨水的噴墨 頭之噴出失誤或其附著部位的精度偏差等問題發生。另外 ’在真空蒸鍍法中會有蒸鍍時所使用的遮蔽光罩的精度或 壽命及有機材料的使用效率下降的問題發生。因此,在上 述噴墨法或上述真空蒸鍍法等以往的膜形成方法中,難以 有效地使用材料’且不易形成可取得高特性高品質的薄膜 -4 - (2) (2)200426920 本發明是爲了解決上述問題點而硏發者,其目的是在 於提供一種可有效率地使用材料,且可高精度地控制大約 數10nm〜數100nm的膜厚及1mm以下的形狀,以高生產 效率來形成高品質的膜質的薄膜之膜形成方法,膜形成^ 置及使用彼來製造的電子裝置,電子機器。 (用以解決課題的手段) 本發明之膜形成方法的特徵係具備: 將材料變換生成氣體狀的假分子離子之步驟;及 將設置於基板上的複數個電極的電位設定成規定電位 ’使上述假分子離子選擇性的附著於上述基板上之步驟。 若利用此發明,則可使材料形成微細的液滴化,且使 離子化或帶電,而使該液滴氣化,或者直接使氣化帶電而 生成氣體狀的假分子離子。由該假分子離子中來分類材料 的假分子離子,而使飛著於上述基板。此刻,會選擇性地 將上述基板之規定的部位設定成規定的電位,藉由靜電力 來將上述材料的假分子離子誘導至規定的部位。因此,可 使上述材料確實地附著於規定的部位。如此一來,可於目 的的部位確實地形成高品質的有機薄膜。 本發明之電子裝置的製造方法,係於基板上使機能材 料薄膜化而積層形成之電子裝置的製造方法,其特徵係具 備: 使含機能材料的溶液形成微細的液滴化,且使離子化 或帶電之後’使該液滴氣化而生成氣體狀的假分子離子之 -5- (3) (3)200426920 第1步驟; 由上述假分子離子,使來自上述溶液中所含的溶媒之 溶媒離子的含有量低減之第2步驟;及 在上述基板上具備複數個電極,針對上述假分子離子 ,將上述電極的規定電極電位予以選擇性地設定成不同的 電位,而使上述機能材料的假分子離子選擇性地附著於上 述基板上之第3步驟。 若利用此發明,則一旦使機能材料溶液化,然後使形 成微細的液滴化及使假分子離子化。並且,在該假分子離 子中,對離子化的機能材料與上述溶媒離子進行分類,而 使該被分類之上述假分子離子化的機能材料附著於基板上 。此刻,會選擇性地將上述基板之規定的部位設定成規定 的電位,而使上述假分子離子化的狀態之機能材料誘導至 規定的部位。藉此可使上述機能材料確實地附著於規定的 部位。如此一來,可於目的的部位確實地形成高性能的裝 置。 在此電子裝置的製造方法中亦可更設置·· 在分類來自上述假分子離子的上述溶媒離子,及來自 上述機能材料的機能材料離子之後,使上述機能材料離子 偏向移動之第4步驟。 若利用此發明,則於上述分類部進行分類後,可使形 成複數個射線束而射出之上述假分子離子化的機能材料的 射線面内離子密度均一化,擴大射線照射面積。 在此電子裝置的製造方法中,在上述基板上形成複數 個上述電子裝置,上述各電子裝置之上述複數個電極的選 -6 - (4) (4)200426920 擇性電位設定係針對上述各電子裝置來根據共通的訊號線 及電源線而成。 若利用此發明,則形成於基板上的複數個電子裝置可 利用共通的訊號線及電源線來對各電子裝置的複數個電極 分別選擇性地同時設定規定電位。因此,可同時對基板上 的複數個電子裝置形成有機薄膜。 在此電子裝置的製造方法中,對形成於上述基板上的 上述各電子裝置之共通的上述訊號線及上述電源線可配線 成不會在位於上述基板上所形成的上述各電子裝置間的中 間領域互相交叉。 若利用此發明,則因爲形成於上述基板上的訊號線及 電源線會配線成不會互相交叉,所以可以單一的配線層來 形成訊號線及電源線,因此與使用複數層來連結訊號線及 電源線時相較之下,有利於提高可靠度及降低製造成本。 在此電子裝置的製造方法中,在形成於上述基板上之 上述電子裝置的形成領域中形成有供以對上述複數個電極 選擇性地設定成規定電位之設定電路,該設定電路可利用 形成於上述形成領域之上述電子裝置的原本電子電路的至 少一部份。 若利用此發明,則形成於基板上的成膜電壓設定電路 可利用電子裝置之電子電路的一部份’因此只要在上述電 子裝置的原本電路中追加一些電路,便可進行元件電極的 電壓設定,此追加電路可在不增加製程下’與原本電路的 製程同時製作。 在此製造方法中,分別形成於上述基板上的各形成領 -7 - (5) (5)200426920 域之電子裝置爲光電裝置,上述複數個電極爲形成於該光 電裝置的複數個光電元件的元件電極,利用於上述設定電 路的電子電路可包含上述光電元件的元件驅動電路。 若利用此發明,則供以在基板上形成光電裝置的成膜 電壓設定電路可利用光電裝置之電子電路的一部份,因此 只要在光電裝置的原本電路中追加一些電路,便可進行元 件電極的電壓設定,此追加電路可與原本電路的製程同時 製作。 本發明之膜形成裝置,係於基板上形成材料的膜之膜 形成裝置,其特徵係具備: 離子化部,其係使上述材料或上述材料的溶液形成微 細的液滴化’且使離子化或帶電之後,使該液滴氣化而生 成氣體狀的假分子離子; 電壓供給部,其係對電子電路供給訊號或電壓,該電 子電路係針對上述假分子離子來選擇性地設定上述基板上 所具備之複數個電極的電位;及 成膜部,其係使上述假分子離子中材料離子附著於上 述基板。 若利用此發明’則可具備:使材料形成微細的液滴, 且使離子化或帶電之後,使該液滴氣化而生成氣體狀的假 分子離子之離子化部,而使該離子化部所作成之假分子離 子狀態的材料能夠附著於基板。此刻,會選擇性地將上述 基板之規定的部位設定成規定的電位,而使上述假分子離 子狀態的材料能夠誘導至規定的部位。藉此,可確實地使 上述材料附著於規定的部位。如此一來,可提供一種能夠 -8- (6) (6)200426920 在目的的部位確實地形成高品質的膜之膜形成裝置。 在此膜形成裝置中,亦可具備: 溶液供給部,其係將混合上述材料與溶媒而取得的溶 液供給至上述離子化部; 氣體供給部,其係同時由噴嘴來使上述溶液與惰性氣 體噴霧,而使上述溶液形成微小的液滴;及 分類部’其係使上述微小的液滴氣化,而生成氣體狀 的假分子離子,在上述假分子離子中分類來自上述材料的 離子與來自上述溶媒的離子。 若利用此發明,則可於溶液供給部以溶媒來使材料溶 液化後,使該溶液化後的材料形成微小的液滴,且使離子 化或帶電後,使該液滴氣化而生成氣體狀的假分子離子。 並且,具備一分類部,其由該假分子離子中來分離上述溶 媒離子’而只分類上述離子化的材料。而且,誘導上述分 類部所分離之上述離子化的材料,使附著於基板。其結果 ’可大幅度地減少附著於基板的材料中混入雜質。因此, 可提供一種能夠在目的的部位確實地形成高品質的膜之膜 形成裝置。 在此膜形成裝置中,亦可更具備偏向部,其係使來自 上述分類部所被分類的上述材料的離子偏向移動。 若利用此發明,則可使上述分類部所分類的上述離子 化的材料的射線面内離子密度均一化,可擴大射線照射面 積。 在此膜形成裝置中,上述分類部亦可具備質量分類部 ’其係具備供以按照所被施加的電壓或電流來依照質量分 - 9- (7) 200426920 類來自上述材料的離子之複數個電極。 若利用此發明,則可藉由具備質量分類裝置來分離上 述被離子化的材料與溶媒離子及其他的離子,因此可提高 上述材料的純度,且可形成分子量一致的離子射線。 在此膜形成裝置中,上述質量分類部亦可具備:上述 複數個電極之間的距離不同的複數個質量分類部。 若利用此發明,則可分開控制質量分類裝置的離子収 束性能與離子分類性能,因此可形成高度的質量分類與離 子射線控制。 在此膜形成裝置中,亦可更具備調整用電極,其係設 置集極電極,且在上述集極電極與上述成膜部之間調整上 述被離子化的材料的飛行速度。 若利用此發明,則更可設置集極電極,且使上述集極 電極與上述成膜部之間的電位改變調整成集極電極電位。 因此,可以最適的條件來使上述離子化的材料附著於基板[Summary of the Invention] (Problems to be Solved by the Invention) However, in the above-mentioned inkjet method, problems such as an ejection error of an inkjet head derived from an organic material ink or a deviation in accuracy of an attached portion thereof occur. In addition, in the vacuum vapor deposition method, there are problems that the accuracy or life of a mask used during vapor deposition and the use efficiency of an organic material are reduced. Therefore, in the conventional film formation methods such as the inkjet method and the vacuum evaporation method described above, it is difficult to effectively use materials and it is not easy to form a thin film with high characteristics and high quality. -4-(2) (2) 200426920 The present invention It was developed in order to solve the above-mentioned problems, and its purpose is to provide a material that can be used efficiently and that can accurately control a film thickness of about several tens to several hundred nm and a shape of less than 1 mm, so as to achieve high production efficiency. A film forming method for forming a high-quality thin film, a film forming apparatus, and an electronic device or electronic device manufactured using the same. (Means for Solving the Problems) The film forming method of the present invention is characterized by comprising: a step of converting a material into a gas-like pseudomolecular ion; and setting a potential of a plurality of electrodes provided on a substrate to a predetermined potential. The step of selectively attaching the pseudomolecular ions to the substrate. According to this invention, the material can be formed into fine liquid droplets and ionized or charged to vaporize the liquid droplets, or the gasification can be directly charged to generate pseudo-molecular ions in a gaseous state. The pseudo-molecular ions of the material are sorted from the pseudo-molecular ions, and they fly on the substrate. At this time, a predetermined portion of the substrate is selectively set to a predetermined potential, and a pseudomolecular ion of the material is induced to the predetermined portion by an electrostatic force. Therefore, the above-mentioned materials can be reliably adhered to a predetermined portion. In this way, a high-quality organic thin film can be surely formed at the intended portion. The method for manufacturing an electronic device of the present invention is a method for manufacturing an electronic device formed by laminating a functional material on a substrate into a thin film, which is characterized in that the solution containing the functional material is formed into fine droplets and ionized. Or after being charged, the droplets are gasified to generate gaseous pseudomolecular ions -5- (3) (3) 200426920 Step 1; using the pseudomolecular ions, the solvent from the solvent contained in the solution is made The second step of reducing the content of ions; and providing a plurality of electrodes on the substrate, and selectively setting predetermined electrode potentials of the electrodes to different potentials for the pseudomolecular ions to make the functional materials false. The third step is that molecular ions are selectively attached to the substrate. According to this invention, once a functional material is dissolved, fine droplets are formed and pseudo molecules are ionized. In addition, the pseudo-molecule ion classifies the ionized functional material from the solvent ion, and attaches the classified pseudo-molecule ionized functional material to the substrate. At this time, a predetermined portion of the substrate is selectively set to a predetermined potential, and the functional material in a state in which the pseudomolecule is ionized is induced to the predetermined portion. Thereby, the functional material can be reliably adhered to a predetermined portion. In this way, a high-performance device can be reliably formed at the intended location. In the manufacturing method of the electronic device, a fourth step of shifting the functional material ions in a biased manner after classifying the solvent ions from the pseudomolecular ions and the functional material ions from the functional materials may be further provided. According to this invention, after the classification by the classification unit, the in-plane ion density of the pseudo-molecular ionized functional material emitted by forming a plurality of ray beams can be uniformized, thereby expanding the ray irradiation area. In this method of manufacturing an electronic device, a plurality of the above-mentioned electronic devices are formed on the substrate, and the selection of the plurality of electrodes of each of the electronic devices is selected.-(4) (4) 200426920 The selective potential setting is for each of the above-mentioned electronic devices. The device is based on a common signal line and power line. According to this invention, a plurality of electronic devices formed on a substrate can selectively set a predetermined potential to a plurality of electrodes of each electronic device simultaneously using a common signal line and a power line. Therefore, an organic thin film can be simultaneously formed on a plurality of electronic devices on the substrate. In this method of manufacturing an electronic device, the signal line and the power supply line common to the electronic devices formed on the substrate may be wired so as not to be located between the electronic devices formed on the substrate. Realms cross each other. If this invention is used, since the signal lines and power lines formed on the above-mentioned substrate will be wired so as not to cross each other, a single wiring layer can be used to form the signal lines and power lines. Therefore, multiple layers are used to connect the signal lines and Compared with power cables, it is helpful to improve reliability and reduce manufacturing costs. In this method of manufacturing an electronic device, a setting circuit for selectively setting the plurality of electrodes to a predetermined potential is formed in a formation field of the electronic device formed on the substrate, and the setting circuit may be formed by At least a part of the original electronic circuit of the electronic device in the above-mentioned formation field. If this invention is used, the film-forming voltage setting circuit formed on the substrate can use a part of the electronic circuit of the electronic device. Therefore, as long as some circuits are added to the original circuit of the electronic device, the voltage of the element electrode can be set. This additional circuit can be produced at the same time as the original circuit process without increasing the manufacturing process. In this manufacturing method, each of the formation collars formed on the substrate is a photoelectric device, and the plurality of electrodes are formed of a plurality of photovoltaic elements formed on the photovoltaic device. The element electrode, and the electronic circuit used in the setting circuit may include the element driving circuit of the optoelectronic element. If this invention is used, a film-forming voltage setting circuit for forming a photovoltaic device on a substrate can use a part of the electronic circuit of the photovoltaic device, so as long as some circuits are added to the original circuit of the photovoltaic device, element electrodes can be performed. The additional voltage can be set at the same time as the original circuit. The film forming apparatus of the present invention is a film forming apparatus for forming a film of a material on a substrate, and is characterized by including: an ionization unit that forms fine droplets of the material or a solution of the material, and ionizes the material. After being charged, the droplets are gasified to generate gaseous pseudo-molecular ions. The voltage supply unit is configured to supply a signal or voltage to an electronic circuit. The electronic circuit selectively sets the pseudo-molecule ions on the substrate. The potentials of the plurality of electrodes provided; and a film forming section for attaching material ions among the pseudomolecular ions to the substrate. According to the invention, it is possible to include an ionization unit that forms fine droplets of a material, ionizes or charges the droplets, and vaporizes the droplets to generate gaseous pseudomolecular ions. The resulting material in a pseudo-molecular ion state can be attached to a substrate. At this moment, a predetermined portion of the substrate is selectively set to a predetermined potential, so that the material in a pseudo-molecular state can be induced to the predetermined portion. Thereby, the above-mentioned material can be reliably attached to a predetermined portion. In this way, it is possible to provide a film forming apparatus capable of reliably forming a high-quality film at a target site. (8) (6) (6) 200426920 The film forming apparatus may further include: a solution supply unit for supplying a solution obtained by mixing the material and a solvent to the ionization unit; and a gas supply unit for simultaneously supplying the solution and an inert gas through a nozzle. Spraying to form minute droplets of the solution; and a classification section 'which vaporizes the minute droplets to generate gaseous pseudomolecular ions, and classifies the ions from the material and The ions of the solvent. According to this invention, after the material is dissolved with a solvent in the solution supply part, the material after the solution is formed into minute droplets, and after the ionization or charging, the droplets are gasified to generate a gas. Like pseudomolecular ions. A classification unit is provided to separate the solvent ions' from the pseudo-molecular ions and classify only the ionized materials. The ionized material separated by the classification unit is induced to adhere to the substrate. As a result, it is possible to significantly reduce the amount of impurities in the material adhering to the substrate. Therefore, it is possible to provide a film forming apparatus capable of reliably forming a high-quality film at a target portion. This film forming apparatus may further include a deflection unit that biases the ions from the material classified by the classification unit. According to this invention, the in-plane ion density of the ionized material classified by the classification unit can be made uniform, and the area to be irradiated can be enlarged. In this film forming apparatus, the classification section may further include a mass classification section. The classification section is provided with a plurality of ions derived from the above-mentioned materials in accordance with a mass score according to an applied voltage or current.-9- (7) 200426920 electrode. According to this invention, since the above-mentioned ionized material can be separated from the solvent ions and other ions by having a mass classification device, the purity of the above-mentioned materials can be improved, and ion rays having a uniform molecular weight can be formed. In this film forming apparatus, the quality classification unit may further include a plurality of quality classification units having different distances between the plurality of electrodes. According to this invention, since the ion beam-collecting performance and the ion-classifying performance of the mass classification device can be controlled separately, a high degree of mass classification and ion beam control can be achieved. This film forming apparatus may further include an adjustment electrode, which is provided with a collector electrode, and adjusts the flying speed of the ionized material between the collector electrode and the film forming section. According to this invention, a collector electrode can be further provided, and the potential change between the collector electrode and the film forming portion can be adjusted to a collector electrode potential. Therefore, the above-mentioned ionized material can be attached to the substrate under optimal conditions.

在此膜形成裝置中,亦可具備:檢測出來自上述材料 的離子附著於上述基板的規定電極的附著量之檢出部。 若利用此發明,則可容易邊監視邊控制形成於基板上 的薄膜的膜厚。 在此膜形成裝置中,上述基板的離子附著電極面係以 能夠形成垂直方向或水平下面之方式來配置成滑動。 若利用此發明,則可在形成薄膜時防止塵埃(粒子) 附著於基板上。 在此膜形成裝置中,上述離子化部,上述分類部及上 -10 - (8) (8)200426920 述成膜部可分別具備供以互相獨立減壓的隔離手段。 若利用此發明,則可使上述離子化部,上述分類部及 上述成膜部獨立減壓。 本發明的電子裝置係以上述電子裝置的製造方法來製 造。 若利用此發明,則可利用上述電子裝置的製造方法來 製造例如大型且高品質的顯示器。 本發明的電子機器係具備上述電子裝置。 若利用此發明,則可利用上述裝置製造裝置所製造的 裝置來實現一種例如能夠大型且高品質顯示的薄型電視或 附顯示器的攜帶機器。 本發明的電子裝置係以上述膜形成裝置來製造。 若利用此發明,則可利用上述膜形成裝置所製造的電 子裝置來高精度控制膜厚及形狀,且可以高生產效率來形 成高品質的膜質之薄膜。The film forming apparatus may further include a detection unit that detects an amount of ions from the material attached to a predetermined electrode of the substrate. According to this invention, it is possible to easily control the film thickness of a thin film formed on a substrate while monitoring. In this film forming apparatus, the ion-adhered electrode surface of the substrate is arranged so as to slide vertically or horizontally. According to this invention, it is possible to prevent dust (particles) from adhering to a substrate when forming a thin film. In this film forming apparatus, the ionization section, the classification section, and the film formation section described in the above -10-(8) (8) 200426920 may be provided with isolation means for reducing pressure independently of each other. According to this invention, the ionization unit, the classification unit, and the film forming unit can be independently decompressed. The electronic device of the present invention is manufactured by the above-mentioned method for manufacturing an electronic device. According to this invention, for example, a large-sized and high-quality display can be manufactured using the above-mentioned manufacturing method of an electronic device. An electronic device according to the present invention includes the electronic device described above. According to this invention, a device manufactured by the above device manufacturing device can be used to realize, for example, a thin television or a portable device with a display capable of large-scale and high-quality display. The electronic device of the present invention is manufactured using the above-described film forming apparatus. According to this invention, the electronic device manufactured by the above-mentioned film forming apparatus can be used to control the film thickness and shape with high accuracy, and high-quality film can be formed with high production efficiency.

