TW200423462A - Containment system - Google Patents

Containment system Download PDF

Info

Publication number
TW200423462A
TW200423462A TW093111788A TW93111788A TW200423462A TW 200423462 A TW200423462 A TW 200423462A TW 093111788 A TW093111788 A TW 093111788A TW 93111788 A TW93111788 A TW 93111788A TW 200423462 A TW200423462 A TW 200423462A
Authority
TW
Taiwan
Prior art keywords
substance
volume
container
variable
total volume
Prior art date
Application number
TW093111788A
Other languages
Chinese (zh)
Other versions
TWI253202B (en
Inventor
Sadeg M Faris
Tsepin Tsai
Original Assignee
Reveo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reveo Inc filed Critical Reveo Inc
Publication of TW200423462A publication Critical patent/TW200423462A/en
Application granted granted Critical
Publication of TWI253202B publication Critical patent/TWI253202B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

A container is provided generally including a first portion configured for containing a first substance and a second portion configured for containing a second substance. The first substance is applied to process, generally for production of a useful byproduct. Further, the second substance may be a useful byproduct of the process, or may be a different byproduct of the process. The volume of the first portion may be variable, the volume of the second portion may variable, or the volumes of the first portion and the second portion may be variable, such that the first portion and the second portion fit within the total volume of the container.

