l22672〇 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内$、實施方式及圖式簡單說明) 【發明所屬之技術領域】 發明領域 本發明廣泛關於一種分隔容器系統,特別是安裝用來 5輸送及收集物質的分隔容器系統。 t先前技 發明背景 許多系統需要一個或多個輸入容器及一個或多個輸出 容器以進行操作。例如,化學程序及電化學程序典型地具 10有一種或多種從各別容器來的輸入物質及一種或多種從各 別容器來的輸出物質。 化學权序(諸如有機及無機化學合成、發電反應、材 料合成、生物反應等等)全部需要使用一種或多種輸入物 負且會產生一種或多種輸出物質。例如,生物反應通常為 15 一種生物在輸入物質上作用而將其轉換成不同輸出物質的 程序。例如,廢水處理通常會使用喜氧與厭氧細菌來從廢 水中移除污染物,其藉由使廢棄物種沉澱而使移除容易。 許多化學物質(包括有機化學物質、無機化學物質及 其不同的組合)之合成通常包括將一種或多種物質放入反 2〇應器中以形成想要的輸出物質或產物。在大部分的狀況下 ,此亦會形成副產物。該系統會對每種輸入物質、每種產 物和形成的任何副產物(若需要的話)提供一容器或其它分 隔各1§。因此,貯存該系統所需的總區域空間會因不同的 容器或其它容器而增加。當在程序尚未開始的情況時容器 6 1226720 玖、發明說明 (諸如輸出容器)會是空的,或當在程序完成的情況時輸入 物質之容器會是空的,如此該些空間實質上是浪費掉的。 者某二系統會女裝成讓該些輸入物質於容器_產生部 刀内在墨力,而至少一部分的力量可將該些物質運輸至反 5應态。當該容器的容積減少時,則離開其容器的物質之壓 力會減低。 發電程序通常會將一種或多種物質轉換成一副產物物 質,同%產生可使用的能量。典型的電化學系統包括燃料 電池,諸如金屬空氣燃料電池、以煙類為基底的燃料電池 〇 (諸如以質子父換薄膜為基底的燃料電池)及固態氧化物燃 料電池。多種生物程序會額外地產生可使用的能量,而此 通吊'使用以酵素及葡萄糖為基底的物質作為燃料。再者, 多種已熟知的電池系統實質上包含燃料電池,如此燃料的 供應會受到限制,特別是,某些電池會使用流體陽極電解 15 質及陰極電解質。 金屬空氣燃料電池則以金屬(諸如鋅或鋰)於空氣及腐 钱性電解質存在下電化學轉換成該金屬的氧化物為基礎。 多種金屬空氣燃料電池系統則描述在例如2〇〇〇年5月12曰 由法利思(Fads)等人所主張的(共審查中、共同讓予)美國 2〇專利申請序號09/578,798中’發表名稱為"燃料分隔容器及 再循環系統”。 固悲氡化物燃料電池典型地以烴類燃料為基底,諸如 曱醇與水組合。這些燃料會消耗掉而產生電能及水作為副 產物。典型地,該燃料可以混合物方式提供,且該副產物 1226720 玖、發明說明 可經排出或貯存。將副產物儲存在個別的容器中,會由於 二間限制而在許多應用(諸如汽車應用)上並不實際。許多 應用會將副產物再引入該燃料混合物。但是,此會稀釋該 燃料混合物且會減低該燃料電池操作的燃料效率。 5 另一種以氫為基底的燃料電池則使用諸如硼氫化鈉的 氫源。此電池例如揭示在美國專利案號5,948,558(發表名 稱為回旎量岔度的硼化物電池”)及美國專利案號 5,8〇4,329(發表名稱為,,電轉換電池,,)中。於此通常會將硼 氫化鈉與水混合而釋放出能轉換成有用的能量之氫,而產 10 生硼氧化鈉作為副產物。 另一種型式的電化學裝置為氧化還原電池,其中各別 提供金屬及鹵化物作為陽極電解質及陰極電解質,且於電 解質存在下反應而產生電力。傳統上,該陽極電解質及/ 或陰極電解質會連績地進料,或會以遍及整個電化學反應 15 程序稀釋之成批方式操作。 先前提及的許多系統和許多其它的系統必需使用數個 佔有個別體積的谷裔來分離不同的物質。而程序物質不需 佔用個別體積之其它系統則會犧牲效率,因它們會讓反應 物質減低濃度。 ~ 20 已描述之可用來解決先前提及的問題之系統(特別是 金屬空軋燃料電池)則完全揭示在2〇〇〇年5月12日所主張的( 共審查中、共同讓予)美國專利申請序號09/570,598中,發 表名稱為”燃料分隔容器及再循環系統,,,其全文以參考X 式併入本文中。雖然先前提及的巾請案聲稱—種涵蓋^ 1226720 玖、發明說明 將進-步於本文中描述的系統之系、统,本公告提供更多落 在這些申請專利範圍和其它具體實施例範圍中更詳細的具 體實施例。 【發明内容3 5 發明概要 上述所討論及先述技藝的其它問題和缺陷可由本發明 之數種方法及裝置而克服或減輕,本發明所提供的容器包 括裝配用來包含第-物質的第—部分及裝配用來包含第二 物質的第二部分。第-物質會施加至程序,其通常用來製 1〇造有用的副產物。再者,第二物質可為該程序有用的副產 物或可為該程序不同的副產物。 15 通常來說m的主要優點為第一物質與第二物質 可貯存在-容積較佳地與第―物質或第二㈣的較大體積 相同之容積中。例如,此在運輸系統中,諸如汽車、飛機 、太空船、水上飛機或其類似物;人造衛星系統;建築物 ’個人裝置;及其它渴望減少體積的系統非常有用。 在不同的具體實施财,該副產物可產生能使用 1’典型為電力形式。在進_步的具體實施例中,該有用 的副產物可為熱副產物,諸如溫度會增加或減少。在另— 個具體實施例中’該有用的副產物可為一種物質,諸如一 化學物質。在其它μ的具體實施例中,該有用的副產物 可為機械能。在㈣進—步的具體實施射,該有用的副 產物可為光。 上述討論和本發明之其它特徵及優點將由熟知此技藝 20 1226720 玖、發明說明 之人士從下列詳細的描述及圖形中察知及了解。 圖式簡單說明 第1圖為一複室分隔容器系統之圖式具體實施例,其 具有一輸入物質部分及一輸出物質部分而操作地連結至一 5 程序; 第2圖為包含一處理步驟的複室分隔容器系統之另— 個具體實施例; 第3圖為一對與一程序連結的複室分隔容器系統結構 之具體實施例; 第4圖為使用額外的輸入(在該複室分隔容器系統外部) 之複室分隔容器系統的具體實施例; 15 第5圖為具有一對輸入物質部分之複室分隔容器 的具體實施例; 第6圖為具有一對輸出物質部分之複室分隔容器 的具體實施例; 第7A及7B圖為一複室分隔容器系統結構的具缝 例; 系繞 實施 第8A及8B圖為一複室分隔容器系統結構之另〜 Ί固具 體實施例; 第9A及9B圖為一複室分隔容器系統結構之進〜 體實施例;及 ' 第10A及10B圖為一複室分隔容器系統結構之仍然另 一個具體實施例。 【實施方式3 10 1226720 玫、發明說明 較佳實施例之詳細說明 於本文中揭不一種包含數種物質(特別是輸入物質及 輸出物質)的容器,其中名稱,,輸入”及,,輸出,,通常與相關的 程序有關。該容器包括裳配用來包含第一物質的第一部分 5 ^裝配用來包含第二物質的第二部分。第-物質會施加至 私序,而通常用來生產有用的副產物。再者,第二物質可 為為序有用的副產物,或可為該程序不同的副產物。 «亥耘序可包含多種操作。通常來說,可在一種或多種 輸入物質上進行任何需要的程序步驟,以產生一種或多種 輪出物貝。例士σ,該程序可為一使用來將氣體轉換成液體 或【縮氣體之4、结器或液化器。此外,該程序可為一運輸 步驟,諸如泵。在此方法中,該處理可提供將一種或多種 流體排入該容器的一個或多個部分中。再者,該程序可為 一分離程序,諸如結晶操作或蒸餾操作。在此方法中,該 私序可具有額外的輸入及/或輸出多臂機(witch)或其可不 包含在該容器中。該程序可額外地包含一壓實裝置,以壓 只一固體或固體/液體混合物用以進一步管理容積。 該容器具有一總容積,其可由一個或多個堅硬或具彈 性的邊壁定出輪廓。該容器包括用來包含第一物質的第一 2〇部分及用來包含第二物質的第二部分。第一、第二或第一 與第二部分二者的體積為可變的,如此第一部分與第二部 分可安裝在該總容積中。在一個具體實施例中,第_部分 的體積與第二部分的體積可相反地改變。在另一個具體實 施例中,第一部分與第二部分可由一可移動的阻隔物分離 1226720 玖、發明說明 。該阻隔物可利用外力移動(諸如人力或機械力),发亦可 為可經控制的。該阻隔物可藉由電力、化學物注 光等等而活動移位。該結構亦可例如為—合適的材料袋子 ’其能膨脹及收縮且與想要包含的物質具惰性及化學穩定 10 再者,該阻隔物其自身可包含 體或固體在容器的多個部分間流通 一程序,例如,可讓流 。例如,電解質薄膜、 電極、可滲透薄膜、過遽器或其它結構或材料可包含在阻 隔物中或上,以將物質從—部分轉換成不同物質或包含在 其它部分中而為不同的狀態。 於本文中描述的容器與由沙德袼(sadeg)M·法利思 (Fans)、蔡洗萍(Tsepin Tsai)、姚維尼(Wayne 丫⑽)及張袁 明(Yuen-Ming Chang)於2000年5月12日所主張之共審查中 的美國專利申請序號09/570,798(發表名稱為”燃料分隔容 15器及再循環糸統,其全文以參考方式併入本文)中所描述 的那些類似。多種典型的容器結構則圖式地描述在第7八及 7B、8A及 8B、9A及 9B和 10A及 10B 圖中。 第7A圖顯示出一容器71〇,其具有第一部分712及由可 移動的阻隔物716(例如,可使用一協助結構722(其可包含 20 一螺桿、一線性驅動裝置或其類似物)來移動)分隔之第二 部分714。第7B圖顯示出第二部分714的體積較大(由於阻 隔物716移動)之容器710。 第8A圖顯示出一容器81〇,其具有第一部分812及由可 移動的製程阻隔物824(例如,可使用一協助結構822(其可 12 1226720 玖、發明說明 包含一螺桿、一線性驅動裝置或其類似物)來移動)分隔的 第一部分814。第8B圖顯示出第二部分814的體積較大(由 於阻隔物816移動)之容器81〇。在容器81〇中,一相關的程 序(其貫例亦進一步描述於本文中)可將物質從一個部分轉 5換成不同物質或不同狀態,同時亦可提供作為阻隔物以維 持個別的分隔容器。 弟9 A圖顯示出具有第二部分914與第一部分912的容器 910,其中第一部分912的容積可由在容器910的内壁與第 二部分914的外壁間之空間定出。第9B圖顯示出第二部分 10 914的體積較大(由於填入物質)之容器910,因此部分912的 體積會減少。 15 20 々第1〇A圖顯示出一容器1010,其具有第一部分1〇12與 第二部分1〇14,而它們在容器1〇1〇中的體積具有相反變化 之關係。第10B圖顯示出第一部分1()14的體積較大(由於填 入物質)之容器1010,因此部分1〇14的體積會減少。 #在第一與第二部分中的物質可相同或不同。例如,在 第4刀具有與第二物質相同物質的系統中,第一部分的 ^質可經控制地提供至—個或多個成批的程序而例如作為 :栽體。其它來源(或在該容器中的第三部分)可提供一種 4用在該程序上的載體物質。然後,在完成批次操作後 w亥载體物質將貯存在第二部分中。 暂 丨又川仕、结合該些物 :、、別程序中’該第一物質與該第二物質可完全不同。 此外,該第-物質可由該程序使用㈣生出第二物質,例 13 1226720 玖、發明說明 如,將第一物質改暫 該第-物質可由製程心成第二物質的程序。應注意的是 £早獨(例如,電力、溫度、壓力、過 〉慮、、、、屯化應用)改暂·七 、,或可與另一種物質可經 另一個部分貯存或進 的 或可為在容器外部的來源)混合 且反應而改質;或製程且與另-種物質組合二者而改質。 在不同部分中所使用的物質可為任何想要的物質,且 可為不同的組合。兮笙 、 °亥弟一物質可包括任何能使用在複室結 構的固、&、氣相或該些相的組合之材料。同樣地,該第 10 二物質可包括由該程序所產生的任何材料之固、液、氣相 或該些相之組合。因此,客 匕夕種弟一物質/第二物質組合則 顯示在表1中: 第一部分成分 - 第二部 分成分 氣 氣-液 氣-固 液 液-固 固 氣 X X X X ------ X X X 氣-液 X X X X X 氣-固 X X X X X X 液 X X X X X X 液·固 X X X X X X X X X 固 x x X --- 現在將參照至圖形描述本發明之闡明具體實施例。為 了清楚地描述,在圖中所顯示的相似特徵以相似的參考數 字指出,且顯示在另-個具體實施例中的類似特徵亦以類 似的參考數字指出。 14 1226720 玖、發明說明 福室系統100 現在將參照至第1圖描述併入本文的容器之圖式系統 100。该系統100包括具有第一部分1丨2與第二部分114的容 為110。第一物質(或在此具體實施例中為一輸入物質)包含 5 在部分112中。 將第一物質提供至或接受程序12〇(其可為一分離的物 理結構、第一物質存在於第一部分112中的現象(於此之後 指為停留現象)或其組合)。因此,程序12〇以虛線表示指出 該程序120事實上可為一分離的結構、整合在容器ιι〇中或 1〇 一停留現象。該程序丨2〇會產生第二物質(或產物)(其包含 在容器110的第二部分114中)。該程序12〇可產生一種或多 種不同的副產物,諸如電力、熱、化學、機械或光。 在程序120操作期間,至少一定量的第一物質(在部分 112中)會消耗或經運輸,且至少有一部分會轉換成第二物 15質亚包含在第二部分114中。可推入額外的物質(無顯示)至 程序120。當第二物質產生時,其會被導人容器㈣的第二 部分114。阻隔物116會分隔開第一部分112與第二部分η* 。在程序12G操作開始時,部分114的體積可藉由操作阻隔 物116而最小化(即,可接近或到達零)。在操作期間,當第 2〇 一物質消耗且第二物質產生時,阻隔物116可移動(例如藉 由機械設備、膨脹等等),因此可在部分114中產生用於第 二物質之可獲得的體積。此外,除了阻隔物ii6(或例如與 2有多於二個艙室的容器連接)外,第一部分ii2與第二部 •分114可為在容器㈣中的個別容器(例如,可膨服及可收 15 ^26720 玖、發明說明 縮以調節體積變化)。 丨女在系統中’若無額外的物質導入程序120,則 〇的谷積可遍及程序120的操作皆等於輸入物質或輸 出物質之較大體積。 歧缝鮮二也具體實施例 10 在一般遵循圖式系統100之系統的具體實施例中,程 序120包合一電化學電池,諸如金屬空氣電池。在連續或 人轾序下進料至電池的第-物質包含該燃料,諸如含有 電解質的金屬糊狀物。在該金屬空氣電池操作後,該金屬 燃料會轉換成金屬氧化物而貯存在容器110的部分114中作 為第二物質。該金屬氧化物可以批次或連續的方式貯存。 該金屬空氣電池有用的副產物為電力,其可經控制而用於 外部使用(無顯示)。 右程序120包含-電化學電池(諸如金屬空氣電池),則 15谷裔U〇可為一種例如合適於膝上型電腦、蜂窩式電話、 動力工具、其它手握式裝置、小型運輸裝置(諸如小型摩 托車)等等之可攜帶式裝置。再者,容器11〇可與諸如田園 、儲水或儲氣筒系統整合。額外地,容器11〇可整合在就 地發電系統中。 』 4金屬氧化物可藉由向其施加電流而再充電。於可再 充電的系統中,在該材料再充電後(即,該材料仍然在其 中或返回至其各別的部分112或114),進一步放電乃經由 從部分114來的”第二物質”作為該金屬空氣電池的燃料, 其中從程序120形成的金屬氧化物可貯存在第一部分ιΐ2中 16 1226720 坎、發明說明l22672〇 玖, description of the invention (the description of the invention should state: the technical field to which the invention belongs, the prior art, the $, the embodiment, and a simple description of the drawings) [Technical field to which the invention belongs] Field of the invention The present invention is broadly related to a separation container system , Especially the installation of a separate container system used to transport and collect materials. Prior Art Background of the Invention Many systems require one or more input containers and one or more output containers for operation. For example, chemical procedures and electrochemical procedures typically have one or more input substances from respective containers and one or more output substances from respective containers. Chemical orderings (such as organic and inorganic chemical synthesis, power generation reactions, material synthesis, biological reactions, etc.) all require the use of one or more input materials that are negative and produce one or more output materials. For example, a biological response is usually a procedure in which an organism acts on an input substance and converts it into a different output substance. For example, wastewater treatment often uses aerobic and anaerobic bacteria to remove pollutants from waste water, which facilitates removal by precipitating waste species. The synthesis of many chemicals (including organic chemicals, inorganic chemicals, and different combinations thereof) often involves placing one or more substances in a reactor to form the desired output substance or product. In most cases, this will also form by-products. The system provides a container or other compartment 1 for each input substance, each product, and any by-products formed (if required). As a result, the total area space required to store the system may increase with different containers or other containers. Container 6 1226720 when the program has not yet started, invention description (such as output container) will be empty, or when the program is completed, the container for the input substance will be empty, so that the space is essentially wasted Dropped. One of the two systems will make the input substances in the container_generating part of the knife, and at least a part of the force can transport these substances to the reaction state. As the volume of the container decreases, the pressure of the substance leaving the container decreases. A power generation program usually converts one or more substances into a by-product, with the same% producing usable energy. Typical electrochemical systems include fuel cells, such as metal-air fuel cells, smoke-based fuel cells (such as fuel cells based on proton-exchange membranes), and solid oxide fuel cells. A variety of biological processes will additionally generate usable energy, and this linker's uses substances based on enzymes and glucose as fuel. Furthermore, many well-known battery systems essentially include fuel cells, so the supply of fuel will be limited. In particular, some batteries will use fluid anode electrolytes and catholytes. Metal-air fuel cells are based on the electrochemical conversion of a metal (such as zinc or lithium) into an oxide of that metal in the presence of air and a corrosive electrolyte. A variety of metal-air fuel cell systems are described, for example, in US Patent Application No. 09 / 578,798, asserted by Fads et al. (Co-reviewed and co-assigned) on May 12, 2000. 'Published as " Fuel Separation Vessel and Recycling System.' Solid fuel cells are typically based on hydrocarbon fuels, such as methanol and water. These fuels are consumed to produce electricity and water as a by-product. The fuel is typically provided as a mixture, and the by-product 1226720, the invention description can be discharged or stored. Storing the by-product in a separate container will be used in many applications (such as automotive applications) due to two restrictions. It is not practical. Many applications reintroduce by-products into the fuel mixture. However, this will dilute the fuel mixture and reduce the fuel efficiency of the fuel cell operation. 5 Another hydrogen-based fuel cell uses, for example, boron A hydrogen source of sodium hydride. This battery is disclosed, for example, in U.S. Pat. Patent case No. 5,8〇4,329 (publication name ,, ,, battery electric conversion) in. Here, sodium borohydride is usually mixed with water to release hydrogen that can be converted into useful energy, and produces sodium borooxide as a by-product. Another type of electrochemical device is a redox battery, in which a metal and a halide are respectively provided as an anode electrolyte and a cathode electrolyte, and react in the presence of an electrolyte to generate electricity. Traditionally, the anolyte and / or catholyte will be fed in succession, or will be operated in batches that are diluted throughout the entire electrochemical reaction process. Many of the previously mentioned systems and many others must use several cereals occupying individual volumes to separate different substances. Other systems that do not require a separate volume of process material will sacrifice efficiency because they reduce the concentration of the reactant material. ~ 20 The systems that have been described that can be used to solve the previously mentioned problems (especially metal air-rolled fuel cells) fully reveal the United States (co-reviewed and co-assigned) claimed on May 12, 2000 Patent application serial number 09 / 570,598, published as "Fuel Separation Container and Recycling System," the entire text of which is incorporated herein by reference X. Although the aforementioned patent claims claim-a kind covering ^ 1226720 玖, invention The description will be further advanced to the system and system described in this article. This announcement provides more specific embodiments that fall within the scope of these patent applications and other specific embodiments. [Summary of Contents 3 5 Summary of the Invention Other problems and deficiencies of the discussed and previously described techniques can be overcome or alleviated by several methods and devices of the present invention. The container provided by the present invention includes a part-assembled to contain a first substance and a container-equipped to contain a second substance. Part 2. The first substance is applied to the process and is usually used to make useful by-products. Furthermore, the second substance can be a useful by-product of the process or can be Different by-products of the procedure. 15 In general, the main advantage of m is that the first substance and the second substance can be stored in a volume that is preferably the same as the larger volume of the first substance or the second substance. For example, this In transportation systems, such as cars, airplanes, space ships, seaplanes or the like; satellite systems; buildings' personal devices; and other systems that are eager to reduce volume. This byproduct is useful in different implementations. 1 'can be produced, typically in the form of electricity. In a further embodiment, this useful by-product may be a thermal by-product, such as the temperature will increase or decrease. In another embodiment,' this is useful The by-product of can be a substance, such as a chemical substance. In other μ specific embodiments, the useful by-product can be mechanical energy. In the specific implementation of the step-up, the useful by-product can be light The above discussion and other features and advantages of the present invention will be known and understood by those skilled in the art 20 1226720, the description of the invention from the following detailed description and drawings. Single description. Figure 1 is a diagrammatic embodiment of a multi-chamber partition container system, which has an input substance portion and an output substance portion and is operatively linked to a 5 program. Figure 2 is a compound chamber including a processing step. Another specific embodiment of a partitioned container system; Figure 3 is a specific example of the structure of a double-chambered partitioned container system connected to a program; Figure 4 is the use of additional inputs (outside the dual-separated container system) ) A specific embodiment of a multi-chamber partition container system; 15 FIG. 5 is a specific embodiment of a multi-chamber partition container having a pair of input substance portions; FIG. 6 is a specific example of a multi-chamber partition container having a pair of output substance portions Embodiments; Figures 7A and 7B are examples of the structure of a double-chamber partition container system; Figures 8A and 8B are another implementation of the structure of a double-chamber partition container system; Figures 9A and 9B The figure shows an embodiment of the structure of a double-chamber container system; and Figures 10A and 10B show still another specific embodiment of the structure of a double-chamber container system. [Embodiment 3 10 1226720 The detailed description of the preferred embodiment of the invention is disclosed in this document. It does not disclose a container containing several substances (especially input substances and output substances). Among them, the name, input and output, , Usually related to related procedures. The container includes a first part that is configured to contain the first substance 5 ^ assembled to contain the second part of the second substance. The first-substance is applied to the private sequence and is usually used for production Useful by-products. Furthermore, the second substance can be a useful by-product, or it can be a different by-product of the process. «Haiyun sequence can include multiple operations. Generally speaking, one or more input substances can be Perform any required program steps to produce one or more rounds of shellfish. For example, the program can be used to convert a gas to a liquid or a condensate or a liquefier. In addition, the The procedure may be a transport step, such as a pump. In this method, the process may provide for the discharge of one or more fluids into one or more portions of the container. Furthermore, the procedure may be a separation A procedure, such as a crystallization operation or a distillation operation. In this method, the private sequence may have additional input and / or output witches or it may not be included in the container. The procedure may additionally include a compaction A device for pressing a solid or solid / liquid mixture to further manage the volume. The container has a total volume that can be contoured by one or more hard or elastic side walls. The container includes a container for containing a first The first part 20 of the substance and the second part for containing the second substance. The volume of the first, second, or both the first and second parts is variable, so that the first part and the second part can be installed in The total volume. In a specific embodiment, the volume of the first part and the volume of the second part can be changed in reverse. In another specific embodiment, the first part and the second part can be separated by a movable barrier 1226720 发明, description of the invention. The barrier can be moved by external force (such as human or mechanical force), and the hair can be controlled. The barrier can be activated by electricity, chemical light, etc. The structure can also be, for example, a suitable material bag, which can expand and contract, and is inert and chemically stable with the substance to be contained. Furthermore, the barrier itself may include a body or solid in a container. A procedure, such as allowing flow, to flow between parts. For example, electrolyte membranes, electrodes, permeable membranes, filters, or other structures or materials may be included in or on the barrier to convert a substance from one part to another The substance may be contained in other parts and may be in a different state. The container described in this article is composed of Sadeg M. Fanis, Tsepin Tsai, Wayne Yaya, and U.S. Patent Application Serial No. 09 / 570,798 claimed by Yuen-Ming Chang on May 12, 2000 (published as "Fuel Separation Vessel 15 and Recirculation System", the full text of which is for reference Ways are incorporated herein) similar to those described. Various typical container structures are illustrated diagrammatically in Figures 7-8 and 7B, 8A and 8B, 9A and 9B, and 10A and 10B. Figure 7A shows a container 7110 having a first portion 712 and a removable barrier 716 (e.g., an assist structure 722 (which may include 20 a screw, a linear drive, or the like) can be used to Mobile) separating the second part 714. Figure 7B shows a larger container 710 of the second section 714 (due to the movement of the barrier 716). Figure 8A shows a container 810 having a first portion 812 and a removable process barrier 824 (for example, an assist structure 822 can be used (which can be 12 1226720), the description of the invention includes a screw, a linear drive Or the like) to move) separate first part 814. Figure 8B shows the container 81 of the second portion 814 which is larger (due to the movement of the barrier 816). In container 81, a related procedure (the example of which is further described herein) can change the substance from a part 5 to a different substance or a different state, and it can also be provided as a barrier to maintain a separate partition container . Figure 9A shows a container 910 having a second portion 914 and a first portion 912. The volume of the first portion 912 can be determined by the space between the inner wall of the container 910 and the outer wall of the second portion 914. Figure 9B shows that the second part 10 914 has a larger volume (due to the substance) of the container 910, so the volume of the part 912 will decrease. 15 20 图 Figure 10A shows a container 1010 having a first portion 1012 and a second portion 1014, and their volume in the container 1010 has an opposite relationship. Fig. 10B shows that the volume of the first portion 1 () 14 is larger (due to the substance) in the container 1010, so the volume of the portion 1014 will be reduced. # The substances in the first and second parts may be the same or different. For example, in a system in which the fourth knife has the same substance as the second substance, the quality of the first part can be controlled to be supplied to one or more batch procedures such as a plant. Other sources (or the third part in the container) can provide a carrier material for use in this procedure. The carrier material will then be stored in the second part after the batch operation is completed. For the time being, Chuan Shi, combining these things :, in other procedures, the first substance and the second substance may be completely different. In addition, the second substance can be used to generate a second substance by using this procedure, for example, 13 1226720. Description of the invention For example, the first substance can be temporarily changed from the process of the second substance to the second substance. It should be noted that early independence (for example, electricity, temperature, pressure, temperature, pressure, temperature, pressure, temperature, pressure, temperature, pressure, temperature, pressure, temperature, pressure, temperature, pressure, etc.) may be temporarily changed to seven, or may be stored or imported with another substance through another part, or may be Modified for mixing and reacting from a source external to the container; or process and modifying in combination with another substance. The substances used in the different sections can be any desired substances and can be in different combinations. Xi Sheng, Xi Di, a substance can include any material that can be used in the complex structure of solid, & gas phase or a combination of these phases. Similarly, the twelfth substance may include a solid, liquid, gas phase, or a combination of phases of any material produced by the procedure. Therefore, the one-substance / second-substance combination of the guest brother is shown in Table 1: The first part of the composition-the second part of the composition gas-liquid-gas-solid-liquid-liquid-solid-solid-gas XXXX ------ XXX Gas-Liquid XXXXX Gas-Solid XXXXXX Liquid XXXXXX Liquid · Solid XXXXXXXXX Solid xx X --- Illustrative specific embodiments of the present invention will now be described with reference to the drawings. For clarity of description, similar features shown in the figures are indicated by similar reference numerals, and similar features shown in another specific embodiment are also indicated by similar reference numerals. 14 1226720 (ii) Description of the invention The chamber system 100 will now be described with reference to FIG. 1 of a schematic system 100 of a container incorporated herein. The system 100 includes a capacity 110 having a first portion 1 2 and a second portion 114. The first substance (or an input substance in this embodiment) is contained in section 112. The first substance is supplied to or received in the procedure 12 (which may be a separate physical structure, a phenomenon in which the first substance is present in the first portion 112 (hereinafter referred to as a retention phenomenon), or a combination thereof). Therefore, the program 120 is indicated by a dotted line to indicate that the program 120 may actually be a separate structure, integrated in a container, or a dwell phenomenon. This procedure produces a second substance (or product) (which is contained in the second portion 114 of the container 110). This procedure 120 can produce one or more different by-products such as electricity, heat, chemical, mechanical or light. During operation of procedure 120, at least a certain amount of the first substance (in section 112) will be consumed or transported, and at least a portion will be converted into a second substance. Subtilities are contained in the second section 114. Additional substances (not shown) can be pushed into Procedure 120. When the second substance is produced, it is guided to the second part 114 of the container. The barrier 116 separates the first portion 112 from the second portion η *. At the beginning of procedure 12G operation, the volume of portion 114 may be minimized (i.e., may be approached or reached zero) by operating barrier 116. During operation, when the 201st substance is consumed and the second substance is generated, the barrier 116 can be moved (for example, by mechanical equipment, expansion, etc.), so that the available for the second substance can be generated in section 114 volume of. In addition, in addition to the barrier ii6 (or, for example, connected to a container having more than two compartments), the first part ii2 and the second part 114 may be individual containers in a container (for example, expandable and Close 15 ^ 26720 玖, the description of the invention is reduced to adjust the volume change).丨 Women in the system 'If there are no additional substances introduced into the program 120, the valley of 0 can be used throughout the operation of the program 120 to be equal to the larger volume of the input substance or the output substance. The second embodiment is also a specific embodiment 10. In a specific embodiment of a system that generally follows the schematic system 100, the program 120 includes an electrochemical cell, such as a metal-air battery. The first substance fed to the battery in a continuous or human sequence contains the fuel, such as a metal paste containing an electrolyte. After the metal-air battery is operated, the metal fuel is converted into a metal oxide and stored in the portion 114 of the container 110 as a second substance. The metal oxide can be stored in a batch or continuous manner. A useful by-product of this metal-air battery is electricity, which can be controlled for external use (not shown). The right program 120 includes an electrochemical cell (such as a metal-air battery), and the 15 U can be a type suitable for, for example, a laptop computer, a cellular phone, a power tool, other hand-held devices, a small transport device (such as Scooters) and more. Furthermore, the container 110 may be integrated with a system such as a garden, water storage or gas tank. Additionally, the container 110 can be integrated into an in-situ power generation system. 4 Metal oxides can be recharged by applying a current to them. In a rechargeable system, after the material is recharged (ie, the material is still in it or returned to its respective section 112 or 114), further discharge is performed via the "second substance" from section 114 as The metal-air battery fuel, in which the metal oxide formed from the procedure 120 can be stored in the first part ιΐ2 16 1226720 bar, invention description
在般遵循圖式系統1 之系統的另一個具體實施例 I該程序120為-甲醇燃料電池。第一物質(於此實例中 5為甲醇或甲醇與水之組合)包含在第一部分112中。在該燃 料電池的操作期間(通常為連續操作),從該燃料電池來的 —出物(主要為水)則貯存在容器11 〇的第二部分114中作為 第二物質。在此方式中,該排出物(其典型地已受污染至 某種程度)乃經貯存而非排至環境中,同時可維持容積管 10理。再者,在燃料電池的操作期間,甲醇或甲醇與水的混 曰物會以固定的濃度存在於第一部分中。加入至該直接甲 醇燃料電池系統的額外反應物為氧(通常由空氣提供),且 °亥直接甲醇燃料系統有用的副產物為電力。 的第三個雷化學電池具體實施例 15 一般遵循圖式系統10〇的系統之額外具體實施例包括 一包含氧化還原燃料電池的程序120。從第一部分112提供 至電池的第一物質包含一陽極電解質(例如,鋅溶液在 程序120操作後(即,氧化還原電池之操作),該陽極電解質 會於電解質存在下與陰極電解質反應。在陽極電解質溶液 20中會有部分的鋅轉換成氧化鋅而存在於溶液中。該已消耗 的陽極電解質則貯存在第二部分114中作為第二物質。 在另一個氧化還原電池實例中,該陰極電解液可包含 該第一物質,諸如溴溶液。在該氧化還原電池操作後,溴 通常會轉換成溴離子並貯存在第二部分114中作為第二物 17 1226720 玖、發明說明 質。 敍魅衫池具體會施彻 :般遵循圖式系統⑽的系統之㈣另—個具體實施 +用包合生物電化學程序的程序120。典型的生物_ 電化學程序使用—可氧化的有機化合物作為燃料。亦典型 ^供不同的酵素以提高電化學反應。該可氧化的有機化 :—:包括碳水化合物(諸如„糖)。許多“需要純的 或貫質上純的葡萄糖ri异 的副產物。、化或防止產生不能轉換成能量 10 15 20 因此,在本文的生物-電化學電池系統中包含葡萄 2的物質可提供在第—部分112中。可使用多種機械裝置 來收集包含葡萄糖的物質(例如,草)。例如,平地機刮刀 或機械裝置可切割並進料該包含葡萄糖的物質,隨之將立 1 丁存在第一部分112中,且利用生物電化學程序120消耗 :至於從該生物-電化學程序12〇產生的廢棄物(或第一物質 热消耗的部分),則可貯存在容器11〇的第二部分⑴中。 Γ個使用此生物_電化學電池系統之有用的實例為-種能 祕(或切割)草的自身供給燃料裝置。當草消耗掉時,從 草來的葡萄糖可提供電能而使得該自身供給燃料震置可移 動並連續切割草,且可進一步控制任何所提供的系統電子 设傷。該廢棄物可貯存在部分114中作為第二物質。因為 燃料可貯存在料112中且可直接由料12();肖耗故該系 統可自身提供動力,甚至在無草或其它包含葡萄糖物質存 在的區域處。當部分114已填滿而餘留的部分112之體積比 18 1226720 玖、發明說明 想要的還少時,可將部分1H在混合物堆處倒空。 複至糸綺的第一程序且體實施例 在系統100的另-個具體實施例中,容器削的第一部 分112包含一可分解的物質,諸如生化物。於此,該程序 5 120可包括-停留現象或一個別或整合的有效程序諸如 加熱及/或加麼。該第二物質可包括甲院(―種生化物分解 的氣體副產物)。因此,此甲烧可收集在第二部分114(其在 容器110中為可膨脹的收集容器’或為容器11〇之一部分而 由阻隔物116與第一部分112分隔)中。例如,其可包含— 10單向閥(例如’需要一定的氣體壓力才可在-個方向上打 開)以允許甲院從第一部分進入第二部分,但是不會從第 二部分進入第一部分。 的第二程序具艚竇放1 15 20 系統100的另-個具體實施例包括油程序,諸如將原 油精鍊成不同的顧分及/或衍生物。例如,可將原油維持 在容器110的第-部分112中。程序12()可包括蒸館、裂解 或其組合。在程序後,該產物(例>,汽油)可貯存在第二 U12中。因此’當原油從第_部分112進行程序時第 一部分112的體積會減少。因此,當汽油產生且貯存在第 二部分114中時第二部分114的體積會增加。 的第三裎序具體 系統100的另一個具體實施例包括水程序,諸如用於 水供應或廢水純化之水純化。例如,可將欲純化的水維持 在容器110的第一部分112中。該程序12〇可包括一個或多 19 !226720 玖、發明說明 個水處理程序步冑。在程序I,該產物(例如,已純化或 已部分純化的水)可貯存在第二部分112中。因此,當水從 第-衫m進行程料,卜部分112㈣積會減^。^ 此*已純化或已部分純化的水產生且貯存在第二部分 5 U4中時,第二部分114的體積會增加。 複室糸統200 /參照現在至第2圖描述另一個併入本文之容器的圖式 系統。系統200包括一具有第一部分212及第二部分η*的 容器2H)。第-物f包含在部分212中,其可經控制地提供 1〇至程序220。程序220可產生第二物質而包含在第二部分 214中。該程序22〇可產生一種或多種不同的副產物,諸如 電力、熱、化學、機械、光或其組合。 在被導入第二部分214之前,第二物質(通常從程序 220來)會接受處理224。處理224可運輸第二物質、改變第 15二物質的某些性質(諸如化學或物理性質)或其組合。例如 ,處理224可包含一與泵連結的反應器。再者,處理224可 包含一物理處理,例如凝結該物質或分離該物質。 复室糸統200的第一個燃燒具體膏放例 在般遵循圖式系統200的系統之具體實施例中,程 20序220包含一燃燒引擎,該第一物質包含該壓縮引擎用之 燃料(諸如汽油),而有用的副產物為引擎的機械能量。當 汽油消耗時,二氧化碳及其它廢棄產物會排出引擎。這些 廢棄產物可提供至處理224(諸如凝結器),其通常會將體積 較大的廢棄氣體轉換成體積較小的氣體或甚至液體。然後 20 1226720 玖、發明說明 ’將此經處理的廢棄物會運輸至容器210的第二部分214。 在此方法中,燃燒引擎可在實質上零污染排放下操作 。全部或部分的廢棄物可貯存在第二部分214中(其可例如 為一袋子或其它收集裝置,而提供在一類似於習知的燃料 5槽之槽中)。當第二物質(或燃燒引擎廢棄物)增加時,第二 部分214的體積會增加,而相對地第一部分212的體積(其 裝配來容納該燃燒引擎用之燃料,諸如汽油)因此減少。 用來包含汽油及包含廢棄產物的燃燒系統可進一步配 備一與第二部分214連接的排空裝置。此排空裝置可經操 10作而移除該廢棄產物。再者,該排空裝置可與一指示器連 結,以指示出何時部分214為最大容量。該排空系統可以 手動或自動地操作。此排空系統可經由例如最接近燃料槽 輸入的埠而使用。在此方法中,容器21〇可使用燃料來裝 填212而填充,且同時或隨後藉由從部分214移除(例 15如,一種合適的而連結至習知的真空裝置之轉接器)廢棄 產物而倒空。 it系統的第二個燃煻具體實施例 再者,使用與燃燒引擎用的燃料槽相同之原理,可採 用一容器來提供燃料(作為輸入物質)至燃燒程序以產生熱 20副產物,而可藉此捕捉灰燼及其它燃燒廢棄物並將其貯存 作為輸出物質。Another embodiment of the system that generally follows the schematic system 1 is that the program 120 is a methanol fuel cell. A first substance (in this example 5 is methanol or a combination of methanol and water) is contained in the first portion 112. During operation of the fuel cell (usually continuous operation), the output (mainly water) from the fuel cell is stored in the second part 114 of the container 110 as the second substance. In this way, the effluent (which has typically been contaminated to some degree) is stored rather than discharged to the environment, while maintaining the volume tube. Furthermore, during operation of the fuel cell, methanol or a mixture of methanol and water will be present in the first part at a fixed concentration. The additional reactant added to the direct methanol fuel cell system is oxygen (usually provided by air), and a useful by-product of the direct methanol fuel system is electricity. The third embodiment of a thunder chemical cell 15 An additional embodiment of a system that generally follows the schematic system 100 includes a procedure 120 including a redox fuel cell. The first substance provided to the battery from the first portion 112 includes an anolyte (for example, a zinc solution after operation of the procedure 120 (ie, operation of a redox battery), the anolyte will react with the catholyte in the presence of the electrolyte. At the anode Part of the zinc in the electrolytic solution 20 is converted into zinc oxide and exists in the solution. The consumed anolyte is stored in the second part 114 as the second substance. In another example of a redox battery, the cathode is electrolyzed The liquid may contain the first substance, such as a bromine solution. After the operation of the redox battery, bromine is usually converted into bromide ions and stored in the second part 114 as the second substance 17 1226720. The invention is illustrative. The specific implementation of the pool will follow: generally follow the schematic system, the other of the system-a specific implementation + a program that incorporates a bioelectrochemical program 120. Typical biological _ electrochemical program uses-oxidizable organic compounds as fuel. It is also typical to provide different enzymes to improve the electrochemical reaction. The oxidizable organic :: includes carbohydrates (such as sugar . Many "needs a pure or qualitatively pure by-product of glucose ri.", Or to prevent the production of energy that cannot be converted into energy 10 15 20 Therefore, the substance containing grape 2 in the bio-electrochemical cell system provided herein can provide In Part 112, a variety of mechanical devices can be used to collect glucose-containing substances (for example, grass). For example, a grader blade or a mechanical device can cut and feed the glucose-containing substance, which will then be stored in the One part 112 is consumed by the bioelectrochemical process 120: As for the waste (or the heat consumed by the first substance) generated from the bio-electrochemical process 120, it can be stored in the second part of the container 110. Γ A useful example of using this bio-electrochemical battery system is a kind of self-fueling device that can secretly (or cut) grass. When the grass is consumed, the glucose from the grass can provide electricity and make itself Fueled shocks can move and continuously cut grass, and further control any provided system electrical injuries. The waste can be stored in section 114 as a second item Because the fuel can be stored in the material 112 and can be directly powered by the material 12 (); Xiao consumption, the system can power itself, even in the absence of grass or other areas containing glucose substances. When the portion 114 is filled and When the volume of the remaining portion 112 is smaller than 18 1226720 玖, the description of the invention is still less, the portion 1H can be emptied at the mixture stack. Return to the first procedure of the Qi Qi and the embodiment is in the other of the system 100- In a specific embodiment, the first portion 112 of the container contains a decomposable substance, such as a biochemical. Here, the procedure 5 120 may include a dwell phenomenon or a separate or integrated effective procedure such as heating and / or addition? The second substance may include a courtyard (—a gaseous byproduct of the decomposition of biochemicals). Therefore, this torrefaction can be collected in the second part 114 (which is an expandable collection container in the container 110 ′ or a container 11 (0), and is separated from the first portion 112 by a barrier 116). For example, it may contain -10 non-return valves (for example, ‘a certain gas pressure is required to open in one direction) to allow A hospital to enter from the first part to the second part, but not from the second part to the first part. Another specific embodiment of the second procedure of the sacral sinusoidal system 1 15 20 system 100 includes an oil procedure, such as refining a crude oil into different points and / or derivatives. For example, the crude oil may be maintained in the -part 112 of the vessel 110. Procedure 12 () may include steam cooking, cracking, or a combination thereof. After the procedure, the product (eg, gasoline) can be stored in the second U12. Therefore, the volume of the first portion 112 decreases when the crude oil is subjected to the procedure from the first portion 112. Therefore, the volume of the second portion 114 increases when gasoline is generated and stored in the second portion 114. Another specific embodiment of the third sequence system 100 includes a water program, such as water purification for water supply or wastewater purification. For example, the water to be purified may be maintained in the first portion 112 of the container 110. The program 120 may include one or more 19,226,720, invention description, and one water treatment program step. In Procedure I, the product (e.g., purified or partially purified water) may be stored in the second portion 112. Therefore, when the water is processed from the first shirt to the second shirt, the accumulation of the portion 112 will be reduced. ^ This * when the purified or partially purified water is produced and stored in the second part 5 U4, the volume of the second part 114 increases. Duplex System 200 / Referring to Figures 2 to 2, another schematic system of a container incorporated herein is described. The system 200 includes a container 2H) having a first portion 212 and a second portion n *). Item -f is included in section 212, which may provide 10 to program 220 in a controlled manner. The program 220 may generate a second substance and include it in the second part 214. This procedure 220 may produce one or more different by-products such as electricity, heat, chemistry, machinery, light, or a combination thereof. Prior to being introduced into the second section 214, the second substance (typically from the program 220) undergoes a process 224. The process 224 may transport a second substance, change certain properties of the 15th substance, such as chemical or physical properties, or a combination thereof. For example, the process 224 may include a reactor coupled to a pump. Furthermore, the process 224 may include a physical process, such as coagulating the material or separating the material. First Combustion Paste Example of Compound Chamber System 200 In a specific embodiment of a system that generally follows the schematic system 200, the procedure 20 sequence 220 includes a combustion engine, the first substance contains fuel for the compression engine ( Such as gasoline), and a useful byproduct is the mechanical energy of the engine. When gasoline is consumed, carbon dioxide and other waste products are emitted from the engine. These waste products can be provided to a process 224, such as a condenser, which typically converts larger volumes of waste gases into smaller volumes or even liquids. Then 20 1226720 发明, description of the invention ′ This treated waste is transported to the second part 214 of the container 210. In this method, the combustion engine can be operated with substantially zero pollution emissions. All or part of the waste may be stored in the second portion 214 (which may be provided, for example, as a bag or other collection device, in a tank similar to the conventional fuel 5 tank). As the second substance (or combustion engine waste) increases, the volume of the second portion 214 increases, while the volume of the first portion 212 (which is assembled to hold fuel for the combustion engine, such as gasoline) decreases accordingly. The combustion system for containing gasoline and waste products may be further equipped with an emptying device connected to the second section 214. The emptying device can be operated to remove the waste product. Furthermore, the evacuation device may be connected to an indicator to indicate when the portion 214 is at its maximum capacity. The evacuation system can be operated manually or automatically. This evacuation system can be used, for example, via the port closest to the fuel tank input. In this method, the container 21 can be filled with a fuel to fill 212, and at the same time or subsequently removed by removal from the portion 214 (eg, 15 such as a suitable adapter connected to a conventional vacuum device) The product is emptied. The second specific embodiment of the it system uses the same principle as the fuel tank for a combustion engine. A container can be used to provide fuel (as an input substance) to the combustion process to generate 20 by-products of heat. This captures ash and other burning waste and stores it as output material.
複室系統30D 現在參照至第3圖,系統300包含第一輸入用之第一容 為310A、各別包含在部分312A、3i4a中之第一輸出物質 21 1226720 玖、發明說明 ;及第二輸入用之第二容器310B、各別包含在部分312b 、3 14B中之第二輸出物質。在各別的電池中提供阻隔物 316A及316B。將第-與第二輸人物f二者提供至相同程 序320(其可以不同速率及/或間隔提供),而產生第一及第 5二輸出物質。當第一及第二輸出物質產生時,阻隔物316八 與316B因此移開(藉由流體力量、外部力量或其組合 電化學雷池具體會施例 在一般遵循圖式系統300之系統的具體實施例中,程 序320包含一氧化還原電池,其類似於上述描述的實例般 1〇操作。第-容H31GA包含陽極電解質的輸人及輸出,而第 一谷^、31〇B包含陰極電解質的輸入及輸出。將二流體流提 供至該氧化還原電池。 在該具有一個或多個複室容器的氧化還原電池中,該 電池總是以新鮮的材料操作。該電池可經控制,如此可在 15各別的階段接收陽極電解質及/或陰極電解質,或可連續 地釋放該陽極電解質及陰極電解質。就其本身而論,其可 適用於電子積分。 復^Αϋβ·〇〇的第二個__£_^學電池具艚實你例 在一般遵循圖式系統300之系統的另一個具體實施例 2〇中,程序320包含一釩氧化還原電池1。第一容器310Α包含 陽極電解質的輸入及輸出,而第二容器31〇Β包含陰極電解 質的輪入及輸出。將二流體流提供至該氧化還原電池。 該陰極電解質則根據下列半電池反應在電池32〇中反 應: 22 1226720 玖、發明說明 V5++e - ^V4+ 〇 該陽極電解質則根據下列半電池反應在電池32〇中反 應· V2+㈠ V3++e-。 5 例如’參見1998年3月17日謹原、電池發孱計劃狀況 ,C·曼尼克特斯(Menictas)等人,釩電池發展實驗室 Battery Development Laboratory),化學工程及工業化學學校 (School of Chemical Engineering and Industrial Chemistry),新 南威爾斯大學(The University of New South Wales),澳洲戡新 10 敦NSW2033郵政信箱 1 號(P〇 Box 1 Kensington NSW2033), (http - //www.ceic.unsw.edu.au/centere/vrb/eec94a.htm) ° 複室系統400 現在參照至第4圖,所提供的系統400包含一與程序 420連結的容器410。該容器410具有用來容納第一物質(其 15 通常輸入至程序420)的第一部分412,及包含第二物質(其 通常為程序420的輸出或排出)之第二部分414。額外地, 來源422提供一額外的輸入物質至程序420。從來源422來 之額外的輸入物質:可變成包含在第二部分414中的輸出 物質部分;可轉換成一部分有用的副產物(例如,電力、 20 熱、化學、機械或光);可分別地從程序320移除;或其組 合。 複室系統400的電化學電池具體實施例 在一般遵循圖式系統400之系統的具體實施例中,程 序420包含一以氫為基底的燃料電池。第一物質包含一氫 23 1226720 玖、發明說明 來源,其可於觸媒(其從來源422提供)存在下在反應後釋放 出。例如,此氫來源可為硼氫化鈉(NaBH4))。硼氫化鈉可 與水提供在溶液中作為第一物質。於觸媒存在下反應後, 會從硼氫化鈉釋放出氫氣並由燃料電池消耗以產生電能, 5且產生蝴酸納(NaB〇2)為副產物。此副產物(其可與水在溶 液中)包含在容器410的第二部分412中。 複室系統500 現在參照至第5圖描述使用連結至程序52〇的容器5 j 〇 之系統500。該容器510包含該具有第一物質的第一部分 10 512及該具有第二物質的第二部分513,此二者通常會提供 輸入物質至程序520。第一及第二輸入物質可以不同的速 率及間隔(其可彼此相同或不同)釋放至程序52〇。程序52〇 的輸出(第三物質)則提供至容器51〇之部分514。 複_室系統^0的第一程庠具體膏施例 15 一般遵循圖式系統5〇〇之系統的具體實施例為一化學 合成程序。第一反應物與第二反應物各別地包含第一物質 及第一物質。该程序520包含一反應器,且當第一與第二 反應物導入反應器時會形成一產物(或第三物質)。在此方 法中,可使用一容器以貯存多種反應物及單一產物。再者 20 ,该反應器可產生其它產物。此些其它產物可包含在容器 510的額外部分(無顯示)中或可經分別地貯存。再者,這些 額外的產物可為该系統分別包含之副產物。同樣地,該第 三物質可包含一有用的副產物,其隨後可從部分414放出 而用以進一步處理。 24 1226720 玖、發明說明 複塞的第二程序具體竇施例 使用系統500的化學合成之特定具體實施例包括水氣 轉移反應。在典型的水氣轉移反應中,一氧化碳加水反應 以產生二氧化碳與氫。因此,在系統500中,第一部分512 5 os氧化妷及第二部分513包含水。為了形成二氧化碳 與風,將第一部分512與第二部分513的成分進料至程序 52〇。程序520典型地在高溫下,且在一種或多種觸媒上。 然後,將所產生的二氧化碳與氫之混合物貯存在第三部分 514中。因此,當反應物(一氧化碳與水)形成產物(二氧化 1〇碳及氫)時,容器510的體積可保持定數,因為部分512及 513縮小而部分514膨脹。 的第三程序具體膏施你丨 在使用般圖式糸統5〇〇的系統之另一個具體實施例 中,該有用的副產物可為光,其中該程序520包含一混合 15該第一及第二物質用之透明混合室。第一及第二物質為一 些當其結合時會產生光的化學物質。例如,美國專利案號 4,859,369(‘‘‘369專利’’)(於此以參考方式併入本文)描述在 水性化學光配方中使用可溶於水的聚合物。在‘3的專利中 ,將4,4,-乙二醯雙[(三氟甲基颯基)亞胺基]亞乙基]_雙[心 2〇曱基嗎福啉三氟甲烷•磺酸鹽](指為METQ)的水溶液與聚( 乙烯咄咯烷酮)及螢光劑四审磺酸鹽混合。然後加入過氧 化氫水溶液,當其混合時能產生生物螢光材料。應注意的 是任何或全部的反應物可貯存在容器5〇〇中作為第一物質 及第二物質,或具有額外的用來容納多於二種反應物之部 25 1226720 玖、發明說明 分的類似容器。在容器510的部分514中貯存所產生的生物 榮純料(例如’如描述在第5圖)作為第三物質。為了提供 連續的光’可將反應物(例如,貯存作為第—及第二物質) 從容器(例如,第一及第二部分5i2、5i3)中釋放出。在此 5方法中,可使用包含全部或部分反應物及產物之單一容器 來提供連續的光源。 ϋ系复拉越 該發光系統容易合適地提供熱能,諸如當將化學反應 使用在不同的熱及冷包裹時,藉此化學物質可混合而提供 10熱或冷的溫度。再次,可實行連續程序,藉此,延長有用 的田1J產物產生時間可與安全及方便儲存反應產物共存在而 用來再循環或適合的處理。 複室糸統6 0 0 現在參照至第6圖描述系統6〇〇,其包括一可輸入至程 15序620的容器610,藉此,該程序62〇可輸出數種物質。該 輸入物質包含在部分612中,且該輸出物質包含在部分614 、615 中。 複·塞系統600的第一AUjf實施例 一般遵循圖式系統600的系統之具體實施例為一水電 20解程序。該輸入物質(欲經電解的水)包含在部分612中。該 水將接受一電解程序62〇,於此水將分裂成輸出物質氫及 氧’並分別包含在部分614、615中。 复-家系統600的體實施例 系統600的另一個具體實施例為一消電離程序,諸如 26 1226720 玖、發明說明 水的去鹽程序。將海水貯存在艙室612中。該反應器620可 為任何技藝所熟知的技術。例如,逆滲透、電滲析或一種 或多種流經貯存器的流體可包含該程序/反應器620。這些 程序可產生經濃縮的鹽水與新鮮的水。該經濃縮的水可收 5 集在驗耷615中而該新鮮的水可貯存在艙室614中。 的第三裎序具體竇施你丨 糸統6 0 0可應用至緊凑型驗-氯產生程序。鹽水可貯存 在艙室612中。該反應器620可包括一含有二個電極的電化 學電池。在一個電極上,產生氣氣並貯存在艙室615中。 10 而遺留在上方的液體為NaOH,其可貯存在艙室614中。 從描述於本文的系統來之主要利益為容積管理。通常 來說’整體儲存容器的容積可對輸入物質或輸出物質保有 最大的體積。 雖然已顯示及描述較佳的具體實施例,但是可沒有離 15 開本發明之精神及範圍而製得不同的改質及取代。因此, 需了解的是本發明已藉由闡明而描述,但並不限制於此。 【圖式簡單說明】 第1圖為一複室分隔容器系統之圖式具體實施例,其 具有一輸入物質部分及一輸出物質部分而操作地連結至— 20 程序; 第2圖為包含一處理步驟的複室分隔容器系統之另一 個具體實施例; 第3圖為一對與一程序連結的複室分隔容器系統結構 之具體實施例; 27 1226720 玫、發明說明 第4圖為使用額外的輸入(在該複室分隔容器系統外部) 之複至分隔容系統的具體實施例; 第5圖為具有一對輸入物質部分之複室分隔容器系統 的具體實施例; 5 第6圖為具有一對輸出物質部分之複室分隔容器系統 的具體實施例; 第7A及7B圖為一複室分隔容器系統結構的具體實施 例; 第8A及8B圖為一複室分隔容器系統結構之另一個具 10 體實施例; 第9A及9B圖為一複室分隔容器系統結構之進一步具 體實施例;及 第10 A及1 〇 B圖為一複室分隔容器系統結構之仍然另 一個具體實施例。 15 20 28 1226720 玖、發明說明 【圖式之主要元件代表符號表】 100···複室系統 510··· 容器 110…容器 512·· 第一部分 112···第一部分 513·· 第二部分 114···第二部分 514·. 部分 116…阻隔物 520·· 程序 120…程序 600·· 複室系統 200…複室系統 610·· 容器 210…容器 612·· 部分 212···第一部分 614·· 部分 214···第二部分 615·· 部分 220…程序 620- 程序 2 2 4…處理 710·· 容器 300…複室系統 712·· 第一部分 310A…第一容器 714·· 第二部分 312A…部分 716·· 阻隔物 314A…部分 722·· 結構 310B…第二容器 810·· 容器 312B…部分 812·· 第一部分 314B…部分 814·· 第二部分 3 16A···阻隔物 816·· 阻隔物 3 16B…阻隔物 822·· 結構 320…程序 824·· 製程阻隔物 400···複室系統 910·· 容器 410…容器 912·· 第一部分 412···第一部分 914·· 第二部分 414···第二部分 1010 ••容器 4 2 0…程序 1012 ••第一部分 422…來源 1014 ••第二部分 500…複室系統 29Multi-chamber system 30D Now referring to FIG. 3, the system 300 includes a first volume for the first input of 310A, a first output substance 21 1226720 included in sections 312A, 3i4a, a description of the invention, and a second input. The second container 310B used is the second output substance contained in each of the sections 312b, 31B. Barriers 316A and 316B are provided in the respective batteries. Both the first and second losing characters f are provided to the same procedure 320 (which may be provided at different rates and / or intervals), thereby generating the first and fifth output substances. When the first and second output substances are generated, the barriers 316 and 316B are therefore removed (by means of fluid force, external force, or a combination of electrochemical thunder tanks, the specific implementation will be implemented in a system that generally follows the schematic system 300 In the example, the program 320 includes a redox battery, which operates similarly to the example described above. The first volume H31GA includes the input and output of the anolyte, and the first valley ^, 31 ° B includes the input of the catholyte. And output. A two-fluid stream is provided to the redox battery. In the redox battery with one or more multi-compartment containers, the battery is always operated with fresh materials. The battery can be controlled so that Each stage receives the anolyte and / or catholyte, or it can continuously release the anolyte and catholyte. As such, it can be applied to electronic integration. ^ Aϋβ · 〇〇 the second __ In another specific embodiment 20 of the system generally following the diagram system 300, the procedure 320 includes a vanadium redox battery 1. The first container 310A Contains the input and output of the anolyte, and the second container 31OB contains the input and output of the catholyte. A two-fluid stream is provided to the redox battery. The catholyte reacts in the cell 32 according to the following half-cell reaction : 22 1226720 发明, description of the invention V5 ++ e-^ V4 + 〇 The anode electrolyte is reacted in the battery 32〇 according to the following half-cell reaction · V2 + ㈠ V3 ++ e-. 5 For example, see March 17, 1998 Jin Jinyuan, Battery Development Plan Status, C. Menictas, et al., Battery Development Laboratory, Vanadium Battery Development Laboratory, School of Chemical Engineering and Industrial Chemistry, New South Wales University of New South Wales, NSW2033, PO Box 1 Kensington NSW2033, (http-//www.ceic.unsw.edu.au/centere/vrb/ eec94a.htm) ° Multi-chamber system 400 Referring now to Figure 4, the system 400 is provided with a container 410 linked to a program 420. The container 410 has a first part 412 for containing a first substance (of which 15 is usually input to the program 420), and a second part 414 containing a second substance (which is usually the output or discharge of the program 420). Additionally, source 422 provides an additional input substance to process 420. Additional input material from source 422: may become part of the output material contained in the second part 414; may be converted into some useful by-products (eg, electricity, 20 heat, chemical, mechanical or light); may be separately Removed from program 320; or a combination thereof. Specific Embodiments of the Electrochemical Cells of the Double Chamber System 400 In a specific embodiment of a system generally following the schematic system 400, the procedure 420 includes a hydrogen-based fuel cell. The first substance contains hydrogen 23 1226720, a source of invention description, which can be released after the reaction in the presence of a catalyst (which is provided from source 422). For example, this source of hydrogen may be sodium borohydride (NaBH4)). Sodium borohydride can be provided in solution with water as the first substance. After the reaction in the presence of a catalyst, hydrogen will be released from sodium borohydride and consumed by the fuel cell to generate electricity, 5 and sodium naphthalate (NaB〇2) will be produced as a by-product. This by-product (which may be in solution with water) is contained in the second portion 412 of the container 410. Multi-compartment system 500 Now, referring to FIG. 5, a system 500 using a container 5jo linked to a program 52o will be described. The container 510 contains the first portion 10 512 with a first substance and the second portion 513 with a second substance, both of which typically provide an input substance to the procedure 520. The first and second input substances may be released to program 52 at different rates and intervals (which may be the same or different from each other). The output of the program 52 (the third substance) is provided to the portion 514 of the container 51. The first step of the compound chamber system ^ 0 concrete embodiment 15 The specific embodiment of the system generally following the schematic system 500 is a chemical synthesis procedure. The first reactant and the second reactant each include a first substance and a first substance. The process 520 includes a reactor, and a product (or a third substance) is formed when the first and second reactants are introduced into the reactor. In this method, a single container can be used to store multiple reactants and a single product. Furthermore, the reactor can produce other products. Such other products may be contained in additional portions (not shown) of the container 510 or may be stored separately. Furthermore, these additional products may be by-products included in the system, respectively. Likewise, the third substance may contain a useful by-product, which may then be released from the portion 414 for further processing. 24 1226720 (ii) Description of the invention Second procedure of embolization Specific sinus embodiment Specific embodiments of the chemical synthesis using the system 500 include a water vapor transfer reaction. In a typical water-gas shift reaction, carbon monoxide reacts with water to produce carbon dioxide and hydrogen. Therefore, in the system 500, the first portion 512 5 os osmium oxide and the second portion 513 contain water. In order to form carbon dioxide and wind, the components of the first portion 512 and the second portion 513 are fed to the procedure 52. Process 520 is typically at high temperature and on one or more catalysts. The resulting mixture of carbon dioxide and hydrogen is then stored in a third section 514. Therefore, when the reactants (carbon monoxide and water) form products (carbon dioxide and hydrogen dioxide), the volume of the container 510 can be kept constant, because the portions 512 and 513 shrink and the portions 514 expand. The third procedure specifically applies you. In another embodiment of the system using the general scheme system 500, the useful by-product may be light, where the procedure 520 includes a mixture of 15 the first and The second substance is used in a transparent mixing chamber. The first and second substances are chemical substances that generate light when they are combined. For example, U.S. Patent No. 4,859,369 (' ' 369 Patent ') (herein incorporated by reference) describes the use of water-soluble polymers in aqueous chemiluminescent formulations. In the '3 patent, 4,4, -ethylenedifluorene bis [(trifluoromethylfluorenyl) imino] ethylene]] bis [cardio 2oxomorpholine trifluoromethane • sulfonic acid Acid salt] (referred to as METQ) is mixed with poly (vinylpyrrolidone) and a fluorescein quaternary sulfonate. An aqueous hydrogen peroxide solution is then added to produce a bioluminescent material when mixed. It should be noted that any or all of the reactants may be stored in the container 500 as the first substance and the second substance, or have an additional portion for containing more than two kinds of reactants. 25 1226720 Similar to a container. The produced biological material (e.g., 'as described in Figure 5) is stored in the portion 514 of the container 510 as a third substance. To provide continuous light ' the reactants (e.g., stored as first and second substances) may be released from the container (e.g., first and second portions 5i2, 5i3). In this method, a single container containing all or part of the reactants and products can be used to provide a continuous light source. Actinic double-drawing This light-emitting system easily and suitably provides thermal energy, such as when chemical reactions are used in different heat and cold packages, whereby the chemicals can be mixed to provide a hot or cold temperature. Again, a continuous procedure can be implemented, whereby extended useful Tian 1J product production times can coexist with safe and convenient storage of reaction products for recycling or suitable processing. The system 600 is now described with reference to FIG. 6. The system 600 includes a container 610 that can be input to program 620, whereby the program 62 can output several substances. The input substance is contained in part 612, and the output substance is contained in parts 614, 615. The first AUjf embodiment of the complex plug system 600 A specific embodiment of the system generally following the diagram system 600 is a hydropower solution. The input substance (water to be electrolyzed) is contained in a portion 612. The water will undergo an electrolysis procedure 62, where it will be split into the output materials hydrogen and oxygen 'and contained in sections 614, 615, respectively. Embodiments of the complex system 600 Another specific embodiment of the system 600 is a deionization procedure, such as 26, 1226720, and invention description. Sea water is stored in the cabin 612. The reactor 620 can be any technique well known in the art. For example, reverse osmosis, electrodialysis, or one or more fluids flowing through the reservoir may comprise the process / reactor 620. These procedures produce concentrated brine and fresh water. The concentrated water can be collected in test 615 and the fresh water can be stored in compartment 614. The third sequence is specific to you, and the system 6 0 0 can be applied to the compact test-chlorine generation program. The brine may be stored in the compartment 612. The reactor 620 may include an electrochemical cell containing two electrodes. On one electrode, gas is generated and stored in compartment 615. 10 The remaining liquid above is NaOH, which can be stored in compartment 614. The main benefit from the system described in this article is volume management. Generally speaking, the volume of the 'monolithic storage container' can hold the largest volume for the input substance or the output substance. Although the preferred embodiments have been shown and described, different modifications and substitutions can be made without departing from the spirit and scope of the invention. Therefore, it should be understood that the present invention has been described by way of illustration, but is not limited thereto. [Brief description of the figure] Figure 1 is a specific embodiment of a schematic diagram of a double compartment container system, which has an input material part and an output material part and is operatively linked to the -20 program; Figure 2 contains a process Steps of another specific embodiment of the multiple-chamber partition container system; Figure 3 is a specific example of a pair of multiple-chamber partition container system structures connected to a program; 27 1226720 Description of the invention Figure 4 shows the use of additional inputs (External to the multi-partition container system) A specific example of a multi-partition container system; FIG. 5 is a specific example of a multi-partition container system having a pair of input substance portions; A specific embodiment of a multi-chamber partition container system for outputting material parts; FIGS. 7A and 7B are specific examples of the structure of a multi-chamber partition container system; Figures 9A and 9B are further specific examples of the structure of a double-chamber partition container system; and Figures 10A and 10B are still views of the structure of a double-chamber partition container system A particular embodiment. 15 20 28 1226720 发明 Description of the invention [List of symbols for the main components of the drawing] 100 ··· Double room system 510 ··· Container 110 ... Container 512 ·· Part 1 112 ··· Part 1 513 ·· Part 2 114 ... Second part 514 ... Part 116 ... Blocker 520 ... Procedure 120 ... Procedure 600 ... Double room system 200 ... Double room system 610 ... Container 210 ... Container 612 ... Part 212 ... Part 1 614 ... Part 214 ... Second Part 615 ... Part 220 ... Procedure 620-Procedure 2 2 4 ... Processing 710 ... Container 300 ... Complex Chamber System 712 ... First Part 310A ... First Container 714 ... Second Part 312A ... Part 716 ... Blocker 314A ... Part 722 ... Structure 310B ... Second container 810 ... Container 312B ... Part 812 ... First part 314B ... Part 814 ... Second part 3 16A ... Blocker 816 Blocker 3 16B ... Blocker 822 ... Structure 320 ... Procedure 824 ... Process Blocker 400 ... Recombination System 910 ... Container 410 ... Container 912 ... Part One 412 ... Part One 914 ... Part 414 ... Part Two Points 1010 •• Containers 4 2 0… Procedure 1012 •• Part 1 422… Source 1014 •• Part 2 500… Complex System 29