(第1實施形態) 以下,按照圖1〜圖8來具體説明本發明的第1實施 形態。又,本實施形態的有機薄膜形成裝置是供以形成有 機薄膜(構成可全彩顯示的有機EL顯示器的畫素)的薄 膜形成裝置。亦即,使用本實施形態的有機薄膜形成裝置 來製造的有機EL顯示器是具備其一畫素爲紅色(r色) ,綠色(G色)及藍色(B色)用的畫素之有機EL顯示 器。 -11 - (9) 200426920 圖1是用以說明有機薄膜形成裝置的構成之方塊構成 圖。如圖1所示,有機薄膜形成裝置1 〇具備:溶液供給 部1 1 ’氣體供給部1 2,軟離子化部1 3,離子分類部〗4, 偏向部1 5及成膜部1 6。(First Embodiment) Hereinafter, a first embodiment of the present invention will be described in detail with reference to Figs. 1 to 8. The organic thin film forming apparatus of this embodiment is a thin film forming apparatus for forming an organic thin film (pixels constituting an organic EL display capable of full-color display). That is, the organic EL display manufactured by using the organic thin film forming apparatus of this embodiment is an organic EL having pixels for which one pixel is red (r color), green (G color), and blue (B color). monitor. -11-(9) 200426920 Figure 1 is a block diagram illustrating the structure of an organic thin film forming apparatus. As shown in FIG. 1, the organic thin film forming apparatus 10 includes a solution supply section 11 1 ′, a gas supply section 12, a soft ionization section 13, an ion classification section 4, a deflection section 15, and a film formation section 16.

溶液供給部1 1可使用各種有機材料J (參照圖2 )。 該各種有機材料j爲紅色,綠色及藍色各相異的材料,且 依各色分別構成發光層,電子輸送層及電洞注入/輸送層 等。而且’在此溶液供給部11中作成藉由溶媒U (參照 圖2 )而溶解的溶液。 氣體供給部1 2具備惰性氣體容器及供給該惰性氣體 的泵。又’氣體供給部1 2會沿著導入噴出在上述溶液供 給部1 1所作成的溶液之溶液毛細管的外周部來使上述惰 性氣體高速噴出至下段的軟離子化部1 3。The solution supply section 11 can use various organic materials J (see FIG. 2). The various organic materials j are different materials of red, green, and blue, and constitute a light emitting layer, an electron transporting layer, a hole injection / transporting layer, and the like according to each color. In addition, a solution that is dissolved by the solvent U (see FIG. 2) is prepared in the solution supply unit 11. The gas supply unit 12 includes an inert gas container and a pump for supplying the inert gas. The gas supply unit 12 sprays the inert gas to the soft ionization unit 13 at the lower stage at high speed along the outer peripheral portion of the capillary tube that introduces and discharges the solution made in the solution supply unit 11.

