JPS622464A - Electrolyte for redox flow battery - Google Patents

Electrolyte for redox flow battery

Info

Publication number
JPS622464A
JPS622464A JP60139715A JP13971585A JPS622464A JP S622464 A JPS622464 A JP S622464A JP 60139715 A JP60139715 A JP 60139715A JP 13971585 A JP13971585 A JP 13971585A JP S622464 A JPS622464 A JP S622464A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
positive
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60139715A
Other languages
Japanese (ja)
Inventor
Toshio Shigematsu
敏夫 重松
Mamoru Kondo
守 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60139715A priority Critical patent/JPS622464A/en
Publication of JPS622464A publication Critical patent/JPS622464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the effective quantity of each active material from decreasing due to the repetition of charging and discharge, by providing a dividing film between a positive and a negative electrodes to separate them from each other, and supplying the positive and the negative electrodes with a positive and a negative electrode liquids, and causing an electrolyte to contain both a positive and a negative electrode active materials. CONSTITUTION:Since an electrolyte containing both a positive and a negative electrode active materials is used as a positive and a negative electrode liquids, an electrode active material concentration gradient is hardly caused between a positive and a negative electrode chambers separated from each other by a dividing film, so that the electrode active materials are scarcely transferred through the dividing film. As a result, the effective quantity of the active material in each of the chambers hardly decreases even if charging and discharge are repeated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レドックスフロー電池において正極液およ
び負極液として用いられる電解液の組成の改良に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in the composition of an electrolytic solution used as a positive electrode solution and a negative electrode solution in a redox flow battery.

[従来の技術] 電力貯蔵用2次電池として、レドックスフロー電池が特
開昭60−25163に開示されている。
[Prior Art] As a secondary battery for power storage, a redox flow battery is disclosed in Japanese Patent Laid-Open No. 60-25163.

第5図は、この従来のレドックスフロー電池の一例を説
明するための概略構成図である。
FIG. 5 is a schematic configuration diagram for explaining an example of this conventional redox flow battery.

レドックスフロー電池1は、セル2および正極液タンク
3および負極液タンク4を備え、2個のタンク3.4を
用いるものであるため、2タンク方式と呼ばれているも
のである。セル2内は、たとえばイオン交換膜からなる
隔1!I5により仕切られており、一方側が正極セル2
aを、他方側が負極セル2bを、それぞれ、構成してい
る。正極セル2aおよび負極セル2b内には、それぞれ
、電極として正極6および負極7が配置されている。
The redox flow battery 1 includes a cell 2, a positive electrode liquid tank 3, and a negative electrode liquid tank 4, and uses two tanks 3.4, so it is called a two-tank type. Inside the cell 2, there is a partition 1 made of, for example, an ion exchange membrane! It is partitioned by I5, and one side is the positive electrode cell 2.
a and the other side constitutes the negative electrode cell 2b, respectively. A positive electrode 6 and a negative electrode 7 are arranged as electrodes in the positive electrode cell 2a and the negative electrode cell 2b, respectively.

レドックスフロー電池1では、たとえば鉄イオン、クロ
ムイオンのような電子価の変化するイオンの水溶液を、
タンク3.4に貯蔵し、これをポンプP、、P2により
流通型電解セル2に送液し、酸化還元反応により充放電
を行なう。たとえば正極液として、11: e S +
 / Fe 2+イオンを正極活物質とするFe 2 
+ / F e 2+塩酸溶液、負極液としてCr 2
 + / Cr 3+イオンを負極活物質とするCr 
2 + / Cr *+塩酸溶液を用いると、各酸化還
元系の両極6.7における電気化学反応は、[発明が解
決しようとする問題点] 上述したように、レドックスフロー電池1では、従来よ
り、電解液として、組成の異なる正極液および負極液が
用いられていた。したがって、充放電動作を繰返すうら
に、隔膜5を介して、正極液に含まれている正極活物質
、ならびに負極液に含まれている負極活物質が、それぞ
れ、反対側の電極側へ移動し、その結果各電解液中の有
効活物質量が減少し、電池容量が低下するという問題が
あった。
In the redox flow battery 1, an aqueous solution of ions whose electron valence changes, such as iron ions and chromium ions, is
The liquid is stored in a tank 3.4 and sent to the flow-through electrolytic cell 2 by pumps P, , P2, where it is charged and discharged by an oxidation-reduction reaction. For example, as a catholyte, 11: e S +
/ Fe 2 with Fe 2+ ions as the positive electrode active material
+/F e 2+ hydrochloric acid solution, Cr 2 as negative electrode liquid
Cr with + / Cr 3+ ions as negative electrode active material
When a 2+/Cr*+ hydrochloric acid solution is used, the electrochemical reactions at both electrodes 6.7 of each redox system are as follows: [Problems to be Solved by the Invention] As mentioned above, in the redox flow battery 1, As the electrolyte, a positive electrode solution and a negative electrode solution having different compositions were used. Therefore, while the charging and discharging operations are repeated, the positive electrode active material contained in the positive electrode liquid and the negative electrode active material contained in the negative electrode liquid move to the opposite electrode side via the diaphragm 5. As a result, the amount of effective active material in each electrolytic solution decreases, resulting in a problem that the battery capacity decreases.

もつとも、従来より、各電極活物質の対極への移動を防
止すべく、隔膜5として選択性の強いイオン交換膜を用
いることが多い。しかしながら、イオン交換膜を用いた
場合には、電池の内部抵抗を低減することができず、し
たがって高い充放電効率を達成することができない。
However, conventionally, a highly selective ion exchange membrane is often used as the diaphragm 5 in order to prevent each electrode active material from migrating to the counter electrode. However, when an ion exchange membrane is used, the internal resistance of the battery cannot be reduced, and therefore high charge/discharge efficiency cannot be achieved.

それゆえに、この発明の目的は、充放電動作を繰返した
とIノでも有効活物*ffiの減少をほとんど生じるこ
とのないレドックスフロー電池用電解液を提供すること
にある。
Therefore, an object of the present invention is to provide an electrolytic solution for a redox flow battery that hardly causes a decrease in effective active substance *ffi even after repeated charging and discharging operations.

[問題点を解決するための手段] この発明は、正極と負極との間を隔膜により分離し、正
極に正極液を、負極に負極液を供給し、充放電を行なう
レドックスフロー電池に用いる電解液において、 正極活物質および負極活物質の双方を含むことを特徴と
するものである。
[Means for Solving the Problems] The present invention provides an electrolytic battery used in a redox flow battery that separates a positive electrode and a negative electrode by a diaphragm, supplies a positive electrode liquid to the positive electrode, and a negative electrode liquid to the negative electrode, and performs charging and discharging. The liquid is characterized by containing both a positive electrode active material and a negative electrode active material.

この発明では、電解液が正極活物質および負極活物質の
双方を含むので、正極液および負極液として該電解液を
用いると、セル内での隔膜の両側間すなわち正極セルと
負極セルとの間に電極活物質の濃度勾配がほとんど生じ
ず、したがって隔膜を介した電極活物質の物質移動はほ
とんど生じない。その結果、充放電動作を繰返したとし
ても、各セルにおける有効活物質量はほとんど減少しな
い。
In this invention, since the electrolytic solution contains both the positive electrode active material and the negative electrode active material, when the electrolytic solution is used as the positive electrode liquid and the negative electrode liquid, the electrolytic solution can be used between both sides of the diaphragm in the cell, that is, between the positive electrode cell and the negative electrode cell. Almost no concentration gradient of the electrode active material occurs in the diaphragm, and therefore almost no mass transfer of the electrode active material occurs through the diaphragm. As a result, even if charging and discharging operations are repeated, the amount of effective active material in each cell hardly decreases.

この発明の電解液を正極液および負極液として用いた場
合の正極および負極における電気化学反応は、l”ec
jL2およびCrC1aを溶解させたms溶液を用いた
場合、下記のとおりとなる。
When the electrolyte of this invention is used as a positive and negative electrode, the electrochemical reaction at the positive and negative electrodes is l”ec
When using a ms solution in which jL2 and CrC1a are dissolved, the following results are obtained.

正極: 負極: したがって、隔膜を介して両電極活物質Fe3” /F
e ’+およびCr 8 + / Cr 2+の混合が
生じても、正極液および負極液の組成がほぼ同一である
ため、実質的には各電解液の組成は変化せず、したがっ
て有効活物質量の減少はほとんど生じない。
Positive electrode: Negative electrode: Therefore, both electrode active materials Fe3”/F
Even if mixing of e'+ and Cr 8 + / Cr 2+ occurs, since the compositions of the positive and negative electrode solutions are almost the same, the composition of each electrolyte does not substantially change, and therefore the effective amount of active material There is almost no decrease in

好ましくは、正極活物質および負極活物質は、はぼ等モ
ル含まれる。これによって、正極および負極における電
気化学反応を無駄なく行なわせることができ、したがっ
てより効率よく充放電動作を行ない得る。
Preferably, the positive electrode active material and the negative electrode active material are contained in approximately equimolar amounts. Thereby, the electrochemical reaction at the positive electrode and the negative electrode can be carried out without waste, and therefore charging and discharging operations can be carried out more efficiently.

なお、上記説明では、電極活物質として、FeCQ、2
およびcr Cl13を用いた場合につき説明したが、
これに限らず、下記の表に示す棒々の電極活物質を用い
ることができることは言うまでもない。
In addition, in the above explanation, FeCQ, 2
Although the case where cr Cl13 and cr Cl13 were used was explained,
It goes without saying that the present invention is not limited to this, and that the various electrode active materials shown in the table below can be used.

[発明の効果] 以上のとおり、この発明では、正極活物質および負極活
物質の双方を含むので、正極液および負極液を1種類の
電解液で構成することができ、したがって充放電動作を
繰返したとしても、隔膜を介したffi電極活物質の移
動にもかかわらず、正極液および負極液の組成をほぼ一
定とすることができる。したがって、充放電動作の経過
に伴なって電池容量の低下を確実に防止することができ
る。
[Effects of the Invention] As described above, in this invention, since both a positive electrode active material and a negative electrode active material are included, the positive electrode liquid and the negative electrode liquid can be composed of one type of electrolyte, and therefore, charging and discharging operations can be repeated. Even if the ffi electrode active material moves through the diaphragm, the compositions of the positive and negative electrode fluids can be kept approximately constant. Therefore, it is possible to reliably prevent the battery capacity from decreasing as the charging/discharging operation progresses.

また、隔膜に対し、厳格な2液分離機能が要求されない
ため、イオン交換膜のみならず、多孔質膜あるいはll
l1lfI!躾等により隔膜を構成することができ、そ
の結果レドックスフロー電池を高温で動作させること、
あるいは高出力化等を図ることもできる。
In addition, since the diaphragm is not required to have a strict two-liquid separation function, it is possible to use not only ion exchange membranes but also porous membranes and
l1lfI! The diaphragm can be formed by discipline, etc., and as a result, the redox flow battery can be operated at high temperatures;
Alternatively, it is also possible to increase the output.

[実施例] 電極面積9 cn+’の流通型電解セルを用い、従来の
2液型電解液と、本発明による1液型電解液とを用い、
充放電実験を行なった。電極としては、グラファイト板
および炭素mei布からなるものを用い、隔膜としては
イオン交換膜からなるものを用いた。
[Example] Using a flow-type electrolytic cell with an electrode area of 9 cn+', using a conventional two-component electrolyte and a one-component electrolyte according to the present invention,
A charge/discharge experiment was conducted. The electrodes were made of graphite plates and carbon mei cloth, and the diaphragms were made of ion exchange membranes.

、また、電解液の組成は、下記のとおりである。, and the composition of the electrolyte is as follows.

(本発明例:1液型) 10重量%以下のHC見溶液に、FeCjlzおよびC
rCl1.aを等モルずつ溶解させたものを、正極液お
よび負極液とした。
(Example of the present invention: 1-liquid type) FeCjlz and C
rCl1. A solution containing equimolar amounts of a was used as a positive electrode solution and a negative electrode solution.

(比較例:2液型) 10重」%以下のHCi溶液に、Fecizを溶解させ
たものを正極液とし、同トICQ溶液にCrclL3を
溶解させたものを負極液とした。
(Comparative example: 2-component type) A positive electrode solution was prepared by dissolving Feciz in an HCi solution of 10% by weight or less, and a negative electrode solution was prepared by dissolving CrclL3 in the same ICQ solution.

その結果、本発明例の電解液を用いた場合には、電池容
量の低下はほとんど見られなかったが、2液型すなわち
従来の電解液を用いた場合には、充放電動作の経過とと
もに徐々に電池容量(充放電可能時間)の低下が見られ
た。
As a result, when the electrolytic solution of the present invention was used, there was almost no decrease in battery capacity, but when a two-component type, that is, a conventional electrolytic solution was used, there was a gradual decrease in battery capacity as the charging/discharging operation progressed. A decrease in battery capacity (charging/discharging time) was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来から知られているレドックスフロー電池
の一例を説明するための概略構成図である。
FIG. 1 is a schematic configuration diagram for explaining an example of a conventionally known redox flow battery.

Claims (3)

【特許請求の範囲】[Claims] (1)正極と負極との間を隔膜により分離し、正極に正
極液を、負極に負極液を供給し、充放電を行なうレドッ
クスフロー電池に用いる電解液であって、 正極活物質および負極活物質の双方を含むことを特徴と
する、レドックスフロー電池の電解液。
(1) An electrolytic solution used in a redox flow battery in which a positive electrode and a negative electrode are separated by a diaphragm, a positive electrode is supplied to the positive electrode, and a negative electrode is supplied to the negative electrode for charging and discharging, which comprises a positive electrode active material and a negative electrode active material. An electrolyte for a redox flow battery, characterized in that it contains both substances.
(2)前記正極活物質および負極活物質をほぼ等モル含
む、特許請求の範囲第1項記載のレドックスフロー電池
の電解液。
(2) The electrolytic solution for a redox flow battery according to claim 1, which contains approximately equal moles of the positive electrode active material and the negative electrode active material.
(3)前記正極活物質は、Fe^2^+/Fe^3^+
イオンであり、前記負極活物質はCr^2^+/Cr^
3^+イオンである、特許請求の範囲第1項または第2
項記載のレドックスフロー電池の電解液。
(3) The positive electrode active material is Fe^2^+/Fe^3^+
ions, and the negative electrode active material is Cr^2^+/Cr^
Claim 1 or 2, which is a 3^+ ion
Electrolyte for redox flow batteries as described in Section.
JP60139715A 1985-06-26 1985-06-26 Electrolyte for redox flow battery Pending JPS622464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60139715A JPS622464A (en) 1985-06-26 1985-06-26 Electrolyte for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60139715A JPS622464A (en) 1985-06-26 1985-06-26 Electrolyte for redox flow battery

Publications (1)

Publication Number Publication Date
JPS622464A true JPS622464A (en) 1987-01-08

Family

ID=15251726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60139715A Pending JPS622464A (en) 1985-06-26 1985-06-26 Electrolyte for redox flow battery

Country Status (1)

Country Link
JP (1) JPS622464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113623A (en) * 1988-10-21 1990-04-25 Sharp Corp Static electricity protecting circuit for integrated circuit
CN105742682A (en) * 2016-04-27 2016-07-06 苏州久润能源科技有限公司 Redox flow battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113623A (en) * 1988-10-21 1990-04-25 Sharp Corp Static electricity protecting circuit for integrated circuit
CN105742682A (en) * 2016-04-27 2016-07-06 苏州久润能源科技有限公司 Redox flow battery system

Similar Documents

Publication Publication Date Title
US4105829A (en) Metal halogen batteries and method of operating same
US8338008B2 (en) Electrolyte compositions
JP2724817B2 (en) All Vanadium Redox Battery
JPH01307173A (en) Electrolyte regenerating device for redox flow battery
Li et al. Vanadium redox-flow-battery electrolyte preparation with reducing agents
US2901522A (en) Oxidation cells
JPH06188005A (en) Redox battery
US4491625A (en) Zinc-bromine batteries with improved electrolyte
JPH01320776A (en) Redox flow type battery
EP0086174A1 (en) Bronze suppression in an alkali metal/sulphur ammoniate battery
JPH0419966A (en) Redox battery
JPH0227668A (en) Battery capacity maintaining method for redox flow battery
JPS62229665A (en) Electrolyte circulating type secondary cell
US4430393A (en) Metal amalgams for sodium-sulfur battery systems
JPS622464A (en) Electrolyte for redox flow battery
JPS6122574A (en) Cell construction
CA1278823C (en) Solid bromine complexers
JPS61143948A (en) Battery active material storage tank
JPS62226580A (en) Redox flow battery
JPH0227666A (en) Redox flow type secondary battery
JP2001216995A (en) Electrolyte tank for redox flow battery
JPS61211960A (en) Secondary cell
EP0053889B1 (en) Rechargeable electrical storage battery
JPS622465A (en) Electrolyte system for redox flow battery
JPS6124172A (en) Secondary battery