Description

200423462 玖、發明說明: t發明所屬之技術領域】 發明領域 本發明廣泛關於一種分隔容器系統,特別是安裝用來 5 輸送及收集物質的分隔容器系統。 發明背景 許多系統需要一個或多個輸入容器及一個或多個輸出 容器以進行操作。例如,化學程序及電化學程序典型地具 10 有一種或多種從各別容器來的輸入物質及一種或多種從各 別容器來的輸出物質。 化學程序(諸如有機及無機化學合成、發電反應、材料 合成、生物反應等等)全部需要使用一種或多種輸入物質且 會產生一種或多種輸出物質。例如,生物反應通常為一種 15 生物在輸入物質上作用而將其轉換成不同輸出物質的程 序。例如,廢水處理通常會使用喜氧與厭氧細菌來從廢水 中移除污染物,其藉由使廢棄物種沉澱而使移除容易。 許多化學物質(包括有機化學物質、無機化學物質及其 不同的組合)之合成通常包括將一種或多種物質放入反應 20 器中以形成想要的輸出物質或產物。在大部分的狀況下, 此亦會形成副產物。該系統會對每種輸入物質、每種產物 和形成的任何副產物(若需要的話)提供一容器或其它分隔 容器。因此,貯存該系統所需的總區域空間會因不同的容 器或其它容器而增加。當在程序尚未開始的情況時容器(諸 200423462 如輸出容器)會是空的,或當在程序完成的情況時輸入物質 之容器會是空的,如此該些空間實質上是浪費掉的。再者, 某些系統會安裝成讓該些輸入物質於容器中產生部分内在 壓力,而至少一部分的力量可將該些物質運輸至反應器。 5 當該容器的容積減少時,則離開其容器的物質之壓力會減 低。 發電程序通常會將一種或多種物質轉換成一副產物物 質,同時產生可使用的能量。典型的電化學系統包括燃料 電池,諸如金屬空氣燃料電池、以烴類為基底的燃料電池 10 (諸如以質子交換薄膜為基底的燃料電池)及固態氧化物燃 料電池。多種生物程序會額外地產生可使用的能量,而此 通常使用以酵素及葡萄糠為基底的物質作為燃料。再者, 多種已熟知的電池系統實質上包含燃料電池,如此燃料的 供應會受到限制,特別是,某些電池會使用流體陽極電解 15 質及陰極電解質。 金屬空氣燃料電池則以金屬(諸如鋅或鋰)於空氣及腐 蝕性電解質存在下電化學轉換成該金屬的氧化物為基礎。 多種金屬空氣燃料電池系統則描述在例如2000年5月12曰 由法利思(Fans)等人所主張的(共審查中、共同讓予)美國專 20 利申請序號〇9/578,798中,發表名稱為”燃料分隔容器及再 循環系統”。 固態氧化物燃料電池典型地以烴類燃料為基底,諸如 曱醇與水組合。這些燃料會消耗掉而產生電能及水作為副 產物。典型地,該燃料可以混合物方式提供,且該副產物 可經排出或貯存。將副產物儲存在個別的容器中,會由於 空間限制而在許多應用(諸如汽車應用)上並不實際。許多應 用會將副產物再引入該燃料混合物。但是,此會稀釋該燃 料混合物且會滅低該燃料電池操作的燃料效率。 另一種以氫為基底的燃料電池則使用諸如硼氫化鈉的 氫源。此電池例如揭示在美國專利案號5,948,558(發表名稱 為’’而能量密度的硼化物電池”)及美國專利案號 5,804,329(發表名稱為’’電轉換電池”)中。於此通常會將硼氩 化納與水混合而釋放出能轉換成有用的能量之氫,而產生 硼氧化鈉作為副產物。 另一種型式的電化學裝置為氧化還原電池,其中各別 k供金屬及鹵化物作為陽極電解質及陰極電解質,且於電 解質存在下反應而產生電力。傳統上,該陽極電解質及/或 陰極電解質會連續地進料,或會以遍及整個電化學反應程 序稀釋之成批方式操作。 先前提及的許多系統和許多其它的系統必需使用數個 佔有個別體積的容器來分離不同的物質。而程序物質不需 佔用個別體積之其它糸統則會犧牲效率,因它們會讓反應 物質減低濃度。 已描述之可用來解決先前提及的問題之系統(特別是 金屬空氣燃料電池)則完全揭示在2_年5月12日所主張的 (共審查中、共同讓予)美國專利申請序號〇9⑽,598中,發 表名稱為”燃料分隔容器及再循環系統”,其全文以參考^ 式併入本文中。雖纽前提及的申請絲稱—種涵蓋許多 200423462 將進-步於本文中描述的系統之系統,本公告提供更多落 在這些申請專利範圍和其它具體實施例範圍中更詳細的具 體實施例。 I:發明内容3 5 發明概要 一丨〜入兀把议絷的具它問題和缺陷可由本發明 之數種方法及裝置而克服或減輕,本發明所提供的容器包 括裝配用來包含第一物質的第—部分及裝配用來包含第二 物質的第二部分。第一物質會施加至程序,其通常用來製 >造有用的副產物。再者,第二物質可為該程序有用的副產 物或可為該程序不同的副產物。 ]5 通常來說,該容器的主要優點為第一物質也第二 可貯存在一容積較佳地與第一物質或第二物質的較大體積 相同之容射。例如,此在運輸系統中,諸如汽車、飛機、 太空船、水上飛機或其類似物;人造衛星系統;建築物; 個人裝置;及其它渴望減少體積的系統非常有用。 旦2不同的具體實施例中’該副產物可產生能使用的能 置,典型為電力形式。在進—步的具體實施例中,該有用 的副產物可為熱副產物,諸如溫度會增加或減少。在另一 叫該有用的副產物可為-種物質,諸如- 可Γ1它不同的具體實施例中,該有用的副產物 可為機械能。在仍然進一 產物可為光。 I組貫施例中,該有用的副 上述討論和本發明之其它特徵及優點將由熟知此技藝 20 200423462 之人士從下列詳細的描述及圖形中察知及了解。 圖式簡單說明 第1圖為一複室分隔容器系統之圖式具體實施例,其具 有一輸入物質部分及一輸出物質部分而操作地連結至一程 5 序; 第2圖為包含一處理步驟的複室分隔容器系統之另一 個具體實施例; 第3圖為一對與一程序連結的複室分隔容器系統結構 之具體實施例; 10 第4圖為使用額外的輸入(在該複室分隔容器系統外部) 之複室分隔容器系統的具體實施例; 第5圖為具有一對輸入物質部分之複室分隔容器系統 的具體實施例; 第6圖為具有一對輸出物質部分之複室分隔容器系統 15 的具體實施例; 第7A&7B圖為一複室分隔容器系統結構的具體實施 例; 第8A及8B圖為一複室分隔容器系統結構之另一個具 體實施例; 20 第9A及9B圖為一複室分隔容器系統結構之進一步具 體實施例;及 第10A及10B圖為一複室分隔容器系統結構之仍然另 一個具體實施例。 實施方式2 9 200423462 車父佳實施例之詳細說明 ^於本文中揭示—種包含數種物質(特別是輸入物質及 輪出物質)的容器,其中名稱,,輸入”及”輸出”通常與相關的 程序有關。該容器包括裝配用來包含第—物質的第一部分 ,裝.配用來包含第二物質的第二部分。第-物質會施加: 程序’而通常用來生產有用的副產物。再者,第二物質可 為該程序有用的副產物,或可為該程序不同的副產物。 ίο 15 —°亥私序可包含多種操作。通常來說,可在-種或多種 輸入物質上進行任何需要的程序步驟,以產生—種或多種 輸出物質。例如,該程序可為一使用來將氣體轉換成液體 或屢縮氣體之凝結器或液化器。此外,該程序可為一運輸 步琢,绪如栗。在此方法中,該處理可提供將一種或多種 2體排入該容器的—個或多個部分中。再者,該程序可為 -分離程序,諸如結晶操作或蒸餾操作。在此方法中,該 :序可具有額外的輸入及/或輸出多臂機(witch)或其可心 含在該容器中。該程序可額外地包含實裝置,以愿實 一固體或固體/液體混合物用以進一步管理容積。 、 20 該容器具有一總容積’其可由一個或多個堅硬或且彈 性的邊壁定出輪廓。該容器包括用來包含第一物質的第一 部分及用來包含第二物質的第二部分。第―、第二或第一 與苐二部分二者的體積為可變的,如此第一部分與第二部 分可安裝在該總容積中。在一個具體實施例中,第—部分 的體積與第二部分的體積可相反地改變。在另一個具體實 施例’’苐-部分與第二部分可由一可移動的胆隔物分 10 200423462 離。該阻隔物可利用外力移動(諸如人力或機械力),其亦可 為可經控制的。該阻隔物可藉由電力、化學物注入、熱、 光等等而活動移位。該結構亦可例如為一合適的材料袋 子,其能膨脹及收縮且與想要包含的物質具惰性及化學穩 5 定性。 再者,該阻隔物其自身可包含一程序,例如,可讓流 體或固’組在谷的多個部分間流通。例如,電解質薄膜、 電極、可滲透薄膜、過濾器或其它結構或材料可包含在阻 隔物中或上,以將物質從一部分轉換成不同物質或包含在 10 其它部分中而為不同的狀態。 於本文中描述的容器與由沙德格(Sadeg)M.法利思 (Faris)、蔡洗萍(Tsepin Tsai)、姚維尼(Wayne Yao)及張袁明 (Yuen-Ming Chang)於2000年5月12日所主張之共審查中的 美國專利申請序號09/570/798(發表名稱為”燃料分隔容器 15及再循J衣糸統,其全文以參考方式併入本文)中所描述的 那些肩似。多種典型的谷裔結構則圖式地描述在第7 A及 7B、8A及 8B、9A及 9B和 10A及 10B圖中。 苐7A圖顯示出一容器710,其具有第一部分712及由可 移動的阻隔物716(例如,可使用一協助結構722(其可包含一 20螺桿、一線性驅動裝置或其類似物)來移動)分隔之第二部分 7H。第7B圖顯示出第二部分714的體積較^由於:隔: 716移動)之容器710。 第8A圖顯示出-容器81(),其具有第—部分812及由可 移動的製程阻隔物824(例如’可使用1助結構822(其可包 11 200423462 " ^ 線性·驅動裝置或其類似物)來移動)分隔的第二 ^刀814。第85圖騎出第二部分814的體積較大(由於阻隔 物816移動)之容器810。在容器810中,-相關的程序(其實 例亦進一步描述於本文中)可將物質從一個部分轉換成不 同物貝或不同狀態,同時亦可提供作為阻隔物以維持個別 的分隔容器。 第9A圖顯示出具有第二部分914與第一部分912的容器 910 ’其中第一部分912的容積可由在容器91〇的内壁與第二 部分914的外壁間之空間定出。第9B圖顯示出第二部分 的體積較大(由於填入物質)之容器91〇,因此部分912的體積 會減少。 第i〇A圖顯示出一容器1〇1〇,其具有第一部分1〇12與第 二部分1014 ,而它們在容器1〇1〇中的體積具有相反變化之 關係。第10B圖顯*出第一部分1〇14的體積較大(由於填入 15物髮)之谷斋1010,因此部分1014的體積會減少。 在第一與第二部分中的物質可相同或不同。例如,在 第邛刀具有與第二物質相同物質的系統中,第一部分的 物質可經控制地提供至一個或多個成批的程序而例如作為 一載體。其它來源(或在該容器中的第三部分)可提供一種會 2〇作用在該程序上的載體物質。然後,在完成批次操作後, 該載體物質將貯存在第二部分中。 在含有不同物質的系統中,例如,使用在結合該些物 質的特別程序中,該第一物質與該第二杨質可完全不同。 此外,該第-物質可由該程序使用以衍生出第二物質,例 12 :;第=物質改質而形成第二物質的程序。應注意的是 純化r貝可由製程單獨(例如,電力、溫度、壓力、過滤、 部八應,質;或可與另-種職可經該容器的另一個 =貝了存或進料,或可為在容器外部的來源)混合且反應而 改貝;或製程且與另一種物質組合二者而改質。 。、在不同部分中所使用的物質可為任何想要的物質,且 ^同的組合H物質可包括任何能使用在複室結 的,、液、氣相或該些相的組合之材料。同樣地,該第 10 二物質可包括由該程序所產生的任何材料之固、液'氣相 或〆—相之組合。因此,多種第一物質/第二物質組合則顯 示在表1中:200423462 (ii) Description of the invention: [Technical field to which the invention belongs] Field of the invention The present invention relates generally to a separation container system, and in particular to a separation container system installed to transport and collect materials. BACKGROUND OF THE INVENTION Many systems require one or more input containers and one or more output containers for operation. For example, chemical procedures and electrochemical procedures typically have one or more input substances from respective containers and one or more output substances from respective containers. Chemical procedures (such as organic and inorganic chemical synthesis, power generation reactions, material synthesis, biological reactions, etc.) all require the use of one or more input substances and produce one or more output substances. For example, a biological response is usually a procedure in which 15 organisms act on an input substance and convert it into a different output substance. For example, wastewater treatment often uses aerobic and anaerobic bacteria to remove pollutants from wastewater, which facilitates removal by precipitating waste species. The synthesis of many chemicals (including organic chemicals, inorganic chemicals, and different combinations) often involves placing one or more substances in a reactor to form the desired output substance or product. In most cases, this also forms by-products. The system provides a container or other separate container for each input substance, each product, and any by-products formed (if needed). As a result, the total area space required to store the system can be increased by different containers or other containers. The container (such as the output container) will be empty when the program has not started, or the container for the input substance will be empty when the program is completed, so that the space is essentially wasted. Furthermore, some systems may be installed so that the input substances create a portion of the internal pressure in the container, and at least a portion of the force may transport the substances to the reactor. 5 When the volume of the container decreases, the pressure of the substance leaving the container decreases. A power generation process usually converts one or more substances into a by-product, while producing usable energy. Typical electrochemical systems include fuel cells, such as metal-air fuel cells, hydrocarbon-based fuel cells 10 (such as proton exchange film-based fuel cells), and solid oxide fuel cells. A variety of biological processes generate additional usable energy, and this often uses substances based on enzymes and grape bran as fuel. Furthermore, many well-known battery systems essentially include fuel cells, so the supply of fuel will be limited. In particular, some batteries will use fluid anode electrolytes and catholytes. Metal-air fuel cells are based on the electrochemical conversion of a metal (such as zinc or lithium) into an oxide of that metal in the presence of air and a corrosive electrolyte. A variety of metal-air fuel cell systems are described in, for example, US Patent Application No. 09 / 578,798, issued by Fans et al. The name is "Fuel Separation Vessel and Recirculation System". Solid oxide fuel cells are typically based on a hydrocarbon fuel such as methanol and water in combination. These fuels are consumed to produce electricity and water as by-products. Typically, the fuel is provided as a mixture, and the by-products can be discharged or stored. Storing byproducts in individual containers can be impractical for many applications, such as automotive applications, due to space constraints. Many applications reintroduce byproducts into the fuel mixture. However, this dilutes the fuel mixture and can degrade the fuel efficiency of the fuel cell operation. Another type of hydrogen-based fuel cell uses a hydrogen source such as sodium borohydride. This battery is disclosed, for example, in U.S. Patent No. 5,948,558 (published under the name '' and energy density boride battery ') and U.S. Patent No. 5,804,329 (published under the name' 'Electrical Conversion Battery'). Sodium borohydride is usually mixed with water to release hydrogen that can be converted into useful energy, producing sodium borooxide as a by-product. Another type of electrochemical device is a redox battery, in which metals and halides are used as anolyte and catholyte, respectively, and react in the presence of an electrolyte to generate electricity. Traditionally, the anolyte and / or catholyte will be continuously fed or operated in batches that are diluted throughout the entire electrochemical reaction sequence. Many of the previously mentioned systems and many others require the use of several containers with separate volumes to separate different substances. Other systems that do not need to occupy individual volumes of process substances will sacrifice efficiency because they will reduce the concentration of reactive substances. The systems that have been described that can be used to solve the previously mentioned problems (especially metal air fuel cells) fully reveal the US patent application serial number claimed on May 12, 2_ (co-reviewed, co-assigned) No. 598, published as "Fuel Separation Vessel and Recirculation System", the entire text of which is incorporated herein by reference. Although the premise of this application is a system that covers many 200423462 and will be further developed in the system described herein, this announcement provides more detailed embodiments that fall within the scope of these patent applications and other specific embodiments. . I: Summary of the invention 3 5 Summary of the invention I. The problems and deficiencies of the present invention can be overcome or alleviated by several methods and devices of the present invention. The container provided by the present invention includes a device for containing the first substance. The first part and the second part of the assembly used to contain the second substance. The first substance is applied to the process, which is usually used to make > use useful by-products. Furthermore, the second substance may be a useful by-product of the procedure or may be a different by-product of the procedure. In general, the main advantage of this container is that the first substance and the second substance can be stored in a volume that is preferably the same as the larger volume of the first substance or the second substance. For example, this is very useful in transportation systems, such as cars, airplanes, space ships, seaplanes or the like; satellite systems; buildings; personal devices; and other systems that desire to reduce volume. Once in different embodiments, the by-product can produce usable energy, typically in the form of electricity. In further embodiments, this useful by-product may be a thermal by-product, such as an increase or decrease in temperature. In another specific embodiment, the useful by-product may be a substance, such as-may be different from the specific embodiment, the useful by-product may be mechanical energy. The product can still be light. In the group I embodiment, the useful discussion above and other features and advantages of the present invention will be known and understood by those skilled in the art from the following detailed description and figures. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a specific embodiment of a schematic diagram of a multi-chamber partition container system, which has an input material portion and an output material portion and is operatively connected to a sequence of steps 5; FIG. 2 includes a processing step Another specific embodiment of the double room partition container system is shown in Figure 3. Figure 3 is a specific embodiment of the structure of a double room partition container system connected to a program; 10 Figure 4 is the use of additional inputs (in the double room partition (External of the container system) A specific embodiment of a multi-chamber partitioning container system; FIG. 5 is a specific embodiment of a multi-chamber partitioning container system having a pair of input substance parts; FIG. 6 is a multi-chamber partitioning having a pair of output substance parts A specific embodiment of the container system 15; Figures 7A & 7B are specific examples of the structure of a double-chambered container system; Figures 8A and 8B are another specific example of the structure of a double-chambered container system; FIG. 9B is a further specific embodiment of the structure of a double room partition container system; and FIGS. 10A and 10B are still another specific embodiment of the structure of a double room partition container system. Embodiment 2 9 200423462 Detailed description of Che Fujia ’s example ^ disclosed in this article—a container containing several substances (especially input substances and wheel-out substances), where name, input, and output are usually related to The container includes a first part that is assembled to contain a first substance, and a second part that is configured to contain a second substance. The -substance will be applied: a procedure 'and is usually used to produce useful by-products. Furthermore, the second substance may be a useful by-product of the procedure, or it may be a different by-product of the procedure. Ίο 15 — ° The private sequence may include multiple operations. In general, it may be on one or more input substances. Perform any required process steps to produce one or more output substances. For example, the process may be a condenser or liquefier used to convert a gas to a liquid or a shrinkable gas. In addition, the process may be a transport step In this method, the process may provide for the discharge of one or more bodies into one or more parts of the container. Furthermore, the procedure may be a -separation procedure such as closing Operation or distillation operation. In this method, the sequence may have additional input and / or output witch or it may be contained in the container. The program may additionally include a real device to implement A solid or solid / liquid mixture is used to further manage the volume. 20 The container has a total volume 'which can be contoured by one or more hard or elastic side walls. The container includes a first One part and the second part to contain the second substance. The volume of the first, second or both of the first and second parts is variable so that the first and second parts can be installed in the total volume. In a specific embodiment, the volume of the first part and the volume of the second part may be changed in opposite directions. In another specific embodiment, the "part-i" and the second part may be separated by a removable biliary septum 10 200423462. The barrier can be moved by external force (such as human or mechanical force), and it can also be controlled. The barrier can be moved by electricity, chemical injection, heat, light, etc. The structure can also be moved E.g It is a suitable material bag, which can expand and contract, and is inert and chemically stable with the substance to be contained. Furthermore, the barrier itself can include a procedure, for example, a fluid or solid Circulation between multiple parts of the valley. For example, electrolyte membranes, electrodes, permeable membranes, filters, or other structures or materials may be included in or on the barrier to convert a substance from one part to a different substance or contained in 10 other parts The state described here is different from the container described in this article by Sadeg M. Faris, Tsepin Tsai, Wayne Yao, and Yuen-Ming Chang) U.S. Patent Application Serial No. 09/570/798 (published as "Fuel Separation Vessel 15 and Recirculating J-Family System") claimed on May 12, 2000, the entire contents of which are incorporated herein by reference. ) Are similar. Various typical cereal structures are diagrammatically depicted in Figures 7 A and 7B, 8A and 8B, 9A and 9B, and 10A and 10B. Figure 7A shows a container 710 having a first portion 712 and moved by a removable barrier 716 (e.g., an assist structure 722 (which may include a 20 screw, a linear drive, or the like) can be used to move ) Separate the second part 7H. FIG. 7B shows that the volume of the second portion 714 is larger than the container 710 due to: (moving: 716 moving). Figure 8A shows a container 81 (), which has a section 812 and a removable process barrier 824 (e.g., 'useable 1 assist structure 822 (which may include 11 200423462 " ^ linear drive device or Analog) to move) separated second ^ knife 814. Figure 85 shows the container 810 with a larger volume (due to the movement of the barrier 816) of the second portion 814. In the container 810, a related procedure (the example is further described herein) can convert the substance from one part to a different shell or different state, and it can also be provided as a barrier to maintain individual partitioned containers. Fig. 9A shows a container 910 'having a second portion 914 and a first portion 912. The volume of the first portion 912 can be determined by the space between the inner wall of the container 910 and the outer wall of the second portion 914. Figure 9B shows that the second part has a larger volume (due to the substance) of the container 91, and therefore the volume of the part 912 will be reduced. Figure 10A shows a container 1010, which has a first portion 1012 and a second portion 1014, and their volume in the container 1010 has an opposite relationship. Figure 10B * shows that the first part 1014 has a larger volume (because it is filled with 15 items of hair), and the volume of part 1014 will decrease. The substances in the first and second parts may be the same or different. For example, in a system where the first trowel has the same substance as the second substance, the substance of the first part may be controlled to be supplied to one or more batch processes, for example, as a carrier. Other sources (or the third part in the container) can provide a carrier substance that will act on the procedure. After completion of the batch operation, the carrier material will then be stored in the second part. In systems containing different substances, for example, in a special procedure that combines these substances, the first substance and the second poplite can be completely different. In addition, the first-substance can be used by the procedure to derive a second substance, Example 12 :; the second-substance modification procedure to form a second substance. It should be noted that the purified shellfish can be processed by the process alone (for example, electricity, temperature, pressure, filtration, quasi-efficiency, or quality; or can be used with another kind of container that can be stored or fed through the other container, or It can be modified for mixing and reacting from a source external to the container; or it can be modified by combining both processes with another substance. . 2. The substance used in the different parts may be any desired substance, and the same combination H substance may include any material that can be used in the compound junction, liquid, gas phase, or a combination of these phases. Similarly, the twelfth substance may include a solid, liquid 'gas phase, or rhenium-phase combination of any material produced by the procedure. Therefore, multiple first substance / second substance combinations are shown in Table 1:

