JPS62229665A - Electrolyte circulating type secondary cell - Google Patents

Electrolyte circulating type secondary cell

Info

Publication number
JPS62229665A
JPS62229665A JP61071850A JP7185086A JPS62229665A JP S62229665 A JPS62229665 A JP S62229665A JP 61071850 A JP61071850 A JP 61071850A JP 7185086 A JP7185086 A JP 7185086A JP S62229665 A JPS62229665 A JP S62229665A
Authority
JP
Japan
Prior art keywords
electrolyte
container
tank
bag
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61071850A
Other languages
Japanese (ja)
Inventor
Masayuki Hirose
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61071850A priority Critical patent/JPS62229665A/en
Publication of JPS62229665A publication Critical patent/JPS62229665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make the whole device compact and secure a stable charge and discharge, by furnishing two flexible bag-form containers i. an electrolyte tank, feeding the electrolyte from one side container to the electrode in a charge or discharge operation, and returning the electrolyte to the other side container after a reaction is over. CONSTITUTION:Flexible bag-form containers 11 and 12 with a variable capacity depending on the amount of the storing electrolyte stored in an electrolyte tank 13 are accommodated within the electrolyte tank 13. Between the inner wall of the tank 13 and the outer walls of the containers 11 and 12, an inert gas is filled. In a charging, the electrolyte in the container 11 is fed into the positive electrode cell 1a in the electrode 1, and after the electrode reaction with the positive electrode 3 is over, the electrolyte is returned to the tank 13 to be stored in the container 12. In the discharge operation, the electrolyte in the container 12 is fed to the cell 1a, and returned to the tank 13 to be stored in the container 11 after the electrode reaction is over. The same composition is applied at the negative electrode 4 side in the electrode 1. By feeding the electrolyte of a constant active substance density, a stable charge and discharge operation can be carried out, as well as making the whole device size compact.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、電解液タンクからの電解液を電極部内に流
通し、充放電する電解液流通型2次電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrolyte flow type secondary battery that is charged and discharged by flowing an electrolyte from an electrolyte tank into an electrode part.

[従来の技術] 特公昭59−13153号には、電解液流通型2次電池
として、4タンク式のレドックスフロー電池が開示され
ている。この4タンク式レドックスフロー電池の概略構
成図を第2図に示す。第2図において、電極部1内は、
隔膜2により正極セル1aと負極セル1bに分離されて
いる。正極セル1a内には正極3が設置されており、負
極セル1b内には負極4が設置されている。正極セル1
aには、電解液を貯えるためのタンク5およびタンク6
がそれぞれ接続されている。負極セル1bにも、同様に
電解液を貯えるためのタンク7およびタンク8がそれぞ
れ接続されている。正極セル1aとタンク5との間には
ポンプ9が取付けられており、同様に負極セル1bとタ
ンク7との間にもポンプ10が取付けられている。
[Prior Art] Japanese Patent Publication No. 59-13153 discloses a four-tank redox flow battery as an electrolyte flow type secondary battery. A schematic diagram of this four-tank redox flow battery is shown in FIG. 2. In FIG. 2, inside the electrode section 1,
It is separated by a diaphragm 2 into a positive electrode cell 1a and a negative electrode cell 1b. A positive electrode 3 is installed in the positive electrode cell 1a, and a negative electrode 4 is installed in the negative electrode cell 1b. Positive electrode cell 1
In a, there are tanks 5 and 6 for storing electrolyte.
are connected to each other. Similarly, a tank 7 and a tank 8 for storing electrolyte are connected to the negative electrode cell 1b, respectively. A pump 9 is installed between the positive electrode cell 1a and the tank 5, and a pump 10 is similarly installed between the negative electrode cell 1b and the tank 7.

充放電に際しては、正極セル1aには正極活物質を含む
電解液が供給され、負極セルlb内には負極活物質を含
む電解液が供給される。以下、各タンクの作用について
説明するが、この4タンク式レドックスフロー電池では
、正極側および負極側が同様に構成されており同様に作
用するので、正極側についてのみ説明する。
During charging and discharging, an electrolytic solution containing a positive electrode active material is supplied to the positive electrode cell 1a, and an electrolytic solution containing a negative electrode active material is supplied to the negative electrode cell 1b. The function of each tank will be described below. In this four-tank redox flow battery, the positive electrode side and the negative electrode side are configured in the same manner and operate in the same manner, so only the positive electrode side will be described.

充電に際し、タンク5内には電解液が貯えられており、
この電解液がポンプ9により正極セル1a内に供給され
る。該正極セルIa内に供給された電解液は、正極3と
の間で電極反応した後、タンク6に排出される。したが
って、充電の際には、タンク5内の電解液がタンク6に
移動する。
When charging, an electrolyte is stored in the tank 5,
This electrolytic solution is supplied into the positive electrode cell 1a by the pump 9. The electrolytic solution supplied into the positive electrode cell Ia undergoes an electrode reaction with the positive electrode 3, and then is discharged into the tank 6. Therefore, during charging, the electrolyte in tank 5 moves to tank 6.

放電に際しては、正極セル1a内の電解液がポンプ9に
よりタンク5内に排出されるため、タンク6内の電解液
が正極セル1a内に供給され、正極3と電極反応する。
During discharge, the electrolytic solution in the positive electrode cell 1a is discharged into the tank 5 by the pump 9, so that the electrolytic solution in the tank 6 is supplied into the positive electrode cell 1a and causes an electrode reaction with the positive electrode 3.

したがって、タンク6内の電解液が、タンク5内に移動
することによって、放電が行なわれる。
Therefore, the electrolytic solution in the tank 6 moves into the tank 5, thereby causing discharge.

以上説明したように、4タンク式のレドッスクフロー電
池では、充放電に際し、一方のタンクの電解液が他方の
タンクに移動するので、2タンク式のように電極部から
排出された電解液が再び同じタンク内に戻り電解液が混
じり合うことがない。
As explained above, in a 4-tank redox flow battery, the electrolyte in one tank moves to the other tank during charging and discharging, so the electrolyte discharged from the electrode part as in the 2-tank type returns to the same level. The electrolyte does not return to the tank and mix with each other.

したがって、4タンク式では、活物質濃度等の常に一定
した電解液が電極部内に供給されるので、2タンク式に
比べると、電池電圧が安定しており、エネルギ変換効率
が高いものとなる。
Therefore, in the four-tank type, an electrolytic solution with a constant concentration of active material and the like is supplied into the electrode section, so the battery voltage is more stable and the energy conversion efficiency is higher than in the two-tank type.

[発明が解決しようとする問題点] このように4タンク式のレドッスクフロー電池は、2タ
ンク式のものに比べ優れた特性を有しているが、電解液
の全量を貯えることのできるタンクを各電極に対して2
つ必要とする。したがって、2タンク式に比べると、装
置全体が大型化してしまうという問題点を有している。
[Problems to be solved by the invention] As described above, the 4-tank type redox flow battery has superior characteristics compared to the 2-tank type. However, each tank can store the entire amount of electrolyte. 2 for the electrode
Requires one. Therefore, compared to a two-tank type, there is a problem in that the entire device becomes larger.

また、それに伴って製造上のコストが高まるという問題
も生じる。
Additionally, there is also the problem of increased manufacturing costs.

それゆえに、この発明の目的は、従来の4タンク式と同
様に、活物質濃度等の一定した電解液が電極に供給され
て安定した充放電が行なわれ、しかも小型化された電解
液流通型2次電池を提供することにある。
Therefore, an object of the present invention is to provide an electrolyte flow-through type that is capable of supplying an electrolyte with a constant concentration of active material to the electrodes to perform stable charging and discharging, as well as the conventional four-tank type, and that is also miniaturized. The purpose is to provide secondary batteries.

[問題点を解決するための手段] この発明の電解液流通型2次電池では、電解液タンク内
に、貯えられる電解液の量に応じて容積が変化するよう
な可撓性を有した第1の袋状容器と第2の袋状容器とが
設けられている。第1の袋状容器および第2の袋状容器
は、それぞれ電極部に接続されている。充電の際には、
第1の袋状容器内の電解液が電極部に供給され、反応後
再び電解液タンクに戻り第2の袋状容器内に貯えられる
[Means for Solving the Problems] In the electrolyte flow type secondary battery of the present invention, the electrolyte tank includes a flexible tank whose volume changes depending on the amount of electrolyte stored. A first bag-like container and a second bag-like container are provided. The first bag-like container and the second bag-like container are each connected to an electrode section. When charging,
The electrolytic solution in the first bag-like container is supplied to the electrode section, and after reaction returns to the electrolytic solution tank and stored in the second bag-like container.

これとは逆に、放電の際には、第2の袋状容器内の電解
液が電極部に供給され、反応後再び電解液タンクに戻り
@1の袋状容器内に貯えられる。
On the contrary, during discharge, the electrolytic solution in the second bag-like container is supplied to the electrode section, and after the reaction returns to the electrolytic solution tank and stored in the bag-like container @1.

[作用] この発明の電解液流通型2次電池では、充電に際し第1
の袋状容器内の電解液が第2の袋状容器内に移動する。
[Function] In the electrolyte flow type secondary battery of the present invention, the first
The electrolyte in the bag-like container moves into the second bag-like container.

第1の袋状容器および第2の袋状容器は、それぞれ貯え
られる電解液の量に応じて容積が変化するような可撓性
を有している。したがって、充電に際し第1の袋状容器
は電解液が出ていくため徐々に小さくなり、一方第2の
袋状容器は電解液が流入するため徐々に大きくなる。し
かしながら、全体としての電解液の量は変化しないので
、第1の袋状容器と第2の袋状容器を合わせた大きさは
常に一定である。
The first bag-like container and the second bag-like container each have flexibility such that their volumes change depending on the amount of electrolyte stored therein. Therefore, during charging, the first bag-like container gradually becomes smaller as the electrolyte flows out, while the second bag-like container gradually becomes larger as the electrolyte flows in. However, since the overall amount of electrolyte does not change, the combined size of the first bag-like container and the second bag-like container is always constant.

放電に際しては、これとは逆に、第2の袋状容器内の電
解液が第1の袋状容器に移動する。
On the contrary, during discharge, the electrolyte in the second bag-like container moves to the first bag-like container.

したがって、この発明の電解液流通型2次電池において
も、従来の4タンク式と同様に、活物質濃度などが常に
一定の電解液が電極部内に供給される。しかも、第1の
袋状容器と第2の袋状容器を合わせた大きさが常に一定
であるため、それらを収納する電解液タンクは、電解液
の全量を貯えることのできる大きさでよい。
Therefore, in the electrolyte flow type secondary battery of the present invention, as in the conventional four-tank type, an electrolyte having a constant concentration of active material is supplied into the electrode portion. Moreover, since the combined size of the first bag-like container and the second bag-like container is always constant, the electrolyte tank that accommodates them may be large enough to store the entire amount of electrolyte.

[実施例] 第1図は、この発明の一実施例を示す概略構成図である
。なお、第1図は正極側についてのみ示すが、負極側も
同様に構成されている。第1図において、電解液タンク
13内には、第1の袋状容器11と第2の袋状容器12
が収納されている。
[Embodiment] FIG. 1 is a schematic diagram showing an embodiment of the present invention. Although FIG. 1 shows only the positive electrode side, the negative electrode side is also constructed in the same manner. In FIG. 1, inside the electrolyte tank 13, there are a first bag-like container 11 and a second bag-like container 12.
is stored.

それぞれの袋状容器は、たとえばゴム織布のような材料
でできており、貯えられる電解液の量に応じて容積が変
化するような可撓性を有している。
Each bag-like container is made of a material such as rubber woven fabric, and has flexibility such that its volume changes depending on the amount of electrolyte stored therein.

第1図の状態においては、第1の袋状容器11および第
2の袋状容器12ともに電解液が貯えられている。電解
液タンク13の内壁と、第1の袋状容器11および第2
の袋状容器12の外壁との間には、たとえば窒素ガスな
どのような不活性ガスが充填されている。第1の袋状容
器11には、配管21が接続されており、該配管21は
、配管23と配管22に分岐されている。該配管22は
ポンプ14を介して配管24と接続しており、該配管2
2の途中にはバルブ31が取付けられている。
In the state shown in FIG. 1, electrolyte is stored in both the first bag-like container 11 and the second bag-like container 12. The inner wall of the electrolyte tank 13, the first bag-like container 11 and the second
An inert gas such as nitrogen gas is filled between the bag-like container 12 and the outer wall thereof. A pipe 21 is connected to the first bag-shaped container 11, and the pipe 21 is branched into a pipe 23 and a pipe 22. The pipe 22 is connected to a pipe 24 via a pump 14, and the pipe 22 is connected to a pipe 24 via a pump 14.
A valve 31 is installed in the middle of 2.

配管24は、電極部1の正極セル1a内に電解液を供給
するため、正極セルlaに接続している。
The pipe 24 is connected to the positive electrode cell la in order to supply electrolyte into the positive electrode cell la of the electrode section 1.

また正極セル1aには、電解液を排出するための配管2
8が接続されている。配管28の途中には、系内で発生
したガスを蓄積するためのガス蓄積タンク29が取付け
られており、該ガス蓄積タンク29の上方にはバルブ3
6が設けられている。また、配管28は、上述した配管
21から分岐された配管23とバルブ33を介して接続
されている。
In addition, the positive electrode cell 1a has a pipe 2 for discharging the electrolyte.
8 are connected. A gas accumulation tank 29 for accumulating gas generated within the system is installed in the middle of the piping 28, and a valve 3 is installed above the gas accumulation tank 29.
6 is provided. Further, the pipe 28 is connected to a pipe 23 branched from the pipe 21 described above via a valve 33.

また、配管28はバルブ34を介して配管27に接続し
ており、該配管27は配管25および配管26に分岐さ
れている。配管25は電解液タンク13内の第2の袋状
容器12と接続している。また、一方の配管26はバル
ブ32を介して上述した配管22に接続している。
Further, the pipe 28 is connected to a pipe 27 via a valve 34, and the pipe 27 is branched into a pipe 25 and a pipe 26. Piping 25 is connected to second bag-shaped container 12 within electrolyte tank 13 . Further, one pipe 26 is connected to the above-mentioned pipe 22 via a valve 32.

電解液としては塩酸等が用いられ、正極活物質としては
FeCQ、2等が、負極活物質としてはCrC廷1等が
用いられる。
Hydrochloric acid or the like is used as the electrolytic solution, FeCQ, 2 or the like is used as the positive electrode active material, and CrC 1 or the like is used as the negative electrode active material.

充電操作に際しては、バルブ31およびバルブ34が開
状態となり、バルブ32およびバルブ33が閉状態とな
る。第1の袋状容器11内の電解液は、ポンプ14によ
り、配管21、配管22および配管24を通り電極部1
内の正極セル1a内に供給される。このとき、バルブ3
3は閉状態であるため配管23内には流れない。電極反
応後、電解液は配管28から排出され、バルブ34、配
管27および配管25を通り、第2の袋状容器12内に
贈られる。このとき、バルブ33およびバルブ32は閉
状態であるため、配管23および配管26内には電解液
が流れない。このようにして、第1の袋状容器11内の
電解液が、正極セル1a内を通り第2の袋状容器12内
に移動する。
During the charging operation, valve 31 and valve 34 are in an open state, and valve 32 and valve 33 are in a closed state. The electrolytic solution in the first bag-shaped container 11 is passed through the pipes 21, 22, and 24 to the electrode part 1 by the pump 14.
It is supplied to the positive electrode cell 1a inside. At this time, valve 3
No. 3 is in a closed state, so it does not flow into the pipe 23. After the electrode reaction, the electrolytic solution is discharged from the pipe 28, passes through the valve 34, the pipe 27, and the pipe 25, and is delivered into the second bag-like container 12. At this time, since the valves 33 and 32 are closed, the electrolyte does not flow into the pipes 23 and 26. In this way, the electrolytic solution in the first bag-like container 11 moves into the second bag-like container 12 through the inside of the positive electrode cell 1a.

放電操作に際しては、充電の際とは逆に、バルブ31お
よびバルブ34が閉状態となり、バルブ32およびバル
ブ33が開状態となる。第2の袋状容器12内の電解液
は、ポンプ14により、配管25、配管26、バルブ3
2および配管24を通り、電極部1の正極セルla内に
供給される。
During the discharging operation, the valves 31 and 34 are closed, and the valves 32 and 33 are opened, contrary to the charging operation. The electrolyte in the second bag-like container 12 is pumped through the pipe 25, the pipe 26, and the valve 3 by the pump 14.
2 and piping 24, and is supplied into the positive electrode cell la of the electrode section 1.

このときバルブ31は閉状態であるため、第2の袋状容
器12の電解液は配管21に流入せず、また第1の袋状
容器11内の電解液が配管21に流れ出ることもない。
At this time, since the valve 31 is in the closed state, the electrolyte in the second bag-like container 12 does not flow into the pipe 21, and the electrolyte in the first bag-like container 11 does not flow out into the pipe 21.

正極セルla内に供給された電解液は、正極3との電極
反応後、配管28から排出される。排出された電解液は
配管23、バルブ33および配管21を通り、第1の袋
状容器11内に送り込まれる。このとき、バルブ34は
閉状態であるため、配管27内に電解液が流れ出ること
はない。このようにして、放電操作に際し、第2の袋状
容器12内の電解液が、正極セル1a内に供給され第1
の袋状容器11内に移動する。
The electrolytic solution supplied into the positive electrode cell la is discharged from the pipe 28 after an electrode reaction with the positive electrode 3. The discharged electrolyte passes through the piping 23, the valve 33, and the piping 21, and is sent into the first bag-shaped container 11. At this time, since the valve 34 is in a closed state, the electrolytic solution does not flow out into the pipe 27. In this way, during the discharge operation, the electrolytic solution in the second bag-like container 12 is supplied into the positive electrode cell 1a and the first
into the bag-like container 11.

以上の充放電操作において、副反応により電極部1内で
ガスが発生すると、このガスは配管28を通り、ガス蓄
積タンク29内に貯えられる。このガスは、バルブ36
を開くことにより外部へ排出される。
In the above charging/discharging operation, when gas is generated within the electrode section 1 due to a side reaction, this gas passes through the pipe 28 and is stored in the gas storage tank 29. This gas is transferred to valve 36
When opened, it is discharged to the outside.

この実施例のレドックスフロー電池において、電極部に
供給される電解液と電極部から排出される電解液は、と
もに電解液タンク内に貯えられているが、それぞれ第1
の袋状容器と第2の袋状容器に分離して貯えられている
ため、互いに混合することはない。したがって、従来の
4タンク式レドックスフロー電池と同様に、充放電操作
に際して活物質濃度などが常に一定した電解液を供給す
ることができる。
In the redox flow battery of this example, the electrolytic solution supplied to the electrode section and the electrolytic solution discharged from the electrode section are both stored in the electrolytic solution tank.
Since they are stored separately in the first bag-like container and the second bag-like container, they do not mix with each other. Therefore, like the conventional four-tank redox flow battery, it is possible to supply an electrolytic solution whose active material concentration is always constant during charging and discharging operations.

また、第1の袋状容器と第2の袋状容器は、一方が大き
くなると他方が小さくなるという関係にあるため、両者
を合わせた大きさは常に一定であり、電解液の全量を収
容できる大きさの電解液タンク内に収納され得るもので
ある。したがって、従来の4タンク式のものに比べ、タ
ンクの大きさをおよそ半分にすることができ、小型化を
図ることができる。
Furthermore, since the first bag-like container and the second bag-like container are in a relationship such that when one becomes larger, the other becomes smaller, the combined size of both is always constant and can accommodate the entire amount of electrolyte. It can be housed in a large electrolyte tank. Therefore, compared to the conventional four-tank type, the size of the tank can be approximately halved, and miniaturization can be achieved.

また、第1の袋状容器および第2の袋状容器は、貯えら
れる電解液の量に応じてその容量が変化するものである
ため、それぞれの容器内には空間部を設ける必要がなく
、電解液を充満することができる。また、この実施例の
ように、ガス蓄積タンクを適当な場所に設けることによ
り、副反応により生じたガスをこのガス蓄積タンクに排
出し、電解液流通系全体を電解液で充満することが可能
になる。
Furthermore, since the capacity of the first bag-like container and the second bag-like container changes depending on the amount of electrolyte stored therein, there is no need to provide a space inside each container. Can be filled with electrolyte. In addition, by providing a gas storage tank at an appropriate location as in this example, it is possible to discharge the gas generated by side reactions into this gas storage tank and fill the entire electrolyte distribution system with electrolyte. become.

さらに、温度の変化によって電解液の体積が変化した場
合においても、第1の袋状容器および第2の袋状容器は
それぞれ可撓性を有しているため、電解液の体積変化に
応じてそれぞれ大きさが増減する。したがって、配管に
かかる圧力を取り除くことができる。
Furthermore, even if the volume of the electrolyte changes due to a change in temperature, the first bag-like container and the second bag-like container each have flexibility, so that they can be adjusted according to the change in the volume of the electrolyte. The size increases and decreases respectively. Therefore, the pressure applied to the piping can be removed.

第1図において、電極部は簡略化して図示されているが
、電極部としては、正極板、負極板、隔膜および双極板
等の積層によって構成された多段接続型のものも、この
発明に用いることができることは言うまでもない。
Although the electrode part is shown in a simplified manner in FIG. 1, a multi-stage connection type electrode part composed of a stack of positive electrode plates, negative electrode plates, diaphragms, bipolar plates, etc. can also be used in the present invention. Needless to say, it can be done.

第1の袋状容器および第2の袋状容器の材質としては、
ゴム織布を例示したが、貯えられる電解液の量に応じて
容積が変化するような可撓性を示す材質であれば特に限
定されることはない。
The materials of the first bag-like container and the second bag-like container are as follows:
Although rubber woven fabric is used as an example, the material is not particularly limited as long as it is flexible enough to change its volume depending on the amount of electrolyte stored.

また、電解液として、正極活物質および負極活物質の双
方を含む電解液を正極液および負極液に用いる1液型の
レドックスフロー電池にもこの発明は応用され得る。
Further, the present invention can be applied to a one-component redox flow battery that uses an electrolyte containing both a positive electrode active material and a negative electrode active material as the positive electrode solution and the negative electrode solution.

また、この発明の電解液流通型2次電池では、第1の袋
状容器および第2の袋状容器内に電解液が満たされてい
ない状態において、電解液を注入する際、空気を混入せ
ずに注入することができる。
Further, in the electrolyte flow type secondary battery of the present invention, when the electrolyte is injected in a state where the first bag-like container and the second bag-like container are not filled with the electrolyte, air is not mixed in. Can be injected without

すなわち、従来電解液タンク内に電解液を注入するに際
し、空気の混入を避けるため、電解液タンク内を真空状
態にしたり、電解液を注入後真空にして不活性ガスを注
入したりあるいは不活性ガスを注入して空気を追い出し
ながら電解液を注入したりしていた。しかしながら、こ
れらの方法では完全に空気を排除することは難しく、ま
た真空状態にする必要性があるなど構造上問題があった
In other words, conventionally, when injecting electrolyte into an electrolyte tank, in order to avoid air intrusion, the inside of the electrolyte tank is kept in a vacuum state, or after the electrolyte is injected, it is evacuated and an inert gas is injected. Gas was injected to expel the air while electrolyte was injected. However, with these methods, it is difficult to completely exclude air, and there are structural problems such as the need to create a vacuum state.

これに対し、この発明の電解液流通型2次電池では、電
解液が貯えられる第1の袋状容器および第2の袋状容器
がともに電解液の量に応じて容積が変化するような可撓
性を有しているため、これらの容器内の空気を完全に排
除して容器内の容積をゼロにした後、電解液を注入する
ことにより、空気を混入せずに電解液を注入することが
できる。
In contrast, in the electrolyte flow type secondary battery of the present invention, both the first bag-like container and the second bag-like container in which the electrolyte is stored have a capacity that changes depending on the amount of the electrolyte. Due to their flexibility, the electrolyte can be injected without mixing air by completely eliminating the air inside these containers to reduce the volume inside the container to zero, and then injecting the electrolyte. be able to.

[発明の効果] 以上説明したように、この発明の電解液流通型2次電池
は、従来の4タンク式のものに比べ、その電解液タンク
の大きさをほぼ半分の大きさにすることができ、装置全
体を小型化することができる。
[Effects of the Invention] As explained above, the electrolyte flow type secondary battery of the present invention can reduce the size of the electrolyte tank by almost half compared to the conventional four-tank type battery. This makes it possible to downsize the entire device.

また、活物質濃度の一定した電解液を供給して安定した
充放電を行なうことができ、電池電圧を一定にできるた
め、電池入出力制御が容易なものになる。
In addition, stable charging and discharging can be performed by supplying an electrolytic solution with a constant concentration of active material, and the battery voltage can be kept constant, which facilitates battery input/output control.

さらに、実施例において説明したように、配管系内のガ
スを完全に遮断することができる。また、温度変化によ
り電解液の体積が変化しても、配管系に圧力のかかるこ
とを防止することができる。
Furthermore, as explained in the embodiment, gas within the piping system can be completely shut off. Further, even if the volume of the electrolytic solution changes due to temperature changes, it is possible to prevent pressure from being applied to the piping system.

なお、実施例においてはレドックスフロー電池を例示し
て説明したが、この発明は電解液を流通させて充放電す
る2次電池であればその他のものにも応用され得るもの
である。
Although the embodiments have been described using a redox flow battery as an example, the present invention can also be applied to other secondary batteries that are charged and discharged by flowing an electrolyte.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す概略構成図である
。第2図は、従来の4タンク式のレドックスフロー電池
を示す概略構成図である。 図において、1は電極部、11は第1の袋状容器、12
は第2の袋状容器、13は電解液タンクを示す。 第2図
FIG. 1 is a schematic diagram showing an embodiment of the present invention. FIG. 2 is a schematic configuration diagram showing a conventional four-tank redox flow battery. In the figure, 1 is an electrode part, 11 is a first bag-shaped container, and 12
indicates a second bag-like container, and 13 indicates an electrolyte tank. Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)電解液タンクからの電解液を電極部に供給し、該
電極部での反応後排出される電解液を再び前記電解液タ
ンクに戻すことにより、電極部内に電解液を流通させ充
放電する電解液流通型2次電池であって、 前記電解液タンク内には、貯えられる電解液の量に応じ
て容積が変化するような可撓性を有した第1の袋状容器
と第2の袋状容器が収納されており、 充電の際には、第1の袋状容器内の電解液が電極部に供
給され、反応後再び電解液タンクに戻り第2の袋状容器
内に貯えられ、 放電の際には、第2の袋状容器内の電解液が電極部に供
給され、反応後再び電解液タンクに戻り、第1の袋状容
器内に貯えられることを特徴とする、電解液流通型2次
電池。
(1) By supplying the electrolytic solution from the electrolytic solution tank to the electrode section and returning the electrolytic solution discharged after the reaction at the electrode section to the electrolytic solution tank, the electrolytic solution is circulated within the electrode section for charging and discharging. An electrolyte flow type secondary battery, wherein the electrolyte tank includes a first bag-shaped container having flexibility whose volume changes depending on the amount of electrolyte stored therein, and a second bag-shaped container having flexibility. When charging, the electrolyte in the first bag-like container is supplied to the electrode section, and after the reaction returns to the electrolyte tank and is stored in the second bag-like container. When discharging, the electrolyte in the second bag-like container is supplied to the electrode part, and after the reaction returns to the electrolyte tank and is stored in the first bag-like container. Electrolyte flow type secondary battery.
(2)前記電解液タンク内の内壁と前記第1の袋状容器
および第2の袋状容器の外壁との間には、不活性ガスが
充填されていることを特徴とする、特許請求の範囲第1
項記載の電解液流通型2次電池。
(2) An inert gas is filled between the inner wall of the electrolyte tank and the outer walls of the first bag-like container and the second bag-like container. Range 1
Electrolyte flow type secondary battery as described in .
(3)前記不活性ガスが窒素ガスであることを特徴とす
る、特許請求の範囲第2項記載の電解液流通型2次電池
(3) The electrolyte flow type secondary battery according to claim 2, wherein the inert gas is nitrogen gas.
(4)電解液流通型2次電池がレドックスフロー電池で
あることを特徴とする、特許請求の範囲第1、2または
3項記載の電解液流通型2次電池。
(4) The electrolyte flow type secondary battery according to claim 1, 2 or 3, wherein the electrolyte flow type secondary battery is a redox flow battery.
JP61071850A 1986-03-29 1986-03-29 Electrolyte circulating type secondary cell Pending JPS62229665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071850A JPS62229665A (en) 1986-03-29 1986-03-29 Electrolyte circulating type secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071850A JPS62229665A (en) 1986-03-29 1986-03-29 Electrolyte circulating type secondary cell

Publications (1)

Publication Number Publication Date
JPS62229665A true JPS62229665A (en) 1987-10-08

Family

ID=13472424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071850A Pending JPS62229665A (en) 1986-03-29 1986-03-29 Electrolyte circulating type secondary cell

Country Status (1)

Country Link
JP (1) JPS62229665A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227666A (en) * 1988-07-18 1990-01-30 Sumitomo Electric Ind Ltd Redox flow type secondary battery
EP1049184A1 (en) * 1999-04-28 2000-11-02 Sumitomo Electric Industries, Ltd. Electrolyte tank and manufacturing method thereof
WO2001089012A2 (en) * 2000-05-12 2001-11-22 Reveo, Inc. Fuel containment and recycling system for electric energy conversion devices
WO2002050937A1 (en) * 2000-12-06 2002-06-27 Sumitomo Electric Industries, Ltd. Pressure fluctuation prevention tank structure, electrolyte circulation type secondary battery, and redox flow type secondary battery
EP1306917A2 (en) * 2001-10-29 2003-05-02 Hewlett-Packard Company Fuel supply for a fuel cell
WO2003037512A3 (en) * 2001-10-29 2005-06-02 Reveo Inc Multiple chamber containment system
JP2007311209A (en) * 2006-05-18 2007-11-29 Sumitomo Electric Ind Ltd Redox flow battery
JP2010153394A (en) * 2010-03-26 2010-07-08 Casio Computer Co Ltd Power supply system
WO2011072339A1 (en) * 2009-12-18 2011-06-23 Redflow Pty Ltd Flowing electrolyte reservoir system
KR20120028302A (en) * 2009-04-06 2012-03-22 24엠 테크놀러지스 인코퍼레이티드 Fuel system using redox flow battery
WO2020175340A1 (en) * 2019-02-27 2020-09-03 住友電気工業株式会社 Redox flow battery
US11342567B2 (en) 2008-06-12 2022-05-24 Massachusetts Institute Of Technology High energy density redox flow device
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227666A (en) * 1988-07-18 1990-01-30 Sumitomo Electric Ind Ltd Redox flow type secondary battery
US6761945B1 (en) 1999-04-28 2004-07-13 Sumitomo Electric Industries, Ltd. Electrolyte tank and manufacturing method thereof
EP1049184A1 (en) * 1999-04-28 2000-11-02 Sumitomo Electric Industries, Ltd. Electrolyte tank and manufacturing method thereof
WO2001089012A3 (en) * 2000-05-12 2002-08-15 Reveo Inc Fuel containment and recycling system for electric energy conversion devices
WO2001089012A2 (en) * 2000-05-12 2001-11-22 Reveo, Inc. Fuel containment and recycling system for electric energy conversion devices
US7226676B2 (en) 2000-05-12 2007-06-05 Reveo, Inc. Fuel containment and recycling system
US7220515B2 (en) 2000-12-06 2007-05-22 Sumitomo Electric Industries, Ltd. Pressure fluctuation prevention tank structure, electrolyte circulation type secondary battery, and redox flow type secondary battery
WO2002050937A1 (en) * 2000-12-06 2002-06-27 Sumitomo Electric Industries, Ltd. Pressure fluctuation prevention tank structure, electrolyte circulation type secondary battery, and redox flow type secondary battery
WO2003037512A3 (en) * 2001-10-29 2005-06-02 Reveo Inc Multiple chamber containment system
EP1306917A3 (en) * 2001-10-29 2005-11-16 Hewlett-Packard Company Fuel supply for a fuel cell
EP1306917A2 (en) * 2001-10-29 2003-05-02 Hewlett-Packard Company Fuel supply for a fuel cell
JP2007311209A (en) * 2006-05-18 2007-11-29 Sumitomo Electric Ind Ltd Redox flow battery
US11342567B2 (en) 2008-06-12 2022-05-24 Massachusetts Institute Of Technology High energy density redox flow device
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
KR20120028302A (en) * 2009-04-06 2012-03-22 24엠 테크놀러지스 인코퍼레이티드 Fuel system using redox flow battery
JP2012523103A (en) * 2009-04-06 2012-09-27 24エム・テクノロジーズ・インコーポレイテッド Fuel system using redox flow battery
WO2011072339A1 (en) * 2009-12-18 2011-06-23 Redflow Pty Ltd Flowing electrolyte reservoir system
JP2013514604A (en) * 2009-12-18 2013-04-25 レッドフロー・プロプライエタリー・リミテッド Circulating electrolyte storage system
AU2010333715B2 (en) * 2009-12-18 2014-09-18 Redflow R&D Pty Ltd Flowing electrolyte reservoir system
JP2010153394A (en) * 2010-03-26 2010-07-08 Casio Computer Co Ltd Power supply system
JPWO2020175340A1 (en) * 2019-02-27 2021-12-23 住友電気工業株式会社 Redox flow battery
EP3933989A4 (en) * 2019-02-27 2022-05-04 Sumitomo Electric Industries, Ltd. Redox flow battery
CN113439359A (en) * 2019-02-27 2021-09-24 住友电气工业株式会社 Redox flow battery
US11777120B2 (en) 2019-02-27 2023-10-03 Sumitomo Electric Industries, Ltd. Redox flow battery
TWI821532B (en) * 2019-02-27 2023-11-11 日商住友電氣工業股份有限公司 Redox flow battery
WO2020175340A1 (en) * 2019-02-27 2020-09-03 住友電気工業株式会社 Redox flow battery
CN113439359B (en) * 2019-02-27 2024-03-15 住友电气工业株式会社 Redox flow battery

Similar Documents

Publication Publication Date Title
TW552736B (en) Fuel containment and recycling system
JPS62229665A (en) Electrolyte circulating type secondary cell
US7199550B2 (en) Method of operating a secondary battery system having first and second tanks for reserving electrolytes
CN107112567B (en) Assembly for regenerating electrolyte of flow battery and method for regenerating electrolyte of flow battery using same
US4614693A (en) Metal-halogen secondary battery
CN210200875U (en) Flow battery electrolyte storage tank and flow battery system
JP7149280B2 (en) redox flow battery
KR20160085113A (en) Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same
SE1551360A1 (en) A metal hydride battery with added hydrogen or oxygen gas
US5389459A (en) Distributed energy system
JPH0411340Y2 (en)
CN109997269A (en) Redox flow batteries
KR102216144B1 (en) Redox flow battery
JP3283825B2 (en) Redox flow battery and method for manufacturing the same
JPS61143948A (en) Battery active material storage tank
JP2003257467A (en) Method of operating redox flow battery
JP2001216995A (en) Electrolyte tank for redox flow battery
KR102147948B1 (en) Redox flow battery
JPH10334938A (en) Power storage secondary battery
JPS60225366A (en) Redox flow battery
JPS6122575A (en) Cell construction
KR20180044702A (en) Redox flow battery and method for regenerating electrolyte thereof
JP2006073471A (en) Redox flow battery and its operation method
CN110400955B (en) Redox flow battery
JPS622464A (en) Electrolyte for redox flow battery