軟離子化部1 3會使由上述溶液供給部1 1及上述氣體 供給部1 2所供給的溶液形成微細的液滴,且使離子化或 帶電之後,使該液滴氣化而變換生成氣體狀的假分子離子 (第1步驟)。然後,以靜電力來將上述假分子離子誘導 至次段的離子分類部14。又,假分子離子包含加上分子 本身的離子,而藉由分子或原子的群組化,會合,或結合 而生成的化學種藉由離子化或帶電而生成者。 離子分類部1 4會對前段的軟離子化部I 3所變換生成 的假分子離子進行収束 分類,形成質量一致的離子射線 化。此刻,由上述假分子離子來降低上述溶媒離子的含有 量(第2步騾)。然後,再由上述假分子離子來分類上述 溶媒離子及來自上述有機材料j的有機材料離子之後,離 -12- (10) (10)200426920 子分類部1 4會將該離子射線輸出至次段的偏向部1 5。又 ’ ί扁向部1 5會使來自離子分類部1 4的上述有機材料離子 偏向移動(第4步驟)。 ί扁1¾部1 5會使上述機能材料離子偏向移動,減少上 述離子射線的密度不均一,使射線剖面積擴大。成膜部 1 6會使通過上述偏向部1 5的離子射線附著於主基板S ( _照® 2 ) ’而積層形成規定的有機薄膜(第3步驟)。 以下’按照圖2〜圖4來詳細説明具備上述各構件1 1 〜1 6的有機薄膜形成裝置1 〇。圖2是表示本實施形態之 有機薄膜形成裝置10的構成圖。 在圖2中’有機薄膜形成裝置〗〇具備溶質槽21及溶 媒槽22 °溶質槽2 1是在於儲存用以形成各種薄膜的有機 材料J的槽’該各種薄膜爲構成主基板S上所形成的畫素 之發光層’電子輸送層,電子注入層,電洞輸送層或電洞 注入層。並且,在溶質槽2 1中會以高濃度且溶液化的狀 態來儲存上述有機材料j。上述有機材料j爲構成發光層 之可ί谷性π共轭系商分子系的有機材料,例如有聚噻吩( PAT)系,聚對苯(ρρρ),聚對苯乙烯(ΡΡν),聚苯系 ’ a勿(PF)系,聚乙烯基咔唑系的衍生物。又,低分子 系的有機材料,例如有可溶於苯衍生物的紅熒烯,苯,9 ,:1 0-聯苯蔥,四苯基丁二烯,萘綸紅,香豆素6,喹吖 酮等的化合物或樹狀分子系化合物。又,構成電洞注入/ 輸送層的有機材料,例如有PEDOT + PSS系,聚苯胺+pss 系’酞青系金屬錯體。 溶媒槽2爲儲存用以稀釋上述各種有機材料】的溶媒 -13- (11) (11)200426920 U之槽。就溶媒U而言,例如有二甲苯,苯,甲苯,四氫 呋喃,二氯苯,甲基乙基甲酮,二噁烷,/水,甲醇或乙 醇等的醇類,六氟·2-丙醇等的氟素化醇類,丙醇,N -甲 基吡咯烷酮,二甲基醯胺,二甲亞 等,視與溶質(有機 材料J )的適合性來選擇最適者。又,儲存於溶媒槽2 2 的溶媒U亦可不與使用於溶質槽2 1的溶液之溶媒同種類 者。 又,上述溶質槽21與上述溶媒槽22會經由輸送管C 而互相連接,且連接至定流泵2 3。又,上述有機材料j 藉由上述溶媒U而以規定的比例來稀釋的稀釋溶液會利 用輸送管C來供給至定流泵23。 又,有機薄膜形成裝置10具備由定流泵23,載流子 氣體泵24,氣體容器GB及加熱氣體泵25所構成的上述 氣體供給部1 2。 在定流泵23連接有毛細管ΝΖΙ。在上述毛細管NZ1 的外周設有氣體導管NZ2 (與毛細管NZ1同軸)。毛細 管N Z 1的前端部Az亦可因應所需安裝有加熱器,而使能 夠進行加熱。上述氣體導管NZ2會被連接至載流子氣體 泵24。載流子氣體泵24會被連接至氣體容器〇Β。在上 述氣體容器GB中充塡有高純度的氦氣(He),氮(N2) 或氬(A r )的惰性氣體及二氧化碳(c Ο 2 )。由成本面來 看’最好是使用氮(N2)或二氧化碳(C02)。又,由上 述毛細管NZ1及氣體導管NZ2所構成的噴霧噴嘴會被插 入處理室Vc的離子化室C1。並且,在上述離子化室c] 連接有第1真空泵P1。又,可藉由上述第]真空泵P1的 -14- (12) (12)200426920 作動來使上述離子化室Cl内獨立減壓。 又,上述定流泵23會使經由上述輸送管c而從上述 溶液供給部1 1供給的上述稀釋溶液經由上述毛細管NZ :! 來定流的亦即無脈流的噴射至上述離子化室C 1内。如此 一來,上述稀釋溶液會形成霧狀的微小液滴,然後供給至 上述離子化室C1。又,載流子氣體泵24會使從上述氣體 谷器GB供給的上述惰性氣體經由上述氣體導管NZ2來從 毛細管N Z 1所噴射的上述稀釋溶液的外周部以接近音速 的流速高速噴射至被減壓的上述離子化室C 1内。 如此一來,所被噴射的上述稀釋溶液會形成1 μπι以 下的微小液滴,且該微小的液滴與構成上述載流子氣體的 惰性氣體的分子之間會產生摩擦,因此上述微小的液滴會 離子化或帶電。本實施形態之上述微小的液滴爲負離子化 者。 又,上述加熱氣體泵25會被連接至上述氣體容器GB 。加熱氣體泵25的送氣口 25a會被連接至上述離子化室 C1。此加熱氣體泵25會傳送由該送氣口 25a所被加熱的 惰性氣體。藉此,使所生成的上述微小液滴氣化形成氣體 狀的假分子離子,且在由氣體導管NZ2來噴射上述惰性 氣體至所被減壓的離子化室C1内時,可藉由斷熱膨脹來 抑止上述毛細管NZ 1的前端部Az或位於其近傍的氣體導 管N Z 2的前端部被冷卻。亦即,防止上述毛細管N Z 1的 前端部Az被冷卻下,上述稀釋溶液會凝縮固著於前端部 Az,造成噴嘴的噴霧能力會降低。其結果,可由上述毛細 管N Z ]來安定控制上述稀釋溶液的噴霧量。 -15- (13) 200426920 在上述離子化室Cl中設有附強電場電極超音波霧 益:)G。附強電場電極超首波霧化器30具備超音波振動 31 ’振動板電極32及柏耳帖元件(peltier element) 33 以壓電材料等形成的超音波振動子3 1是由一對的 動板電極32所挟持。並且,在上述超音波振動子31連 有柏耳帖元件3 3。振動板電極3 2及柏耳帖元件3 3會 連接至設置於處理室V c外側的電壓產生裝置Q。亦即 在超音波振動子3 1雖未圖示,但實際上連接有供給高 電壓(用以使超音波振動子3 1振動)的振動控制裝置 而且,在振動板電極3 2會從電壓產生裝置Q來供給對 述的誘導電極電壓的第1電壓VI而言高數kV的電壓 。又,振動板電極3 2是由不鏽鋼或鈦之類耐蝕性高的 屬,或氮化矽系,硼化鈦(TiB2 )系,硼化锆(ZrB2 ) 等導電性陶瓷所構成,且於其表面形成有複數個突起 3 2 a,而使容易從該突起前端來放出電荷。又,柏耳帖 件3 3會藉由從電壓產生裝置Q所供給的電流P來冷卻 音波振動子3 1,進而能夠控制超音波振動子3 1因振動 熱所造成的劣化。 上述構成的附強電場電極超音波霧化器3 0是以能 傾斜對向於由毛細管NZ1及氣體導管NZ2所構成的上 噴霧噴嘴面之方式來設置於上述離子化室C 1的側壁。 上述噴霧噴嘴所被噴霧的微小液滴中質量較大的液滴會 突於振動的振動板電極3 2,且會被微細化成微細的液 ,同時藉由施加於上述突起部的高電壓來帶電且軟離子 化 子 〇 振 接 被 5 頻 Ο 後 Va 金 系 部 元 超 發 夠 述 由 衝 滴 化 -16- (14) (14)200426920 又,有機薄膜形成裝置10對溶媒U具有高吸光率, 另外亦可具備對有機材料J輸出低吸光率的波長(紫外,線 或紅外線等)之雷射振盪器3 4。從雷射振盪器3 4所射出 的雷射L會被反射及掃描於掃描鏡3 5,而經由設置於上 述離子化室 C 1的側壁之入射窗 V來導入上述離子化室 C 1内。又,上述雷射L會使由加熱氣體泵25所供給之被 加熱的惰性氣體與由上述噴霧噴嘴及振動板電極3 2所產 生的微細液滴瞬間加熱氣化,而生成氣體狀的假分子離子 〇 又,以上述噴射噴嘴及上述附強電場電極超音波霧化 器30及加熱氣體泵25及上述雷射振盪器34及真空泵P1 來構成上述軟離子化部1 3。 在上述超音波霧化器30與誘導電極41之間的上述離 子化室C 1的側壁設有第1擋板T1。在使該第1擋板丁 I 開口的情況下,使上述假分子離子導入鄰接於上述離子化 室C1的離子分類室C2。 在此,離子的飛行速度υ與加速電壓E,離子電荷數 Ζ,離子質量m,電子的電荷e的關係可爲: υ= ( 2eZE/m) 172 由此式可得知,若離子質量πι差異大,且離子電荷 數Z有所差異的話,則離子的飛行速度會有較大的差異, 容易分離特定的離子。 離子分類室C2是以第1擋板T1及第2擋板T2來獨 立隔離上述離子化室C1及成膜室C3。並且,在上述離子 分類室C2設有第2〜第4真空泵P2,P3,P4。 -17- (15) (15)200426920 又’離子分類室C2具備誘導電極41,冷卻電極42, 多重極型分類収束裝置43,集極電極44,調整用電極45 及偏向磁石4 6。又,上述各機能手段4 1〜4 6是由上游側 ’亦即由上述離子化室C 1側來依次配置誘導電極4 ],冷 卻電極42,多重極型分類収束裝置43,集極電極44,調 整用電極45及偏向磁石46。 誘導電極4 1會在對應於上述第1擋板T1的開口部的 部位形成有複數個柵極41a。又,誘導電極41會被連接 至離子分類室C2的外側所設置的上述電壓產生裝置Q。 又,產生於電壓產生裝置Q的第1電壓VI會被供給至誘 導電極41。此第1電壓VI對構成上述超音波霧化器30 之振動板電極32的電壓Va而言爲正的高電壓。亦即,藉 此誘導電極41來電性牽引上述離子化室C1内的假分子離 子至上述誘導電極41,導入離子分類室C2。此刻,藉由 柵極4 1 a的設置來賦予通過上述第1擋板T ]而由上述離 子化室C1導入之上述假分子離子的移動方向及速度。 冷卻電極42在對應於上述誘導電極41的栅極41a的 部位設有開孔部。冷卻電極42會被電性連接至上述電壓 產生裝置Q。又,負電壓的第2電壓V2會藉上述電壓產 生裝置q所產生的第1電壓VI來施加於冷卻電極42。藉 此,使分子量大的溶質離子收束於軌道中心。又’冷卻電 極42會被連接至上述離子分類室C2的外側所設置的冷卻 裝置,藉由該冷卻裝置來冷卻。 藉由設置如此構成的冷卻電極4 2 ’在通過上述誘導 電極4 1的栅極4 ] a之上述假分子離子中,可使分子量小 -18- (16) (16)200426920 谷易擴散的溶媒假分子離子(溶媒離子),結露去除。所被 去除的溶媒可回㈣利用。藉此,可提高上述假分子離子 流中的溶質離子(機能材料離子)的比例’緩和下段的多 重極型分類収束裝置43的分類負擔。又’上述假分子離 子會被導入下段的多重極型分類収束裝置43。 多重極型分類収束裝置43是在本實施形態中並設2 個四重極型質量分類裝置43a,43b。具體而言,在串聯 的2個第1及第2四重極型質量分類裝置43a,43b中, 在上游側’亦即在冷卻電極4 2側設置第1四重極型質量 分類裝置4 3 a,在下游側,亦即在下段的集極電極4 4側 設置第2四重極型質量分類裝置43b〇 圖4(a)是表示第1四重極型質量分類裝置43a的 正面圖。又,圖 4(b)是表示第 1四重極型質量分類裝 置43a的剖面圖。如圖4(a)所示,第1四重極型質量 分類裝置4 3 a是平行精度佳地安裝彼此對向的2組圓柱狀 電極an,an+1,bn,bn+1 ( η爲自然數)。並且,在各組 的電極 an,an+1,bn,bn.+ 1中逆極性的直流電壓與交流 電壓會被重疊施加。而且,在各組的電極an,an+i,bn ,bn+ 1所圍繞的部位形成有離子射線通過孔Η 1。使剛通 過上述柵極4 ] a的假分子離子從離子射線通過孔Η 1通過 第1四重極型質量分類裝置43a内,藉此來分離構成上述 假分子離子的溶媒假分子離子(溶媒離子)與溶質離子( 被離子化的有機材料)。 圖3(a)是表示第2四重極型質量分類裝置43b的 正面圖。又,圖3(b)是表示第2四重極型質量分類裝 -19- (17) (17)200426920 置43b的剖面圖。如圖3(a)所示,第2四重極型質量 分類裝置4 3 b是平行精度佳地安裝彼此對向的2組圓柱狀 電極 An,An+1,Bn,Βη + 1 (η爲自然數)。並且’在各 組的電極An,Αη+ 1,Bn,Βη+ 1中逆極性的直流電壓與交 流電壓會被重疊施加。而且,在以各組的電極 An,Αη+ 1 ,Β η,Β η + 1所圍繞的部位形成有離子射線通過孔Η 2。使 由上述四重極型質量分類裝置43a的離子射線通過孔Η1 射出的上述假分子離子從離子射線通過孔H2通過第2四 重極型質量分類裝置43b内,藉此來更高度地分離構成上 述假分子離子的溶媒假分子離子(溶媒離子)與溶質離子 (被離子化的有機材料)。亦即,使施加於中心具有支柱 構件的上述圓柱狀電極An,An+1,Bn,Βη+1的直流電壓 及交流電壓形成最適化,而使構成上述假分子離子的溶媒 離子從該離子軌道面離開,且使剩下的溶質離子收束於離 子軌道面,而令一次分類的假分子離子射線形一致。使該 假分子離子射線在本實施形態中形成離子射線IΒ (參照 圖3(b))。並且,該第2四重極型質量分類裝置43b 的離子射線通過孔H2的直徑φ2較第1四重極型質量分 類裝置4 3 a的離子射線通過孔Η1的直徑φ 1 (參照圖4 ( b ))更小。 該上述第1四重極型質量分類裝置43a爲不具裝置容 器的開放型的四重極型質量分類裝置。因此,可容易從通 過上述誘導電極41的上述假分子離子來使溶媒離子放出 至四重極型質量分類裝置43a外。 另一方面,上述第2四重極型質量分類裝置43b爲密 -20- (18) (18)200426920 閉型的四重極型質量分類裝置,在該容器的開孔部連接有 第4真空泵P4。藉由該第4真空泵P4的作動來使第2四 重極型質量分類裝置43b形成高真空狀態。其結果,可取 得一種能夠同時分類大量的離子,產生長的離子射線之多 重極型分類収束裝置43。 如圖2所示,集極電極44在對應於該多重極型分類 収束裝置43的離子射線通過孔H2的部位形成有柵極44a 。又’集極電極44會電性連接至上述電壓產生裝置Q。 又’於集極電極44供給有與供給至上述冷卻電極42的上 述第2電壓V2相同位準的電壓。又,上述集極電極44 會電性牽引由上述多重極型分類収束裝置43所形成的離 子射線IB,且使通過該柵極44a。又,通過上述柵極44a 的離子射線IB會被引導至後段的調整用電極45。 調整用電極45會被電性連接至上述電壓產生裝置Q 。並且,在調整用電極45供以有來自上述電壓產生裝置 Q的第3電壓V3。上述第3電壓V3可與第1及第2電壓 VI,V2獨立使調整用電極45與主基板S的電位差調整成 最適者,藉此使上述離子射線IB能夠設定成安定地附著 於主基板S上的規定部位。其結果,可使上述離子射線 IB射入成膜部1 6的速度控制成最適者。此入射速度最好 是根據不附著電壓Vs及附著電壓V4來彎曲離子射線IB 的軌道之程度的低速者。 如此一來,上述離子分類部1 4是以上述誘導電極4 1 ,冷卻電極42,多重極型分類収束裝置43,集極電極44 及調整用電極4 5來構成。 -21 - (19) (19)200426920 在上述調整用電極4 5的下游側設有偏向磁石4 6。偏 向磁石46會被電性連接至上述電壓產生裝置Q。偏向磁 石4 6是在被供給週期變動勵磁電流(對應於電壓產生裝 置Q所供給的電流IM )之下來產生偏向磁場的電磁石。 又,在藉上述偏向磁石4 6所產生的週期變動磁場中使上 述離子射線IB通過,而使離子射線IB搖晃來提高射線密 度的均一性。此偏向磁石4 6會構成上述偏向部1 5。又, 偏向磁石4 6亦可爲静電場的射線偏向手段。 又,於上述離子分類室C2的下游側,亦即對向於上 述調整用電極4 5的柵極4 5 a之隔壁部位設有第2擋板T2 。並且,在使第2擋板T2開口的狀況下,上述離子射線 IB會被導入鄰接於上述離子分類室C2的成膜室C3。 成膜室C3可藉由上述第2擋板T2及閥門B來形成 獨立的氣密狀態。並且,在成膜室C3設有第5真空泵P5 。可藉由關閉上述第2擋板T2及閥門B以及作動第5真 空泵P5來使成膜室C3内減壓。 又,於成膜室C3内設有載物台滑動裝置51及載物台 5 2。載物台滑動裝置5 1會被安裝於上述成膜室C 3的側壁 。具體而言,載物台滑動裝置5]會被安裝至對向於上述 第2擋板T2的側壁50。 載物台滑動裝置5 1會被設置於成膜室C 3的外側之載 物台控制器5 3所控制。又,上述載物台滑動裝置5 1可藉 由載物台控制器5 3來沿著上述成膜室C 3的側壁5 0而滑 動控制上述載物台5 2。 又,於載物台滑動裝置5 1上設有載物台5 2。主基板 -22- (20) (20)200426920 S可載置固定於載物台5 2。亦即,主基板S是經由載物台 52利用載物台控制器53來沿著上述成膜室C3的側壁50 而滑動控制。如此一來,主基板S會沿著上述成膜室C 3 的側壁5 0而被載置,藉此可使塵埃不易附著於主基板s 。其結果,可於主基板S上形成高品質的有機薄膜。又, 圖2所示的有機薄膜形成裝置1〇亦可全體旋轉90度,而 使主基板S的有機薄膜形成面呈垂直方向下可於載物台控 制器5 3上滑動控制主基板S,這對塵埃具有同樣的效果 〇 主基板S至少具備一個作爲事先控制畫素的電子電路 之畫素電路爲形成矩陣狀的顯示面板晶片ρτ。更詳而言 之,如圖2所示,主基板S形成有以TFT或有機TFT, 1C等所形成的開關元件,亦即開關電晶體Qsw。又,主 基板S形成有在該上述第2擋板T2側取規定的間隔來分 離畫素間的隔壁,亦即間隔壁K。又,上述各間隔壁K間 事先形成有例如以銦-錫氧化物(ITO )所構成的透明畫素 電極Μ。並且,在上述間隔壁κ上形成有導電性膜r。此 外’間隔壁Κ並非一定要在形成有機薄膜之前設置,亦 可在有機薄膜成膜之後。但,導電性膜R最好是在畫素電 極Μ間有機薄膜的成膜前設置。 上述畫素電極Μ可藉由構成上述畫素電路的開關電 晶體Q SW來電性連接至上述電壓產生裝置Q。又,可從 上述電壓產生裝置Q來對上述畫素電極Μ施加不附著電 壓Vs。又,此不附著電壓Vs也會被施加至形成於上述間 隔壁K上的導電性膜R。亦即,根據開關電晶體Q sw來 >23- (21) (21)200426920 選擇性地連接至上述電壓產生裝置Q之畫素電極Μ的電 位會形成與形成於上述間隔壁Κ上的導電性膜R同電位 〇 又,上述晝素電極Μ可根據構成上述畫素電路的開 關電晶體Q s w經由設置於成膜室C 3外側的電流量計5 4 來電性連接至從電壓產生裝置Q所輸出的附著電壓V4。 又,電性連接至電流量計5 4的畫素電極Μ會在上述離子 射線ΙΒ照射下沿著由該畫素電極Μ及電壓產生裝置Q所 構成的電路來流動電流。可藉由檢測出該電流的電流位準 來測定到底有多少量的離子射線ΙΒ被照射至述畫素電極 Μ。亦即,電流量計54會使對應於有機材料J所附著於 上述畫素電極Μ的附著量之訊號輸出至上述載物台控制 器53及上述定流泵23。因此,可以簡易的方法來精度佳 地測定形成於畫素電極Μ上的有機薄膜的膜厚。 又,連接上述電流量計54及滑動控制主基板S的載 物台控制器5 3。又,上述載物台控制器5 3可按照上述電 流量計5 4所檢測出的電流位準來控制主基板s的滑動速 度。其結果,可以規定的厚度精度來有效率地使有機薄膜 均一地形成於畫素電極Μ全面。 又,如圖2所示,在上述主基板S形成有控制上述各 開關電晶體Q s w的選擇控制電路5 5。選擇控制電路5 5會 以附著電壓V4及不附著電壓Vs作爲電源來動作,以計 數電路及區別其輸出的解碼器電路來構成,按照從成膜室 C3外側所供給的復位訊號RST及選擇訊號Sel的輸入來 使上述畫素電極Μ的電位控制成附著電壓v 4或不附著電 -24- (22) (22)200426920 壓Vs的電位之控制訊號SG輸出。若將復位訊號RST供 給至選擇控制電路5 5,則主基板S内的電路及控制開關 電晶體QSW的選擇控制電路5 5會被初期化,經由開關電 晶體Qsw來輸出供以使所有上述畫素電極Μ電性連接至 上述電壓產生裝置Q的附著電壓V4的控制訊號SG輸出 。其次,若使選擇訊號SEL脈衝輸入至選擇控制電路55 ,則選擇控制電路5 5會根據上述開關電晶體Qsw經由上 述電流量計54只使上述畫素電極Μ中規定的上述畫素電 極Μ電性連接至從電壓產生裝置Q所供給的附著電壓ν 4 ’其他的畫素電極Μ會根據其他的開關電晶體q sw來輸 出供以使電性連接於上述電壓產生裝置Q的不附著電壓 V s之控制訊號S G輸出。在此,附著電壓ν 4爲本有機薄 月旲形成裝置10的電極中最局電位。又,不附著電壓Vs最 好與施加於調整用電極45的第3電壓V3同等電位或低 電位。 其次’再度將上述選擇訊號SEL輸入選擇控制電路 5 5。如此一來’可按照該選擇訊號S E L使規定的其他畫 素電極Μ經由上述電流量計5 4來施加附著電壓v 4,在 其他的畫素電極Μ及各間隔壁κ的導電性膜R施加由上 述電壓產生裝置Q所供給的不附著電壓Vs。其結果,可 僅於連接至該電流量計5 4的規定畫素電極μ誘導上述離 子射線ΙΒ而使附著於有機材料假分子離子。亦即,在各 輸入選擇訊號SEL至選擇控制電路55時設定規定的電極 選擇狀態’藉此可選擇性地誘導上述離子射線至規定 的畫素電極Μ,而使有機材料假分子離子附著。 -25- (23) (23)200426920 又,於上述載物台滑動裝置51驅動下,載置於載物 台5 2上的主基板S會以規定的畫素電極Μ能夠位於對向 於栅極4 5 a的部位之方式來滑動。此刻,如上述,該規定 的畫素電極Μ會經由上述電流量計54來與附著電壓V 4 電性連接,且其他的畫素電極Μ及各間隔壁Κ上的導電 性膜R會被施加不附著電壓Vs。因此,可使上述有機材 料假分子離子附著於規定的畫素電極Μ。 又,以上述載物台滑動裝置51,載物台52,載物台 控制器53及電流量計54來構成上述成膜部16。 如此’在以溶媒U來使有機材料J溶液化後,形成假 分子離子化,然後,從上述假分子離子來分離溶媒離子, 只使上述有機材料離子附著於主基板S。並且,在上述主 基板S的規定部位施加用以誘導上述離子化的有機材料j 之電壓’而使上述有機材料J能夠確實地附著於目的的部 位。因此,可有效率地使用有機材料J。又,此刻,由於 是在以溶媒U來使有機材料J溶液化後,以假分子離子化 的狀態來分離溶媒離子,而只使上述有機材料j[附著於主 基板S,因此可極力防止雜質混入。因此,可於目的的部 位以規定的均一膜厚來形成高純度的薄膜。 其次,說明有關藉由如此構成的有機薄膜形成裝置 1 〇所形成的有機E L顯示器的顯示面板的製造方法。 圖5及圖6是分別表示藉由有機薄膜形成裝置所 开> 成的有機EL顯不器的剖面圖。又,圖5及圖6所示相 同記號的畫素全爲同色的畫素。 又’圖7是表示以主基板S上形成複數個顯示面板晶 -26- (24) 200426920 片PT時的復位訊號線LR,選擇訊號線LS,附著電 LV4及不附著電壓線LVs不會分別互相交叉之方式 以配置各顯示面板晶片P T的佈局。藉此,各顯示面 片PT會同時回應復位訊號RST及選擇訊號SEL,形 樣的内部狀態,因此對主基板S之溶媒離子的附著作 連續進行。又,復位訊號線LR,選擇訊號線L S,附 壓線LV4及不附著電壓線LVs在進行各顯示面板晶J 的晶片化時,最好使用難以由劃片剖面腐蝕的導電材 進行配線,或使介在接觸孔,使用ITO或氮化鈦( Ti )等耐蝕性高的導電性配線材料。 又,如圖7所示,形成於主基板S上的上述各復 號線LR,選擇訊號線LS,附著電壓線LV4及不附著 線LVs是在上述主基板S上之形成有上述各顯示面 片P T的領域間的中間領域以不會互相交叉的方式來 。因此,可以單一的配線層來形成復位訊號線LR, 訊號線LS,附著電壓線LV4及不附著電壓線LVs。 在主基板S上使用複數層來形成復位訊號線LR,選 號線LS,附著電壓線LV4及不附著電壓線LVs時相 下,不會新增加製造步驟,在原本形成電路的配線層 使用最適的配線層來結線,因此可兼顧可靠度及成本 首先,在第2擋板T2關閉的狀態下開啓閥門B 將主基板S設置於載物台5 2上。其次,使第5真空$ 作動,形成規定的真空度,然後去除氧氣及水分。同 動控制載物台5 2,而以形成於主基板S上之規定的 電極Μ能夠對向於上述調整用電極4 5的栅極4 5 a之 壓線 來供 板晶 成同 業可 著電 ^ PT 料來 氮化 位訊 電壓 板晶 配線 選擇 這與 擇訊 較之 中可 〇 ,而 i P5 時滑 畫素 方式 -27- (25) 200426920 來移動定位主基板S。在高分子型有機el顯示面板時 最初應成膜的電洞注入/輸送層爲共通形成於所有的畫 電極Μ之薄膜。因此,此刻會按照上述選擇控制電路 所供給的控制訊號SG來控制上述開關電晶體Qsw,而 有的上述畫素電極Μ會經由上述電流量計5 4來電性連 於附著電壓V4。另外,在形成於各間隔壁κ上的導電 膜R會被施加由上述電壓產生裝置q所供給的不附著 壓V s。由於各間隔壁Κ上所被形成的導電性膜r是以 夠圍繞各畫素之方式來形成間隔壁Κ,因此會電性連接 間隔壁Κ上。 在此狀態下,若上述第2擋板Τ2被開啓,則供以 成電洞注入/輸送層Υ 1的有機材料J的離子射線IΒ會 該第2擋板Τ2來朝複數個規定的畫素電極Μ照射,以 電力來選擇性地附著於畫素電極Μ (圖5a)。若有機 料假分子離子附著於畫素電極Μ,則該部份的電阻會上 ,未附著的電極部份會優先附著有機材料假分子離子, 自我整合的形成均一的膜厚。又,一旦利用上述電流量 5 4來計測出規定的膜厚,則會滑動控制上述載物台5 2 而以隣接的其他畫素電極Μ能夠對向於上述調整用電 45的柵極45a之方式來移動主基板s。此刻,由於離子 線IB會維持照射’因此在移動後的隣接畫素會馬上被 射離子射線ΪΒ,開始形成膜。又,與最初的過程同樣 ,一旦利用上述電流量計5 4來計測出形成規定的電流 (膜厚),則會滑動控制上述載物台5 2,而以隣接的 素電極Μ能夠對向於上述柵極4 5 a之方式來移動主基板The soft ionization section 13 causes the solution supplied by the solution supply section 11 and the gas supply section 12 to form fine droplets, and after ionizing or charging, the droplets are gasified to transform into a gas. Like pseudomolecular ions (step 1). Then, the pseudomolecule ions are induced to the ion classification section 14 in the next stage by an electrostatic force. In addition, pseudomolecular ions include ions added to the molecule itself, and chemical species generated by the grouping, reunion, or combination of molecules or atoms are generated by ionization or charging. The ion classification unit 14 sorts and sorts the pseudo-molecule ions generated by the soft ionization unit I 3 in the preceding stage to form ion beams of uniform mass. At this time, the content of the solvent ions is reduced by the pseudomolecular ions (step 2). Then, the solvent ions and the organic material ions from the organic material j are further classified by the pseudomolecular ions, and the ion beam is output to the sub-segment by the sub-classification unit 14-12 (10) (10) 200426920.的 向 部 1 5。 The deflection section 1 5. Furthermore, the flattening section 15 causes the above-mentioned organic material ions from the ion classification section 14 to be biased to move (step 4). The flat part 15 causes the ions of the functional material to move in a biased manner, reducing the uneven density of the ion rays, and expanding the cross-sectional area of the rays. The film formation section 16 causes the ion rays passing through the deflection section 15 to adhere to the main substrate S (_ 照 ® 2) ′ to be laminated to form a predetermined organic thin film (third step). Hereinafter, the organic thin film forming apparatus 10 including the above-mentioned members 1 1 to 16 will be described in detail with reference to FIGS. 2 to 4. Fig. 2 is a block diagram showing an organic thin film forming apparatus 10 according to this embodiment. In FIG. 2, the “organic thin film forming apparatus” is provided with a solute tank 21 and a solvent tank 22 °. The solute tank 21 is a tank for storing an organic material J for forming various thin films. The various thin films are formed on the main substrate S. The light emitting layer of the pixel is an electron transport layer, an electron injection layer, a hole transport layer or a hole injection layer. In the solute tank 21, the organic material j is stored in a highly concentrated and solubilized state. The above-mentioned organic material j is an organic material capable of forming π-conjugated quotient molecules in the light-emitting layer, for example, polythiophene (PAT), polyparaphenylene (ρρρ), polyparastyrene (PPv), and polybenzene It is a PF (polyvinylcarbazole) derivative. In addition, low-molecular-weight organic materials include rubrene, benzene, 9, 10: biphenyl onion, tetraphenylbutadiene, naphthalene red, and coumarin 6, which are soluble in benzene derivatives. Compounds such as quinacridone or dendrimers. The organic material constituting the hole injection / transport layer includes, for example, a PEDOT + PSS-based, polyaniline + pss-based'phthalocyanine-based metal complex. The solvent tank 2 is a tank for storing the solvent -13- (11) (11) 200426920 U used to dilute the various organic materials mentioned above. Examples of the solvent U include xylene, benzene, toluene, tetrahydrofuran, dichlorobenzene, methyl ethyl ketone, dioxane, alcohols such as methanol, ethanol, and hexafluoro · 2-propanol. Such as fluorinated alcohols, propanol, N-methylpyrrolidone, dimethylamidamine, dimethylene, etc., depending on the suitability of the solute (organic material J), the best one is selected. The solvent U stored in the solvent tank 2 2 may not be the same as the solvent of the solution used in the solute tank 21. The solute tank 21 and the solvent tank 22 are connected to each other via a transfer pipe C, and are connected to a constant-flow pump 23. The dilute solution of the organic material j diluted by the solvent U at a predetermined ratio is supplied to the constant-flow pump 23 through the transfer pipe C. The organic thin film forming apparatus 10 includes the above-mentioned gas supply unit 12 composed of a constant-flow pump 23, a carrier gas pump 24, a gas container GB, and a heating gas pump 25. A capillary tube NZI is connected to the constant flow pump 23. A gas pipe NZ2 (coaxial to the capillary NZ1) is provided on the outer periphery of the capillary NZ1. Capillaries N Z 1 may also be heated by installing a heater at the front end Az if necessary. The above-mentioned gas pipe NZ2 is connected to a carrier gas pump 24. The carrier gas pump 24 is connected to the gas container OB. The above-mentioned gas container GB is filled with a high-purity inert gas such as helium (He), nitrogen (N2) or argon (A r), and carbon dioxide (c 0 2). From a cost perspective, it is best to use nitrogen (N2) or carbon dioxide (C02). The spray nozzle composed of the capillary tube NZ1 and the gas duct NZ2 is inserted into the ionization chamber C1 of the processing chamber Vc. A first vacuum pump P1 is connected to the ionization chamber c]. The pressure in the ionization chamber C1 can be independently reduced by operating the -14- (12) (12) 200426920 of the first vacuum pump P1. In addition, the constant-flow pump 23 causes the dilute solution supplied from the solution supply section 11 through the conveying pipe c to flow through the capillary NZ :! to a constant flow, that is, a pulseless flow, to the ionization chamber C. 1 within. In this way, the above-mentioned diluted solution forms minute droplets in a mist form, and is then supplied to the above-mentioned ionization chamber C1. In addition, the carrier gas pump 24 causes the inert gas supplied from the gas trough GB to inject the outer periphery of the dilute solution sprayed from the capillary NZ1 through the gas pipe NZ2 at a high velocity near the speed of sound to be reduced. Pressure inside the ionization chamber C 1. In this way, the sprayed dilute solution forms minute droplets of less than 1 μm, and friction occurs between the minute droplets and the molecules of the inert gas constituting the carrier gas, so the tiny liquid Drops can be ionized or charged. The above-mentioned minute liquid droplets in this embodiment are negatively ionized. The heating gas pump 25 is connected to the gas container GB. The air supply port 25a of the heating gas pump 25 is connected to the above-mentioned ionization chamber C1. The heated gas pump 25 transmits an inert gas heated by the air supply port 25a. Thereby, the generated small droplets are gasified to form gaseous pseudo-molecular ions, and when the inert gas is sprayed into the decompressed ionization chamber C1 by the gas pipe NZ2, the thermal expansion can be achieved by adiabatic expansion. This prevents the front end portion Az of the capillary tube NZ1 or the front end portion of the gas duct NZ2 located near the capillary tube NZ1 from being cooled. That is, to prevent the front end portion Az of the capillary tube N Z 1 from being cooled, the diluted solution is condensed and fixed to the front end portion Az, and the spraying ability of the nozzle is reduced. As a result, the amount of spray of the diluted solution can be stably controlled by the capillary tube N Z]. -15- (13) 200426920 The above-mentioned ionization chamber Cl is provided with an ultrasonic mist electrode with a strong electric field. Benefit:) G. The supersonic wave atomizer 30 with a strong electric field electrode includes ultrasonic vibration 31 'vibrating plate electrode 32 and a peltier element 33. The ultrasonic vibrator 3 is made of a piezoelectric material or the like. The plate electrode 32 is held. The ultrasonic transducer 31 is connected to a Peltier element 33. The vibration plate electrode 32 and the Peltier element 3 3 are connected to a voltage generating device Q provided outside the processing chamber V c. That is, although the ultrasonic vibrator 3 1 is not shown, a vibration control device for supplying a high voltage (for vibrating the ultrasonic vibrator 3 1) is actually connected to the vibrating plate electrode 3 2. The device Q supplies a voltage several kV higher than the first voltage VI of the induced electrode voltage. The diaphragm electrode 32 is made of a highly resistant metal such as stainless steel or titanium, or a conductive ceramic such as silicon nitride, titanium boride (TiB2), and zirconium boride (ZrB2). A plurality of protrusions 3 2 a are formed on the surface, so that it is easy to discharge electric charges from the tip of the protrusions. In addition, the Peltier element 33 cools the sonic vibrator 31 by the current P supplied from the voltage generating device Q, so that the deterioration of the ultrasonic vibrator 31 due to vibrational heat can be controlled. The ultrasonic atomizer 30 with a strong electric field electrode configured as described above is provided on the side wall of the ionization chamber C1 so as to be able to inclinely face the upper spray nozzle surface formed by the capillary NZ1 and the gas duct NZ2. Among the fine droplets sprayed by the spray nozzle, a larger mass of droplets will protrude from the vibrating vibrating plate electrode 32, and will be miniaturized into a fine liquid. In addition, after the soft ionizer 0 is connected to the 5th frequency 0, the Va gold system is super-transmitted. It is described by the infusion of -16- (14) (14) 200426920. Moreover, the organic thin film forming apparatus 10 has a high absorbance for the solvent U. In addition, it is also possible to provide a laser oscillator 34 that emits a low absorbance wavelength (ultraviolet, linear or infrared) to the organic material J. The laser L emitted from the laser oscillator 34 is reflected and scanned by the scanning mirror 35, and is introduced into the ionization chamber C1 through an entrance window V provided on a side wall of the ionization chamber C1. In addition, the laser L instantly heats and vaporizes the heated inert gas supplied by the heating gas pump 25 and the fine liquid droplets generated by the spray nozzle and the vibration plate electrode 32 to generate gas-like pseudomolecules. Ion 〇 The soft ionization unit 13 is constituted by the spray nozzle and the ultrasonic atomizer with a strong electric field electrode 30, the heating gas pump 25, the laser oscillator 34, and the vacuum pump P1. A first baffle T1 is provided on the side wall of the ionization chamber C1 between the ultrasonic atomizer 30 and the induction electrode 41. When the first baffle plate I is opened, the pseudo-molecule ions are introduced into an ion classification chamber C2 adjacent to the ionization chamber C1. Here, the relationship between the flying speed υ of the ion and the acceleration voltage E, the number of ion charges Z, the mass of the ion m, and the charge e of the electron can be: υ = (2eZE / m) 172 According to this formula, if the mass of the ion is πm If the difference is large and the ion charge number Z is different, the ions' flying speed will be greatly different, and it is easy to separate specific ions. The ion classification chamber C2 uses the first baffle T1 and the second baffle T2 to separate the ionization chamber C1 and the film formation chamber C3 independently. The ion classification chamber C2 is provided with second to fourth vacuum pumps P2, P3, and P4. -17- (15) (15) 200426920 The ion sorting chamber C2 is provided with an induction electrode 41, a cooling electrode 42, a multi-pole sorting and collecting device 43, a collector electrode 44, an adjustment electrode 45, and a bias magnet 46. In addition, the above-mentioned respective functional means 4 1 to 46 are arranged in sequence from the upstream side, that is, from the ionization chamber C 1 side, to the induction electrode 4], the cooling electrode 42, the multi-pole sorting and collecting device 43, and the collector electrode 44 , The adjustment electrode 45 and the bias magnet 46. The induction electrode 41 is formed with a plurality of grids 41a in a portion corresponding to the opening of the first shutter T1. The induction electrode 41 is connected to the voltage generating device Q provided outside the ion classification chamber C2. The first voltage VI generated by the voltage generating device Q is supplied to the induction electrode 41. This first voltage VI is a positive high voltage for the voltage Va of the diaphragm electrode 32 constituting the ultrasonic atomizer 30 described above. That is, the induction electrode 41 is used to electrically draw the pseudo-molecular ions in the ionization chamber C1 to the induction electrode 41, and is introduced into the ion classification chamber C2. At this time, the moving direction and speed of the pseudo molecular ions introduced through the ionization chamber C1 through the first baffle plate T] are provided by the arrangement of the grid 4a. The cooling electrode 42 is provided with a hole portion at a portion corresponding to the gate electrode 41a of the induction electrode 41 described above. The cooling electrode 42 is electrically connected to the voltage generating device Q. The second voltage V2 of the negative voltage is applied to the cooling electrode 42 by the first voltage VI generated by the voltage generating device q. As a result, solute ions with a large molecular weight are collected at the center of the orbit. The cooling electrode 42 is connected to a cooling device provided outside the ion classification chamber C2, and is cooled by the cooling device. By providing the cooling electrode 4 2 ′ configured in this way, among the above-mentioned pseudomolecular ions passing through the gate electrode 4] a of the induction electrode 41, the molecular weight can be made smaller by -18- (16) (16) 200426920 a solvent that is easy to diffuse. Pseudomolecular ions (solvent ions), dew condensation is removed. The removed solvent can be reused. Thereby, the ratio of the solute ions (functional material ions) in the pseudo-molecular ion current can be increased ', and the classification burden of the multiple-pole polarizing and sorting device 43 in the lower stage can be alleviated. The pseudo-molecule ions are introduced into the multipole sorting and condensing device 43 at the lower stage. The multiple-pole sorting and condensing device 43 is provided with two quadrupole-type mass sorting devices 43a and 43b in this embodiment. Specifically, in the two first and second quadrupole mass classification devices 43a and 43b connected in series, a first quadrupole mass classification device 4 3 is provided on the upstream side, that is, on the cooling electrode 4 2 side. a. A second quadrupole mass classification device 43b is provided on the downstream side, that is, on the lower side of the collector electrode 44b. FIG. 4 (a) is a front view showing the first quadrupole mass classification device 43a. Fig. 4 (b) is a sectional view showing the first quadrupole type mass classification device 43a. As shown in FIG. 4 (a), the first quadrupole mass classification device 4 3 a is a set of two cylindrical electrodes an, an + 1, bn, bn + 1 (η being Natural number). In addition, in each group of electrodes an, an + 1, bn, bn. + 1, a DC voltage and an AC voltage of reverse polarity are applied in an overlapping manner. In addition, an ion beam passing hole Η 1 is formed in a portion surrounded by the electrodes an, an + i, bn, and bn + 1 of each group. Pseudomolecular ions that have just passed through the above-mentioned grid 4] a are passed from the ion beam through the hole Η1 through the first quadrupole mass classification device 43a, thereby separating the solvent pseudomolecular ions (solvent ions) constituting the pseudomolecule ions ) And solute ions (ionized organic materials). Fig. 3 (a) is a front view showing a second quadrupole type mass classification device 43b. 3 (b) is a cross-sectional view showing the second quadrupole mass classification device -19- (17) (17) 200426920 at 43b. As shown in FIG. 3 (a), the second quadrupole mass classification device 4 3 b is a pair of cylindrical electrodes An, An + 1, Bn, and βη + 1 (η is Natural number). In addition, a DC voltage and an AC voltage of reverse polarity are applied to the electrodes An, Αη + 1, Bn, Βη + 1 of each group in an overlapping manner. Further, ion beam passing holes Η 2 are formed in a portion surrounded by the electrodes An, Αη + 1, Βη, Βη + 1 of each group. The pseudo-molecular ions emitted from the ion beam passing through the quadrupole mass classification device 43a through the hole Η1 are passed through the ion beam passing hole H2 into the second quadrupole mass classification device 43b, so as to further separate the structure. Pseudomolecular ions (solvent ions) and solute ions (ionized organic materials). That is, the DC voltage and the AC voltage applied to the cylindrical electrodes An, An + 1, Bn, and Bη + 1 having a pillar member at the center are optimized to cause the solvent ions constituting the pseudomolecular ions to move from the ion orbitals. The surface is separated, and the remaining solute ions are collected on the ion orbital plane, so that the pseudo-molecule ion rays of the primary classification are uniform. This pseudomolecular ion beam is made into ion beam IB in this embodiment (see FIG. 3 (b)). The diameter φ2 of the ion beam passage hole H2 in the second quadrupole mass classification device 43b is smaller than the diameter φ1 of the ion beam passage hole 3 in the first quadrupole mass classification device 4 3a (see FIG. 4 ( b)) smaller. The first quadrupole mass classification device 43a is an open quadrupole mass classification device without a container. Therefore, it is possible to easily release the solvent ion from the pseudo-molecular ion passing through the induction electrode 41 to the outside of the quadrupole mass classification device 43a. On the other hand, the second quadrupole mass classification device 43b is a closed -20- (18) (18) 200426920 closed quadrupole mass classification device, and a fourth vacuum pump is connected to the opening portion of the container. P4. By the operation of the fourth vacuum pump P4, the second quadrupole mass classification device 43b is brought into a high vacuum state. As a result, it is possible to obtain a multi-pole type sorting and condensing device 43 capable of simultaneously classifying a large number of ions and generating long ion rays. As shown in FIG. 2, the collector electrode 44 is formed with a grid electrode 44a at a portion corresponding to the ion beam passing hole H2 of the multipolar-type sorting and collecting device 43. The collector electrode 44 is electrically connected to the voltage generating device Q. The collector electrode 44 is supplied with a voltage at the same level as the second voltage V2 supplied to the cooling electrode 42. In addition, the collector electrode 44 electrically draws the ion beam IB formed by the multipole-type sorting and condensing device 43 and passes through the grid 44a. The ion beam IB passing through the grid 44a is guided to the adjustment electrode 45 at the subsequent stage. The adjustment electrode 45 is electrically connected to the voltage generating device Q. A third voltage V3 from the voltage generating device Q is supplied to the adjustment electrode 45. The third voltage V3 and the first and second voltages VI and V2 can independently adjust the potential difference between the adjustment electrode 45 and the main substrate S, thereby enabling the ion beam IB to be set to adhere to the main substrate S in a stable manner. On the prescribed location. As a result, it is possible to control the speed at which the ion beam IB is incident on the film forming section 16 to an optimum one. It is preferable that this incident velocity is a low velocity to the extent that the orbit of the ion beam IB is bent based on the non-adherence voltage Vs and the adhesion voltage V4. In this way, the ion classification unit 14 is configured by the induction electrode 4 1, the cooling electrode 42, the multipolar sorting and collecting device 43, the collector electrode 44, and the adjustment electrode 45. -21-(19) (19) 200426920 A bias magnet 46 is provided on the downstream side of the adjustment electrode 45. The bias magnet 46 is electrically connected to the voltage generating device Q. The bias magnet 46 is an electromagnet that generates a bias magnetic field under a periodically varying excitation current (corresponding to the current IM supplied by the voltage generating device Q). In addition, the ion beam IB is caused to pass through the periodic fluctuation magnetic field generated by the bias magnet 46, and the ion beam IB is shaken to improve the uniformity of the radiation density. This deflection magnet 46 will constitute the above-mentioned deflection portion 15. The deflection magnet 46 may also be a means for deflecting a ray in an electrostatic field. Further, a second baffle plate T2 is provided on the downstream side of the ion classification chamber C2, that is, a partition wall portion facing the grid 4 5a of the adjustment electrode 45. When the second shutter T2 is opened, the ion beam IB is introduced into the film forming chamber C3 adjacent to the ion classification chamber C2. The film forming chamber C3 can be formed in an independent airtight state by the second baffle plate T2 and the valve B described above. A fifth vacuum pump P5 is provided in the film forming chamber C3. The inside of the film forming chamber C3 can be depressurized by closing the second baffle plate T2 and the valve B and operating the fifth vacuum pump P5. A stage slide device 51 and a stage 52 are provided in the film forming chamber C3. The stage slide device 51 is mounted on the side wall of the film forming chamber C 3. Specifically, the stage slide device 5] is attached to the side wall 50 facing the second shutter T2. The stage slide device 51 is controlled by a stage controller 5 3 provided outside the film forming chamber C 3. The stage slide device 51 can slide and control the stage 52 along the side wall 50 of the film forming chamber C3 by the stage controller 53. A stage 52 is provided on the stage slide device 51. Main substrate -22- (20) (20) 200426920 S can be placed and fixed on the stage 5 2. That is, the main substrate S is slidingly controlled along the side wall 50 of the film forming chamber C3 by the stage controller 53 via the stage 52. In this way, the main substrate S is placed along the side wall 50 of the film forming chamber C 3, so that it is difficult for dust to adhere to the main substrate s. As a result, a high-quality organic thin film can be formed on the main substrate S. In addition, the organic thin film forming apparatus 10 shown in FIG. 2 can also be rotated 90 degrees as a whole, and the main substrate S can be slid and controlled on the stage controller 53 with the organic thin film forming surface of the main substrate S in a vertical direction. This has the same effect on dust. The main substrate S includes at least one pixel circuit that is an electronic circuit that controls pixels in advance. The pixel circuit is a matrix display panel chip τ. More specifically, as shown in FIG. 2, the main substrate S is formed with a switching element formed of a TFT, an organic TFT, 1C, or the like, that is, a switching transistor Qsw. Further, the main substrate S is formed with a partition wall, i.e., a partition wall K, at a predetermined interval on the side of the second baffle plate T2 to separate pixels. A transparent pixel electrode M made of, for example, indium-tin oxide (ITO) is formed between the partition walls K in advance. A conductive film r is formed on the partition wall κ. In addition, the partition wall K is not necessarily provided before the organic thin film is formed, and may be formed after the organic thin film is formed. However, the conductive film R is preferably provided before the formation of the organic thin film between the pixel electrodes M. The pixel electrode M may be electrically connected to the voltage generating device Q via a switching transistor Q SW constituting the pixel circuit. The pixel electrode M may be applied with a non-adhering voltage Vs from the voltage generating device Q. The non-adherence voltage Vs is also applied to the conductive film R formed on the partition wall K. That is, according to the switching transistor Q sw> 23- (21) (21) 200426920, the potential of the pixel electrode M that is selectively connected to the voltage generating device Q is formed to conduct electricity formed on the partition wall K. The sexual film R has the same potential. The daytime electrode M can be electrically connected to the voltage generating device Q via an electric flowmeter 5 4 provided outside the film formation chamber C 3 according to the switching transistor Q sw constituting the pixel circuit. The output adhesion voltage V4. In addition, the pixel electrode M electrically connected to the electric flow meter 54 flows a current along the circuit constituted by the pixel electrode M and the voltage generating device Q under the irradiation of the ion beam IB. By detecting the current level of the current, it is possible to determine how much ion beam IB is irradiated to the pixel electrode M. That is, the electric flow meter 54 outputs a signal corresponding to the amount of the organic material J attached to the pixel electrode M to the stage controller 53 and the constant flow pump 23. Therefore, a simple method can be used to accurately measure the film thickness of the organic thin film formed on the pixel electrode M. In addition, the above-mentioned electric flow meter 54 and the stage controller 53 of the slide control main substrate S are connected. The stage controller 53 can control the sliding speed of the main substrate s in accordance with the current level detected by the electric flow meter 54. As a result, the organic thin film can be efficiently and uniformly formed on the entire surface of the pixel electrode M with a predetermined thickness accuracy. As shown in Fig. 2, a selection control circuit 55 is formed on the main substrate S to control the switching transistors Qsw. The selection control circuit 55 operates with the attached voltage V4 and the non-attached voltage Vs as a power source, and is constituted by a counting circuit and a decoder circuit that distinguishes its output, in accordance with a reset signal RST and a selection signal supplied from the outside of the film forming chamber C3. The input of Sel is used to control the potential of the pixel electrode M to an attached voltage v 4 or a non-attached voltage -24- (22) (22) 200426920 a control signal SG with a potential of VS. If the reset signal RST is supplied to the selection control circuit 55, the circuit in the main substrate S and the selection control circuit 55 that controls the switching transistor QSW will be initialized, and output through the switching transistor Qsw to make all the above-mentioned images The element electrode M is electrically connected to the control signal SG of the attachment voltage V4 of the voltage generating device Q and outputs the control signal SG. Next, if a selection signal SEL pulse is input to the selection control circuit 55, the selection control circuit 55 will only power the pixel electrodes M specified in the pixel electrodes M through the electric flow meter 54 based on the switching transistor Qsw. It is connected to the attachment voltage ν 4 'supplied from the voltage generating device Q. The other pixel electrodes M will output the non-attached voltage V for electrical connection to the voltage generating device Q according to other switching transistors q sw. s control signal SG output. Here, the adhesion voltage ν 4 is the local most potential among the electrodes of the organic thin-film formation device 10. The non-applied voltage Vs is preferably equal to or lower than the third voltage V3 applied to the adjustment electrode 45. Next, the selection signal SEL is input to the selection control circuit 55 again. In this way, according to the selection signal SEL, a predetermined other pixel electrode M can be applied with the attachment voltage v 4 through the electric flow meter 54, and applied to the other pixel electrode M and the conductive film R of each partition κ. The non-adherence voltage Vs supplied from the voltage generating device Q. As a result, only the predetermined pixel electrode µ connected to the electric flow meter 54 can induce the above-mentioned ion beam IB and attach pseudomolecular ions to the organic material. That is, a predetermined electrode selection state is set when each of the input selection signals SEL to the selection control circuit 55 is set ', whereby the above-mentioned ion rays can be selectively induced to a predetermined pixel electrode M, and pseudomolecular ions of the organic material can be attached. -25- (23) (23) 200426920 In addition, driven by the above-mentioned stage slide device 51, the main substrate S placed on the stage 52 can be positioned opposite to the grid with a predetermined pixel electrode M Pole 4 5 a way to slide. At this moment, as described above, the predetermined pixel electrode M is electrically connected to the attachment voltage V 4 through the electric flow meter 54, and other pixel electrodes M and the conductive film R on each partition wall K are applied. No voltage Vs is applied. Therefore, the organic material pseudomolecular ions can be attached to a predetermined pixel electrode M. The film formation unit 16 is constituted by the stage slide device 51, the stage 52, the stage controller 53, and the electric flow meter 54. In this way, after the organic material J is solubilized with the solvent U, pseudo-molecule ions are formed, and then the solvent ions are separated from the pseudo-molecular ions, so that only the organic material ions are attached to the main substrate S. Then, a voltage 'of the organic material j for inducing the ionization is applied to a predetermined portion of the main substrate S, so that the organic material J can be reliably attached to a target portion. Therefore, the organic material J can be used efficiently. Also, at this moment, after the organic material J is dissolved with the solvent U, the solvent ions are separated in a state of pseudo-molecule ionization, and only the organic material j [is attached to the main substrate S, so impurities can be prevented as much as possible. Mix in. Therefore, it is possible to form a high-purity thin film with a predetermined uniform film thickness at the intended portion. Next, a method for manufacturing a display panel of an organic EL display formed by the organic thin film forming apparatus 10 configured as described above will be described. 5 and 6 are cross-sectional views showing an organic EL display device formed by an organic thin film forming apparatus. In addition, the pixels of the same mark shown in FIG. 5 and FIG. 6 are all pixels of the same color. Also, FIG. 7 shows the reset signal line LR when a plurality of display panel crystals -26- (24) 200426920 PT are formed on the main substrate S, the signal line LS is selected, and the electric voltage LV4 and the non-voltage line LVs are not separated. The layouts of the display panel wafers PT are arranged so as to intersect each other. As a result, each display panel PT will respond to the internal state of the reset signal RST and the selection signal SEL at the same time, so the supplementary work on the solvent ions of the main substrate S is performed continuously. In addition, when resetting the signal line LR, selecting the signal line LS, the pressure line LV4, and the voltage lines LVs that are not adhered to each wafer of the display panel J, it is best to use a conductive material that is difficult to corrode from the scribe section, or A conductive wiring material having a high corrosion resistance such as ITO or titanium nitride (Ti) is used through the contact hole. As shown in FIG. 7, each of the multiple number lines LR formed on the main substrate S, the selection signal line LS, the attached voltage line LV4 and the non-attached line LVs are formed on the main substrate S with the display surfaces. The intermediate fields between the fields of the film PT come in such a way that they do not cross each other. Therefore, the reset signal line LR, the signal line LS, the attached voltage line LV4 and the non-attached voltage line LVs can be formed with a single wiring layer. Multiple layers are used on the main substrate S to form reset signal lines LR, selection lines LS, attached voltage lines LV4 and non-attached voltage lines LVs. No new manufacturing steps are added. Use the most suitable wiring layer for the original circuit. The wiring layer is used for wiring, so that both reliability and cost can be taken into consideration. First, the valve B is opened with the second shutter T2 closed, and the main substrate S is set on the stage 52. Next, the fifth vacuum $ is operated to form a predetermined vacuum degree, and then oxygen and moisture are removed. The stage 52 is controlled simultaneously, and a predetermined electrode M formed on the main substrate S can be pressed against the grid electrode 4 5 a of the adjustment electrode 45 to supply the plate crystal to be charged in the same industry. ^ PT material is used to nitride the bit-voltage voltage plate crystal wiring selection. This is better than the selection. The i P5 time-sliding pixel method-27- (25) 200426920 is used to move and position the main substrate S. In the polymer type organic el display panel, the hole injection / transport layer that should be formed first is a thin film that is commonly formed on all the picture electrodes M. Therefore, at this moment, the switching transistor Qsw will be controlled according to the control signal SG provided by the selection control circuit, and some of the pixel electrodes M will be electrically connected to the attachment voltage V4 via the electric flow meter 54. The non-adhering voltage V s supplied from the voltage generating device q is applied to the conductive film R formed on each of the partition walls κ. Since the conductive film r formed on each partition wall K is formed so as to surround each pixel, the partition wall K is electrically connected to the partition wall K. In this state, if the second baffle plate T2 is opened, the ion beam IB of the organic material J supplied into the hole injection / transport layer Υ1 will be directed to the second baffle plate T2 toward a plurality of predetermined pixels. The electrode M is irradiated, and is selectively attached to the pixel electrode M with electric power (FIG. 5a). If the organic pseudomolecular ions are attached to the pixel electrode M, the resistance of the part will increase, and the non-attached electrode parts will preferentially adhere to the organic material pseudomolecular ions, which will self-integrate to form a uniform film thickness. In addition, once a predetermined film thickness is measured by using the current amount 54, the stage 5 2 is slidingly controlled, and other adjacent pixel electrodes M can face the gate 45a of the adjustment power 45. Way to move the main substrate s. At this moment, since the ion beam IB will continue to be irradiated ', the adjacent pixels after the movement will be immediately irradiated with ion beams ΪB and begin to form a film. Also, as in the first process, once the predetermined current (film thickness) is measured using the electric flow meter 54, the stage 52 is slidingly controlled, and the adjacent element electrodes M can be opposed to each other. The above grid 4 5 a way to move the main substrate

素 55 所 接 性 電 能 於 形 從 靜 材 昇 可 計 極 射 照 的 値 晝 S -28- (26) (26)200426920 (圖 5b )。 以後,依次連續重複進行與上述同樣的動作,而於全 體的畫素電極Μ上形成電洞注入/輸送層Y1 (圖5c)。 離子射線IB的寬度,如圖3 ( a )所示,可藉由擴展多重 極型分類収束裝置43的橫寬或各柵極41a,44 a,45a的 寬度來形成主基板S的一邊長度,因此可以一次的載物台 掃描移動來對主基板S的全畫素形成電洞注入/輸送層Y 1 〇 在全畫素附著電洞注入/輸送層後,於真空爐内進行 退火,而使電洞注入/輸送有機分子定著於畫素電極Μ。 若於全體的畫素電極Μ上形成電洞注入/輸送層Υ1, 則其次會利用R,G,Β各發光色的有機材料:[來形成發 光層。首先,說明由發光色爲R色者來成膜的例子。此情 況,會依各發光色來專用分配1台與圖2所示的有機薄膜 形成裝置1 〇同型的裝置,而且予以串聯,在將主基板S 移動於各裝置10之下來成膜。主基板S之裝置間的移動 是經由上述閥門Β來進行。成膜過程是與電洞注入/輸送 層Υ1時相同。亦即,在第2擋板Τ2關閉的狀態下開啓 閥門Β,而使主基板S載置於載物台5 2上。其次,使第 5真空泵Ρ5作動,形成規定的真空度,而來去除氧氣或 水分。同時,滑動控制載物台5 2,而以形成於主基板S 上的規定畫素電極Μ能夠對向於上述調整用電極4 5的柵 極4 5 a之方式來移動主基板S。此刻,會按照上述選擇控 制電路5 5所供給的控制訊號S G來控制上述開關電晶體 Qsw,而使所有上述規定的R色畫素電極M經由上述電流 -29 - (27) (27)200426920 量計5 4來電性連接於附著電壓v 4。又,此刻,會控制上 述開關電晶體Q s w來使上述電壓產生裝置Q所供給的不 附著電壓V s施加於其他的畫素電極μ及各間隔壁K上所 形成的導電牲膜R。 若在此狀態下開啓上述第2擋板Τ2,則形成發光層 Y2R的有機材料J的離子射線ΙΒ會從該第2擋板Τ2往複 數個規定畫素電極Μ照射,形成發光層Y2R (圖6a)。 又,若根據上述電流量計5 4來形成規定的電流値(膜厚 ),則滑動控制上述載物台5 2來週期性地配置的R色畫 素電極Μ會以能夠對向於上述調整用電極45的柵極45a 之方式來移動主基板S。此刻,會按照由上述選擇控制電 路5 5所供給的控制訊號S G來控制上述開關電晶體Q sw ’而該規定的畫素電極Μ已經由上述電流量計5 4來電性 連接於附著電壓V4,因此可馬上照射離子射線ΙΒ於規定 的畫素電極Μ,而開始附著規定的有機材料離子。 又,一旦規定的膜厚被上述電流量計5 4所計測,則 藉由滑動控制上述載物台5 2來週期性配置的R色畫素電 極Μ會以能夠對向於上述調整用電極45的柵極45a之方 式來移動主基板S。以後,依次與上述同樣地在各R色的 畫素電極Μ上形成發光層Y2R (圖6b)。其次以規定的 温度來進行退火,使發光層Y2R定著於電洞注入/輸送層 Y1上。此退火亦可於R,G,B的全畫素附著各發光有機 材料之後一次進行。 以後,依次在各B色的畫素電極Μ進行與上述同樣 的動作,而於全體Β色的畫素電極Μ上形成發光層Υ2Β -30- (28) (28)200426920 又,如此在畫素電極Μ上積層規定的電洞注入/輸送 層γ 1及發光層Y2之後,上述主基板S會開啓上述閥門 B,輸送至隣接的其他處理室。然後,在該處理室中,例 如藉由蒸鍍法的規定製程,在以上述有機薄膜形成裝置 1 〇所形成的上述發光層上形成電極Y3及封裝部BR。如 此來製造有機EL顯示面板(圖6c )。 然後,如圖7所示,對形成有複數個顯示面板晶片 PT的主基板S進行劃片處理,而來分別切出顯示面板晶 片PT予以面板化。又,於切出的各顯示面板晶片PT安 裝驅動器1C及顯示電源電路等,作爲有機EL顯示器來 適用於各種的電子機器。 圖8是用以說明選擇性地施加形成於圖2及圖7所示 主基板S的各顯示面板晶片P T的畫素電極Μ的電位之成 膜電壓設定電路(電壓選擇電路60,AND電路61,OR 電路62及充電電晶體63 )與顯示驅動電路(掃描線驅動 電路6 4及資料線驅動電路6 5,畫素P X的元件驅動電路 )的電性連接關係例圖。如圖8所示,在各顯示面板晶片 PT中配置有畫素電極Μ,該畫素電極Μ是對應於各畫素 Px的發光色而條紋狀形成紅色(R )有機EL元件REL, 綠色(G )有機EL元件GEL,藍色(B )有機EL元件 BEL。各有機EL元件是以圖5及圖6所述的製造方法來 形成。又,各畫素Px中形成有由驅動各有機EL元件 REL ’ GEL,BEL的一方電極的開關電晶體Qsw,及驅動 電晶體Q d所構成的元件驅動電路。 -31 - (29) (29)200426920 又,各顯示面板晶片PT中形成有供以將上述附著電 壓V4及上述不附著電壓Vs施加於畫素電極Μ的電壓選 擇電路60,附著電壓V4會經由附著電壓線LV4來輸入 ,不附著電壓V s會經由不附著電壓線L V s來輸入。又, 於電壓選擇電路60内形成有選擇控制電路55。又,復位 訊號RST及選擇訊號SEL會分別經由復位訊號線LR及選 擇訊號線LS來輸入至上述選擇控制電路5 5,掃描線驅動 電路64及資料線驅動電路65。 選擇控制電路5 5,掃描線驅動電路6 4及資料線驅動 電路65會分別藉由復位訊號RST的輸入來初期化。在復 位訊號RST的輸入中若選擇訊號SEL被輸入,則選擇訊 號會從AND電路61的閘極來輸出至選擇訊號線LS,掃 描訊號會從全體0 R電路6 2的閘極來輸出至掃描線l 1, L2,…。 又,復位訊號RS T的輸入中若傳達資料線驅動電路 65的輸出之資料線XI,X2,X3,…爲高阻抗,則在復位 訊號RST的輸入中若選擇訊號SEL被輸入,則選擇訊號 會從AN D電路6 1的閘極輸出至選擇訊號線l S,充電電 晶體63會導通,全體的資料線X1,χ2,X3,…會被設定 成接地電位。 其結果,全體畫素Px的開關電晶體qsw會導通,且 資料線XI,X2 ’ X3,…的電位會被傳達至驅動電晶體Qd 的閘極,上述同驅動電晶體Qd會導通^藉此,可對全體 畫素電極Μ賦予經由顯不驅動電源線v e 1R,V e 1 G,V e 1 B 而被選擇性賦予的附著電壓V 4或不附著電壓v s的其中 -32- (30) (30)200426920 任何一電位。此刻,由於各有機EL元件REL,GEL, BEL未完成,因此電流不會經由各有機EL元件REL, GEL,BEL而流動。 又’選擇控制電路5 5會以内部的計數電路來從初期 化狀態計數選擇訊號SEL,藉此來產生複數個狀態,輸出 對應該等的選擇控制訊號SGR,SGG,SGB。亦即,從復 位訊號R S T的輸入到選擇訊號s E L輸入爲止的期間,選 擇控制電路5 5會被初期化,全體的選擇控制訊號會以選 擇不附著電壓Vs之方式來進行訊號輸出。在形成有機薄 膜的期間,復位訊號會持續輸入。期間若輸入第1選擇訊 號,則選擇控制電路5 5的初期狀態會被解除,以内部的 計數電路來開始進行選擇訊號SEL的計數。選擇訊號 SEL會在預定的有機薄膜的附著電位狀態以各元件電極所 成的脈衝數來從外部的控制器輸入。藉此,選擇開關SSR ,SSG,SSB會分別被切換,附著電壓V4或不附著電壓 Vs的任一電位會被輸出至顯示驅動電源線VelR,VelG, VelB。上述三個元件驅動電源線在顯示動作時會從與該等 聯繫的其他端子來供給顯示驅動電源。在圖8中,根據選 擇開關SSR,僅顯示驅動電源線 VelR會與附著電壓線 LV 4電性連接。其結果,畫素電極Μ的電位會依畫素Ρχ 中紅色(R)用的畫素,綠色(G )用的畫素,藍色(Β ) 用的畫素來選擇設定,因此構成各有機EL元件REL, GEL,BEL的有機薄膜可形成於畫素電極Μ上。以上的狀 態設定是針對圖7所示的全體顯示面板晶片Ρ Τ來同時進 行。在對該元件電極之電壓設定準備完成的階段下,於主 -33- (31) (31)200426920 基板S照射離子射線IB,進行有機薄膜的形成。 如此,在上述主基板S上形成一個或複數個上述顯示 面板晶片PT。並且,分別對上述各顯示面板晶片PT形成 的上述複數個畫素電極Μ的選擇性電位設定是根據共通 的復位訊號線LR,選擇訊號線LS,附著電壓線LV4及不 附著電壓線LVs來對上述各顯示面板晶片ΡΤ進行。因此 ,可對各顯示面板晶片P T的複數個畫素電極Μ分別選擇 性地同時設定規定電位,因此可同時在複數個顯示面板晶 片ΡΤ的元件電極形成有機薄膜。 又,本實施形態中,在形成於上述主基板S上的上述 各顯示面板晶片Ρ Τ的形成領域中形成有成膜電壓設定電 路(電壓選擇電路60,AND電路61,OR電路62及充電 電晶體6 3 )及顯示驅動電路(掃描線驅動電路6 4及資料 線驅動電路6 5,畫素Ρ X的元件驅動電路)。又,該成膜 電壓設定電路是利用構成原本顯示面板晶片Ρ T的電路的 一部份。 又,上述複數個晝素電極Μ爲其各有機EL元件REL ,GEL,BEL的一方元件電極,上述附著電壓 V4或不附 著電壓Vs可利用作爲上述各有機EL元件REL,GEL, BEL的元件驅動電路之開關電晶體qsw,驅動電晶體Qd 來供應給各畫素電極Μ。因此,畫素ρ X的元件驅動電路 爲了對有機薄膜形成時的元件電極進行電壓施加時不需要 加以任何的變更。並且,只要在顯示面板晶片ΡΊΓ的原本 電路中追加一些電路’便可進行元件電極的電壓設定,且 此追加電路可與原本電路的製程同時製作。 -34 - (32) (32)200426920 又,對有機薄膜形成時之上述成膜電壓設定電路與顯 示驅動電路的電源供給是由附著電壓V4及不附著電壓Vs 來適當地變換電壓而進行。另一方面,在顯示面板晶片 PT完成的階段,以可不進行來自上述附著電壓V4及不附 著電壓Vs的電源供給之方式,根據復位訊號RST來對上 述成膜電壓設定電路及顯示驅動電路進行狀態設定。又, 有關復位訊號RST及選擇訊號SEL方面也是同樣的,在 進行劃片處理後,於顯示動作狀態下藉由下拉電阻Rp 1, Rp2在顯示面板晶片PT内部施以電位固定。 又,圖5及圖8中雖是顯示電壓選擇電路60爲形成 於主基板S上的情況時,但亦可在主基板S以外另設外部 裝置。 又,申請專利範圍中所記載的材料或機能材料,在本 實施形態是例如對應於有機材料J。申請專利範圍中所記 載的基板,在本實施形態中是例如對應於主基板S。申請 專利範圍中所記載的隔離手段,在本實施形態中是例如對 應於第1擋板τ 1或第2擋板T2。申請專利範圍中所記載 的膜形成裝置,在本實施形態中是分別對應於有機薄膜形 成裝置I 〇。申請專利範圍中所記載的離子化部,在本實 施形態中是對應於軟離子化部1 3。 又,申請專利範圍中所記載的分類部,在本實施形態 中是對應於離子分類部1 4。申請專利範圍中所記載的質 量分類部,在本實施形態中是對應於多重極型分類収束裝 置4 3。申請專利範圍中所記載的電子裝置,在本實施形 態中是對應於有機EL顯示器的主要構成要件之顯示面板 -35- (33) 200426920 晶片PT。申請專利範圍中所記載的離子附著電 極或元件電極,在本實施形態中是對應於畫素電 又’申請專利範圍中所記載的電壓供給部, 形態中是例如對應於電壓產生裝置Q。申請專利 記載的檢出部,在本實施形態中是例如對應於 5 4。申請專利範圍中所記載的顯示驅動電路,在 態中是例如對應於掃描線驅動電路64或資料線 6 5或畫素Ρ X的元件驅動電路。申請專利範圍中 電子裝置,在本實施形態中是例如對應於顯示 ΡΤ。申請專利範圍中所記載的訊號線,在本實施 例如對應於復位訊號線LR或選擇訊號線LS,申 圍中所記載的電源線,在本實施形態中是例如對 電壓線LV4或不附著電壓線LVs。又,申請專 所記載的光電元件,在本實施形態中是例如對應 R)有機EL元件REL,綠色(G)有機EL元件 色(B )有機EL元件BEL。 若利用上述實施形態的有機E L顯示面板等 置的製造方法,有機薄膜形成裝置1〇及電子裝 取得以下的特徴。 (1 )在上述實施形態中構成一有機薄膜形β ,其係具備溶液供給部1 1,氣體供給部1 2,軟 1 3,離子分類部1 4,偏向部1 5及成膜部1 6者 軟離子化部1 3使上述溶液供給部1 1的有機材料 細的液滴,且使離子化或帶電之後,使其液滴氣 氣體狀的假分子離子。此刻,在離子分類部 極面,電 極Μ 〇 在本實施 範圍中所 電流量計 本實施形 驅動電路 所記載的 面板晶片 形態中是 請專利範 應於附著 利範圍中 於紅色( GEL或藍 的電子裝 置,則可 定裝置]〇 離子化部 。又,於 J形成微 化而形成 1 4中從假分 -36- (34) (34)200426920 子離子分類有機材料離子,使軌道一致來產生離子射線 IB。並且’將事先形成有畫素電極M的主基板s載置於 載物台5 2上。而且,在規定的畫素電極M經由電流量計 54來連接附著電壓V4,在其他的畫素電極μ施加不附著 電壓Vs ’而僅於規定的畫素電極μ使離子射線ΙΒ誘導於 電場。藉此’可僅於規定的畫素電極Μ上使有機材料假 分子離子自我整合地精度佳且以均一的膜厚附著。因此, 與使用光罩的蒸鍍方法相較之下,可提高有機材料;的使 用效率’且即使針對複雜形狀的電極面照樣能夠形成針孔 或膜厚變化少的高品質有機薄膜。並且,當有機材料假分 子離子附著於電極時,可藉由離子分類部1 4來去除溶劑 ’因此先被形成的有機膜不會藉由之後照射的離子射線而 再溶解’可形成商分子薄膜的積層多層化。 (2 )在上述實施形態中設置附強電場電極超音波霧 化器3 0,其係於離子化室C 1內具備超音波振動子3 1,振 動板電極32及柏耳帖元件33者。並且,在超音波振動子 3 1進行超音波振動的狀態下,使溶液從毛細管ΝΖ 1噴霧 ’且使該噴霧的微小液滴衝突於形成於振動板電極32的 突起部32a。藉此,從上述毛細管ΝΖ1所被噴霧的上述微 小液滴的大小(質量)更能夠微細化。 (3)在上述實施形態中具備雷射振盪器34,經由設 置於離子化室C 1的側壁之入射窗V來將雷射照射至由毛 細管ΝΖ 1的前端部Az所被噴霧之上述帶電的微小液滴, 使液滴中的溶媒瞬間氣化。藉此,可使該微細的液滴更微 細化,且可使氣化後形成氣體狀的假分子離子化。 -37- (35) (35)200426920 (4 )在上述實施形態中具備多重極型分類収束裝置 43,其係多段連接兩個第1及第2四重極型質量分類裝置 43a,43b而構成者。並且,使上述第1四重極型質量分 類裝置4 3 a形成開放型的四重極型質量分類裝置,使第2 四重極型質量分類裝置43b形成密閉型的四重極型質量分 類裝置。而且,在上述第2四重極型質量分類裝置43 b連 接第4真空泵P4,使該第4真空泵P4作動,而於高真空 狀態下使用第2四重極型質量分類裝置43b。其結果,可 提高多重極型分類収束裝置4 3的分類性能及収束性能。 (5 )在上述實施形態中,主基板S的附著面會沿著 上述成膜室C3的側壁50來往垂直或水平下面載置。藉此 ,可使塵埃(粒子)難以附著於主基板S的附著面。其結 果,可於主基板S上形成高品質的有機薄膜。 (6 )在上述實施形態中,畫素電極Μ會根據開關電 晶體Qsw經由設置於成膜室C3外側的電流量計54來電 性連接於附著電壓V4。並且,有機材料假分子離子會附 著於電性連接至電流量計5 4的畫素電極Μ,藉此對應於 有機材料假分子離子量的電流會流動於該電流量計54。 在測定該電流的電流位準之下,可監控規定膜厚的有機膜 是否被形成於上述畫素電極Μ。 並且,使上述電流量計54的輸出訊號線連接至用以 滑動控制主基板S的載物台控制器5 3。而且,上述載物 台控制器5 3會按照上述電流量計5 4所測定的電流位準來 滑動控制主基板S。其結果,可形成膜厚精度及膜厚均一 性佳的有機薄膜。 -38- (36) (36)200426920 (7 )在上述實施形態中,將複數個顯示面板晶片PT 形成於主基板S上,且藉由各顯示面板晶片ΡΤ共通的復 位訊號線LR,選擇訊號線LS,附著電壓線LV4及不附著 電壓線LV s來進行分別形成於各顯示面板晶片ΡΤ之畫素 電極Μ的選擇性電位設定。因此,可同時針對各顯示面 板晶片ΡΤ的畫素電極Μ設定各選擇性的規定電位。其結 果,可一次對主基板上的複數個顯示面板晶片ΡΤ形成有 機薄膜。 (8 )在上述實施形態中,如圖7所示,復位訊號線 LR,選擇訊號線LS,附著電壓線LV4及不附著電壓線 LV s是配線成不會互相交叉於包含主基板s上形成有上述 複數個顯示面板晶片Ρ Τ的領域間的劃片領域之中間領域 。藉此,可使復位訊號線LR,選擇訊號線LS,附著電壓 線LV 4及不附著電壓線LV s形成於單一的配線層。亦即 可在不增加新的製程之下,在形成原本的電路之配線層中 利用最適的配線層來形成復位訊號線LR,選擇訊號線L S ’附者電壓線L V 4及不附著電壓線L V s,因此可兼顧可 靠度及成本。 (9 )在上述實施形態中,於各顯示面板晶片ΡΊΓ的形 成領域中形成成膜電壓設定電路(電壓選擇電路60, AND電路61 ’ OR電路62及充電電晶體63 )及顯示驅動 電路(掃描線驅動電路6 4及資料線驅動電路6 5,畫素Ρ X 的元件驅動電路)。並且,該成膜電壓設定電路及顯示驅 動電路可分別利用構成上述形成領域中所形成的上述顯示 面板晶片P T的原本光電裝置的電路元件的一部份。特別 •39 ‘ (37) (37)200426920 是因爲不會變更佔據顯示面板晶片面積的大部份之畫素 Ρχ的元件驅動電路,所以能夠藉由本發明的有機薄膜形 成方法來從主基板一次形成的顯示面板晶片數幾乎不會減 少。亦即供以對畫素電極Μ施加附著電壓之電路上的成 本增加微乎其微。 (第2實施形態) 其次,按照圖9來說明以第1實施形態的有機薄膜形 成裝置10所製造的電子裝置及使用彼之電子裝置。就使 用有機薄膜形成裝置1 〇來實現的有機薄膜裝置而言,例 如有機EL顯示器。有機EL顯示器可適用於攜帶型的個 人電腦,行動電話,數位相機等各種的電子機器。 圖9是表示攜帶型個人電腦的構成立體圖。在圖9中 ,個人電腦70具備:具有鍵盤71的本體部72,及使用 上述有機EL元件所構成的顯示器之顯示單元73。此情況 亦可使用有機薄膜形成裝置1 〇來製造顯示單元7 3。其結 果’可提供一具備高品質的有機E L顯示器之攜帶型個人 電腦7 0。 又’本發明的實施形態並非限於上述實施形態,亦可 如以下所述實施。 〇在上述第1實施形態中,準備使材料或機能材料的 有機材料J溶液化的溶媒U,且混合上述有機材料j與上 述溶媒U來使上述有機材料j溶液化之後,在離子化部使 該溶液化的有機材料·Τ形成假分子離子化。這亦可不使用 溶媒,在離子化部使有機材料j直接氣化或藉由場脫附法 -40 - (38) (38)200426920 (Field desorption ) /場離子化法,電子衝撃法,雷射 軟離子化法等來使另外奈米粒子化後的微粒子帶電或軟離 子化。藉此,可取得與上述實施形態同樣的效果。 〇在上述第1實施形態中,具備多重極型分類収束裝 置43,其係多段連接兩個第1及第2四重極型質量分類 裝置43a,43b,且使各段四重極型質量分類裝置的四重 極橫向並聯。藉此可同時分類大量的離子,產生較長的離 子射線。多重極型分類収束裝置43亦可以1個四重極型 質量分類裝置來構成。藉此,可使有機薄膜形成裝置10 的製造成本降低。 〇在上述實施形態中,雖是在玻璃基板GS的硬質基 板上形成薄膜,但並非限於此,亦可在塑膠或複合材料薄 膜或金屬板等可彎曲材質的基板上形成薄膜。又,此情況 ,可具備使上述基板捲成滾筒狀的載物台滑動裝置。藉此 ,可連續性有效率地形成有機薄膜。 〇在上述第1實施形態中,雖軟離子化部I 3的噴射噴 嘴只顯示1個,但亦可準備複數個噴射噴嘴,在將主基板 放入成膜部1 6的狀態下使不同的有機材料積層成膜。藉 此,可形成微細的積層構造。當然此情況,必須按照有機 材料來適當切換離子化部1 4及偏向部1 5的控制條件或增 設溶液供給部1 1及氣體供給部1 2。 〇在上述第1實施形態中,雖是以假分子分子離子來 作爲負假分子離子,但在正假分子離子時,可藉由將賦予 各電極的電位關係設定成與上述第1實施形態完全相反之 下來形成膜形成裝置。 -41 - (39) (39)200426920 0在上述第1實施形態中,雖爲製造有機EL顯示面 板的膜形成裝置,但除了有機EL顯示面板以外,例如亦 可爲具備有機TFT或有機電池,有機記憶元件,多層有 機薄膜封裝構造的裝置,或彩色濾光片,光通信用受發光 裝置等的膜形成裝置。此情況,並非是使有機材料直接附 著於電極,而是可隔著薄薄的絶縁層來使有機材料附著於 電極上。 0在上述第1實施形態中,雖爲形成有機薄膜的膜形 成裝置,但亦可爲形成無機薄膜的膜形成裝置。亦即,可 爲組合形成無機薄膜或可真空蒸鍍的低分子有機膜與高分 子有機薄膜的形態之膜形成裝置。 【圖式簡單說明】 圖1是用以說明本實施形態之有機薄膜形成裝置的構 成之方塊構成圖。 圖2是表示本實施形態之有機薄膜形成裝置的構成圖 〇 圖3(a)是表示第2四重極型質量分類裝置的正面 圖’ (b)是表示第2四重極型質量分類裝置的剖面圖。 圖4(a)是表示第1四重極型質量分類裝置的正面 圖’ (b)是表示第1四重極型質量分類裝置的剖面圖。 圖5(a) , (b)及(c)是表示藉由有機薄膜形成 裝置來形成的有機EL顯示面板的剖面圖。 圖6(a) , (b)及(c)是表示藉由有機薄膜形成 裝置來形成的有機E L顯示器面板的剖面圖。 - 42- (40) (40)200426920 圖7是表示在主基板上一次形成複數個顯示面板晶片 時的結線關係的平面圖。 圖8是用以說明顯示面板晶片之成膜電壓設定電路與 顯示驅動電路的電性連接圖。 圖9是用以說明第2實施形態。 【主要元件符號說明】 J…作爲材料或機能材料的有機材料 LR…作爲訊號線的復位訊號線 LS…作爲訊號線的選擇訊號線 LV4…作爲電源線的附著電壓線 L V s…作爲電源線的不附著電壓線 PT··.作爲電子裝置的顯示面板晶片 Q…作爲電壓供給部的電壓產生裝置 S…作爲基板的主基板 ΤΙ ’ T2…作爲隔離手段的第丨及第2擋板 1〇…作爲膜形成裝置的有機薄膜形成裝置 11…溶液供給部 12…氣體供給部 1 3…作爲離子化部的軟離子化部 1 4…作爲分類部的離子分類部 1 5…偏向部 16…成膜部 . 43…作爲質量分類部的多重極型分類収束裝置 45…調整用電極 -43- (41) (41)200426920 5 4 ...作爲檢出部的電流重g十 7 0...作爲電子機器的攜帶型個人電腦 -44 -The electrical energy connected to the element 55 is in the form of daylight S -28- (26) (26) 200426920 (Figure 5b). Thereafter, the same operation as described above is repeated successively, and a hole injection / transport layer Y1 is formed on the entire pixel electrode M (Fig. 5c). As shown in FIG. 3 (a), the width of the ion beam IB can be formed by extending the width of the multipole-type sorting and concentrating device 43 or the width of each grid 41a, 44a, 45a. Therefore, it is possible to form a hole injection / transport layer Y 1 for the full pixels of the main substrate S by one stage scanning movement. After attaching the hole injection / transport layer to the full pixels, annealing is performed in a vacuum furnace, so that The hole injection / transport organic molecules are fixed to the pixel electrode M. If a hole injecting / transporting layer Υ1 is formed on the entire pixel electrode M, an organic material of each of R, G, and B emitting colors: [is used to form a light emitting layer. First, an example will be described in which a film is formed with a light emitting color of R color. In this case, one device of the same type as the organic thin film forming device 10 shown in FIG. 2 is allocated exclusively for each light emission color, and is connected in series, and the main substrate S is moved under each device 10 to form a film. The movement between the devices of the main board S is performed through the valve B described above. The film formation process is the same as in the case of hole injection / transport layer 1. That is, the valve B is opened with the second shutter T2 closed, and the main substrate S is placed on the stage 52. Next, the fifth vacuum pump P5 is operated to form a predetermined degree of vacuum to remove oxygen or water. At the same time, the stage 52 is slid and the main substrate S is moved so that a predetermined pixel electrode M formed on the main substrate S can face the gate electrode 4 5 a of the adjustment electrode 45. At this moment, the switching transistor Qsw will be controlled according to the control signal SG provided by the selection control circuit 55, so that all the above-mentioned R-color pixel electrodes M pass the above-mentioned current -29-(27) (27) 200426920. Meter 5 4 is electrically connected to the attachment voltage v 4. At this moment, the switching transistor Qsw is controlled so that the non-adhered voltage Vs supplied from the voltage generating device Q is applied to the other pixel electrodes µ and the conductive film R formed on each of the partition walls K. If the second baffle plate T2 is opened in this state, the ion beam IB of the organic material J forming the light-emitting layer Y2R will be irradiated from the second baffle plate T2 by a plurality of predetermined pixel electrodes M to form a light-emitting layer Y2R (FIG. 6a). In addition, if a predetermined current 値 (film thickness) is formed based on the electric flow meter 54, the R-color pixel electrode M periodically arranged by slidingly controlling the stage 52 will be able to face the above adjustment. The main substrate S is moved by the grid 45a of the electrode 45. At this moment, the switching transistor Q sw ′ will be controlled according to the control signal SG provided by the selection control circuit 55, and the predetermined pixel electrode M has been electrically connected to the attachment voltage V4 by the electric flow meter 54. Therefore, the predetermined pixel electrode M can be irradiated with the ion beam IB immediately, and the predetermined organic material ions can begin to adhere. In addition, once a predetermined film thickness is measured by the electric flow meter 54, the R-color pixel electrode M periodically arranged by slidingly controlling the stage 52 is opposed to the adjustment electrode 45. Way of moving the gate 45a to move the main substrate S. Thereafter, a light-emitting layer Y2R is formed on the pixel electrode M of each R color in the same manner as described above (Fig. 6b). Next, annealing is performed at a predetermined temperature so that the light emitting layer Y2R is fixed on the hole injection / transport layer Y1. This annealing can also be performed once after the full pixels of R, G, and B are attached to each of the light-emitting organic materials. Thereafter, the pixel electrode M of each B color is sequentially operated in the same manner as described above, and a light-emitting layer is formed on the pixel electrodes M of the entire B color. 2B -30- (28) (28) 200426920 After the predetermined hole injection / transport layer γ1 and the light-emitting layer Y2 are laminated on the electrode M, the main substrate S will open the valve B and transport it to the adjacent processing chamber. Then, in this processing chamber, for example, the electrode Y3 and the encapsulation portion BR are formed on the light-emitting layer formed by the organic thin film forming apparatus 10 by a predetermined process by a vapor deposition method. In this way, an organic EL display panel is manufactured (Fig. 6c). Then, as shown in FIG. 7, the dicing process is performed on the main substrate S on which the plurality of display panel wafers PT are formed, and the display panel wafers PT are cut out and panelized, respectively. Further, a driver 1C, a display power circuit, and the like are mounted on each of the cut out display panel wafers PT, and they are applicable to various electronic devices as organic EL displays. FIG. 8 is a film forming voltage setting circuit (voltage selection circuit 60, AND circuit 61) for selectively applying the potential of the pixel electrode M of each display panel wafer PT formed on the main substrate S shown in FIGS. 2 and 7. An example of the electrical connection relationship between the OR circuit 62 and the charging transistor 63) and the display driving circuit (the scanning line driving circuit 64 and the data line driving circuit 65, the element driving circuit of the pixel PX). As shown in FIG. 8, a pixel electrode M is arranged in each display panel wafer PT. The pixel electrode M is a red (R) organic EL element REL, and green ( G) Organic EL element GEL, blue (B) organic EL element BEL. Each organic EL element is formed by the manufacturing method described in Figs. 5 and 6. Further, an element driving circuit is formed in each pixel Px and includes a switching transistor Qsw that drives one electrode of each organic EL element REL'GEL, BEL, and a driving transistor Qd. -31-(29) (29) 200426920 Further, each display panel wafer PT is formed with a voltage selection circuit 60 for applying the above-mentioned adhesion voltage V4 and the above-mentioned non- adhesion voltage Vs to the pixel electrode M, and the adhesion voltage V4 passes through The input voltage line LV4 is input, and the non-adherence voltage V s is input via the non-adhesion voltage line LV s. A selection control circuit 55 is formed in the voltage selection circuit 60. In addition, the reset signal RST and the selection signal SEL are input to the selection control circuit 55, the scan line drive circuit 64, and the data line drive circuit 65 via the reset signal line LR and the selection signal line LS, respectively. The selection control circuit 55, the scanning line driving circuit 64, and the data line driving circuit 65 are initialized by the input of the reset signal RST, respectively. If the selection signal SEL is input in the input of the reset signal RST, the selection signal is output from the gate of the AND circuit 61 to the selection signal line LS, and the scanning signal is output from the gates of the entire 0 R circuit 6 2 to the scan. Line l 1, L2, ... In addition, if the data lines XI, X2, X3, ... which transmit the output of the data line drive circuit 65 among the input of the reset signal RS T are high impedance, if the selection signal SEL is input in the input of the reset signal RST, the signal is selected. It will be output from the gate of the AN D circuit 61 to the selection signal line LS, the charging transistor 63 will be turned on, and the entire data lines X1, χ2, X3, ... will be set to the ground potential. As a result, the switching transistor qsw of all pixels Px will be turned on, and the potentials of the data lines XI, X2 'X3, ... will be transmitted to the gate of the driving transistor Qd, and the above-mentioned driving transistor Qd will be turned on ^ thereby The entire pixel electrode M can be provided with an attached voltage V 4 or a non-attached voltage vs. -32- (30) which is selectively imparted via the display driving power lines ve 1R, V e 1 G, and V e 1 B. (30) 200426920 Any potential. At this moment, since the organic EL elements REL, GEL, and BEL are not completed, a current does not flow through the organic EL elements REL, GEL, and BEL. In addition, the selection control circuit 55 counts the selection signal SEL from the initial state with an internal counting circuit, thereby generating a plurality of states, and outputs the selection control signals SGR, SGG, and SGB corresponding to these. That is, during the period from the input of the reset signal R S T to the input of the selection signal s E L, the selection control circuit 55 is initialized, and the entire selection control signal is outputted in a manner that the voltage Vs is not applied. During the formation of the organic thin film, the reset signal is continuously input. If the first selection signal is input during this period, the initial state of the selection control circuit 55 will be released, and the counting of the selection signal SEL will be started by the internal counting circuit. The selection signal SEL is input from an external controller with the number of pulses generated by each element electrode in a predetermined adhesion state of the organic thin film. Thereby, the selection switches SSR, SSG, and SSB will be switched respectively, and any potential of the attached voltage V4 or the unattached voltage Vs will be output to the display driving power lines VelR, VelG, and VelB. The above-mentioned three component drive power supply lines will supply display drive power from other terminals connected to these during the display operation. In FIG. 8, according to the selection switch SSR, only the driving power line VelR is shown to be electrically connected to the attached voltage line LV 4. As a result, the potential of the pixel electrode M is selected and set according to the pixels for red (R), pixels for green (G), and pixels for blue (B) in the pixel Pχ. Therefore, each organic EL is configured. Organic thin films of the elements REL, GEL, and BEL may be formed on the pixel electrode M. The above state setting is performed simultaneously for the entire display panel chip PT shown in FIG. 7. At the stage where the voltage setting of the element electrode is ready to be completed, the substrate S is irradiated with ion beam IB to the main substrate (33) (31) (31) 200426920 to form an organic thin film. In this way, one or a plurality of the display panel wafers PT are formed on the main substrate S. In addition, the selective potential settings of the plurality of pixel electrodes M formed on the display panel wafers PT are selected based on a common reset signal line LR, a signal line LS, an attached voltage line LV4, and an unattached voltage line LVs. Each of the above display panel wafers PT is performed. Therefore, it is possible to selectively set a predetermined potential for each of the plurality of pixel electrodes M of each display panel wafer PT, so that an organic thin film can be formed on the element electrodes of the plurality of display panel wafers PT at the same time. Further, in this embodiment, a film-forming voltage setting circuit (a voltage selection circuit 60, an AND circuit 61, an OR circuit 62, and a charging circuit) is formed in a formation area of the display panel wafers PT formed on the main substrate S. Crystal 6 3) and display driving circuit (scanning line driving circuit 64 and data line driving circuit 65, element driving circuit of pixel PX). The film-forming voltage setting circuit is a part of a circuit constituting the original display panel chip PT. In addition, the plurality of day electrode M is one of the organic EL elements REL, GEL, and BEL, and the attached voltage V4 or the non-attached voltage Vs can be used as an element drive of the organic EL elements REL, GEL, and BEL. The switching transistor qsw of the circuit drives the transistor Qd to be supplied to each pixel electrode M. Therefore, the element driving circuit of the pixel ρ X does not need to be changed in order to apply a voltage to the element electrode during the formation of the organic thin film. In addition, by adding some circuits to the original circuit of the display panel wafer PΊΓ, the voltage of the element electrode can be set, and the additional circuit can be manufactured at the same time as the original circuit. -34-(32) (32) 200426920 The power supply to the film-forming voltage setting circuit and the display driving circuit when the organic thin film is formed is performed by appropriately converting the voltage with the applied voltage V4 and the unapplied voltage Vs. On the other hand, at the stage of completion of the display panel wafer PT, the state of the film-forming voltage setting circuit and the display driving circuit is performed based on the reset signal RST in a manner that power supply from the above-mentioned attached voltage V4 and non-attached voltage Vs is not possible. set up. The same applies to the reset signal RST and the selection signal SEL. After the scribe process is performed, the potential is fixed in the display panel chip PT by the pull-down resistors Rp 1 and Rp 2 in the display operation state. 5 and 8 show the case where the voltage selection circuit 60 is formed on the main substrate S, an external device may be provided in addition to the main substrate S. The materials or functional materials described in the scope of the patent application correspond to, for example, the organic material J in this embodiment. The substrate described in the patent application scope corresponds to the main substrate S in this embodiment, for example. In this embodiment, the isolation means described in the scope of the patent application corresponds to, for example, the first baffle τ1 or the second baffle T2. The film forming apparatus described in the scope of the patent application corresponds to the organic thin film forming apparatus I 0 in this embodiment. The ionization section described in the scope of the patent application corresponds to the soft ionization section 13 in this embodiment. The classification unit described in the scope of the patent application corresponds to the ion classification unit 14 in this embodiment. The quality classification unit described in the scope of the patent application corresponds to the multi-pole type sorting device 43 in this embodiment. The electronic device described in the scope of the patent application is, in this embodiment, a display panel corresponding to the main constituent elements of an organic EL display. (35) 200426920 Wafer PT. The ion-attached electrode or element electrode described in the scope of the patent application corresponds to the voltage supply unit described in the scope of the pixel application and the scope of the patent application in the present embodiment, and in the embodiment corresponds to the voltage generating device Q, for example. The detection unit described in the patent application corresponds to, for example, 5 4 in this embodiment. The display driving circuit described in the scope of the patent application is, for example, an element driving circuit corresponding to the scanning line driving circuit 64, the data line 65, or the pixel PX. The electronic device in the scope of the patent application corresponds to, for example, the display PT in this embodiment. The signal line described in the scope of the patent application corresponds to, for example, the reset signal line LR or the selection signal line LS in this embodiment. The power line described in the application range is, for example, a voltage line LV4 or no voltage is applied. Line LVs. The optoelectronic element described in the application specifically corresponds to, for example, R) organic EL element REL, green (G) organic EL element, and color (B) organic EL element BEL in this embodiment. According to the manufacturing method of the organic EL display panel and the like of the embodiment, the organic thin film forming apparatus 10 and the electronic device have the following characteristics. (1) In the above embodiment, an organic thin film β is formed, which includes a solution supply section 11, a gas supply section 12, a soft 13, an ion classification section 14, a deflection section 15, and a film formation section 16. The soft ionization unit 13 causes fine droplets of the organic material in the solution supply unit 11 to be ionized or charged, and then the droplets are gaseous pseudomolecular ions. At this moment, on the pole surface of the ion classification section, the electrode M0 is in the form of the panel wafer described in the driving circuit of the electric flow meter in this implementation range, and the patent application is in the range of attachment benefits in red (GEL or blue). Electronic device, you can set the device] 〇Ionization unit. In addition, the formation of micronization in J and formation of 14 from the pseudo-36- (34) (34) 200426920 product ions to classify the organic material ions, the orbits are consistent to generate Ion beam IB. 'The main substrate s on which the pixel electrode M is formed in advance is placed on the stage 52. In addition, the predetermined pixel electrode M is connected to the attachment voltage V4 through the electric flow meter 54. The pixel electrode μ applies the non-adherence voltage Vs ′ and induces the ion beam IB to the electric field only at the predetermined pixel electrode μ. Thereby, the organic material pseudo-molecule ions can be self-integrated only on the predetermined pixel electrode M High accuracy and uniform film thickness. Therefore, compared with the vapor deposition method using a photomask, organic materials can be improved; the efficiency of use 'can be formed even for electrode surfaces with complex shapes. Or high-quality organic thin film with little change in film thickness. Moreover, when pseudo-molecular ions of the organic material are attached to the electrode, the solvent can be removed by the ion classification section 14. Therefore, the organic film formed first will not be irradiated by later Redissolved by ion rays can form a multilayer of a quotient film. (2) In the above embodiment, an ultrasonic atomizer 30 with a strong electric field electrode is provided, which is provided with an ultrasonic vibration in the ionization chamber C 1 3, the vibrating plate electrode 32, and the Peltier element 33. In a state where the ultrasonic vibrator 31 is performing ultrasonic vibration, the solution is sprayed from the capillary NZ 1 and the fine droplets of the spray collide. On the protruding portion 32a formed on the diaphragm electrode 32. Thereby, the size (mass) of the minute droplets sprayed from the capillary NZ1 can be further miniaturized. (3) A laser oscillator is provided in the above embodiment. 34. The laser is irradiated onto the charged minute droplets sprayed from the front end Az of the capillary NZ 1 through an entrance window V provided on a side wall of the ionization chamber C1, so that the solvent in the droplets is instantly gasified. With this, the fine liquid droplets can be made more fine, and the pseudomolecules that are gasified after being vaporized can be ionized. -37- (35) (35) 200426920 (4) The above embodiment has multiple functions. The polar sorting and concentrating device 43 is constituted by connecting two first and second quadrupole mass sorting devices 43a and 43b in multiple stages. The first quadrupole mass sorting device 4 3 a is opened. Type quadrupole mass classification device, the second quadrupole mass classification device 43b forms a closed quadrupole mass classification device. The second quadrupole mass classification device 43b is connected to the second quadrupole mass classification device 43b. 4 vacuum pump P4, which operates the fourth vacuum pump P4, and uses a second quadrupole mass classification device 43b in a high vacuum state. As a result, it is possible to improve the classification performance and the collection performance of the multi-pole type classification and collection device 43. (5) In the above embodiment, the adhesion surface of the main substrate S is placed along the side wall 50 of the film forming chamber C3 toward the vertical or horizontal lower surface. This makes it difficult for dust (particles) to adhere to the adhesion surface of the main substrate S. As a result, a high-quality organic thin film can be formed on the main substrate S. (6) In the above embodiment, the pixel electrode M is electrically connected to the attachment voltage V4 via the electric flow meter 54 provided outside the film forming chamber C3 based on the switching transistor Qsw. In addition, the pseudo-molecular ions of the organic material are attached to the pixel electrode M electrically connected to the electric flow meter 54, so that a current corresponding to the amount of the pseudo-molecular ions of the organic material flows through the electric flow meter 54. By measuring the current level, it is possible to monitor whether or not an organic film having a predetermined thickness is formed on the pixel electrode M. The output signal line of the electric flow meter 54 is connected to a stage controller 53 for slidingly controlling the main substrate S. The stage controller 53 controls the main substrate S in a sliding manner in accordance with the current level measured by the electric flow meter 54. As a result, an organic thin film having excellent film thickness accuracy and film thickness uniformity can be formed. -38- (36) (36) 200426920 (7) In the above embodiment, a plurality of display panel wafers PT are formed on the main substrate S, and a signal is selected by a reset signal line LR common to each display panel wafer PT. The selective potential setting of the pixel electrodes M formed on the respective display panel wafers PT is performed by the lines LS, the attached voltage line LV4 and the non-attached voltage line LV s. Therefore, the predetermined potentials of the selectivity can be set simultaneously for the pixel electrodes M of the respective display panel wafers PT. As a result, an organic film can be formed on a plurality of display panel wafers PT on the main substrate at a time. (8) In the above embodiment, as shown in FIG. 7, the reset signal line LR, the selected signal line LS, the attached voltage line LV4 and the non-attached voltage line LV s are wired so as not to cross each other on the main substrate s. There is an intermediate field in the dicing field between the fields of the plurality of display panel wafers P T described above. Thereby, the reset signal line LR, the selected signal line LS, the attached voltage line LV 4 and the non-attached voltage line LV s can be formed on a single wiring layer. That is, without adding a new process, using the most suitable wiring layer to form the reset signal line LR in the wiring layer forming the original circuit, select the signal line LS 'the attached voltage line LV 4 and the non-attached voltage line LV s, so both reliability and cost can be taken into account. (9) In the above embodiment, a film-forming voltage setting circuit (voltage selection circuit 60, AND circuit 61 'OR circuit 62 and charging transistor 63) and a display driving circuit (scanning Line driving circuit 64 and data line driving circuit 65, element driving circuit of pixel PX). In addition, the film-forming voltage setting circuit and the display driving circuit can each use a part of a circuit element of an original optoelectronic device constituting the display panel wafer PT formed in the formation field. In particular, 39 '(37) (37) 200426920 is because the element driving circuit that occupies a large portion of the pixel area of the display panel wafer is not changed. Therefore, the organic thin film formation method of the present invention can be used to form the main substrate at one time. The number of display panel wafers will hardly decrease. That is, the cost on the circuit for applying the attachment voltage to the pixel electrode M is minimal. (Second Embodiment) Next, an electronic device manufactured by the organic thin film forming device 10 according to the first embodiment and an electronic device using the same will be described with reference to Fig. 9. As an organic thin film device implemented using the organic thin film forming device 10, for example, an organic EL display. The organic EL display can be applied to various electronic devices such as portable personal computers, mobile phones, and digital cameras. FIG. 9 is a perspective view showing a configuration of a portable personal computer. In Fig. 9, a personal computer 70 includes a main body portion 72 having a keyboard 71, and a display unit 73 using a display composed of the organic EL element. In this case, the display unit 73 may be manufactured using the organic thin film forming apparatus 10. As a result, it is possible to provide a portable personal computer 70 with a high-quality organic EL display. The embodiments of the present invention are not limited to the above-mentioned embodiments, and may be implemented as described below. 〇 In the above-mentioned first embodiment, a solvent U is prepared by solubilizing an organic material J of a material or a functional material, and the organic material j and the solvent U are mixed to solubilize the organic material j. The solubilized organic material · T forms pseudomolecular ionization. It is also possible to directly vaporize the organic material j in the ionization section without using a solvent or by the field desorption method -40-(38) (38) 200426920 (Field desorption) / field ionization method, electron impingement method, laser A soft ionization method or the like is used to charge or soft ionize the microparticles obtained by granulating another nanoparticle. Thereby, the same effect as that of the above-mentioned embodiment can be obtained. 〇 In the above-mentioned first embodiment, the multi-pole sorting and concentrating device 43 is provided, which is connected to the two first and second quadrupole mass classification devices 43a and 43b in multiple stages, and the quadrupole mass classification of each stage is performed. The quadrupoles of the device are connected in parallel horizontally. This allows a large number of ions to be sorted simultaneously, resulting in longer ionizing rays. The multi-pole type sorting and condensing device 43 may be constituted by one quadrupole type mass sorting device. Thereby, the manufacturing cost of the organic thin film forming apparatus 10 can be reduced. In the above embodiment, the thin film is formed on the hard substrate of the glass substrate GS, but it is not limited to this. The thin film may also be formed on a substrate made of a flexible material such as a plastic or composite film or a metal plate. In this case, a stage slide device for rolling the substrate into a roll shape may be provided. Thereby, an organic thin film can be efficiently formed continuously. 〇 In the first embodiment described above, although only one injection nozzle of the soft ionization section I 3 is shown, a plurality of injection nozzles may be prepared, and the main substrates are placed in the film forming section 16 in different states. Organic materials are laminated to form a film. Thereby, a fine laminated structure can be formed. Of course, in this case, it is necessary to appropriately switch the control conditions of the ionization section 14 and the deflection section 15 according to the organic material, or to add a solution supply section 11 and a gas supply section 12. 〇 In the first embodiment described above, although pseudo-molecular ions are used as negative pseudo-molecular ions, in the case of positive pseudo-molecular ions, the potential relationship applied to each electrode can be set to be completely the same as that in the first embodiment. Instead, a film forming apparatus is formed. -41-(39) (39) 200426920 0 In the above-mentioned first embodiment, although it is a film forming apparatus for manufacturing an organic EL display panel, in addition to the organic EL display panel, for example, it may include an organic TFT or an organic battery. Film forming devices such as organic memory elements, multilayer organic thin film package structures, or color filters and light receiving and emitting devices for optical communications. In this case, the organic material is not directly attached to the electrode, but the organic material can be attached to the electrode through a thin insulation layer. In the above-mentioned first embodiment, the film forming apparatus for forming an organic thin film is used, but it may be a film forming apparatus for forming an inorganic thin film. That is, it may be a film-forming apparatus in the form of a combination of an inorganic thin film or a vacuum-depositable low-molecular organic film and a high-molecular organic thin film. [Brief Description of the Drawings] FIG. 1 is a block configuration diagram for explaining the structure of the organic thin film forming apparatus of this embodiment. FIG. 2 is a diagram showing the configuration of an organic thin film forming apparatus according to this embodiment. FIG. 3 (a) is a front view showing a second quadrupole type mass classification device. (B) is a second quadrupole type mass classification device. Section view. Fig. 4 (a) is a front view showing a first quadrupole type mass classification device '(b) is a sectional view showing a first quadrupole type mass classification device; 5 (a), (b) and (c) are cross-sectional views showing an organic EL display panel formed by an organic thin film forming apparatus. 6 (a), (b) and (c) are cross-sectional views showing an organic EL display panel formed by an organic thin film forming apparatus. -42- (40) (40) 200426920 Fig. 7 is a plan view showing the relationship between the wires when a plurality of display panel wafers are formed on the main substrate at one time. FIG. 8 is a diagram for explaining the electrical connection between the film-forming voltage setting circuit and the display driving circuit of the display panel chip. FIG. 9 is a diagram for explaining the second embodiment. [Description of main component symbols] J ... Organic material LR as material or functional material ... Reset signal line LS as signal line ... Selection signal line LV4 as signal line ... Adhesive voltage line LV s as power line ... The voltage line PT is not attached ... The display panel wafer Q as an electronic device ... the voltage generating device S as a voltage supply unit ... the main substrate T1'T2 as a substrate ... the second and second shields 10 as isolation means ... Organic thin film forming device 11 as a film forming device ... Solution supply section 12 ... Gas supply section 1 3 ... Soft ionization section 1 4 as ionization section ... Ion classification section 15 as classification section ... Deviation section 16 ... Film formation 43. A multi-pole sorting and beam-receiving device serving as a quality classification unit 45 ... an adjustment electrode -43- (41) (41) 200426920 5 4 ... the current weight of the detection unit is g 7 7 0 ... Portable Personal Computer With Electronic Device -44-

Claims (1)

200426920 ⑴ 拾、申請專利範圍 1 · 一種膜形成方法,其特徵係具備: 將材料變換生成氣體狀的假分子離子之步驟;及 將設置於基板上的複數個電極的電位設定成規定電位 ’使上述假分子離子選擇性的附著於上述基板上之步驟。 2 · —種電子裝置的製造方法,係於基板上使機能材 料薄膜化而積層形成之電子裝置的製造方法,其特徵係具 備: 使含機能材料的溶液形成微細的液滴化,且使離子化 或帶電之後’使該液滴氣化而生成氣體狀的假分子離子之 第1步驟; 由上述假分子離子,使來自上述溶液中所含的溶媒之 溶媒離子的含有量低減之第2步驟;及 在上述基板上具備複數個電極,針對上述假分子離子 ’將上述電極的規定電極電位予以選擇性地設定成不同的 電位,而使上述機能材料的假分子離子選擇性地附著於上 述基板上之第3步驟。 3 ·如申請專利範圍第2項之電子裝置的製造方法, 其中更設置: 在分類來自上述假分子離子的上述溶媒離子,及來自 上述機能材料的機能材料離子之後,使上述機能材料離子 偏向移動之第4步驟。 4 ·如申請專利範圍第2或3項之電子裝置的製造方 法’其中在上述基板上形成複數個上述電子裝置,分別對 上述各電子裝置而形成之上述複數個電極的選擇性電位設 -45- (2) (2)200426920 定係針對上述各電子裝置來根據共通的訊號線及電源線而 成。 5 ·如申請專利範圍第4項之電子裝置的製造方法, 其中對形成於上述基板上的上述各電子裝置之共通的上述 訊號線及上述電源線係配線成不會在位於上述基板上所形 成的上述各電子裝置間的中間領域互相交叉。 6 ·如申請專利範圍第2或3項之電子裝置的製造方 法’其中在形成於上述基板上之上述電子裝置的形成領域 中形成有供以對上述複數個電極選擇性地設定成規定電位 之設定電路,該設定電路係利用形成於上述形成領域之上 述電子裝置的原本電子電路的至少一部份。 7 ·如申請專利範圍第6項之電子裝置的製造方法, 其中分別形成於上述基板上的各形成領域之電子裝置爲光 電裝置,上述複數個電極爲形成於該光電裝置的複數個光 電元件的元件電極,利用於上述設定電路的電子電路包含 上述光電元件的元件驅動電路。 8 · —種膜形成裝置,係於基板上形成材料的膜之膜 形成裝置,其特徵係具備: 離子化部,其係使上述材料或上述材料的溶液形成微 細的液滴化,且使離子化或帶電之後,使該液滴氣化而生 成氣體狀的假分子離子; 電壓供給部,其係對電子電路供給訊號或電壓,該電 子電路係針對上述假分子離子來選擇性地設定上述基板上 所具備之複數個電極的電位;及 成膜部,其係使上述假分子離子中材料離子附著於上 -46 - (3) (3)200426920 述基板。 9 ·如申請專利範圍第8項之膜形成裝置,其中具備 溶液供給部,其係將混合上述材料與溶媒而取得的溶 液供給至上述離子化部; 氣體供給部,其係同時由噴嘴來使上述溶液與惰性氣 體噴霧,而使上述溶液形成微小的液滴;及 分類部,其係使上述微小的液滴氣化,而生成氣體狀 的假分子離子,在上述假分子離子中分類來自上述材料的 離子與來自上述溶媒的離子。 1 〇 ·如申請專利範圍第9項之膜形成裝置,其中更具 備偏向部,其係使來自上述分類部所被分類的上述材料的 離子偏向移動。 1 1 ·如申請專利範圍第9項之膜形成裝置,其中上述 分類部係具備質量分類部,其係具備供以按照所被施加的 電壓或電流來依照質量分類來自上述材料的離子之複數個 電極。 1 2 ·如申請專利範圍第1 1項之膜形成裝置,其中上 述質量分類部係具備:上述複數個電極之間的距離不同的 複數個質量分類部。 1 3 ·如申§靑專利朝圍第8〜1 2項的其中任一項所記載 之膜形成裝置’其中更具備調整用電極,其係設置集極電 極,且在上述集極電極與上述成膜部之間調整來自上述材 料的離子的飛行速度。 1 4 ·如申請專利範圍第8〜1 2項的其中任一項所記載 -47- (4) (4)200426920 之膜形成裝置,其中具備··檢測出來自上述材料的離子附 著於上述基板的規定電極的附著量之檢出部。 1 5 ·如申請專利範圍第8〜i 2項的其中任一項所記載 之膜形成裝置’其中上述基板的離子附著電極面係以能夠 形成垂直方向或水平下面之方式來配置成滑動。 1 6 ·如申請專利範圍第8〜1 2項的其中任一項所記載 之膜形成裝置,其中上述離子化部,上述分類部及上述成 膜部係分別具備供以互相獨立減壓的隔離手段。 1 7 · —種電子裝置,其特徵係以申請專利範圍第2〜 6項的其中任一項所記載之電子裝置的製造方法來製造。 1 8 · —種電子機器,其特徵係具備申請專利範圍第 1 7項所記載之電子裝置。 1 9 · 一種電子裝置,其特徵係以申請專利範圍第8〜 1 6項的其中任一項所記載之膜形成裝置來製造。 -48-200426920 ⑴ Pickup, patent application scope 1 · A film formation method, comprising: a step of converting a material into a gaseous pseudomolecular ion; and setting the potentials of a plurality of electrodes provided on a substrate to a predetermined potential The step of selectively attaching the pseudomolecular ions to the substrate. 2-A method for manufacturing an electronic device, which is a method for manufacturing an electronic device formed by laminating a functional material on a substrate into a thin film, and comprising: forming a solution containing a functional material into fine droplets; and The first step of 'gasifying the droplet to generate a pseudo-molecular ion after gasification or charging; the second step of reducing the content of the solvent ion from the solvent contained in the solution by the pseudo-molecular ion. And a plurality of electrodes are provided on the substrate, and a predetermined electrode potential of the electrode is selectively set to different potentials for the pseudomolecular ions, so that the pseudomolecular ions of the functional material are selectively attached to the substrate On step 3. 3. The method for manufacturing an electronic device according to item 2 of the scope of patent application, wherein it is further provided: after classifying the solvent ions from the pseudomolecular ions and the functional material ions from the functional material, the functional material ions are biased to move Step 4. 4 · The method for manufacturing an electronic device according to item 2 or 3 of the scope of the patent application, wherein a plurality of the electronic devices are formed on the substrate, and a selective potential of the plurality of electrodes formed by the electronic devices is set to -45. -(2) (2) 200426920 is based on the common signal line and power line for each of the above electronic devices. 5. The method for manufacturing an electronic device according to item 4 of the scope of patent application, wherein the signal lines and the power supply lines common to the electronic devices formed on the substrate are wired so as not to be formed on the substrate. Intermediate areas between the aforementioned electronic devices intersect each other. 6 · The manufacturing method of an electronic device according to item 2 or 3 of the scope of the patent application, wherein in the formation field of the above-mentioned electronic device formed on the substrate, a method for selectively setting the plurality of electrodes to a predetermined potential is formed. The setting circuit uses at least a part of an original electronic circuit of the electronic device formed in the above-mentioned formation area. 7 · The method for manufacturing an electronic device according to item 6 of the patent application, wherein the electronic devices in the respective formation fields formed on the substrate are optoelectronic devices, and the plurality of electrodes are formed of a plurality of optoelectronic elements formed in the optoelectronic device The element electrode is an electronic circuit used in the setting circuit, and includes an element driving circuit of the photoelectric element. 8 · —A kind of film forming device is a film forming device for forming a film of a material on a substrate, and is characterized by comprising: an ionization unit that forms fine droplets of the material or a solution of the material, and ionizes After being electrified or charged, the droplets are gasified to generate gaseous pseudo-molecular ions. The voltage supply unit is configured to supply a signal or voltage to an electronic circuit that selectively sets the substrate for the pseudo-molecular ions. The potentials of the plurality of electrodes provided on the substrate; and a film forming unit for attaching the material ions in the pseudomolecular ions to the substrate described in -46-(3) (3) 200426920. 9 · The film forming apparatus according to item 8 of the scope of patent application, which includes a solution supply unit for supplying a solution obtained by mixing the materials and a solvent to the ionization unit; and a gas supply unit which is simultaneously operated by a nozzle. The solution and the inert gas are sprayed to form minute droplets of the solution; and a classification unit that vaporizes the minute droplets to generate gaseous pseudomolecular ions, and classifies the pseudomolecular ions from the above. The ions of the material and the ions from the solvent. 1 〇 If the film forming apparatus of the 9th patent application scope further includes a deflection section, the ions from the above-mentioned materials classified by the classification section are biased to move. 1 1 · The film forming apparatus according to item 9 of the scope of patent application, wherein the classification unit is provided with a mass classification unit which is provided with a plurality of ions for classifying the ions from the material according to the mass according to the applied voltage or current. electrode. 1 2 · The film forming apparatus according to item 11 of the patent application range, wherein the quality classification unit includes a plurality of quality classification units having different distances between the plurality of electrodes. 1 3 · The film formation device described in any one of the 8th to 12th paragraphs of the patent application § 靑, which further includes an adjustment electrode, which is provided with a collector electrode, and the collector electrode and the above The flying speed of the ions from the material is adjusted between the film forming portions. 1 4 · As described in any one of items 8 to 12 of the scope of patent application -47- (4) (4) 200426920 The film forming apparatus includes: · Detects that ions from the material are attached to the substrate The detection part of the predetermined electrode adhesion amount. 1 5 · The film forming apparatus according to any one of the items 8 to i in the scope of the patent application, wherein the ion-adhered electrode surface of the substrate is arranged to slide vertically or horizontally. 1 6 · The film forming apparatus described in any one of the items 8 to 12 of the scope of the patent application, wherein the ionization unit, the classification unit, and the film formation unit are provided with isolation for reducing pressure independently of each other. means. 1 7 · An electronic device characterized in that it is manufactured by the method for manufacturing an electronic device described in any one of claims 2 to 6 of the scope of patent application. 1 8 · An electronic device characterized by having the electronic device described in item 17 of the scope of patent application. 1 9 · An electronic device characterized in that it is manufactured using the film forming device described in any one of claims 8 to 16. -48-
TW093110097A 2003-04-15 2004-04-12 Film formation method, manufacturing method of electronic apparatus, film formation apparatus, electronic apparatus and electronic machine TWI242236B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003110364 2003-04-15
JP2004011895A JP4251080B2 (en) 2003-04-15 2004-01-20 Film forming method, electronic device manufacturing method, film forming apparatus and electronic device, and electronic apparatus

Publications (2)

Publication Number Publication Date
TW200426920A true TW200426920A (en) 2004-12-01
TWI242236B TWI242236B (en) 2005-10-21

Family

ID=33513167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093110097A TWI242236B (en) 2003-04-15 2004-04-12 Film formation method, manufacturing method of electronic apparatus, film formation apparatus, electronic apparatus and electronic machine

Country Status (5)

Country Link
US (1) US7399497B2 (en)
JP (1) JP4251080B2 (en)
KR (1) KR100609322B1 (en)
CN (1) CN100392863C (en)
TW (1) TWI242236B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202269A1 (en) * 2005-03-08 2006-09-14 Semiconductor Energy Laboratory Co., Ltd. Wireless chip and electronic appliance having the same
KR100745346B1 (en) * 2005-09-20 2007-08-02 삼성에스디아이 주식회사 Apparatus of thin film evaporation and method for thin film evaporation using the same
KR100695236B1 (en) * 2005-12-16 2007-03-14 엘지전자 주식회사 Apparatus and method for manufacturing organic light emission display
JP5940808B2 (en) * 2009-07-02 2016-06-29 シャープ株式会社 Organic EL element, organic EL element manufacturing method, and organic EL display device
KR20130005307A (en) * 2010-04-27 2013-01-15 시너스 테크놀리지, 인코포레이티드 Vaporizing or atomizing of electrically charged droplets
GB201120141D0 (en) * 2011-11-22 2012-01-04 Micromass Ltd Low cross-talk (cross-contamination) fast sample delivery system based upon acoustic droplet ejection
JP6025406B2 (en) 2012-06-04 2016-11-16 株式会社日立ハイテクノロジーズ Mass spectrometer
KR102103247B1 (en) * 2012-12-21 2020-04-23 삼성디스플레이 주식회사 Deposition apparatus
KR101378383B1 (en) * 2013-10-17 2014-03-24 주식회사 펩트론 Ultrasonic atomizer device for aseptic process
KR101378382B1 (en) * 2013-10-17 2014-03-24 주식회사 펩트론 Ultrasonic atomizer device for aseptic process
CN104894524B (en) * 2015-06-23 2017-10-10 京东方科技集团股份有限公司 A kind of surface processing equipment
EP3348384B1 (en) * 2015-09-11 2023-06-28 FUJIFILM Corporation Method for producing gelatin structure, and gelatin structure production system
CN105097887B (en) * 2015-09-28 2018-03-09 深圳市华星光电技术有限公司 OLED display panel and preparation method thereof
CN112542536B (en) 2019-09-04 2024-02-27 Tcl华星光电技术有限公司 Manufacturing method of display panel
CN116945661B (en) * 2023-08-14 2024-05-24 广东宝佳利新材料股份有限公司 Antibacterial polyester film and preparation process thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250957A (en) 1988-08-12 1990-02-20 Canon Inc Sputtering device
US5066512A (en) * 1989-12-08 1991-11-19 International Business Machines Corporation Electrostatic deposition of lcd color filters
CN1123341A (en) 1994-11-12 1996-05-29 冯安文 Gaseous ion film-plating method and device thereof
JPH09241833A (en) 1996-03-07 1997-09-16 Nikon Corp Production of light shielding film for photomask blank
JP3036436B2 (en) 1996-06-19 2000-04-24 セイコーエプソン株式会社 Method of manufacturing active matrix type organic EL display
DE69735022T2 (en) 1996-09-19 2006-08-10 Seiko Epson Corp. Method for producing a matrix display device
JP2850906B1 (en) 1997-10-24 1999-01-27 日本電気株式会社 Organic EL device and method of manufacturing the same
US6504149B2 (en) * 1998-08-05 2003-01-07 National Research Council Canada Apparatus and method for desolvating and focussing ions for introduction into a mass spectrometer
JP2000355757A (en) 1999-06-14 2000-12-26 Toray Ind Inc Vapor deposition method
JP2000355752A (en) * 1999-06-16 2000-12-26 Nippon Steel Hardfacing Co Ltd Sprayed ceramic coating applied on surface of movable parts
JP4351777B2 (en) * 1999-11-12 2009-10-28 京セラオプテック株式会社 Deposition assist deposition apparatus and thin film forming method
TW495809B (en) * 2000-02-28 2002-07-21 Semiconductor Energy Lab Thin film forming device, thin film forming method, and self-light emitting device
JP2001353454A (en) 2000-06-14 2001-12-25 Casio Comput Co Ltd Deposition method, method for manufacturing organic el element and deposition apparatus
JP2003059660A (en) 2001-08-17 2003-02-28 Toshiba Corp Manufacturing method of self-luminescence display
US20030157269A1 (en) * 2002-02-20 2003-08-21 University Of Washington Method and apparatus for precision coating of molecules on the surfaces of materials and devices
JP2004160388A (en) 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd Production method and equipment for thin film

Also Published As

Publication number Publication date
CN100392863C (en) 2008-06-04
JP2004335445A (en) 2004-11-25
US7399497B2 (en) 2008-07-15
TWI242236B (en) 2005-10-21
KR20040090415A (en) 2004-10-22
JP4251080B2 (en) 2009-04-08
US20040256973A1 (en) 2004-12-23
CN1538787A (en) 2004-10-20
KR100609322B1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
TW200426920A (en) Film formation method, manufacturing method of electronic apparatus, film formation apparatus, electronic apparatus and electronic machine
US6349668B1 (en) Method and apparatus for thin film deposition on large area substrates
CN1928149B (en) Deposition device and method for manufacturing display device
KR100699348B1 (en) Photoresist Coating Apparatus and Method for Efficiently Spraying Photoresist Solutions
CN100525584C (en) Pattern forming apparatus and method, mfg. method of conducting film wiring and electronic device
JP5315317B2 (en) apparatus
CN100437702C (en) Display panel, method of manufacturing display panel, and display apparatus
TW541727B (en) Light emitting device and method of manufacturing thereof
US20130157392A1 (en) Method of Manufacturing Light Emitting Device
TW200919584A (en) Wiring fabricating method
US7858453B2 (en) Method of manufacturing semiconductor device and display device utilizing solution ejector
JP2005206939A (en) Thin film formation method, thin film formation equipment, method of manufacturing organic electroluminescence device, organic electroluminescence device, and electronic apparatus
TW200415030A (en) Liquid material discharging method, liquid material discharging apparatus, and electronic device manufactured thereby
JP2008270182A (en) Formation method of light-emitting device
WO2004045252A1 (en) Process for fabricating light emitting device
JP4652120B2 (en) Semiconductor device manufacturing apparatus and pattern forming method
US7090966B2 (en) Process of surface treatment, surface treating device, surface treated plate, and electro-optic device, and electronic equipment
CN100383624C (en) Equipment for adhering polarizing plate
TW200521527A (en) Display device, method for manufacturing the same, and television apparatus
TWI278394B (en) Method and apparatus of forming alignment film
TWI276477B (en) Film forming method, film forming machine, device manufacturing method, apparatus and electronic equipment
KR101197060B1 (en) Apparatus and method for manufacturing display device
US7756600B2 (en) Method for manufacturing semiconductor device
JP4230170B2 (en) Method for manufacturing light emitting device
JP2005158954A (en) Organic thin film forming method and apparatus thereof, organic thin film formed thereby, and organic thin-film transistor comprising the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees