JPH06188005A - Redox battery - Google Patents

Redox battery

Info

Publication number
JPH06188005A
JPH06188005A JP4004043A JP404392A JPH06188005A JP H06188005 A JPH06188005 A JP H06188005A JP 4004043 A JP4004043 A JP 4004043A JP 404392 A JP404392 A JP 404392A JP H06188005 A JPH06188005 A JP H06188005A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
ion exchange
polysulfone
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4004043A
Other languages
Japanese (ja)
Inventor
Kanji Sato
完二 佐藤
Masato Nakajima
正人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMAKITA KYODO HATSUDEN KK
Original Assignee
KASHIMAKITA KYODO HATSUDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMAKITA KYODO HATSUDEN KK filed Critical KASHIMAKITA KYODO HATSUDEN KK
Priority to JP4004043A priority Critical patent/JPH06188005A/en
Publication of JPH06188005A publication Critical patent/JPH06188005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a battery that can be used for a long time at high output by using a polysulfone ion exchange film as a diaphragm for shutting between a positive electrode chamber and a negative electrode chamber, in a redox battery consisting of the negative electrode chamber, in which electrolyte of divalent or tervalent vanadium is flown, and the positive electrode chamber, in which electrolyte of tetravalent or quinvalent is flown. CONSTITUTION:A redox secondary battery comprises a unit battery main body 1, a positive electrode end plate 2A, a negative electrode end plate 2B, a positive electrode carbon cloth 3A, a negative electrode carbon cloth 3B, a polysulfone ion exchange film 4, a positive electrode liquid tank 5A and a negative electrode liquid tank 5B for storing electrolyte, lines 6A, 6B to the positive electrode and to the negative electrode, respectively, pumps 7A, 7B for recycling the electrolyte between the positive electrode side and the negative electrode side, a heat pump device 8 for preventing precipitation of elctrolyte from an electrode liquid, and heat exchange tubes 9A, 9B to the positive electrode side and to the negative electrode side, respectively. High resistance toward oxidation due to quinvalent vanadium is achieved by using the polysulfone resin for the ion exchange film 4, and the current density is increased by reducing the film resistance, and the size of the device can thus be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池に関し、さら
に詳しくは、バナジウム(II/III)−バナジウム(V/
IV)をレドックス対とするレドックス型二次電池(略し
て、レドックス電池と呼ぶ)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, and more specifically to vanadium (II / III) -vanadium (V /
IV) is a redox type secondary battery with a redox pair (abbreviated as redox battery).

【0002】[0002]

【従来の技術】レドックス型二次電池とは、電池活物質
が液状であり、正極及び負極の電池活物質を液透過型の
電解槽に流通せしめ、酸化還元反応を利用して充放電を
行うものである。従来の二次電池と比べレドックス型二
次電池は次の利点を有する。 (1) 蓄電容量を大きくするためには、貯蔵容器の容量を
大きくし、活物質量を増加させるだけでよく、出力を大
きくしない限り、電解槽自体はそのままでよい。 (2) 正、負極活物質は容器に完全に分離して貯蔵できる
ので、活物質が電極に接しているような電池と異なり、
自己放電の可能性が小さい。 (3) 液透過型炭素多孔質電極においては、活物質イオン
の充放電反応(電極反応)は、単に、電極表面で電子の交
換を行うのみで、亜鉛イオンのように電極に析出するこ
とはないので、電池の反応が単純である。
2. Description of the Related Art In a redox type secondary battery, a battery active material is in a liquid state, and the battery active materials of the positive electrode and the negative electrode are circulated in a liquid permeable type electrolytic cell, and charge / discharge is performed by utilizing an oxidation-reduction reaction. It is a thing. The redox type secondary battery has the following advantages as compared with the conventional secondary battery. (1) In order to increase the storage capacity, it is sufficient to increase the capacity of the storage container and increase the amount of the active material, and the electrolytic cell itself can be used as long as the output is not increased. (2) Since the positive and negative electrode active materials can be completely separated and stored in a container, unlike a battery in which the active material is in contact with the electrodes,
The possibility of self-discharge is low. (3) In the liquid-permeable carbon porous electrode, the charge / discharge reaction (electrode reaction) of the active material ions simply exchanges electrons on the electrode surface and does not deposit on the electrode like zinc ions. Since there is no, the reaction of the battery is simple.

【0003】現在、実用化段階にあると見られているク
ロム2価、3価対鉄2価、3価系をレドックス対とする
レドックス・フロ−型二次電池は、使用目的によっては
極めて性能のすぐれた電池であるが、長期間の運転に対
しては、電解槽の隔膜を通しての鉄とクロムとの相互混
合が避けられず、結局、両活物質ともに鉄とクロムの混
合液となり、溶解度の制約を受けるため、濃厚溶液とす
ることができないという欠点がある。また、クロム、鉄
系の電池の場合、出力電圧は単セルあたり 0.9〜1V程度
であるので、この電池のエネルギ−密度(すなわち、放
電によってとり出し得るエネルギ−を電池の体積で割っ
た値)は 30ワットアワ−/リットル程度にしかならな
い。
The redox flow type secondary battery having a redox pair of a chromium divalent, trivalent vs. iron divalent, trivalent system, which is currently considered to be in practical use, has extremely high performance depending on the purpose of use. Although it is an excellent battery, for long-term operation, mutual mixing of iron and chromium through the membrane of the electrolytic cell is unavoidable, and eventually both active materials become a mixed solution of iron and chromium, and the solubility However, there is a drawback in that a concentrated solution cannot be prepared because of the restriction of. Also, in the case of chromium and iron type batteries, the output voltage is about 0.9 to 1 V per unit cell, so the energy density of this battery (that is, the energy that can be extracted by discharge divided by the volume of the battery). Is only about 30 watt hours / liter.

【0004】この欠点を改善する レドックス・フロ−型
二次電池として、全バナジウムレドックスフロー型電池
(J.Electrochem.Soc.,133 1057(1986), 昭62-186473)が
提案された。この電池のは、起電力、電池容量などに優
れており、更に電解液が一金属系であるため隔膜を介し
て正、負極液が相互に混合しても充電によって簡単に再
生することができるため、電池容量が低下せず、電解液
の交換や再生等をする必要が無いため完全にクローズド
化できる等の利点を持っている。
An all-vanadium redox flow type battery is used as a redox flow type secondary battery for improving this drawback.
(J. Electrochem. Soc., 133 1057 (1986), Sho 62-186473) was proposed. This battery has excellent electromotive force, battery capacity, etc., and since the electrolyte is a one-metal electrolyte, it can be easily regenerated by charging even if the positive and negative electrodes are mixed with each other through the diaphragm. Therefore, the battery capacity does not decrease, and there is no need to replace or regenerate the electrolytic solution, so that it has an advantage of being completely closed.

【0005】この様に多くの利点があるが、バナジウム
は大変高価であるとともに資源が遍在しているため、現
実の技術とするためには、安価なバナジウム電解液の製
造方法と資源の確保が必要であるが、既に、本発明者ら
は、安価なバナジウム資源の再発掘と廃ガス処理を兼ね
備えたバナジウム電解液の製造法として、石油燃焼煤中
のバナジウム資源から、比較的安価にバナジウム系電解
液が製造可能な方法(特願平-2-273356号,特願平3―666
08号) を提案し、バナジウム電池の企業化は極めて現実
的なものとなってきた。
Although there are many advantages as described above, since vanadium is very expensive and its resources are ubiquitous, in order to make it an actual technology, a method for producing an inexpensive vanadium electrolytic solution and securing of resources are required. Already, the present inventors, as a method of producing a vanadium electrolyte solution that combines the reclamation of cheap vanadium resources and waste gas treatment, from the vanadium resources in petroleum combustion soot, vanadium at a relatively low cost. Method for producing system electrolyte (Japanese Patent Application No. 2-273356, Japanese Patent Application No. 3-666)
No. 08), commercialization of vanadium batteries has become extremely realistic.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、正極
室と負極室を遮る隔膜として,膜抵抗が低く,耐酸化性
を持つイオン交換膜を使用し,高出力で,長期の使用に
耐えうるバナジウムレドックス電池を製作することであ
る。バナジウムレドックスフロー電池は,起電力,電池
容量,電解質の安定性等の利点があるが,正極液に5価
のバナジウムを含むため,耐酸化性のある電池構成材料
を使用しなければならない。一般的にはテフロン系の膜
が耐薬品性が良好で有る事が知られているが、膜の抵抗
が高いため高電流密度を取り得ず、また高価なためレド
ックス電池に使用し難い。
SUMMARY OF THE INVENTION An object of the present invention is to use an ion exchange membrane having a low membrane resistance and oxidation resistance as a diaphragm for blocking the positive electrode chamber and the negative electrode chamber, which is suitable for high output and long-term use. To make a vanadium redox battery that can withstand. The vanadium redox flow battery has advantages such as electromotive force, battery capacity, and stability of electrolyte. However, since the positive electrode liquid contains pentavalent vanadium, a battery constituent material having oxidation resistance must be used. It is generally known that a Teflon-based film has good chemical resistance, but it cannot be used in a redox battery because it cannot have a high current density because of its high resistance and is expensive.

【0007】5価のバナジウムによるイオン交換膜の酸
化機構は、まだ明らかにされていない。本発明者らが検
討した結果から、電極表面近傍で生成した高濃度のVO
+が次のような式で会合してV25を生成する。 2VO+ + H2O = V25 + 2H+ このV25が解裂しラヂカルを発生し、イオン交換膜中
の三級炭素やアリル位の炭素と反応するラヂカル酸化機
構でイオン交換膜は劣化するものと思われる。
The mechanism of oxidation of the ion-exchange membrane by pentavalent vanadium has not been clarified yet. From the results of the study by the present inventors, the high concentration of VO generated near the electrode surface
+ Are associated with each other to form V 2 O 5 by the following formula. 2VO + + H 2 O = V 2 O 5 + 2H + This V 2 O 5 is cleaved to generate radicals, and the radical oxidation mechanism reacts with the tertiary carbon or allylic carbon in the ion exchange membrane. The membrane seems to deteriorate.

【0008】[0008]

【課題を解決するための手段】この様な知見に基づい
て、本発明者らは上記目的を達成し、これまでのバナジ
ウムレドックス電池の問題点を解決するためにイオン交
換膜を種々探索した結果、ポリスルホン系イオン交換膜
が耐酸化性に優れ、イオン選択性が高く、膜抵抗が低
く、バナジウムレドックスフロー電池の隔膜として最適
であることを見いだし、本発明を完成した。本発明によ
れば、バナジウム2価/3価の電解液を通液する負極室と5
価/4価の電解液を通液する正極室から成るレドックス電
池において、正極室と負極室を遮る隔膜にポリスルホン
系イオン交換膜を使用することを特徴とする全バナジウ
ムレドックス電池が提供される。
[Means for Solving the Problems] Based on such knowledge, the present inventors achieved the above-mentioned object, and as a result of various searches for ion-exchange membranes in order to solve the problems of the vanadium redox battery to date. The inventors have found that a polysulfone-based ion exchange membrane has excellent oxidation resistance, high ion selectivity, and low membrane resistance, and is optimal as a diaphragm for vanadium redox flow batteries, and completed the present invention. According to the present invention, a vanadium divalent / valent trivalent electrolytic solution and 5
Provided is a redox battery including a positive electrode chamber for passing a valent / four-valent electrolytic solution, wherein an all-vanadium redox battery is provided which uses a polysulfone-based ion exchange membrane as a diaphragm that blocks the positive electrode chamber and the negative electrode chamber.

【0009】本発明に使用されるポリスルホン系イオン
交換膜は、主鎖中にスルホン基:−SO2−を有する重
合体にイオン交換基を導入し、製膜したものであり、イ
オン選択性及び耐酸化性に優れ、膜強度が高く且つ薄い
もの、即ち膜抵抗の小さいものが好ましい。好ましいも
のとして、例えば分子中にイオン交換基が導入し易いセ
グメントと、イオン交換基が導入されにくいセグメント
を有する芳香族系と連結基から構成されるブロック共重
合体からなるポリスルホン系イオン交換膜を挙げること
ができる。特に好ましいものとしては、下記一般式:
The polysulfone-based ion exchange membrane used in the present invention is formed by introducing an ion exchange group into a polymer having a sulfone group: —SO 2 — in the main chain to form a membrane. A material having excellent oxidation resistance, a high film strength and a thin film, that is, a material having a small film resistance is preferable. As a preferable example, for example, a polysulfone-based ion exchange membrane composed of a block copolymer composed of an aromatic system and a linking group having a segment into which an ion exchange group is easily introduced into a molecule and a segment into which an ion exchange group is difficult to be introduced. Can be mentioned. Particularly preferred are the following general formulas:

【0010】[0010]

【化2】 [Chemical 2]

【0011】で表される芳香族ポリスルホン系ブロック
共重合体からなり、その芳香族環にイオン交換基が導入
されたポリスルホン系陰イオン交換膜である。この種の
交換膜については、特開平2-68146号、同2-211257号,
同2-265929号、同2-269745号、同2-294338号公報等に記
載されている。
A polysulfone-based anion exchange membrane comprising an aromatic polysulfone-based block copolymer represented by the formula (1) and having an ion-exchange group introduced into its aromatic ring. This type of exchange membrane is disclosed in JP-A-2-68146, JP-A-2-211257,
No. 2-265929, No. 2-269745, No. 2-294338, etc.

【0012】従来、レドックスフロー用のイオン交換膜
として陰イオン交換膜を使用すると、鉄ークロム系では
充放電の繰り返しに伴い膜の抵抗が大幅に増大するため
適していないとされていた。原因として電解液中で生成
するFeCl4 -、FeCl6 3-などの錯体イオンによっ
て、膜中の固定解離基が占有されると考えられている。
しかし、バナジウムレドックスフロー電池ではイオン種
が異なるため、そのような傾向は見られない。
Conventionally, it has been considered that the use of an anion exchange membrane as an ion exchange membrane for redox flow is not suitable for an iron-chromium system because the resistance of the membrane greatly increases with repeated charging and discharging. As a cause, it is considered that fixed dissociative groups in the film are occupied by complex ions such as FeCl 4 and FeCl 6 3− generated in the electrolytic solution.
However, vanadium redox flow batteries do not show such a tendency because the ionic species are different.

【0013】バナジウム2価/3価の電解液を通液する負
極室と5価/4価の電解液を通液する正極室から成るレド
ックス電池の一例を図1に示す。この種のレドックス電
池については、特願平2-27335号及び同3-66608号に詳細
に記載されているので、ここでの説明は省略する。
FIG. 1 shows an example of a redox battery comprising a negative electrode chamber through which a vanadium divalent / three valent electrolytic solution is passed and a positive electrode chamber through which a pentavalent / four valent electrolytic solution is passed. This type of redox battery is described in detail in Japanese Patent Application Nos. 2-27335 and 3-66608, and therefore its description is omitted here.

【0014】[0014]

【発明の効果】本発明によれば、下記のような成果が達
成される。 (1) ポリスルホン系のイオン交換膜は5価のバナジウム
による酸化に対して耐性が有り、長期の使用に耐え得る
バナジウムレドックスフロー電池を製作できる。 (2) ポリスルホン系イオン交換膜は、膜抵抗が小さく、
さらにポリスチレン系の膜に比べると電流密度を大幅に
上げても抵抗値が上がらず、単位m2当たりの出力を高
くすることができるため、装置の小型化が可能であり、
そのために、コストの低下が計れる。 (3) 特に、瞬間的に高出力を要求される電気自動車の分
野に適用できる可能性がある。 以上、本発明によれば、ポリスルホン系のイオン交換膜
を隔膜として使用することにより、耐酸化性があり、長
期の使用に耐えられ、高出力のバナジウムレドックスフ
ロー電池を提供する事が可能である。
According to the present invention, the following results are achieved. (1) The polysulfone-based ion exchange membrane is resistant to oxidation by pentavalent vanadium, and a vanadium redox flow battery that can withstand long-term use can be manufactured. (2) Polysulfone-based ion exchange membrane has low membrane resistance,
Furthermore, compared with a polystyrene-based film, the resistance value does not increase even if the current density is increased significantly, and the output per unit m 2 can be increased, so the device can be downsized.
Therefore, the cost can be reduced. (3) In particular, there is a possibility of being applicable to the field of electric vehicles that are required to instantaneously have high output. As described above, according to the present invention, it is possible to provide a vanadium redox flow battery with high output, which has oxidation resistance, can withstand long-term use, by using a polysulfone-based ion exchange membrane as a diaphragm. .

【0015】[0015]

【実施例】次に本発明を実施例をもって具体的に説明す
る。 実施例1 2モル/lの4価バナジウムの4モル硫酸溶液を7ml
及び6mlを小型レドックス電池の正極及び負極に5m
l/分で通液し、0.4Aの定電流電解を行ってバナジ
ウム5価と3価のバナジウム溶液を作った。バナジウム
5価の液は4価の溶液と入れ替え放電状態の電解液を得
た。イオン交換膜の電池特性を調べるためポリスルホン
系イオン交換膜(旭ガラス社製、AM1膜)、ポリスチ
レン系イオン交換膜(旭ガラス社製、CMV膜)、テフ
ロン系イオン交換膜(旭ガラス社製、フレミオン膜)を
装着し、見かけ表面積10cm2の炭素布(東洋紡社
製、BW−309)を電池の電極とした、第1図に示す
小型レドックス電池で充放電を行った。電流値は±0.
4A、±0.6A、±0.8A、±1A、±1.2A、
±1.5A、温度は40℃とした。この充放電反応の結
果を第1表に総合エネルギー効率、第2表に放電時の最
小抵抗値の比較として示す。表から明らかなように、ス
ルホン系イオン交換膜は従来の膜に比較し、膜の抵抗が
低いため総合エネルギー効率が高く、高電流密度に於い
ても効率低下が見られなかった。
EXAMPLES Next, the present invention will be specifically described with reference to examples. Example 1 7 ml of a 4 mol sulfuric acid solution of 2 mol / l tetravalent vanadium
And 6 ml for the positive and negative electrodes of a small redox battery 5 m
The solution was passed through at a rate of 1 / min, and a constant current electrolysis of 0.4 A was performed to prepare vanadium pentavalent and trivalent vanadium solutions. The vanadium pentavalent solution was replaced with a tetravalent solution to obtain an electrolytic solution in a discharged state. To investigate the battery characteristics of the ion exchange membrane, polysulfone type ion exchange membrane (Asahi Glass Co., AM1 membrane), polystyrene type ion exchange membrane (Asahi Glass Co., CMV membrane), Teflon type ion exchange membrane (Asahi Glass Co., Ltd., A small redox battery shown in FIG. 1 was charged and discharged using a Flemion membrane) and using a carbon cloth (BW-309 manufactured by Toyobo Co., Ltd.) having an apparent surface area of 10 cm 2 as a battery electrode. The current value is ± 0.
4A, ± 0.6A, ± 0.8A, ± 1A, ± 1.2A,
± 1.5 A and temperature was 40 ° C. The results of this charging / discharging reaction are shown in Table 1 as a comparison of the total energy efficiency, and in Table 2 as a comparison of the minimum resistance value during discharge. As is clear from the table, the sulfone-based ion exchange membrane has a lower membrane resistance than that of the conventional membrane, so that the total energy efficiency is high, and the efficiency is not decreased even at a high current density.

【0016】[0016]

【表1】 第1表 イオン交換膜の総合エネルギー効率(%) 電流密度 mA/cm2 40 60 80 100 150 ポリスルホン 88.5 87.6 85.9 85.0 80.0 ポリスチレン 82.3 79.9 75.3 70.0テフロン 78.6 74.4 70.0 64.8 Table 1 Total energy efficiency (%) of ion exchange membrane Current density mA / cm 2 40 60 80 80 100 150 Polysulfone 88.5 87.6 85.9 85.0 80.0 Polystyrene 82.3 79. 9 75.3 70.0 Teflon 78.6 74.4 70.0 64.8

【0017】[0017]

【表2】 第2表 イオン交換膜の最小抵抗値(Ω) 電流密度 mA/cm2 40 60 80 100 150 ポリスルホン 0.87 0.89 0.90 0.88 0.93 ポリスチレン 1.47 1.39 1.37 1.35テフロン 1.84 1.87 1.86 1.88 Table 2 Minimum resistance value (Ω) of ion exchange membrane Current density mA / cm 2 40 60 80 100 100 150 Polysulfone 0.87 0.89 0.90 0.88 0.93 Polystyrene 1.47 1. 39 1.37 1.35 Teflon 1.84 1.87 1.86 1.88

【0018】実施例2 2モル/lの4価バナジウムの4モル硫酸溶液を電解槽
で電解酸化し、1.7モル/lの5価バナジウムを含む
バナジウム硫酸溶液を調整した。この溶液にポリスルホ
ン系イオン交換膜、ポリスチレン系イオン交換膜、テフ
ロン系イオン交換膜を温度40℃に於いて14日間浸漬
し、膜の表面状態の変化と電池特性を求めた。膜に付着
した5価のバナジウムを十分に洗い流し、膜の表面状態
を実体顕微鏡で確認ところ、ポリスルホン系とテフロン
系の膜には変化は認められなかったが、ポリスチレン系
の膜は交換樹脂部分が完全に酸化劣化により脱落し、補
強の不織布のみとなっていた。電池に装着し電池特性を
測定した結果、ポリスルホン系膜とテフロン系膜は全く
変化が見られなかったが、ポリスルホン系膜は電池反応
が見られず、膜としての機能は全く失われていた。77
日間浸漬後の膜においても同様に性能低下は見られなか
った、
Example 2 A 4 mol sulfuric acid solution of 2 mol / l tetravalent vanadium was electrolytically oxidized in an electrolytic cell to prepare a vanadium sulfuric acid solution containing 1.7 mol / l of pentavalent vanadium. A polysulfone-based ion exchange membrane, a polystyrene-based ion exchange membrane, and a Teflon-based ion exchange membrane were immersed in this solution at a temperature of 40 ° C. for 14 days to determine the change in the surface condition of the membrane and the battery characteristics. When the pentavalent vanadium adhering to the membrane was thoroughly washed off and the surface condition of the membrane was confirmed with a stereomicroscope, no change was observed in the polysulfone type and Teflon type membranes, but in the polystyrene type membrane, the exchange resin part It completely fell off due to oxidative deterioration, leaving only a reinforced non-woven fabric. As a result of mounting the battery on the battery and measuring the battery characteristics, no change was observed between the polysulfone-based film and the Teflon-based film, but no battery reaction was observed in the polysulfone-based film, and the function as the film was completely lost. 77
Similarly, no performance deterioration was observed in the film after soaking for a day,

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレドックス二次電池の概略図である。FIG. 1 is a schematic view of a redox secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 単電池本体 2A 正極エンドプレート 2B 負極エンドプレート 3A 正極カーボンクロス 3B 負極カーボンクロス 4 ポリスルホン系イオン交換膜 5A 電極液を貯蔵する正極液タンク 5B 電極液を貯蔵する負極液タンク 6A 正極ライン 6B 負極ライン 7A 正極側電極液循環ポンプ 7B 負極側電極液循環ポンプ 8 電極液の電解質の析出を防ぐため電解液を加熱
するヒートポンプ装置 9A 正極側熱交換用チューブ 9B 負極側熱交換用チューブ
1 Single Cell Main Body 2A Positive Electrode End Plate 2B Negative Electrode End Plate 3A Positive Electrode Carbon Cloth 3B Negative Carbon Cloth 4 Polysulfone Ion Exchange Membrane 5A Positive Electrode Liquid Tank 5B for Electrode Liquid Storage 5A Negative Liquid Tank 6A Positive Electrode Line 6B Negative Line 7A Positive electrode-side electrode liquid circulation pump 7B Negative-side electrode liquid circulation pump 8 Heat pump device that heats the electrolytic solution to prevent deposition of electrolyte in the electrode liquid 9A Positive-side heat exchange tube 9B Negative-side heat exchange tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バナジウム2価/3価の電解液を通液する
負極室と5価/4価の電解液を通液する正極室から成るレ
ドックス電池において、正極室と負極室を遮る隔膜にポ
リスルホン系イオン交換膜を使用することを特徴とする
全バナジウムレドックス電池。
1. A redox battery comprising a negative electrode chamber that allows a vanadium divalent / 3-valent electrolyte solution to pass through and a positive electrode chamber that allows a pentavalent / 4-valent electrolyte solution to pass therethrough, and a redox battery that forms a partition wall that blocks the positive electrode chamber and the negative electrode chamber. An all-vanadium redox battery characterized by using a polysulfone-based ion exchange membrane.
【請求項2】 ポリスルホン系イオン交換膜がポリスル
ホン系陰イオン交換膜である請求項1記載の全バナジウ
ムレドックス電池。
2. The all-vanadium redox battery according to claim 1, wherein the polysulfone-based ion exchange membrane is a polysulfone-based anion exchange membrane.
【請求項3】 ポリスルホン系イオン交換膜が、下記一
般式: 【化1】 で表される芳香族ポリスルホン系ブロック共重合体から
なり、その芳香族環にイオン交換基が導入されたもので
ある請求項2記載の全バナジウムレドックス電池。
3. A polysulfone-based ion exchange membrane has the following general formula: The all-vanadium redox battery according to claim 2, wherein the all-vanadium redox battery is composed of an aromatic polysulfone-based block copolymer represented by the formula (1) and has an aromatic ring to which an ion exchange group is introduced.
JP4004043A 1992-01-13 1992-01-13 Redox battery Pending JPH06188005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004043A JPH06188005A (en) 1992-01-13 1992-01-13 Redox battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004043A JPH06188005A (en) 1992-01-13 1992-01-13 Redox battery

Publications (1)

Publication Number Publication Date
JPH06188005A true JPH06188005A (en) 1994-07-08

Family

ID=11573909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004043A Pending JPH06188005A (en) 1992-01-13 1992-01-13 Redox battery

Country Status (1)

Country Link
JP (1) JPH06188005A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790658A2 (en) * 1996-02-19 1997-08-20 Kashima-Kita Electric Power Corporation Redox flow cell battery with vanadium electrolyte and a polysulfone-based semipermeable membrane
JPH10162852A (en) * 1996-11-29 1998-06-19 Tokuyama Corp Diaphragm for redox flow battery and manufacture therefor
JPH10162853A (en) * 1996-12-02 1998-06-19 Tokuyama Corp Diaphragm for redox flow battery and manufacture therefor
JP2001057223A (en) * 1999-06-09 2001-02-27 Nippon Chem Ind Co Ltd Manufacture for trivalent vanadium sulfate and manufacture for vanadium-based electrolyte
JP2001160410A (en) * 2000-10-19 2001-06-12 Tokuyama Corp Manufacturing method of diaphragm for redox flow battery
JP2001167788A (en) * 2000-10-19 2001-06-22 Tokuyama Corp Method of manufacturing membrane for redox flow cell
JP2001250567A (en) * 1999-12-27 2001-09-14 Sumitomo Chem Co Ltd Polymer electrolyte and manufacturing method therefor
US6613298B2 (en) 2000-07-04 2003-09-02 Kansai Electric Power Co., Inc. Trivalent and tetravalent mixed vanadium compound producing method and vanadium electrolyte producing method
US6872376B2 (en) 2000-12-26 2005-03-29 Nippon Chemical Industrial Co., Ltd. Modified vanadium compound, producing method thereof, redox flow battery electrolyte composite and redox flow battery electrolyte producing method
US8094433B2 (en) * 2006-06-05 2012-01-10 Xiamen University Supercapacitor
JP2012248408A (en) * 2011-05-27 2012-12-13 Nidaiki Kk Barrier membrane for redox flow battery and manufacturing method thereof
WO2013027758A1 (en) * 2011-08-22 2013-02-28 東洋紡株式会社 Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
WO2017203920A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite
WO2019010290A1 (en) * 2017-07-06 2019-01-10 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes
US11236196B2 (en) 2014-11-18 2022-02-01 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
US11286337B2 (en) 2014-11-18 2022-03-29 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
US11465139B2 (en) 2020-03-20 2022-10-11 Rensselaer Polytechnic Institute Thermally stable hydrocarbon-based anion exchange membrane and ionomers
US11621433B2 (en) 2016-12-20 2023-04-04 Rensselaer Polytechnic Institute Proton exchange membrane material and methods of making the same
US11680328B2 (en) 2019-11-25 2023-06-20 Twelve Benefit Corporation Membrane electrode assembly for COx reduction
US11826746B2 (en) 2017-07-06 2023-11-28 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790658A2 (en) * 1996-02-19 1997-08-20 Kashima-Kita Electric Power Corporation Redox flow cell battery with vanadium electrolyte and a polysulfone-based semipermeable membrane
EP0790658A3 (en) * 1996-02-19 1998-03-11 Kashima-Kita Electric Power Corporation Redox flow cell battery with vanadium electrolyte and a polysulfone-based semipermeable membrane
AU706224B2 (en) * 1996-02-19 1999-06-10 Sumitomo Electric Industries, Ltd. Liquid-circulating battery
JPH10162852A (en) * 1996-11-29 1998-06-19 Tokuyama Corp Diaphragm for redox flow battery and manufacture therefor
JPH10162853A (en) * 1996-12-02 1998-06-19 Tokuyama Corp Diaphragm for redox flow battery and manufacture therefor
JP2001057223A (en) * 1999-06-09 2001-02-27 Nippon Chem Ind Co Ltd Manufacture for trivalent vanadium sulfate and manufacture for vanadium-based electrolyte
JP4646358B2 (en) * 1999-06-09 2011-03-09 関西電力株式会社 Method for producing trivalent vanadium sulfate and method for producing vanadium electrolyte
JP2001250567A (en) * 1999-12-27 2001-09-14 Sumitomo Chem Co Ltd Polymer electrolyte and manufacturing method therefor
US6613298B2 (en) 2000-07-04 2003-09-02 Kansai Electric Power Co., Inc. Trivalent and tetravalent mixed vanadium compound producing method and vanadium electrolyte producing method
JP2001167788A (en) * 2000-10-19 2001-06-22 Tokuyama Corp Method of manufacturing membrane for redox flow cell
JP2001160410A (en) * 2000-10-19 2001-06-12 Tokuyama Corp Manufacturing method of diaphragm for redox flow battery
US6872376B2 (en) 2000-12-26 2005-03-29 Nippon Chemical Industrial Co., Ltd. Modified vanadium compound, producing method thereof, redox flow battery electrolyte composite and redox flow battery electrolyte producing method
US8094433B2 (en) * 2006-06-05 2012-01-10 Xiamen University Supercapacitor
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
JP2012248408A (en) * 2011-05-27 2012-12-13 Nidaiki Kk Barrier membrane for redox flow battery and manufacturing method thereof
WO2013027758A1 (en) * 2011-08-22 2013-02-28 東洋紡株式会社 Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery
WO2013100079A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US9905875B2 (en) 2011-12-28 2018-02-27 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100087A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
WO2013100082A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
KR20140098189A (en) 2011-12-28 2014-08-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3046174A1 (en) 2011-12-28 2016-07-20 Asahi Kasei E-materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091599A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3091600A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
EP3091598A1 (en) 2011-12-28 2016-11-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US9799906B2 (en) 2011-12-28 2017-10-24 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US10256493B2 (en) 2011-12-28 2019-04-09 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
WO2013100083A1 (en) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US10211474B2 (en) 2011-12-28 2019-02-19 Asahi Kasei E-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US11236196B2 (en) 2014-11-18 2022-02-01 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
US11286337B2 (en) 2014-11-18 2022-03-29 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
US11834550B2 (en) 2014-11-18 2023-12-05 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
WO2017203920A1 (en) * 2016-05-25 2017-11-30 ブラザー工業株式会社 Vanadium redox secondary battery
WO2018096895A1 (en) 2016-11-24 2018-05-31 旭化成株式会社 Carbon foam and membrane electrode composite
US11621433B2 (en) 2016-12-20 2023-04-04 Rensselaer Polytechnic Institute Proton exchange membrane material and methods of making the same
WO2019010290A1 (en) * 2017-07-06 2019-01-10 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes
US11826746B2 (en) 2017-07-06 2023-11-28 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes
US11680328B2 (en) 2019-11-25 2023-06-20 Twelve Benefit Corporation Membrane electrode assembly for COx reduction
US11465139B2 (en) 2020-03-20 2022-10-11 Rensselaer Polytechnic Institute Thermally stable hydrocarbon-based anion exchange membrane and ionomers

Similar Documents

Publication Publication Date Title
JPH06188005A (en) Redox battery
US5318865A (en) Redox battery
JP5231558B2 (en) Fuel cell and cathode solution for fuel cell
JP6549572B2 (en) Redox flow battery and method for balancing the charge state of the flow battery
JP6882471B2 (en) Flow battery electrolyte regeneration method and regeneration device
KR101809332B1 (en) Regenerating module for electrolyte of flow battery and regenerating method for electrolyte of flow battery using the same
CN113764714B (en) Electrolyte of water-based flow battery, all-iron water-based flow battery and application
CN102468499A (en) Regeneration method for waste liquor of all-vanadium flow battery
JP5944906B2 (en) Regenerative fuel cell
US20220411938A1 (en) Method and device for the electrolysis of water
JP3163370B2 (en) Redox battery
JPH0758625B2 (en) Redox battery
JPH01320776A (en) Redox flow type battery
CN113270624B (en) Flow battery subsystem with catalyst management and electrolyte capacity rebalancing
JP4830190B2 (en) Redox flow battery
KR101926774B1 (en) Air-breathing fuel cell and cell stack for the oxidation of ions using oxygen
JPH0227668A (en) Battery capacity maintaining method for redox flow battery
JPH10308232A (en) Electrolyte circulation type battery with internal resistance recovery mechanism
JPH03192662A (en) Cell capacity recovery method for redox-flow cell
JPH08138718A (en) Operating method of redox-flow cell
KR20230034611A (en) Amphoteric ion exchange seperators for redox battery, manufacturing the same and redox battery comprising the same
JPS6124172A (en) Secondary battery
JPH04286871A (en) Redox type secondary battery
KR20160091154A (en) Vanadium Redox flow battery comprising sulfonated polyetheretherketone membrane
RU2803292C1 (en) Method for producing an electrolyte for a vanadium flow redox battery