第一部分成分 氣 氣'液 氣-固 液 液-固 固 氣 X X X X X X 第二部 分成分 氣_液 X X X X X X 氣-固 X X X X X X 液 X X X X X X 液-固 X X X X X X 固 X X X X X X 表1-第一及第二物質之相組厶 現在將參照至圖形描述本發明之闡明具體實施例。為 15 了清楚地描述,在圖中所顯示的相似特徵以相似的參考數 字指出,且顯示在另一個具體實施例中的類似特徵亦以類 ]3 200423462 似的參考數字指出。 邊』統100 見在將參肊至苐1圖描述併入本文的容器之圖式系統 該系統⑽包括具有第一部分112與苐二部分u^容The first component gas-liquid-solid-liquid-liquid-solid solid gas XXXXXX The second component gas_liquid XXXXXX gas-solid XXXXXX liquid XXXXXX liquid-solid XXXXXX solid XXXXXX Table 1-Phases of the first and second substances 物质Illustrative specific embodiments of the invention will now be described with reference to the drawings. For the sake of clear description, similar features shown in the figures are indicated by similar reference numerals, and similar features shown in another specific embodiment are also indicated by similar reference numerals.边 』系 100 See the schematic system of the container in which the description of the reference to the figure 1 is incorporated herein. The system includes a first part 112 and a second part.

益u〇 U匆質(或在此具體實齡J中為一輸入物質)包含 在部分112中。 S 10 士將第-物質提供至或接受程序12G(其可為—分離的物 ,結構、第—㈣存在於第—部分ιΐ2中的現象(於此之後 ‘為留現象)或其組合)。因此,程序i2Q以虛線表示指出 ^程序I2G事實上可為—分離的結構、整合在容n110中曰或 二留現象。言亥程序120會產生第二物質(或產物)(其包含在 合益110的第二部分114中)。該程序12G可產生_種或多種 不同的副產物,諸如電力、熱、化學、機械或光。 15 在程序12_作期間,至少—定量㈣-物質(在部分 =中)會消耗或經運輸,且至少有—部分會轉換成第二物 貝並包含在第二部分114中。可摻入額外的物質㈤ 20 程序12〇。當第二物質產生時,其會被導入容器^的第二 部分1M。阻隔物110會分隔開帛一部分m與第二部分 114。在程序12〇操作開始時,部分114的體積可藉由:乍: 隔物116而最小化(即,可接近或到達零)。在操作期間,當 第-物質消耗且第二物質產生時’阻隔物116可移細: 藉由機械設備、膨脹科),因此可在部分114中產生用於 第二物質之可獲得的體積。此外,除了阻隔物叫或例如 與具有多於二個搶室的容器連接)外,第—部分⑴斑第二 34 200423462 部分114可為在容器110中的個別容器(例如,可膨服及可收 縮以調節體積變化)。 例如,在系統中,若無額外的物質導入程序120,則容 器110的容積可遍及程序120的操作皆等於輸入物質或輪出 5 物質之較大體積。 盖室系具體實施例 在一般遵循圖式系統100之系統的具體實施例中,程序 120包含一電化學電池,諸如金屬空氣電池。在連續或抵次 耘序下進料至電池的第一物質包含該燃料,諸如含有電解 10貝的金屬糊狀物。在該金屬空氣電池操作後,該金屬燃料 會轉換成金屬氧化物而貯存在容器110的部分114中作為第 二物質。該金屬氧化物可以批次或連續的方式貯存。該金 屬1氣電池有用的副產物為電力,其可經控制而用於外部 使用(無顯示)。 ^若程序120包含一電化學電池(諸如金屬空氣電池),則 4裔110可為一種例如合適於膝上型電腦、蜂窩式電話、 力 叫 *工具、其它手握式裝置、小型運輸裝置(諸如小型摩托車) =等之可攜帶式裝置。再者,容器110可與諸如田園、儲水 或儲氣筒糸統整合。額外地,容器110可整合在就地發電系 υ统中。 ' 5玄金屬氧化物可藉由向其施加電流而再充電。於可再 2電的糸統中’在該材料再充電後(即,該材料仍然在其中 〔、回至其各別的部分112或114),進一步放電乃經由從部 4來的第一物質”作為該金屬空氣電池的燃料,其中從 15 423462 生120形成的金屬氧化物可貯存在第一部八 在一般遵循圖式系統100之系統 中’該程序12。為—甲醇燃料電池。第鄭 為甲醇或曱醇與水之組合)包含在第—部二::此實例中 料電池的操作_(通t為連續操作),。在該燃 ^ j從忒燃料電池來的排 —勿(主要為水)則貯存在容器110的第二部 一物質。在此方式中,該排出物(其典型地 ” ίο 程度)乃經貯存而非排至環境中,同時污染至某種The benefit substance (or an input substance in this specific age J) is contained in section 112. S 10 provides or accepts the first-substance to or from procedure 12G (which may be a separate object, a structure, a phenomenon in which the first-part exists in part-two) (hereafter, a ‘remain phenomenon’ or a combination thereof). Therefore, the program i2Q is indicated by a dashed line. ^ Program I2G can actually be a separate structure, integrated in Rn110, or two-stay phenomenon. The Yanhai program 120 will produce a second substance (or product) (which is contained in the second part 114 of Heyi 110). This program 12G can produce one or more different by-products, such as electricity, heat, chemical, mechanical or light. 15 During procedure 12_, at least—quantitative plutonium-substances (in part =) will be consumed or transported, and at least—part will be converted into a second substance and included in the second part 114. Additional substances may be incorporated. When the second substance is produced, it is introduced into the second part 1M of the container ^. The barrier 110 separates a part m from the second part 114. At the start of the procedure 120, the volume of the portion 114 may be minimized (ie, may be approached or reached zero) by the following: spacer 116. During operation, when the first-substance is consumed and the second substance is produced, the 'blocker 116 can be thinned: by mechanical equipment, expansion section), so that the available volume for the second substance can be generated in section 114. In addition, in addition to the barrier or being connected to, for example, a container having more than two grabbing chambers), the first-part plaque second 34 200423462 portion 114 may be an individual container in the container 110 (eg, expandable and Shrink to adjust volume changes). For example, in the system, if there is no additional material introduction program 120, the volume of the container 110 throughout the operation of the program 120 is equal to the larger volume of the input material or the out material. Covered Room Embodiments In a specific embodiment of a system that generally follows the schematic system 100, the procedure 120 includes an electrochemical cell, such as a metal-air battery. The first substance that is fed to the battery in a continuous or sub-sequential sequence contains the fuel, such as a metal paste containing 10 volts of electrolyte. After the metal-air battery is operated, the metal fuel is converted into a metal oxide and stored in the portion 114 of the container 110 as a second substance. The metal oxide can be stored in a batch or continuous manner. A useful by-product of this Metal 1 gas battery is electricity, which can be controlled for external use (not shown). ^ If the program 120 includes an electrochemical cell (such as a metal-air battery), the 110 can be a type suitable for, for example, a laptop computer, a cellular phone, a power tool *, other hand-held devices, a small transport device ( Such as scooters) = portable devices. Furthermore, the container 110 may be integrated with a system such as a garden, a water storage or a gas tank. Additionally, the container 110 may be integrated into an on-site power generation system. '5 metal oxide can be recharged by applying a current to it. In the rechargeable system, after the material is recharged (that is, the material is still in it [, back to its respective section 112 or 114), further discharge is via the first substance from Section 4. "As a fuel for this metal-air battery, the metal oxides formed from 15 423462 and 120 can be stored in the first part of the system generally following the graphical system 100 'The procedure 12. For-methanol fuel cells. Section Zheng It is methanol or a combination of methanol and water) included in the first part of the second part: the operation of the battery in this example (through t for continuous operation). Mainly water) is stored in the second part of the container 110. In this way, the effluent (typically "degree") is stored rather than discharged to the environment, and at the same time polluted to some kind

者,在燃料電池的操作期間,甲醇斑η 以固定的濃度存在於第一部分中。加=的混合物會 電砷么试八至该直接甲醇燃料 r:矿、、稱反應物為氧(通f由空氣提供),且該直接甲 -子燃料系统有用的副產物為電力β A 15 一勺=遵循圖式系統⑽的系統之額外具體實施例包括 。從第—部分⑴提供 _操作後(即,氧化還原電 20 於電解質存在下與陰極電解質反/作在)陽錢極電解質會 合h 錢貝反應。在陽極電解質溶液中 :有#的鋅轉換成氧化鋅而存在於溶液中。該已消耗的 ~極電解質霞存在苐二部分】㈣作為第二物質。 在另-個氧化還原電池實例中,該陰極電解液可包含 :物負,邊如法溶液。在該氧化還原電池操作後,溴 、常會轉換成漠離子並貯存在第二部分川中作為第二物 J6 200423462 質。 複室系統100的第四個電化學電池具體實施例 一般遵循圖式系統100的系統之仍然另一個具體實施 例則使用一包含生物-電化學程序的程序120。典型的生物-5 電化學程序使用一可氧化的有機化合物作為燃料。亦典型 地提供不同的酵素以提高電化學反應。該可氧化的有機化 合物可包括碳水化合物(諸如葡萄糖)。許多系統需要純的或 實質上純的葡萄糖以最小化或防止產生不能轉換成能量的 副產物。 10 因此,在本文的生物-電化學電池系統中,包含葡萄糖 的物質可提供在第一部分112中。可使用多種機械裝置來收 集包含葡萄糖的物質(例如,草)。例如,平地機刮刀或機械 裝置可切割並進料該包含葡萄糖的物質,隨之將其貯存在 第一部分112中,且利用生物-電化學程序120消耗。至於從 15 該生物-電化學程序120產生的廢棄物(或第一物質無消耗的 部分),則可貯存在容器110的第二部分114中。一個使用此 生物-電化學電池系統之有用的實例為一種能消耗(或切割) 草的自身供給燃料裝置。當草消耗掉時,從草來的葡萄糖 可提供電能而使得該自身供給燃料裝置可移動並連續切割 20 草,且可進一步控制任何所提供的系統電子設備。該廢棄 物可貯存在部分114中作為第二物質。因為燃料可貯存在部 分112中且可直接由程序120消耗,故該系統可自身提供動 力,甚至在無草或其它包含葡萄糖物質存在的區域處。當 部分114已填滿而餘留的部分112之體積比想要的還少時, 17 200423462 可將部分114在混合物堆處倒空。 複室系統100的綮一程序具體管施例 在系統100的另一個具體實施例中,容器110的第一部 分112包含一可分解的物質,諸如生化物。於此,該程序12〇 5 可包括一停留現象或一個別或整合的有效程序,諸如加熱 及/或加壓。該第二物質可包括甲烷(一種生化物分解的氣體 副產物)。因此,此曱烷可收集在第二部分114(其在容器11〇 中為可膨脹的收集容器’或為容器110之一部分而由阻隔物 116與第一部分112分隔)中。例如,其可包含一單向閥(例 10如,需要一定的氣體壓力才可在一個方向上打開)以允許曱 k從第一部分進入第二部分,但是不會從第二部分進入第 一部分。 i室系統100的第二程廑鼻體實施例 15 20 系統100的另一個具體實施例包括油程序,諸如將原 精鍊成不同的餾分及/或衍生物。例如,可將原油維持在 器110的第-部分m中。程序⑽可包括蒸鶴、裂解或其 合。在程序後,該產物(例如,汽油)可貯存在第二部分'^ 中。因此,當原油從第_部分112進行程序時,第—部分1 的體積會減少。因此,當汽油產生且貯存在第二部分二 1 時第二部分Π4的體積會增加。 兔室糸統100的第體實施例 系統100的另—個具體實施例包括水程序,諸 供應或廢水純化之水純化。例如,可將欲純化 : 容器削的第一部分112中。該程序⑽可包括—個或多= ]8 ίΓΓΐ步驟。在程序後’該產物(例如,已純化或已部分 _進二宁=:::112中:因此,當水從第-部 、 、第邓刀112的體積會減少。因此,當 =,或已部分純化的水產生且貯存在第二部分】】种 f,弟二部分114的體積會增加。Or, during operation of the fuel cell, the methanol spot η is present in the first part at a fixed concentration. Add the mixture of = will test arsenic to the direct methanol fuel r: ore, and call the reactant oxygen (through f provided by air), and the useful by-product of the direct nail fuel system is electricity β A 15 One spoon = Additional specific embodiments of the system that follow the diagram system include. From the first part, after the operation (i.e., the redox electricity 20 in the presence of the electrolyte reacts / reacts with the catholyte), the anodic electrolyte meets the h. Chambray reaction. In the anolyte solution: # of zinc is converted into zinc oxide and is present in the solution. The consumed ~ polar electrolyte Xia exists in two parts] as the second substance. In another example of a redox battery, the catholyte may include: a negative electrode, and a solution like that. After the operation of the redox battery, bromine is often converted into desert ions and stored in the second part of Sichuan as the second substance J6 200423462. The fourth embodiment of the electrochemical system of the multi-chamber system 100 generally follows the system of the schematic system 100. Yet another embodiment uses a program 120 that includes a bio-electrochemical procedure. A typical bio-5 electrochemical procedure uses an oxidizable organic compound as a fuel. Different enzymes are also typically provided to improve the electrochemical response. The oxidizable organic compound may include a carbohydrate such as glucose. Many systems require pure or substantially pure glucose to minimize or prevent by-products that cannot be converted into energy. 10 Therefore, in the bio-electrochemical cell system herein, a substance containing glucose may be provided in the first part 112. A variety of mechanical devices are available for collecting glucose-containing substances (for example, grass). For example, a grader scraper or mechanical device may cut and feed the glucose-containing substance, which is then stored in the first section 112 and consumed using a bio-electrochemical procedure 120. As for the waste (or the unconsumed part of the first substance) generated from the bio-electrochemical process 120, it can be stored in the second part 114 of the container 110. A useful example of using this bio-electrochemical cell system is a self-fueling device that can consume (or cut) grass. When the grass is consumed, the glucose from the grass can provide electricity so that the self-fueling device can move and continuously cut 20 grasses, and can further control any provided system electronics. This waste can be stored in section 114 as a second substance. Because fuel can be stored in section 112 and can be consumed directly by program 120, the system can provide power itself, even in areas where no grass or other glucose-containing substances are present. When the portion 114 is filled and the remaining portion 112 has less volume than desired, 17 200423462 may empty the portion 114 at the mixture stack. The first procedure of the multiple chamber system 100 specifically concerns the embodiment. In another embodiment of the system 100, the first portion 112 of the container 110 contains a degradable substance, such as a biochemical. Here, the program 1205 may include a dwell phenomenon or an effective program separately or integrated, such as heating and / or pressurizing. The second substance may include methane, a gaseous by-product of the decomposition of biochemicals. Therefore, this pinane may be collected in the second portion 114 (which is an expandable collection container 'in the container 110 or a portion of the container 110 separated by a barrier 116 from the first portion 112). For example, it may include a non-return valve (for example, a certain gas pressure is required to open in one direction) to allow 曱 k to enter the second part from the first part, but not to enter the first part from the second part. Second Pass Nose Body Embodiment 15 of the i-chamber system 100 15 20 Another specific embodiment of the system 100 includes an oil process, such as refining the raw into different fractions and / or derivatives. For example, the crude oil may be maintained in the first-part m of the vessel 110. Procedures may include steaming cranes, cracking or a combination thereof. After the procedure, the product (for example, gasoline) can be stored in the second part '^. Therefore, when crude oil is processed from Section 112, the volume of Section 1 is reduced. Therefore, when gasoline is produced and stored in the second part 21, the volume of the second part Π4 increases. First embodiment of the rabbit chamber system 100 Another specific embodiment of the system 100 includes a water program, water purification for supply or wastewater purification. For example, the container to be purified may be cut into a first portion 112. The program may include one or more steps. After the procedure 'the product (for example, purified or partially _ into Erning = ::: 112: So when the volume of water from the first part, the first part, the second part 112 will decrease. Therefore, when =, or The partially purified water is produced and stored in the second part]] f, the volume of the second part 114 will increase.

M^AMZOO h . 阳叶八本文之容器的圖式 =糸:包括一具有第一部分212及第二部分214的容 10 :床=質包含在部分212中,其可經控制地提供至 ^序创。程序22〇可產生第二物質而包含在第二部分214 ^該程序220可產生—種或多種不_產物,諸如電 熱、化學、機械、光或其組合。 在被導入第二部分214之前,第-七、^ 弟一物貝(通常從程序220 15 來)會接受處理224。處理224可運輸第二物質、改變第二物 質的某些性質(諸如化學或物理性質)或其組合。例如,處理 224可包含-與系連結的反應器。再者,處理224可包含一 物理處理,例如凝結該物質或分離該物質。 星直^统200的第一個燃婊具體管^ 20 •現在至第2圖描述另 在-般遵循圖式系統2G0的系統之具體實施例中,程序 220包含-燃燒引擎,該第-物質包含該壓縮引擎用之燃料 (諸如汽油),而有用的副產物為引擎的機械能量。當汽油消 耗時,二氧化碳及其它廢棄產物會排出引擎。這些廢棄產 物可提供至處理224㈣減器),其㈣會減積較;;的 廢棄氣體轉換成體積較小的氣體或甚至液體。然後,將此 39 經處理的廢棄物會運輸至容器210的第二部分214。 在此方法中,燃燒引擎可在實質上零污染排放下操 作。全部或部分的廢棄物可貯存在第二部分214中(其可例 為‘子或其匕收集裝置,而提供在一類似於習知的燃 料槽之槽中)。當第二物質(或燃燒引擎廢棄物)增加時,第 一部分214的體積會增加,而相對地第一部分212的體積(其 裝配來谷納該燃燒引擎用之燃料,諸如汽油)因此減少。 用來包含汽油及包含廢棄產物的燃燒系統可進一步配 備一與第二部分214連接的排空裝置。此排空裝置可經操作 而移除該廢棄產物。再者,該排空裝置可與一指示器連結, 以扎示出何時部分214為最大容量。該棑空系統可以手動戈 自動地操作。此排空系統可經由例如最接近燃料槽輪入的 埠而使用。在此方法中,容器21〇可使用燃料來裝填部分 而填充’且同時或隨後藉由從部分214移除(例如,一種a 適的而連結至習知的真空裝置之轉接器)廢棄產物而倒空。 二個燃燒具體實施例 再者’使用與燃燒引擎用的燃料槽相同之原理,可採 用一容器來提供燃料(作為輸入物質)至燃燒程序以產生熱 副產物’而可藉此捕捉灰燼及其它燃燒廢棄物並將其貯存 作為輸出物質。 複室系統 見在參知、至弟3圖,系統300包含第一輸入用之第—六 荔3l〇A、各別包含在部分312A、314A中之第一輸出物質· 及第二輪入用之第二容器310B、各別包含在部分3i2B、 200423462 314B中之第二輸出物[在各別的電池中提供阻隔物训入 及31將第與第二輸入物質二者提供至相同程序 现其可以不同速率及/或間隔提供),而產生第—及第二輸 出物質。當第一及第二輸出物質產生時,阻隔物遍與 31_此移開(藉由流體力量、外部力量或其組合)。 ίο 在一般遵侧_統·之系_具體實齡!中,程序 320包含-氧化還原電池,其類似於上料述的實例般操 作。第-容器310A包含陽極電解質的輪入及輸出,而第二 容器3_包含陰極電解f的輪人及輪出。將二流體流提供 至該氧化還原電池。 在該具有-個或多個複室容器的氧化還原電池中,該 電池總是以新鮮的材料操作。該電池可經控制,如此可在 各別的階段接收陽極電解質及/或陰極電解質,或可連續地 15釋放該陽極電解質及陰極電解質。就其本身而論,其可適 用於電子積分。 第二個電化學雷池 在一般遵循圖式系統300之系統的另一個具體實施例 中,程序320包含一釩氧化還原電池]。第一容器3i〇a包含 2〇陽極電解質的輸入及輸出,而第二容器310B包含陰極電解 貝的輸入及輸出。將二流體流提供至該氧化還原電池。 °亥陰極電解質則根據下列半電池反應在電池320中反 應: V5++e^V4+ 〇 21 200423462 該陽極電解質則根據下列半電池反應在電池320中反 應: V2+㈠ V3++e、 1例如,參見1998年3月17曰釩氣化還原電池發展計劃狀 5 通,C·曼尼克特斯(Menictas)等人,釩電池發展實驗室(Vanadium Battery Development Laboratory),化學工程及工業化學學校 (School of Chemical Engineering and Industrial Chemistry),新南 威爾斯大學(The University of New South Wales),澳洲戡新敦 NSW2033郵政信箱 1 號(p〇 Box 1 Kensington NSW2033), 10 (http > //www.ceic imsw.edii.au/centere/vrb/eec94a.htm)。 複室系統400 現在參照至第4圖,所提供的系統400包含一與程序420 連結的容器410。該容器410具有用來容納第一物質(其通常 輸入至程序420)的第一部分412,及包含第二物質(其通常為 15程序420的輸出或排出)之第二部分414。額外地,來源422 提供一額外的輸入物質至程序420。從來源422來之額外的 輸入物質:可變成包含在第二部分414中的輸出物質部分; 可轉換成一部分有用的副產物(例如,電力、熱、化學、機 械或光);可分別地從程序320移除;或其組合。 20 複室系統400的電化學電池具體f施你1 在一般遵循圖式系統400之系統的具體實施例中,程序 420包含一以氫為基底的燃料電池。第一物質包含一氫來 源,其可於觸媒(其從來源422提供)存在下在反應後釋放 出。例如,此氫來源可為硼氫化鈉(Na.BH4))。硼氫化鈉可 22 200423462 與水提供在溶液中作為第一物質。於觸媒存在下反應後, 會從硼氫化鈉釋放出氫氣並由燃料電池消耗以產生電能, 且產生硼酸鈉(NaB02)為副產物。此副產物(其可與水在溶 液中)包含在容器410的第二部分412中。 5 複室系統500 現在參照至第5圖描述使用連結至程序520的容器510 之系統500。該容器510包含該具有第一物質的第一部分512 及該具有第二物質的第二部分513,此二者通常會提供輸入 物質至程序520。第一及第二輸入物質可以不同的速率及間 10 隔(其可彼此相同或不同)釋放至程序520。程序520的輸出 (第三物質)則提供至容器510之部分514。 複室系統500的篦一裎庠具體實施例 一般遵循圖式系統500之系統的具體實施例為一化學 合成程序。第一反應物與第二反應物各別地包含第一物質 15 及第二物質。該程序520包含一反應器,且當第一與第二反 應物導入反應器時會形成一產物(或第三物質)。在此方法 中,可使用一容器以貯存多種反應物及單一產物。再者, 該反應器可產生其它產物。此些其它產物可包含在容器51Q 的額外部分(無顯示)中或可經分別地貯存。再者,這些額外 20的產物可為該系統分別包含之副產物。同樣地,該第三物 質可包含一有用的副產物’其隨後可從部分414放出而用以 進一步處理。 複室系統500的第二裎戽具體實施例 使用系統500的化學合成之特定具體實施例包括水氣 23 轉移反應。在典型的水氣轉移反應中,一氧化碳加水反應 以產生二氧化碳與氫。因此,在系統500中,第一部分512 包含一氧化碳及第二部分513包含水。為了形成二氧化碳與 氫,將第一部分512與第二部分513的成分進料至程序520。 程序520典型地在高溫下,且在一種或多種觸媒上。然後, 將所產生的二氧化碳與氫之混合物貯存在第三部分514 中。因此,當反應物(一氧化碳與水)形成產物(二氧化碳及 氫)時,容器510的體積可保持定數,因為部分512及513縮 小而部分514膨脹。 星直系統500的第三鋥序具體管施例 在使用一般圖式系統500的系統之另一個具體實施例 中,該有用的副產物可為光,其中該程序520包含一混合該 第一及第二物質用之透明混合室。第一及第二物質為一些 當其結合時會產生光的化學物質。例如,美國專利案號 4,859,369(‘“369專利”)(於此以參考方式併入本文)描述在 水性化學光配方中使用可溶於水的聚合物。在‘369專利 中,將4,4’-乙二醯雙[(三氟曱基颯基)亞胺基]亞乙基μ雙[4· 甲基嗎福琳三氟甲燒_石黃酸鹽](指為METQ)的水溶液與聚 (乙烯咄咯烷酮)及螢光劑四竿磺酸鹽混合。然後加入過氧化 氫水浴液,當其混合時能產生生物螢光材料。應注意的是 任何或全部的反應物可貯存在容器5〇〇中作為第一物質及 第二物質,或具有額外的用來容納多於二種反應物之部分 的類似容器。在容器510的部分514中貯存所產生的生物螢 光材料(例如,如描述在第5圖)作為第三物質。為了提供連 200423462 續的光,可將反應物(例如,貯存作為第一及第二物質)從容 器(例如,第一及第二部分512、513)中釋放出。在此方法中, 可使用包含全部或部分反應物及產物之單一容器來提供連 續的光源。 5 ,複室系.毵5且Qi第包程序具體 該發光系統容易合適地提供熱能,諸如當將化學反應 使用在不同的熱及冷包裹時,藉此化學物質可混合而提供 熱或冷的溫度。再次,可實行連續程序,藉此,延長有用 的副產物產生時間可與安全及方便儲存反應產物共存在而 10用來再循環或適合的處理。 複室系統600 現在參照至第6圖描述系統6〇〇,其包括一可輸入至程 序620的容器610,藉此,該程序62〇可輸出數種物質。該輸 入物質包含在部分612中,且該輸出物質包含在部分614、 15 615中。 複室系統6〇0的竿一脊序具體管施例 一般遵循圖式系統600的系統之具體實施例為一水電 解私序。該輸入物質(欲經電解的水)包含在部分612中。該 水將接受一電解程序620,於此水將分裂成輸出物質氫及 20氧,並分別包含在部分614、015中。 篕二程庠具艚眚祐例 系統6 0 0的另一個具體實施例為一消電離程序,諸如水 的去鹽程序。將海水貯存在艙室612中。該反應器62〇可為 任何技蟄所熟知的技術。例如,逆滲透、電滲析或一種或 25 200423462 多種流經貯存器的流體可包含該程序/反應器62〇。這此 序可產生經濃縮㈣水與新鮮的水m㈣切吳種 在艙室615巾而該新鮮的水可貯存錄室614巾。故集 第三程序具 5 系統600可應用至緊湊型鹼-氯產生程序。鹽水可貯 在鈿至612中。邊反應益620可包括一含有二個電極的你 學電池。在一個電極上,產生氣氣並貯存在艙室615中。化 遺留在上方的液體為NaOH,其可貯存在驗室614中。而 從描述於本文的系統來之主要利益為容積管理。、< 1〇來說,整體儲存容器的容積可對輸入物質或輸出 ^ 最大的體積。 有 雖然已顯示及描述較佳的具體實施例,但是可沒有★ 開本發明之精神及範圍而製得不同的改質及取代。因此蝓 品了角午的疋本發明已藉由闡明而描述,但並不限制於此, 15 【圖式簡單説明】 第1圖為一複室分隔容器系統之圖式具體實施例,其具 有一輸入物質部分及一輸出物質部分而操作地連鲈至 ” 序; 、”σ 1 第2圖為包含一處理步驟的複室分隔容器系統之另 20 個具體實施例; 器系統%構 第3圖為一對與一程序連結的複室分隔容 之具體實施例; 系統外邹) 第4圖為使用額外的輸入(在該複室分隔容哭 之複室分隔容器系統的具體實施例; 26 200423462 第5圖為具有一對輸入物質部分之複室分隔容器系統 的具體實施例; 第6圖為具有一對輸出物質部分之複室分隔容器系統 的具體實施例; 5 第7A及7B圖為一複室分隔容器系統結構的具體實施 例; 第8A及8B圖為一複室分隔容器系統結構之另一個具 體實施例; 第9A及9B圖為一複室分隔容器系統結構之進一步具 10 體實施例;及 第10A及10B圖為一複室分隔容器系統結構之仍然另 一個具體實施例。 【圖式之主要元件代表符號表】 100···複室系統 110…容器 112···第一部分 114…第二部分 116…阻隔物 120…程序 200···複室系統 210…容器 212···第一部分 214…第二部分 220…程序 224…處理 300···複室系統 310A…第一容器 312A…部分 314A…部分 310B…第二容器 312B…部分 314B…部分 316A…阻隔物 316B···阻隔物 320…程序 27 200423462 400" 412·· 420" 500“ 512·· 514·· 600" 612·· 615·· 710·· 714·· 722·· 812·· 816·· 824·· 912·· 1010· 1014 複室系統 410…容器 第一部分 414…第二部分 程序 422…來源 複室系統 510…容器 第一部分 513…第二部分 部分 520…程序 複室系統 610···容器 部分 614…部分 部分 620…程序 容器 712…第一部分 第二部分 716…阻隔物 結構 810…容器 第一部分 814…第二部分 阻隔物 822…結構 製程阻隔物 910···容器 第一部分 914…第二部分 ••容器 1012…第一部分 第二部分 28M ^ AMZOO h. The drawing of the container of Yang Yeba = 糸: includes a container with a first part 212 and a second part 214. 10: The bed = the mass is contained in the part 212, which can be provided to the sequence in a controlled manner. Create. The program 220 may generate a second substance and is included in the second part 214. The program 220 may generate one or more non-products, such as electrothermal, chemical, mechanical, optical, or a combination thereof. Before being introduced into the second part 214, the first seventh and the second one (usually from program 220 15) will be processed 224. The process 224 may transport a second substance, change certain properties of the second substance, such as chemical or physical properties, or a combination thereof. For example, the process 224 may include a reactor coupled to the system. Furthermore, the process 224 may include a physical process, such as coagulating the material or separating the material. The first ignited concrete pipe of the star system 200 20 • Now to FIG. 2 describes a specific embodiment of a system that generally follows the schematic system 2G0, the program 220 includes a combustion engine, the first substance Contains fuel (such as gasoline) for the compression engine, and useful by-products are the mechanical energy of the engine. When gasoline is consumed, carbon dioxide and other waste products are emitted from the engine. These waste products can be provided to the processing 224 reducer), which will reduce the volume of waste; the waste gas is converted into a smaller volume of gas or even a liquid. This 39 processed waste is then transported to the second portion 214 of the container 210. In this method, the combustion engine can be operated with substantially zero pollution emissions. All or part of the waste may be stored in the second part 214 (which may be, for example, a 'child or a dagger collection device, and provided in a tank similar to a conventional fuel tank). As the second substance (or combustion engine waste) increases, the volume of the first portion 214 increases, while the volume of the first portion 212 (which is assembled to contain fuel for the combustion engine, such as gasoline) decreases accordingly. The combustion system for containing gasoline and waste products may be further equipped with an emptying device connected to the second section 214. This evacuation device can be operated to remove the waste product. Furthermore, the evacuation device may be connected to an indicator to indicate when the portion 214 has the maximum capacity. The emptying system can be operated manually and automatically. This evacuation system can be used, for example, via the port closest to the fuel tanker. In this method, the container 21 can be filled with fuel to fill the portion, and at the same time or subsequently removed from the portion 214 (eg, a suitable adapter that is connected to a conventional vacuum device) waste product And empty. The two specific embodiments of combustion also use the same principle as the fuel tank used in combustion engines. A container can be used to provide fuel (as an input substance) to the combustion process to generate thermal by-products, thereby capturing ashes and other Burn waste and store it as output. The double room system is shown in Figure 3 of the reference and the first brother. The system 300 includes the first input for the first six-lily 3A, the first output substance contained in the sections 312A, 314A, and the second round of input The second container 310B, the second output contained in the respective 3i2B, 200423462 314B [providing barrier training in separate batteries and 31 providing both the first and second input materials to the same process (Can be provided at different rates and / or intervals) to produce first and second output species. When the first and second output substances are generated, the barrier is removed from the 31_ (by fluid force, external force, or a combination thereof). In general compliance, system, and specific age! Program 320 includes a redox battery, which operates similar to the example described above. The first container 310A contains the input and output of the anode electrolyte, and the second container 3_ contains the wheel and output of the cathode electrolysis f. A two-fluid stream is provided to the redox battery. In the redox battery having one or more multi-compartment containers, the battery is always operated with fresh materials. The battery can be controlled so that the anolyte and / or catholyte can be received at various stages, or the anolyte and catholyte can be released continuously. For its part, it applies to electronic credits. Second Electrochemical Thunderbolt In another specific embodiment of a system generally following the schematic system 300, the procedure 320 includes a vanadium redox battery]. The first container 3ioa contains input and output of 20 anode electrolyte, and the second container 310B contains input and output of cathode electrolyte. A two-fluid stream is provided to the redox battery. The cathode electrolyte reacts in battery 320 according to the following half-cell reaction: V5 ++ e ^ V4 + 〇21 200423462 The anode electrolyte reacts in battery 320 according to the following half-cell reaction: V2 + ㈠ V3 ++ e, 1 For example See March 5th, 1998, Vanadium Gasification Reduction Battery Development Plan, C. Menictas et al., Vanadium Battery Development Laboratory, School of Chemical Engineering and Industrial Chemistry ( School of Chemical Engineering and Industrial Chemistry), The University of New South Wales, NSW2033 Post Office Box 1 (p〇Box 1 Kensington NSW2033), 10 (http > // www .ceic imsw.edii.au/centere/vrb/eec94a.htm). Compound Room System 400 Referring now to FIG. 4, the provided system 400 includes a container 410 coupled to a process 420. The container 410 has a first portion 412 for containing a first substance (which is usually input to the procedure 420), and a second portion 414 containing a second substance (which is usually the output or discharge of the 15 procedure 420). Additionally, source 422 provides an additional input substance to process 420. Additional input material from source 422: may become part of the output material contained in the second part 414; may be converted into a portion of useful by-products (eg, electricity, heat, chemical, mechanical or light); may be separately from Procedure 320 is removed; or a combination thereof. The electrochemical cells of the multi-chamber system 400 are described in detail. In a specific embodiment of a system that generally follows the schematic system 400, the procedure 420 includes a hydrogen-based fuel cell. The first substance contains a source of hydrogen that can be released after the reaction in the presence of a catalyst (which is provided from source 422). For example, this source of hydrogen may be sodium borohydride (Na.BH4)). Sodium borohydride can be supplied in solution with water as the first substance. After reacting in the presence of a catalyst, hydrogen is released from sodium borohydride and consumed by the fuel cell to generate electricity, and sodium borate (NaB02) is produced as a by-product. This by-product (which may be in solution with water) is contained in the second portion 412 of the container 410. 5 Multiple Chamber System 500 Now, referring to FIG. 5, a system 500 using a container 510 linked to a program 520 will be described. The container 510 includes the first portion 512 having a first substance and the second portion 513 having a second substance, both of which typically provide an input substance to the program 520. The first and second input substances may be released to the process 520 at different rates and intervals (which may be the same or different from each other). The output of the program 520 (third substance) is provided to the portion 514 of the container 510. First embodiment of the multi-chamber system 500 A specific embodiment of the system generally following the schematic system 500 is a chemical synthesis procedure. The first reactant and the second reactant each include a first substance 15 and a second substance. The process 520 includes a reactor, and a product (or a third substance) is formed when the first and second reactants are introduced into the reactor. In this method, a single container can be used to store multiple reactants and a single product. Furthermore, the reactor can produce other products. These other products may be contained in an additional portion (not shown) of the container 51Q or may be stored separately. Furthermore, these additional 20 products may be by-products included in the system, respectively. Likewise, the third substance may contain a useful by-product ' which may then be released from the portion 414 for further processing. Second Specific Embodiment of the Multiple Chamber System 500 A specific embodiment of the chemical synthesis using the system 500 includes a water vapor 23 transfer reaction. In a typical water-gas shift reaction, carbon monoxide reacts with water to produce carbon dioxide and hydrogen. Therefore, in the system 500, the first portion 512 contains carbon monoxide and the second portion 513 contains water. To form carbon dioxide and hydrogen, the components of the first portion 512 and the second portion 513 are fed to a procedure 520. Process 520 is typically at high temperature and on one or more catalysts. The resulting mixture of carbon dioxide and hydrogen is then stored in a third section 514. Therefore, when the reactants (carbon monoxide and water) form products (carbon dioxide and hydrogen), the volume of the container 510 can be kept constant because the portions 512 and 513 shrink and the portions 514 expand. Third Directive Embodiment of the Star Straight System 500 In another embodiment of the system using the general graphical system 500, the useful byproduct may be light, where the program 520 includes a hybrid of the first and The second substance is used in a transparent mixing chamber. The first and second substances are chemicals that, when combined, produce light. For example, U.S. Patent No. 4,859,369 (the "" 369 Patent "), which is incorporated herein by reference, describes the use of water-soluble polymers in aqueous chemiluminescence formulations. In the '369 patent, 4,4'-ethylenedifluorene bis [(trifluorofluorenylfluorenyl) imino] ethylidene μbis [4 · methylmorpholin trifluoromethane_Luteolin A salt solution (referred to as METQ) was mixed with poly (vinylpyrrolidone) and a fluorescer tetrazolium sulfonate. Then add a hydrogen peroxide water bath, which when mixed can produce a bioluminescent material. It should be noted that any or all of the reactants may be stored in the container 500 as the first substance and the second substance, or similar containers having additional portions for containing more than two kinds of reactants. The resulting biofluorescent material (e.g., as described in Figure 5) is stored in a portion 514 of the container 510 as a third substance. To provide continuous light from 200423462, reactants (eg, stored as first and second substances) may be released from a container (eg, first and second portions 512, 513). In this method, a single container containing all or part of the reactants and products can be used to provide a continuous light source. 5, the compound room. 毵 5 and Qi first package program specifically this light system is easy to properly provide thermal energy, such as when the chemical reaction is used in different heat and cold packages, whereby the chemicals can be mixed to provide hot or cold temperature. Again, continuous procedures can be implemented, whereby extended useful byproduct generation times can coexist with safe and convenient storage of the reaction products for recycling or suitable disposal. The multi-compartment system 600 now describes the system 600 with reference to FIG. 6, which includes a container 610 that can be input to a program 620, whereby the program 62 can output several substances. The input substance is contained in part 612, and the output substance is contained in parts 614, 15 615. The specific embodiment of the pole-ridge sequence of the double room system 600 is generally a specific embodiment of the system that follows the diagram system 600 is a hydropower solution sequence. The input substance (water to be electrolyzed) is contained in a portion 612. The water will undergo an electrolysis process 620, where it will be split into the output materials hydrogen and 20 oxygen, which are contained in sections 614, 015, respectively.庠 Two-way tooling Example Another specific embodiment of the system 600 is a deionization program, such as a water desalination program. Sea water is stored in the cabin 612. The reactor 62 may be any technique well known in the art. For example, reverse osmosis, electrodialysis, or one or more of the fluids flowing through the reservoir may include the procedure / reactor 62. This procedure can produce 615 towels in the compartment with concentrated water and fresh water, and the fresh water can be stored in the room with 614 towels. Therefore, the third program 600 system 600 can be applied to the compact alkali-chlorine generation program. Brine can be stored in 钿 to 612. The side reaction 620 may include a school battery containing two electrodes. On one electrode, gas is generated and stored in compartment 615. The remaining liquid above is NaOH, which can be stored in the laboratory 614. The main benefit from the system described in this article is volume management. ≪ 10, the volume of the overall storage container can be the largest volume for the input substance or output. Yes Although the preferred embodiments have been shown and described, different modifications and substitutions can be made without opening the spirit and scope of the invention. Therefore, the invention has been described by clarification, but is not limited thereto. [Simplified illustration of the drawing] FIG. 1 is a specific embodiment of a schematic diagram of a double-chamber container system, which has An input material part and an output material part are operatively connected to the "sequence"; "σ1" Fig. 2 is another 20 specific embodiments of the double-chamber container system including a processing step; The figure shows a specific embodiment of the double room partition capacity connected to a program; outside the system) Figure 4 shows a specific embodiment of the double room partition container system using additional inputs (in the double room partition capacity); 26 200423462 FIG. 5 is a specific embodiment of a multi-chamber partition container system having a pair of input material portions; FIG. 6 is a specific embodiment of a multi-chamber partition container system having a pair of output material portions; 5 FIGS. 7A and 7B are A specific embodiment of the structure of a double room partition container system; Figures 8A and 8B are another specific embodiment of the structure of a double room partition container system; Figures 9A and 9B are further examples of the structure of a double room partition container system; Embodiments; and Figs. 10A and 10B are still another specific embodiment of the structure of a double-chamber partitioning container system. [The main elements of the figure represent the symbol table] 100 ··· Double-chamber system 110 ... Container 112 ··· 第Part 114 ... Second Part 116 ... Barrier 120 ... Procedure 200 ... Room System 210 ... Container 212 ... First Part 214 ... Second Part 220 ... Procedure 224 ... Processing 300 ... Room System 310A ... Section One container 312A ... Part 314A ... Part 310B ... Second container 312B ... Part 314B ... Part 316A ... Barrier 316B ... Barrier 320 ... Procedure 27 200423462 400 " 412 ·· 420 " 500 "512 ·· 514 ·· 600 " 612 ·· 615 ·· 710 ·· 714 ·· 722 ·· 812 ·· 816 ·· 824 ·· 912 ·· 1010 · 1014 Compound room system 410 ... Container part 414 ... Part two procedure 422 ... Source source room System 510 ... container first part 513 ... second part 520 ... program chamber system 610 ... container part 614 ... part part 620 ... program container 712 ... first part second part 716 ... barrier structure 810 ... capacity Device Part 814 ... Part 2 Barrier 822 ... Structure Process Block 910 ... Container Part 1 914 ... Part 2 • Container 1012 ... Part 1 Part 2 28

Claims (1)

'中請專利範圍: 種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可麦、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 其中該第一部分在與該第二部分連接的單向流體 中,其中該第一物質包含一可分解的物質,其會在第 一部分中分解且釋放出包含該第二物質的流體副產 物。 如申%專利範圍第1項之系統,其中該可分解的物質包 含一生化物且該流體副產物包含甲烷。 種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中该第一部分的體積可變、該第二部分的體積 可後:、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含一化學程序系統,該第一部分在與 4化學私序糸統連接的流體中,其中該第一物質將進 料至該化學程序系統,而該化學程序系統將加工該第 一物質成該第二物質。 如申請專利範圍第3項之系統,其中該化學程序系統將 加工該第一物質成該第二物質及第三物質。 如申5月專利範圍第3項之糸統,其中該第一物質包括石 油。 如申請專利範圍第5項之系統,其中該第二物質包括一 種石油產物。 如申請專利範圍第3項之系統,其中該第一物質包括一 種水進料且該第二物質包含純水。 種为隔谷器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含一引擎,該第一部分在與該引擎的 燃料輸入連接之流體中,其中該第一物質包含一種選 自於由汽油及柴油所組成之群的燃料,且將其進料至 該燃料輸入,而該引擎可產生機械能且該第二物質包 含至少一部分的引擎排氣。 如申請專利範圍第8項之系統,其更包含一移出該第二 物質用之排空系統。 如申請專利範圍第9項之系統,其更包含一在將苐二物 200423462 貝入苐二部分前將其凝結的凝結器。 11. 一種分Rim統,其係驗包含數種物質,其包含 一具有一總容積的容器,該容器包括·· 包含第一物質用之第一部分,·及 包含第二物質用之第二部分; 其中該第-部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第部分與第二部分可安裝在該總容積中, 該系統更包含一爐,該苐一部分在與該爐連接的 w肢中,其中該包含燃料的第一物質進料至該爐,該 爐θ產生熱此且该弟一物質包含至少一部分的爐排 氣。 12. 15 13. 14. 如申請專利範圍第„項之系統,其更包含一移出該第 —物質用之排空系統。 如申請專利範圍第12項之系統,其更包含一在將第二 物貝導入弟二部分前將其凝結的凝結器。 種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含一接收從催化的氫產生系統來之氫 31 200423462 的以氫為基底的燃料電池’該第一部分在與催化的氫 產生系統連接之流體中且包括一可催化釋放的氫來 源,而該氫來源可進料至該產生氫之催化的氫產生系 統,及該第二物質包含一排氣。 15·如申請專利範圍第14項之系統,其中該可催化釋放的 氩來源包含硼氫化鈉。 16. 種刀谷裔系統’其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含用來包含第三物質之第三部分,其 中該苐-部分的體積可變、該第二部分的體積可變、 該第三部分的體積可變、該第一部分與該第二部分的 體積可變、該第-部分與該第三部分的體積可變、該 第二部分與該第三部分的體積可變或該第一部分、該 第二部分及該第三部分的體積可變,如此該第一部 丨77 °亥第一部分及該第三部分可安裝在總體積中。 7·如申請專利範圍第16項之系統,其更包含一合成程 序。玄第一部分會將該第一物質進料至該合成程序, 2該第二部分會將該第二物質進料至該合成程序,其 中邊合成程序會輪出第三物質。 八 32 200423462 18. 如申請專利範圍第16項之系統,其更包含一透明或半 透明容器,該第一部分及第二部分在與該透明或半透 明容器的輸入連接之流體中,而該第三部分在與透明 或半透明容器的輸出連接之流體中,其中該第一物質 5 包含第一反應物而該第二物質包含第二反應物,該第 一反應物與該第二反應物具有在彼此反應後會放出光 的性質,進一步該第三物質包含該第一反應物與第二 反應物的反應產物。 19. 如申請專利範圍第16項之系統,其更包含一熱收集系 10 統,該第一部分及第二部分在與該熱收集系統之輸入 連接的流體中,而該第三部分在與該熱收集系統之輸 出連接的流體中,其中該第一物質包含第一反應物而 該第二物質包含第二反應物,該第一反應物及第二反 應物具有在彼此反應後會放熱的性質,進一步該第三 15 物質包含該第一反應物與第二反應物之反應產物。 20. 如申請專利範圍第16項之系統,其更包含一分離系 統,該第一部分在與該分離系統的輸入連接之固體或 流體中,該第二部分在與該分離系統的第一輸出連接 之固體或流體中,及第三部分在與該分離系統的第二 20 輸出連接之固體或流體中,其中該第一物質包含一種 欲分離成第二及第三物質的物質。 21. —種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 33 200423462 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 5 該系統更包含一水處理系統,該第一物質包括將 進料至該水處理系統之欲處理的水,其中該水處理系 統可分離從包含一處理廢棄物的第二物質來之經處理 的水。 22· —種分隔容器系統,其係用於包含數種物質,其包含 1〇 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分,·及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 15 第一部分與第二部分可安裝在該總容積中, 該系統更包含一水處理系統,該第一物質包括將 進料至該水處理系統之欲處理的水,其中該水處理系 統可分離一從包含經處理的水來之第二物質的處理廢 棄物。 2〇 23· 一種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 34 200423462 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含一水處理系統,該第一物質包括將 進料至該水處理系統之欲處理的水,其中該水處理系 5 統可分離一從實質上由經處理的水組成之第二物質來 的處理廢棄物。 24. 如申請專利範圍第3項之系統,該化學程序系統包含一 消電離系統,該第一物質包括將進料至該水處理系統 而欲去離子化之已離子化的流體,其中該水處理系統 10 可分離出經去離子化的流體或固體作為第二物質及經 離子化的流體或固體作為第三物質。 25. 如申請專利範圍第3項之系統,該化學程序系統包括一 含有二個電極的電化學電池,該第一物質包括將進料 至該電化學電池的鹽水,其中該電化學電池可將該鹽 15 水分離成作為第二物質的氯氣和作為第三物質的 NaOH溶液0 35The scope of the patent claims: a partitioned container system for containing a plurality of substances including a container having a total volume, the container comprising: a first part containing a first substance; and a second substance containing a The second part; wherein the volume of the first part is variable, the volume of the second part is maimic, or the volume of the first part and the second part are variable, so that the first part and the second part can be installed in the total volume The first part is in a unidirectional fluid connected to the second part, and the first substance contains a decomposable substance which will decompose in the first part and release a fluid by-product containing the second substance. The system of claim 1 of the patent scope, wherein the decomposable substance contains a biochemical and the fluid by-product contains methane. A partitioned container system for containing a plurality of substances, including a container having a total volume, the container comprising: a first part containing a first substance; and a second part containing a second substance; wherein the The volume of the first part can be changed, and the volume of the second part can be changed: or the volume of the first and second parts can be changed, so that the first and second parts can be installed in the total volume. The system further includes A chemical process system, the first part is in a fluid connected to the 4 chemical system, wherein the first substance will be fed to the chemical process system, and the chemical process system will process the first substance into the second substance. For example, the system of claim 3, wherein the chemical program system will process the first substance into the second substance and the third substance. Such as applying for the system of item 3 of the May patent scope, wherein the first substance includes oil. For example, the system of claim 5 wherein the second substance includes a petroleum product. The system of claim 3, wherein the first substance comprises a water feed and the second substance comprises pure water. The species is a grain separator system, which is used for containing several substances, which includes a container having a total volume, the container comprising: a first part containing a first substance; and a second part containing a second substance; The volume of the first part is variable, the volume of the second part is variable, or the volume of the first part and the second part are variable, so that the first part and the second part can be installed in the total volume, and the system is more Comprising an engine, the first part being in a fluid connected to a fuel input of the engine, wherein the first substance comprises a fuel selected from the group consisting of gasoline and diesel, and feeding it to the fuel input, The engine can generate mechanical energy and the second substance contains at least a portion of the engine exhaust. For example, the system of claim 8 of the patent application scope further includes an emptying system for removing the second substance. For example, the system of claim 9 of the scope of patent application further includes a condenser for condensing the second object before the second part is incorporated into the second part. 11. A sub-Rim system, which includes several substances, including a container with a total volume, the container including a first part containing a first substance, and a second part containing a second substance ; Wherein the volume of the first part is variable, the volume of the second part is variable, or the volume of the first part and the second part is variable, so that the first part and the second part can be installed in the total volume, the The system further includes a furnace, a part of which is in a limb connected to the furnace, wherein the first substance containing fuel is fed to the furnace, the furnace θ generates heat, and the first substance contains at least a part of the grate gas. 12. 15 13. 14. If the system of the scope of the patent application is applied, it further includes an emptying system for removing the first substance. For the system of the scope of the patent application, the system includes the second Condenser for condensing the shellfish before introducing it into the second part. A partitioned container system for containing several substances including a container having a total volume, the container including: a first part containing a first substance And a second portion containing a second substance; wherein the volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion is variable, so that the first portion and the second portion are variable Part can be installed in the total volume, and the system further includes a hydrogen-based fuel cell receiving hydrogen from a catalytic hydrogen generation system 31 200423462. The first part is in a fluid connected to the catalytic hydrogen generation system and It includes a source of hydrogen that can be released catalytically, and the source of hydrogen can be fed to the hydrogen generating system for generating hydrogen, and the second substance contains an exhaust gas. The system of item 4, wherein the source of the catalytically-releasable argon comprises sodium borohydride. 16. The Knife Valley system is used to contain several substances, which includes a container having a total volume, the container comprising: containing A first part for a first substance; and a second part including a second substance; wherein the volume of the first part is variable, the volume of the second part is variable, or the volumes of the first part and the second part are variable, In this way, the first part and the second part can be installed in the total volume, and the system further includes a third part for containing a third substance, wherein the volume of the thorium-portion is variable, the volume of the second portion is variable, The volume of the third part is variable, the volume of the first part and the second part is variable, the volume of the first part and the third part is variable, the volume of the second part and the third part is variable or The volume of the first part, the second part, and the third part is variable, so that the first part and the third part can be installed in the total volume. System, which Contains a synthesis process. The first part will feed the first substance to the synthesis process, 2 the second part will feed the second substance to the synthesis process, and the third synthesis process will rotate out the third substance. 8 32 200423462 18. If the system of claim 16 of the scope of patent application further includes a transparent or translucent container, the first part and the second part are in a fluid connected to the input of the transparent or translucent container, and the first The three parts are in a fluid connected to the output of a transparent or translucent container, wherein the first substance 5 contains a first reactant and the second substance contains a second reactant. The first reactant and the second reactant have The property of emitting light after reacting with each other, and further the third substance includes a reaction product of the first reactant and the second reactant. 19. If the system of claim 16 of the patent application scope further comprises a heat collection system 10, the first part and the second part are in a fluid connected to the input of the heat collection system, and the third part is in contact with the In the fluid connected to the output of the heat collection system, wherein the first substance includes the first reactant and the second substance includes the second reactant, the first reactant and the second reactant have the property of exotherm after reacting with each other. Further, the third 15 substance includes a reaction product of the first reactant and the second reactant. 20. For example, the system of claim 16 further includes a separation system, the first part is in a solid or fluid connected to the input of the separation system, and the second part is connected to the first output of the separation system. In the solid or fluid, and the third part is in the solid or fluid connected to the second 20 output of the separation system, wherein the first substance includes a substance to be separated into the second and third substances. 21. A partitioned container system for containing a plurality of substances including a container having a total volume, the container comprising: a first portion containing a first substance; and 33 200423462 containing a second substance for a second substance Two parts; wherein the volume of the first part is variable, the volume of the second part is variable, or the volumes of the first part and the second part are variable, so that the first part and the second part can be installed in the total volume, 5 The system further comprises a water treatment system, the first substance comprises water to be treated fed to the water treatment system, wherein the water treatment system can separate the treated substance from the second substance containing a treatment waste Water. 22 · —A partitioned container system for containing a plurality of substances, including a container with a total volume of 101, the container comprising: a first part containing a first substance, and a containing a second substance The second part; wherein the volume of the first part is variable, the volume of the second part is variable, or the volume of the first part and the second part are variable, so that the 15th part and the second part can be installed in the total volume In the system, the system further includes a water treatment system, and the first substance includes water to be processed fed to the water treatment system, wherein the water treatment system can separate a second substance from the second substance containing the treated water. Dispose of waste. 2023. A partitioned container system for containing a plurality of substances including a container having a total volume, the container including: a first part containing a first substance; and a second containing a second substance The volume of the first part is variable, the volume of the second part is 34 200423462, or the volume of the first part and the second part is variable, so that the first part and the second part can be installed in the total volume The system further includes a water treatment system. The first substance includes water to be processed, which is fed to the water treatment system. The water treatment system 5 can separate a water treatment system from a water treatment system. Disposal of waste by two substances. 24. If the system of claim 3, the chemical process system includes a deionization system, the first substance includes an ionized fluid to be deionized, which is fed to the water treatment system, wherein the water The processing system 10 can separate a deionized fluid or solid as a second substance and an ionized fluid or solid as a third substance. 25. If the system of claim 3 is applied, the chemical program system includes an electrochemical cell containing two electrodes, and the first substance includes salt water to be fed to the electrochemical cell, wherein the electrochemical cell can The salt 15 is separated into chlorine as a second substance and NaOH solution as a third substance 0 35
TW093111788A 2001-10-29 2002-10-29 Containment system TWI253202B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34059201P 2001-10-29 2001-10-29

Publications (2)

Publication Number Publication Date
TW200423462A true TW200423462A (en) 2004-11-01
TWI253202B TWI253202B (en) 2006-04-11

Family

ID=23334064

Family Applications (2)

Application Number Title Priority Date Filing Date
TW093111788A TWI253202B (en) 2001-10-29 2002-10-29 Containment system
TW091132100A TWI226720B (en) 2001-10-29 2002-10-29 Electrochemical system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW091132100A TWI226720B (en) 2001-10-29 2002-10-29 Electrochemical system

Country Status (7)

Country Link
EP (1) EP1565958A2 (en)
JP (1) JP2005512275A (en)
KR (1) KR20040060956A (en)
CN (1) CN1636251A (en)
AU (1) AU2002348108A1 (en)
TW (2) TWI253202B (en)
WO (1) WO2003037512A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034700A1 (en) * 2007-07-16 2009-01-22 Rennebeck, Klaus, Dr. Redox battery
KR101210841B1 (en) * 2011-04-12 2012-12-11 부산대학교 산학협력단 Non-aeration organic matter removing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414437A (en) * 1963-05-13 1968-12-03 Electromechanical Devices Inc Fluid circulating battery system
US3551208A (en) * 1966-12-12 1970-12-29 Yardney International Corp Cell with displaceable electrode
JPS62229665A (en) * 1986-03-29 1987-10-08 Sumitomo Electric Ind Ltd Electrolyte circulating type secondary cell
JPS62271360A (en) * 1986-05-16 1987-11-25 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary battery
HU221405B1 (en) * 1996-10-16 2002-09-28 Gyoergy Pintz Electric currentless arrangement and method for charging accumulators
WO1998016402A1 (en) * 1996-10-16 1998-04-23 Pintz Gyoergy Electric vehicle
JP3915334B2 (en) * 1999-08-30 2007-05-16 株式会社豊田自動織機 Hydrogen supply system for fuel cell, fuel recycling method, mobile body for transporting liquid, fueling facility, and fuel recycling system

Also Published As

Publication number Publication date
AU2002348108A1 (en) 2003-05-12
CN1636251A (en) 2005-07-06
TW200301978A (en) 2003-07-16
TWI226720B (en) 2005-01-11
JP2005512275A (en) 2005-04-28
EP1565958A2 (en) 2005-08-24
AU2002348108A8 (en) 2005-11-17
TWI253202B (en) 2006-04-11
KR20040060956A (en) 2004-07-06
WO2003037512A3 (en) 2005-06-02
WO2003037512A2 (en) 2003-05-08

Similar Documents

Publication Publication Date Title
Pinsky et al. Comparative review of hydrogen production technologies for nuclear hybrid energy systems
Scott Introduction to electrolysis, electrolysers and hydrogen production
Gopinath et al. A review on solar energy-based indirect water-splitting methods for hydrogen generation
Parkash Microbial fuel cells: a source of bioenergy
US3829368A (en) Oxygen-hydrogen generation and sewage treatment method and system
CN1934741A (en) Use of an ammonia storage device in production of energy
JPS6380487A (en) Generation method and apparatus by thermal and electrochemical conversion of hydrogen
JP2006019302A (en) Hydrogen storage-based rechargeable fuel cell system and method
Scott Sustainable and green electrochemical science and technology
Bora et al. Microbial electrolysis cell (MEC): reactor configurations, recent advances and strategies in biohydrogen production
Nazari et al. Waste or gold? Bioelectrochemical resource recovery in source-separated urine
EP2830138B1 (en) Biofuel cell
JP2015091572A (en) Biogas producing system and method of producing biogas and carbon dioxide reduced product using biogas producing system
Jadhav et al. Recent progress towards scaling up of MFCs
Khan et al. Cost and technology readiness level assessment of emerging technologies, new perspectives, and future research directions in H 2 production
US20030118145A1 (en) Multiple chamber containment system
Wang et al. Renewable energy driving microbial electrochemistry toward carbon neutral
US6866835B1 (en) Energy production, storage and delivery system
TW200423462A (en) Containment system
Waller et al. Review of microbial fuel cells for wastewater treatment: large-scale applications, future needs and current research gaps
JP4461209B2 (en) Power generation method and apparatus using organic waste
Rahimnejad Biohydrogen generation and MECs
Bhatia et al. Hydrogen production through microbial electrolysis
Maan et al. Application of carbon-based smart nanocomposites for hydrogen production: current progress, challenges, and prospects
Jadhav et al. Utilization of human waste and animal urine for energy and resource recovery in microbial electrochemical system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees