JP2012248408A - Barrier membrane for redox flow battery and manufacturing method thereof - Google Patents

Barrier membrane for redox flow battery and manufacturing method thereof Download PDF

Info

Publication number
JP2012248408A
JP2012248408A JP2011119319A JP2011119319A JP2012248408A JP 2012248408 A JP2012248408 A JP 2012248408A JP 2011119319 A JP2011119319 A JP 2011119319A JP 2011119319 A JP2011119319 A JP 2011119319A JP 2012248408 A JP2012248408 A JP 2012248408A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
redox flow
flow battery
inorganic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011119319A
Other languages
Japanese (ja)
Other versions
JP5750604B2 (en
Inventor
Hiroki Yamada
大機 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIDAIKI KK
Original Assignee
NIDAIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIDAIKI KK filed Critical NIDAIKI KK
Priority to JP2011119319A priority Critical patent/JP5750604B2/en
Publication of JP2012248408A publication Critical patent/JP2012248408A/en
Application granted granted Critical
Publication of JP5750604B2 publication Critical patent/JP5750604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a barrier membrane for a redox flow battery preservable in a dried state and having excellent battery performance, chemical resistance, and durability, and a manufacturing method thereof.SOLUTION: A barrier membrane for a redox flow battery is made by forming an ion exchange membrane, in which an inorganic porous granular material to which an ion exchange resin is deposited is dispersed in a matrix, on cavities and/or a surface of a sheet base material having a large number of the cavities communicating with the front and rear of a sheet. A manufacturing method of the barrier membrane includes the following steps of: depositing the ion exchange resin to the inorganic porous granular material; adjusting a mixed liquid containing the inorganic porous granular material to which the ion exchange resin is deposited, the matrix, and a dispersant; filling the sheet base material having a large number of the cavities communicating with the front and rear of the sheet with the inorganic porous granular material to which the ion exchange resin is deposited; impregnating the sheet base material filled with the inorganic porous granular material with the mixed liquid; and heating and drying the sheet base material impregnated with the mixed liquid, and forming the ion exchange membrane on the sheet base material.

Description

本発明は、乾燥保存ができて取り扱いが容易であり、しかも優れた電池性能と耐久性を有するレドックスフロー電池用隔膜及びその製造方法に関する。   The present invention relates to a redox flow battery membrane that can be stored in a dry state, is easy to handle, and has excellent battery performance and durability, and a method for producing the same.

従来から、レドックスフロー電池に用いられる隔膜は、セル容器内で陰極液と陽極液を分離する膜として、陰極液と陽極液がこの隔膜を介して接しており、充放電時にプロトン(水素イオンH)がこの隔膜を透過して移動するが、陰極液と陽極液の金属イオンは透過しない性質を有するイオン交換膜が用いられている。 Conventionally, the diaphragm used in the redox flow battery is a membrane that separates the catholyte and the anolyte in the cell container. The catholyte and the anolyte are in contact with each other through the diaphragm, and protons (hydrogen ions H + ) Moves through the diaphragm, but an ion exchange membrane having a property that the metal ions of the catholyte and anolyte do not permeate is used.

一般的なイオン交換膜としては、例えば、溶融法、湿式法により膜面方向及び膜の表裏に連通した孔を有する多孔質基材膜であって全周辺端部の孔が閉塞された電解質含浸膜について特許文献1に開示されており、芳香族ポリアミドを含む多孔質膜としてコロナ放電によって穿孔する例と、湿式製膜法で多孔質膜を製造する方法と、得られた多孔質膜を用いた電池の放電容量について特許文献2に開示されており、また、延伸法や造孔法により多孔質構造を形成したポリテトラフルオロエチレン多孔質膜や不織布に陰イオン交換基を有する架橋重合体を複合化した電池用隔膜についての発明が特許文献3に開示されている。しかし、前記の例は、全て溶融法、湿式法、コロナ放電、延伸法等で穿孔した多孔質フィルム等にイオン交換樹脂を付着させるものであり、本願発明のように無機多孔質粉粒状体にイオン交換樹脂を付着させ、このイオン交換樹脂を付着した無機多孔質粉粒状体を漆類等のマトリクッス中に分散したイオン交換膜をシート基材に形成する隔膜については見出されていない。   As a general ion exchange membrane, for example, a porous base material membrane having pores communicating with the membrane surface direction and the front and back of the membrane by a melting method or a wet method, and electrolyte impregnation in which pores at all peripheral edges are closed The membrane is disclosed in Patent Document 1, and an example of perforation by corona discharge as a porous membrane containing an aromatic polyamide, a method of producing a porous membrane by a wet film-forming method, and the obtained porous membrane are used. Patent Document 2 discloses a discharge capacity of a battery, and a cross-linked polymer having an anion exchange group on a polytetrafluoroethylene porous membrane or a nonwoven fabric having a porous structure formed by a stretching method or a pore-forming method. Patent Document 3 discloses an invention relating to a composite battery diaphragm. However, in the above examples, the ion exchange resin is attached to a porous film or the like perforated by a melting method, a wet method, a corona discharge, a stretching method, etc. No membrane has been found for forming an ion exchange membrane on a sheet base material in which an ion exchange resin is adhered and the inorganic porous powder particles to which the ion exchange resin is adhered are dispersed in a matrix such as lacquer.

従来の電池用隔膜には、湿潤保存タイプと乾燥保存タイプの二種類のタイプがあり、例えば、ナフィオン(登録商標)に代表される、ある種のパーフルオロカーボンスルホン酸ポリマー膜のような乾燥保存タイプ以外は、乾燥すると膜の劣化が著しいことから、例えば、3%食塩溶液を満たした袋に封入して冷暗所に保管することを条件としているものが多い。前記に挙げた例は、何れも多孔性フィルムを基材とし、この多孔性フィルム基材にイオン交換樹脂を付着させたものであり、基材である多孔性フィルムとイオン交換樹脂との結合が比較的弱いために繰り返し使用により又は空気と接触することによって劣化して性能変化する恐れがあり、或いは膜の膨潤収縮による形状変化が起こる恐れがあることから、常時乾燥させず湿った状態で保存し、膜の取り付けも作業用プールのような設備の中で行い、取り付け後も湿潤環境下に置かなければならないと言う取り扱い上の問題があった。   There are two types of conventional battery diaphragms, a wet storage type and a dry storage type. For example, a dry storage type such as a perfluorocarbon sulfonic acid polymer membrane represented by Nafion (registered trademark). Other than the above, since the film deteriorates drastically when it is dried, for example, it is often required to be sealed in a bag filled with 3% saline solution and stored in a cool and dark place. Each of the above examples is a porous film as a base material, and an ion exchange resin is adhered to the porous film base material, and the bonding between the porous film as the base material and the ion exchange resin is performed. Because it is relatively weak, it may deteriorate due to repeated use or contact with air, resulting in a change in performance, or a shape change due to membrane swelling and shrinkage. However, there is a problem in handling that the membrane is attached in a facility such as a working pool and must be placed in a moist environment even after the attachment.

特開平11−86909号公報Japanese Patent Laid-Open No. 11-86909 特開2008−106261号公報JP 2008-106261 A 特開2000−235849号公報JP 2000-235849 A

現在汎用されている電池用隔膜の多くは、前述したとおりプラスチックフィルムまたはエンジニアリングプラスチックフィルムに細孔を設けた多孔性フィルムにイオン交換樹脂を付着させたイオン交換膜であり、これらの多孔性フィルムの細孔は、ポアサイズ径が10〜10,000nmであり、イオン交換樹脂を付着する担持容量が小さい。それ故にプロトン透過性に劣り充放電効率が低く、その上、極液の漏液を生じ易いと言う課題があった。そこで、本願発明者は、電池用隔膜について鋭意研究している課程において、前記多孔性フィルムに比較してポアサイズ径が小さくバラツキが狭い、例えば、ポアサイズ径が2〜50nmの珪藻土等の無機多孔質粉粒状体にイオン交換樹脂を付着させ、このイオン交換樹脂を付着した無機多孔質粉粒状体を漆類等のマトリクッス中に分散させることにより、繰り返し充放電してもイオン交換樹脂が離脱し難く且つプロトンの透過量が増大し、極液の漏液を阻止して安定した隔膜が得られるとの知見を得て本発明に至ったものであり、本願発明の主たる目的は、プロトン透過性に優れていて極液の漏液を防止し、且つ、乾燥保存ができるので取り扱いが容易で、優れた電池性能と耐薬品性と耐久性を有するレドックスフロー電池用隔膜及びその製造方法を提供することにある。   Many of the battery membranes currently in wide use are ion exchange membranes in which an ion exchange resin is attached to a porous film having pores in a plastic film or an engineering plastic film as described above. The pores have a pore size diameter of 10 to 10,000 nm and a small carrying capacity for attaching the ion exchange resin. Therefore, there is a problem that the proton permeability is inferior, the charge / discharge efficiency is low, and the leakage of the polar liquid is liable to occur. Accordingly, the inventors of the present application have made extensive studies on battery diaphragms, and the pore size diameter is smaller and the variation is narrower than the porous film, for example, inorganic porous materials such as diatomaceous earth having a pore size diameter of 2 to 50 nm. By attaching an ion exchange resin to the powder and dispersing the inorganic porous powder with the ion exchange resin in a matrix such as lacquer, it is difficult for the ion exchange resin to be released even after repeated charge and discharge. In addition, the inventors have obtained the knowledge that the proton permeation amount is increased and the stable liquid can be obtained by preventing the leakage of the polar liquid, and the main object of the present invention is to improve the proton permeability. An excellent redox flow battery membrane having excellent battery performance, chemical resistance and durability, and excellent battery performance, chemical resistance and durability since it is excellent in preventing leakage of polar liquid and can be stored dry. And to provide a production method.

前記の課題を解決するために、本発明は、シートの表裏に連通する多数の空隙を有するシート基材の前記空隙および/またはシート基材面に、イオン交換樹脂を付着させた無機多孔質粉粒状体がマトリクッス中に分散したイオン交換膜を形成してなることを特徴とするレドックスフロー電池用隔膜とする(請求項1)。   In order to solve the above-described problems, the present invention provides an inorganic porous powder in which an ion exchange resin is adhered to the voids and / or the surface of a sheet substrate having a large number of voids communicating with the front and back of the sheet. A redox flow cell membrane characterized in that an ion exchange membrane in which particles are dispersed in a matrix is formed (claim 1).

また、前記の課題を解決するために、本発明は、イオン交換樹脂を付着させた無機多孔質粉粒状体がマトリクッス中に分散したイオン交換膜からなるレドックスフロー電池用隔膜とする(請求項2)。   In order to solve the above-mentioned problems, the present invention provides a redox flow battery diaphragm comprising an ion exchange membrane in which an inorganic porous granular material to which an ion exchange resin is adhered is dispersed in a matrix. ).

また、前記の課題を解決するために、本発明は、前記イオン交換樹脂は、ポリスルホン系のイオン交換樹脂であることを特徴とする前記のレドックスフロー電池用隔膜とすることが好ましい(請求項3)。   In order to solve the above-mentioned problems, the present invention preferably uses the redox flow battery diaphragm, wherein the ion-exchange resin is a polysulfone ion-exchange resin. ).

また、前記の課題を解決するために、本発明は、
前記イオン交換樹脂は、

Figure 2012248408
(式中、mは繰り返し単位を表す0または1以上の整数、nは1以上の整数とする。)
(式中、Xはイオン交換基を有するフェノール・その塩またはイオン交換基を有する4,4’−ジヒドロキシジフェニルスルホン・その塩、Rはアルキル基とする。)
で表される架橋が導入された重合体からなることを特徴とする前記のレドックスフロー電池用隔膜とすることが好ましい(請求項4)。 In order to solve the above-mentioned problem, the present invention provides:
The ion exchange resin is
Figure 2012248408
(In the formula, m is 0 or an integer of 1 or more representing a repeating unit, and n is an integer of 1 or more.)
(In the formula, X is a phenol / ion salt having an ion exchange group or 4,4′-dihydroxydiphenyl sulfone / a salt having an ion exchange group, and R is an alkyl group.)
It is preferable to use the redox flow battery diaphragm characterized in that it is made of a polymer introduced with a crosslink represented by the formula (Claim 4).

また、前記の課題を解決するために、本発明は、前記マトリクッスを構成する樹脂は、漆類、その他の水酸基を有する合成樹脂あるいは天然由来の樹脂およびこれらの樹脂とイオン交換樹脂との組み合わせの中の少なくとも何れか一種からなることを特徴とする前記のレドックスフロー電池用隔膜とすることが好ましい(請求項5)。   In order to solve the above-mentioned problems, the present invention provides a resin comprising the matrix, lacquer, other synthetic resins having a hydroxyl group or a naturally-derived resin, and a combination of these resins and an ion exchange resin. Preferably, the redox flow battery diaphragm is made of at least one of them.

また、前記の課題を解決するために、本発明は、前記無機多孔質粉粒状体は、珪藻土、セピオライト、ゼオライト、パーライト、ケイ酸カルシウム、カオリン、アタパルジャイト、バーミキュライト、クリストバライトおよびその他のシリカ多孔質体の中の少なくとも何れか一種からなることを特徴とする前記のレドックスフロー電池用隔膜とすることが好ましい(請求項6)。   Further, in order to solve the above-mentioned problems, the present invention provides the inorganic porous granular material comprising diatomaceous earth, sepiolite, zeolite, perlite, calcium silicate, kaolin, attapulgite, vermiculite, cristobalite, and other silica porous bodies. Preferably, the redox flow battery diaphragm is characterized by comprising at least one of the above (Claim 6).

また、前記の課題を解決するために、本発明は、無機多孔質粉粒状体にイオン交換樹脂を付着させる工程と、前記イオン交換樹脂を付着させた無機多孔質紛粒状体とマトリクッスと分散媒を含む混合液を調整する工程と、シートの表裏に連通する多数の空隙を有するシート基材に前記イオン交換樹脂を付着させた無機多孔質粉粒状体を充填する工程と、前記無機多孔質粉粒状体を充填したシート基材に前記混合液を含浸させる工程と、前記混合液を含浸させたシート基材を加熱乾燥して前記シート基材にイオン交換膜を形成する工程とを備えることを特徴とするレドックスフロー電池用隔膜の製造方法とする(請求項7)。   In order to solve the above problems, the present invention includes a step of attaching an ion exchange resin to an inorganic porous powder granule, an inorganic porous powder particle to which the ion exchange resin is adhered, a matrix, and a dispersion medium. A step of preparing a mixed liquid containing, a step of filling an inorganic porous powder granule in which the ion exchange resin is attached to a sheet base material having a large number of voids communicating with the front and back of the sheet, and the inorganic porous powder Impregnating the sheet base material filled with the granular material with the mixed liquid; and heating and drying the sheet base material impregnated with the mixed liquid to form an ion exchange membrane on the sheet base material. A method for producing a featured redox flow battery diaphragm is provided.

また、前記の課題を解決するために、本発明は、無機多孔質粉粒状体にイオン交換樹脂を付着させる工程と、前記イオン交換樹脂を付着させた無機多孔質紛粒状体とマトリクッスと分散媒とを含む混合液を調整する工程と、前記混合液を面状化した後、加熱乾燥してイオン交換膜を形成するする工程とを備えることを特徴とするレドックスフロー電池用隔膜の製造方法とする(請求項8)。   In order to solve the above problems, the present invention includes a step of attaching an ion exchange resin to an inorganic porous powder granule, an inorganic porous powder particle to which the ion exchange resin is adhered, a matrix, and a dispersion medium. And a method for producing a redox flow battery membrane, comprising: a step of preparing a mixed solution comprising: a step of forming an ion exchange membrane by heating and drying after planarizing the mixed solution; (Claim 8).

また、前記の課題を解決するために、本発明は、前記イオン交換樹脂は、ポリスルホン系のイオン交換樹脂であることを特徴とする前記のレドックスフロー電池用隔膜の製造方法とすることが好ましい(請求項9)。   In order to solve the above problems, the present invention is preferably a method for producing a redox flow battery membrane according to the present invention, wherein the ion exchange resin is a polysulfone ion exchange resin ( Claim 9).

また、前記の課題を解決するために、本発明は、
前記イオン交換樹脂は、

Figure 2012248408
(式中、mは繰り返し単位を表す0または1以上の整数、nは1以上の整数とする。)
(式中、Xはイオン交換基を有するフェノール・その塩またはイオン交換基を有する4,4’−ジヒドロキシジフェニルスルホン・その塩、Rはアルキル基とする。)
で表される芳香族ポリスルホン系重合体であって架橋導入性能を有する重合体およびそのプレポリマーからなることを特徴とする請求項7〜9記載のレドックスフロー電池用隔膜の製造方法とすることが好ましい(請求項10)。 In order to solve the above-mentioned problem, the present invention provides:
The ion exchange resin is
Figure 2012248408
(In the formula, m is 0 or an integer of 1 or more representing a repeating unit, and n is an integer of 1 or more.)
(In the formula, X is a phenol / ion salt having an ion exchange group or 4,4′-dihydroxydiphenyl sulfone / a salt having an ion exchange group, and R is an alkyl group.)
The process for producing a redox flow battery diaphragm according to claim 7, comprising a polymer having a cross-linking ability and a prepolymer thereof. Preferred (claim 10).

また、前記の課題を解決するために、本発明は、前記マトリクッスを構成する樹脂は、漆類、その他の水酸基を有する合成樹脂あるいは天然由来の樹脂およびこれらの樹脂とイオン交換樹脂との組み合わせの中の少なくとも何れか一種からなることを特徴とする前記の何れかに記載のレドックスフロー電池用隔膜の製造方法とすることが好ましい(請求項11)。   In order to solve the above-mentioned problems, the present invention provides a resin comprising the matrix, lacquer, other synthetic resins having a hydroxyl group or a naturally-derived resin, and a combination of these resins and an ion exchange resin. It is preferable to use the method for producing a redox flow battery diaphragm according to any one of the above, characterized by comprising at least one of them.

また、前記の課題を解決するために、本発明は、前記無機多孔質粉粒状体は、珪藻土、セピオライト、ゼオライト、パーライト、ケイ酸カルシウム、カオリン、アタパルジャイト、バーミキュライト、クリストバライト及びその他のシリカ多孔質体の中の少なくとも何れか一種からなることを特徴とする前記のレドックスフロー電池用隔膜の製造方法とすることが好ましい(請求項12)。   In order to solve the above-mentioned problems, the present invention provides that the inorganic porous powder particles are diatomaceous earth, sepiolite, zeolite, perlite, calcium silicate, kaolin, attapulgite, vermiculite, cristobalite and other silica porous bodies. Preferably, the method for producing a redox flow battery diaphragm is characterized in that it comprises at least one of the above.

本願発明に係るレドックスフロー電池用隔膜は、前記のように乾燥保存できることから、隔膜をセル容器に取り付けるときに、水中で作業することなく、乾燥した空間域で作業することができるので、将来的にはロボットによる自動組み立てが可能であり、取り付け作業が極めて容易にでき、作業用プールのような設備も必要なく経済的効果を奏する。前記の取り扱い上の効果に加えて、メソポア珪藻土やセピオライトのようにポアサイズ径が数nmの細孔を有する無機多孔質粉粒状体を用いた場合は、プロトンの透過性が向上し極液の漏液性が低減する効果を奏する。更に、燃料電池等への応用も可能と考えられる。   Since the redox flow battery diaphragm according to the present invention can be stored dry as described above, when the diaphragm is attached to the cell container, it can be operated in a dry space area without working in water. The robot can be automatically assembled by a robot, can be mounted very easily, and does not require a facility such as a work pool, and has an economic effect. In addition to the above-mentioned effects on handling, when an inorganic porous granular material having pores with a pore size of several nanometers such as mesopore diatomaceous earth and sepiolite is used, proton permeability is improved and leakage of polar liquid is improved. There is an effect of reducing liquidity. Furthermore, it is considered possible to apply to fuel cells.

性能試験用レドックスフロー電池に用いるセルの説明図である。It is explanatory drawing of the cell used for the redox flow battery for performance tests. 性能試験用レドックスフロー電池を示す説明図である。It is explanatory drawing which shows the redox flow battery for performance tests. 実施例1に係るレドックスフロー電池用隔膜の製造工程図である。It is a manufacturing-process figure of the membrane for redox flow batteries which concerns on Example 1. FIG. 実施例2に係るレドックスフロー電池用隔膜の製造工程図である。It is a manufacturing-process figure of the membrane for redox flow batteries which concerns on Example 2. FIG. 実施例3に係るレドックスフロー電池用隔膜の製造工程図である。It is a manufacturing-process figure of the membrane for redox flow batteries which concerns on Example 3. FIG. 実施例4に係るレドックスフロー電池用隔膜の製造工程図である。It is a manufacturing-process figure of the membrane for redox flow batteries which concerns on Example 4. FIG.

本発明を実施するための形態(以下「実施の形態」と称する)について、以下に詳細に説明する。しかし、本発明は、かかる実施の形態に限定されるものではない。本発明の実施の形態に係るレドックスフロー電池用隔膜は、シートの表裏に連通する多数の空隙を有するシート基材の前記空隙および/またはシート基材面に、イオン交換樹脂を付着させた無機多孔質粉粒状体がマトリクッス中に分散したイオン交換膜を形成してなることを特徴とする。   Modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail below. However, the present invention is not limited to such an embodiment. The membrane for redox flow battery according to the embodiment of the present invention is an inorganic porous material in which an ion exchange resin is attached to the voids and / or the sheet substrate surface of a sheet substrate having a large number of voids communicating with the front and back sides of the sheet. It is characterized by forming an ion exchange membrane in which a granular powder is dispersed in a matrix.

本実施の形態に用いるシート基材は、少なくともシートの表裏あるいはシート面方向に連通する多数の空隙を有し、該空隙に無機多孔質粉粒状体を保持可能であって、且つ、極液に対する耐酸性と強度を有する限り特に限定されないが、基材の形状としては、織編布、不織布、ネット状物あるいは多孔質シートなどのイオン交換膜の基材として公知のものが広く用いられる。例えば、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ガラス繊維、アラミド繊維、ポリアミド繊維、その他の合成繊維等のステープル条、または麻、パルプ等の天然繊維またはこれら短繊維条の組み合わせと珪藻土等の無機多孔質粉粒状体と必要に応じてバインダーを添加して乾式法あるいは湿式法にてシート状に形成したものが挙げられる。該シート基材の配合比率は特に限定するものではないが、例えば、無機多孔質粉粒状体が50〜70質量部、繊維状物が30〜50質量部、必要に応じてバインダーを1〜7質量部添加したものが好ましい。   The sheet base material used in the present embodiment has at least a large number of voids communicating with the front and back sides of the sheet or in the sheet surface direction, can hold the inorganic porous powder particles in the voids, and is compatible with the polar liquid. Although it does not specifically limit as long as it has acid resistance and intensity | strength, As a shape of a base material, what is well-known as base materials of ion exchange membranes, such as a woven / knitted cloth, a nonwoven fabric, a net-like thing, or a porous sheet, is used widely. For example, staple fibers such as polyester fiber, polyethylene fiber, polypropylene fiber, glass fiber, aramid fiber, polyamide fiber, and other synthetic fibers, or natural fibers such as hemp and pulp, or a combination of these short fibers and inorganic porous materials such as diatomaceous earth Examples thereof include a powdery granular material and, if necessary, a binder added to form a sheet by a dry method or a wet method. The mixing ratio of the sheet base material is not particularly limited. For example, the inorganic porous powder is 50 to 70 parts by mass, the fibrous material is 30 to 50 parts by mass, and the binder is 1 to 7 as necessary. What added the mass part is preferable.

無機多孔質粉粒状体としてはイオン交換樹脂が付着する微細孔を有するものが好ましく、珪藻土、セピオライト、ゼオライト、パーライト、ケイ酸カルシウム、カオリン、アタパルジャイト、バーミキュライト、クリストバライト及びその他のシリカ等の多孔質体の粉粒状体が好ましい。特に珪藻土とセピオライトが特に好ましい。その他、天然ないし人口のシリカ多孔質体、例えば、界面活性剤のミセルを鋳造型として合成されるポアサイズ径が2〜50nmからなるハニカム状の均一なメソポアを有するシリカ多孔質体TMPS(登録商標)等が挙げられる。   As the inorganic porous powder particles, those having fine pores to which ion exchange resin adheres are preferable, and porous materials such as diatomaceous earth, sepiolite, zeolite, perlite, calcium silicate, kaolin, attapulgite, vermiculite, cristobalite and other silicas. The granular material is preferable. Diatomite and sepiolite are particularly preferred. In addition, natural or artificial silica porous material, for example, silica porous material TMPS (registered trademark) having a honeycomb-shaped uniform mesopore having a pore size diameter of 2 to 50 nm synthesized using a surfactant micelle as a casting mold Etc.

珪藻土は二酸化ケイ素(シリカSiO)が主成分であって耐酸性が強く吸放湿性に富み、特にポアサイズが2〜50nmのメソポア珪藻土は比表面積が100m/gと一般の珪藻土の約4倍あり、微細孔容積は約5倍あって微細孔内にイオン交換樹脂を保持する容量が大きいことからレドックスフロー電池用隔膜としてより好ましい。また、焼成メソポア珪藻土は微細孔中に詰まっている有機質夾雑物又は可燃物夾雑物が消失することにより微細孔内にイオン交換樹脂をより多く取り込んで保持できるのでプロトン伝導性が向上する。 Diatomaceous earth is mainly composed of silicon dioxide (silica SiO 2 ) and has strong acid resistance and high moisture absorption and release. Especially, mesoporous diatomaceous earth with a pore size of 2 to 50 nm has a specific surface area of 100 m 2 / g, which is about 4 times that of ordinary diatomaceous earth. In addition, since the micropore volume is about 5 times larger and the capacity for holding the ion exchange resin in the micropore is large, it is more preferable as a redox flow battery diaphragm. In addition, the calcined mesopore diatomaceous earth improves the proton conductivity because the organic contaminants or combustible contaminants clogged in the fine pores disappear and more ion exchange resin can be taken in and retained in the fine pores.

セピオライトは含水マグネシウムケイ酸塩を主成分とし、酸化マグネシウムと酸化アルミニウム等を含み、ポアサイズ径が1〜20nm、比表面積が230〜300m/gと大きく且つ粒子表面に開孔している空隙が粒子内部で網目状に連結しているので、イオン交換樹脂を保持し易い。セピオライトはシラノール基を有し水分や有機物と水素結合による吸着性を有するとともに共有結合により水や溶媒の存在下でも膨張し難いのでイオン交換樹脂の保持性に優れる。 Sepiolite is mainly composed of hydrous magnesium silicate, contains magnesium oxide and aluminum oxide, etc., has a pore size diameter of 1 to 20 nm, a specific surface area of 230 to 300 m 2 / g and a void that is open on the particle surface. Since the particles are connected in a mesh shape inside the particles, the ion exchange resin can be easily held. Sepiolite has a silanol group and adsorbability due to hydrogen bonds with water and organic substances, and it is difficult to swell in the presence of water or a solvent due to covalent bonds, so it has excellent retention of ion exchange resins.

前記シート基材に含まれる無機多孔質粉粒状体に付着させるイオン交換樹脂としては、公知のイオン交換基を有する重縮合物を広く用いることができる。例えば、マイナス電荷のイオン交換基としては、スルホン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基等があり、プラス電荷のイオン交換基としては、ピリジニウム塩基、第四級アンモニウム塩基、第三級アミン基、ホスホニウム基等がある。これらのうち、スルホン酸基はプロトン伝導性を向上し、ピリジニウム塩基は、プロトン選択透過性に優れ、ともに耐酸化性を有するので本発明の交換基としては好適である。また、これらのイオン交換基が導入される樹脂は、いかなるものであっても良いが、膨潤や変形を防ぐために通常は例えば架橋剤等により三次元架橋された架橋重合体からなるものが一般的である。   As the ion exchange resin to be attached to the inorganic porous powder particles contained in the sheet base material, polycondensates having a known ion exchange group can be widely used. For example, negatively charged ion exchange groups include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, phosphinic acid groups, etc., and positively charged ion exchange groups include pyridinium base, quaternary ammonium base, third There are secondary amine groups, phosphonium groups, and the like. Among these, the sulfonic acid group improves proton conductivity, and the pyridinium base is suitable as the exchange group of the present invention because it has excellent proton selective permeability and both have oxidation resistance. The resin into which these ion exchange groups are introduced may be any resin, but is generally made of a crosslinked polymer that is three-dimensionally crosslinked with, for example, a crosslinking agent in order to prevent swelling or deformation. It is.

カチオン交換隔膜に用いられるイオン交換基を有する単量体で公知のものとしては、例えば、フェノールスルホン酸、α,β,β’−ハロゲン化ビニルスルホン酸、メタクリル酸、アクリル酸、スチレンスルホン酸、ビニルスルホン酸、マレイン酸、イタコン酸、スチレンホスホニル酸、無水マレイン酸、ビニルリン酸等、これらの塩類、エステル類等が挙げられる。また、アニオン交換隔膜に用いられるイオン交換基を有する単量体で公知のものとしては、例えば、ビニルピリジン、メチルビニルピリジン、エチルビニルピリジン、ビニルピロリドン、ビニルカルバゾール、ビニルイミダゾール、アミノスチレン、アルキルアミノスチレン、ジアルキルアミノスチレン、トリアルキルアミノスチレン、メチルビニルケトン、クロルメチルスチレン、アクリル酸アミド、アクリルアミド、オキシム、スチレン、ビニルトルエン等が挙げられる。   Examples of known monomers having ion exchange groups used in the cation exchange membrane include phenolsulfonic acid, α, β, β′-halogenated vinylsulfonic acid, methacrylic acid, acrylic acid, styrenesulfonic acid, Examples thereof include vinyl sulfonic acid, maleic acid, itaconic acid, styrene phosphonylic acid, maleic anhydride and vinyl phosphoric acid, and salts and esters thereof. Examples of known monomers having ion exchange groups used in anion exchange membranes include, for example, vinyl pyridine, methyl vinyl pyridine, ethyl vinyl pyridine, vinyl pyrrolidone, vinyl carbazole, vinyl imidazole, aminostyrene, alkylamino. Examples thereof include styrene, dialkylaminostyrene, trialkylaminostyrene, methyl vinyl ketone, chloromethyl styrene, acrylic amide, acrylamide, oxime, styrene, vinyl toluene and the like.

本願発明において、上記イオン交換樹脂は、いかなる方法で製造してもよいが、一般的にはイオン交換基の導入に適した官能基またはイオン交換基を有する単量体、架橋剤、重合開始剤等を含む重合組成物を前記の無機多孔質粉粒状体または無機多孔質粉粒状体を有するシート基材に付着させて重合させることにより製造することができる。または、前記重合組成物のプレポリマー等を無機多孔質粉粒状体または無機多孔質粉粒状体を有するシート基材に付着させてた後、重合体を成長させることによって製造することができる。   In the present invention, the ion exchange resin may be produced by any method, but in general, a monomer having a functional group or ion exchange group suitable for introduction of an ion exchange group, a crosslinking agent, and a polymerization initiator. Etc. can be produced by adhering to a sheet substrate having the above-mentioned inorganic porous powder or inorganic porous powder and polymerizing it. Or after making the prepolymer etc. of the said polymerization composition adhere to the sheet | seat base material which has an inorganic porous granular material or an inorganic porous granular material, it can manufacture by growing a polymer.

以上により得られる重合組成物またはそのプレポリマーは、無機多孔質粉粒状体または無機多孔質粉粒状体を有するシート基材に付着されて重合し三次元架橋される。重合組成物またはそのプレポリマーのシート基材への付着方法は、特に限定するものではないが、例えば、塗布、含浸、或いは浸漬等の公知の方法が使用でき、付着する対象物の材質、形状、或いは重合組成物またはそのプレポリマーの性状に応じて適宜選択すればよい。   The polymerization composition obtained by the above or its prepolymer is attached to a sheet substrate having inorganic porous powder or inorganic porous powder and polymerized to be three-dimensionally crosslinked. The method for adhering the polymerization composition or its prepolymer to the sheet substrate is not particularly limited. For example, a known method such as coating, impregnation, or dipping can be used. Alternatively, it may be appropriately selected according to the properties of the polymerization composition or its prepolymer.

本実施の形態におけるイオン交換樹脂としては、例えば、

Figure 2012248408
(式中、mは繰り返し単位を表す0または1以上の整数、nは1以上の整数とする。)
(式中、Xはイオン交換基を有するフェノール単量体・その塩またはイオン交換基を有する4,4’−ジヒドロキシジフェニルスルホン単量体・その塩、Rはアルキル基とする。)
で表される芳香族ポリスルホン系重合体、該重合体のプレポリマーおよび該重合体に架橋が導入された重合体の中の少なくとも何れかを用いることができる。 As the ion exchange resin in the present embodiment, for example,
Figure 2012248408
(In the formula, m is 0 or an integer of 1 or more representing a repeating unit, and n is an integer of 1 or more.)
(In the formula, X is a phenol monomer having an ion exchange group / a salt thereof or 4,4′-dihydroxydiphenylsulfone monomer / an salt having an ion exchange group, and R is an alkyl group.)
At least any one of the aromatic polysulfone-based polymer represented by formula (1), a prepolymer of the polymer, and a polymer in which crosslinking is introduced into the polymer can be used.

前記のプレポリマーからなる水溶性フェノール重縮合物は、4,4’−ジヒドロキシジフェニルスルホン単量体とホルムアルデヒドの縮合部[(C1310S)m]と、イオン交換基(スルホン酸)を有するフェノールまたはその塩、(Na)とホルムアルデヒドの縮合部[(CNaOS)n]とのブロック型共重合体からなり、後者のセグメントには芳香族環にスルホン酸基(−SOH)またはその塩(Na)が導入される。前記の水溶性フェノール重縮合物の製造方法としては、特に限定するものではないが、例えば、特開2010−285383、または、特開2005−15607に記載の方法が用いられる。 The water-soluble phenol polycondensate comprising the above prepolymer comprises a 4,4′-dihydroxydiphenylsulfone monomer and formaldehyde condensation part [(C 13 H 10 O 4 S) m], an ion exchange group (sulfonic acid). ) Having a block copolymer of (Na) and formaldehyde condensation part [(C 7 H 5 NaO 4 S) n], the latter segment having a sulfonic acid group on the aromatic ring (—SO 3 H) or a salt thereof (Na) is introduced. Although it does not specifically limit as a manufacturing method of the said water-soluble phenol polycondensate, For example, the method of Unexamined-Japanese-Patent No. 2010-285383 or Unexamined-Japanese-Patent No. 2005-15607 is used.

平均分子量が10,000〜20,000からなる前記水溶性フェノール重縮合物が約30質量%、水が約70質量%からなる水溶性フェノール重縮合物水溶液を酢酸水溶液で希釈して得られた希釈液中に無機多孔質粉粒状体を浸漬して、必要に応じて減圧下で攪拌し無機多孔質粉粒状体の外周部及び微細孔内に希釈液を浸透させた後、余分な希釈液を取り除いて加熱処理すると、水溶性フェノール重縮合物が酸性下での加熱による自己架橋により三次元化して硬化しイオン交換樹脂が形成される。   The water-soluble phenol polycondensate having an average molecular weight of 10,000 to 20,000 was obtained by diluting an aqueous solution of water-soluble phenol polycondensate having about 30% by mass and water having about 70% by mass with an acetic acid aqueous solution. After immersing the inorganic porous granular material in the diluted liquid and stirring it under reduced pressure as necessary to infiltrate the diluted liquid into the outer peripheral portion and fine pores of the inorganic porous granular material, the excess diluted liquid When the heat treatment is carried out after removing the water, the water-soluble phenol polycondensate is three-dimensionalized and cured by self-crosslinking by heating under acidic conditions to form an ion exchange resin.

前記イオン交換樹脂が付着した多数の無機多孔質粉粒状体がマトリクッス中に分散したイオン交換膜がシート基材の空隙およびシート基材面に形成される結果、イオン交換樹脂の剥離を防止し隔膜の耐久性が向上するとともに極液の漏液を防止することができる。また、外周部及び微細孔内にイオン交換樹脂が付着された多数の無機多孔質粉粒状体を漆類等の水酸基を有するマトリクッス中に分散させることにより、マトリクッスと極液との親和性が向上するとともに、前記イオン交換膜中の粉粒状体と粉粒状体の外周面同士および粉粒状体内の微細孔壁面に沿って多数のプロトン伝導用パスが形成されることにより、プロトンはより透過しやすくなるものと考えられる。   As a result of the formation of an ion exchange membrane in which a large number of inorganic porous powder particles to which the ion exchange resin has adhered dispersed in the matrix are formed in the voids of the sheet base material and the surface of the sheet base material, separation of the ion exchange resin is prevented. As a result, the durability of the liquid can be improved and the leakage of the polar liquid can be prevented. In addition, the affinity between the matrix and the polar liquid is improved by dispersing a large number of inorganic porous particles with ion-exchange resin adhering to the outer periphery and micropores in the matrix having hydroxyl groups such as lacquer. In addition, a large number of proton conducting paths are formed along the outer peripheral surfaces of the granular material and the granular material in the ion-exchange membrane and along the fine pore wall surfaces in the granular material, so that protons are more easily transmitted. It is considered to be.

本発明におけるマトリクッスとは、シート基材の空隙およびシート基材面に被膜を形成し得る成分を言い、シート基材との密着性やコーティング液の成分であるイオン交換樹脂との親和性、更に極液の漏液を抑制し得る能力の有無などの条件に適合する樹脂などから選択することが好ましく、例えば、ウルシオールを主成分とする天然由来の漆やカシューナットシェルオイルを主成分とするポリマーを含む漆類およびその他の合成樹脂、例えば、塗料用ビヒクルとして従来から用いられているポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、塩化ビニル系樹脂、エポキシ系樹脂、メラミン系樹脂、フッ素系樹脂、シリコン系樹脂、ブチラール系樹脂、フェノール系樹脂、酢酸ビニル系樹脂、水溶性樹脂、親水性樹脂、これらの混合物、共重合体、変性体からなる塗料用樹脂、またはアルコキシシラン等加水分解性有機ケイ素化合物およびこれらの部分加水分解物などが挙げられる。また、これらの樹脂にイオン交換樹脂を加えることによって、プロトン伝導性をより向上することができる。   The matrix in the present invention refers to a component that can form a coating on the voids of the sheet substrate and the sheet substrate surface, adhesion to the sheet substrate and affinity with the ion exchange resin that is a component of the coating liquid, It is preferable to select from resins that meet conditions such as the ability to suppress the leakage of polar liquid, such as natural lacquer or cashew nut shell oil mainly composed of urushiol. Lacquers containing polymers and other synthetic resins, for example, polyester resins, acrylic resins, urethane resins, vinyl chloride resins, epoxy resins, melamine resins, fluorine resins, which are conventionally used as paint vehicles Resin, silicone resin, butyral resin, phenol resin, vinyl acetate resin, water soluble resin, hydrophilic resin, and mixtures thereof Copolymer coating resins made of modified products, or alkoxysilanes hydrolyzable organic silicon compound and the like of these partial hydrolyzates thereof. Moreover, proton conductivity can be further improved by adding an ion exchange resin to these resins.

本実施の形態におけるマトリクッスとして用いられる漆は、種類や産地などが特に限定されず、汎用の漆が広く使用可能である。汎用の漆以外にウルシ科に属するカシューの実の殻から抽出されるカシューナットシェルオイルも含まれる。漆は一般的に、漆の木から採取したままの漆液「荒味うるし」を塗料等として使用できるように精製する。先ず、「荒味うるし」を加熱下で濾過してゴミや木の皮を取り除き、濾過した「生漆」を品質を均一化して平滑性や光沢を与える「やなし」作業に続いて40℃前後の加熱下で攪拌し水分3〜4%に調整したものが好ましい。   The lacquer used as the matrix in the present embodiment is not particularly limited in type and production area, and general-purpose lacquer can be widely used. In addition to general-purpose lacquer, cashew nut shell oil extracted from cashew husks belonging to the Urushi family is also included. In general, lacquer is refined so that the lacquer solution “Rakumi Urushi” collected from lacquer wood can be used as paint. First of all, "Rakumi Urushi" is filtered under heating to remove dust and bark, and the filtered "Nama-lacquer" is uniformed to give quality and smoothness and luster. What was stirred under heating and adjusted to a moisture content of 3 to 4% is preferable.

漆をシート基材に付着した後乾燥することによって塗膜を形成するが、これは水分が蒸発するのではなく、ラッカーゼという酵素の働きで適度な温度と湿度の条件の下で、漆の主成分であるウルシオールが重合し、更に網目状に高分子を形成し硬化することによる。また、20〜190℃前後、加熱下で焼き付けにより硬化する。本実施の形態においては、時間の短縮を考慮してこの焼き付けによる硬化を利用して作業することが好ましい。   Lacquer is attached to the sheet base material and then dried to form a coating film, but this does not evaporate the water, but the main function of lacquer is under the conditions of moderate temperature and humidity by the action of an enzyme called laccase. This is because the component urushiol is polymerized, and further, a polymer is formed in a network and cured. Moreover, it hardens | cures by baking by heating at around 20-190 degreeC. In the present embodiment, it is preferable to work by using hardening by baking in consideration of shortening of time.

前記漆類に予めイオン交換樹脂を付着させた無機多孔質粉粒状体と分散媒を加えて攪拌混合してコーティング液を調整する。このコーティング液に前記イオン処理基材を浸漬しコーティング液を含浸させた後加熱乾燥させると、漆が硬化してイオン交換樹脂が無機多孔質粉粒状体及びシート基材に強固に付着する。この際、極液の漏液が生じない範囲内でなるべく無機多孔質粉粒状体の混合比率を高めることが好ましい。つまり無機多孔質粉粒状体の混合比率が高いコーティング液ほど無機多孔質粉粒状体と電解液との接触する確率が高まり、プロトンの選択透過性が大きくなる。   A coating liquid is prepared by adding an inorganic porous powder granular material in which an ion exchange resin is previously adhered to the lacquer and a dispersion medium, and stirring and mixing them. When the ion-treated substrate is immersed in the coating solution and impregnated with the coating solution, and then dried by heating, the lacquer is cured and the ion exchange resin adheres firmly to the inorganic porous granular material and the sheet substrate. At this time, it is preferable to increase the mixing ratio of the inorganic porous powder as much as possible within a range in which the leakage of the polar liquid does not occur. That is, the higher the mixing ratio of the inorganic porous granular material, the higher the probability of contact between the inorganic porous granular material and the electrolytic solution, and the higher the proton selective permeability.

そこで、コーティング液の調整において、漆100質量部に対して、無機多孔質粉粒状体(珪藻土)50〜350質量部が好ましい。無機多孔質粉粒状体(珪藻土)200〜300質量部が特に好ましい。無機多孔質粉粒状体(珪藻土)が50質量部未満ではプロトンの選択透過性が小さく、350質量部を越えると無機多孔質粉粒状体(珪藻土)が分離する恐れが生じる。更に、イオン交換樹脂素材、例えば、以下に示すフェノール水溶液を漆の添加割合と比較校量して適宜量を添加混合することが好ましい。また、漆類の分散媒としては、特に限定するものではないが、テレピン油、エタノール又はこれらと水との混合分散媒が好ましい。必要に応じて界面活性剤や粘度調整剤を用いてもよい。   Then, in adjustment of a coating liquid, 50-350 mass parts of inorganic porous granular materials (diatomaceous earth) are preferable with respect to 100 mass parts of lacquer. 200 to 300 parts by mass of the inorganic porous powder (diatomaceous earth) is particularly preferable. If the inorganic porous granular material (diatomaceous earth) is less than 50 parts by mass, the proton selective permeability is small, and if it exceeds 350 parts by mass, the inorganic porous granular material (diatomaceous earth) may be separated. Furthermore, it is preferable to add an ion exchange resin material, for example, a phenol aqueous solution shown below in a comparative amount with the addition ratio of lacquer, and add and mix appropriately. The lacquer dispersion medium is not particularly limited, but turpentine oil, ethanol, or a mixed dispersion medium of these and water is preferable. You may use surfactant and a viscosity modifier as needed.

以下に実施例を挙げて本発明のレドックスフロー電池用隔膜の製造方法について図3〜6を参照して説明するが、本発明はこれらの実施例によって何ら限定されるものではない。以下の実施例においては、請求項1の化学構造式(1)で表されるイオン交換樹脂素材として、前記化学構造式(1)中、 m/n=7〜9/3〜1、平均分子量が10,000〜20,000、濃度30質量%のフェノール重縮合物水溶液(以下「フェノール水溶液」と称する。)を用いた。   Examples A method for producing a redox flow battery membrane according to the present invention will be described below with reference to FIGS. 3 to 6, but the present invention is not limited to these examples. In the following examples, as the ion exchange resin material represented by the chemical structural formula (1) of claim 1, in the chemical structural formula (1), m / n = 7 to 9/3 to 1, average molecular weight Was a phenol polycondensate aqueous solution (hereinafter referred to as “phenol aqueous solution”) having a concentration of 10,000 to 20,000 and a concentration of 30% by mass.

先ず、図1に示すように、前記フェノール水溶液に以下の配合に基づき適宜量の酢酸と水を加えて酸性(PH4〜4.5)になるようにイオン交換樹脂希釈液を調整する。酢酸に代えてまたは酢酸とともにPH調整に用いられる公知の硫酸その他の酸を用いてもよい。
<イオン交換樹脂希釈液の調整>
フェノール水溶液 3 (単位:質量部)
水 100
酢酸(濃度60質量%) 0.5(変動)
First, as shown in FIG. 1, an appropriate amount of acetic acid and water are added to the aqueous phenol solution based on the following formulation to adjust the ion exchange resin dilution so as to be acidic (PH 4 to 4.5). A known sulfuric acid or other acid used for pH adjustment instead of or together with acetic acid may be used.
<Adjustment of ion exchange resin diluent>
Phenol aqueous solution 3 (unit: parts by mass)
Water 100
Acetic acid (concentration 60% by mass) 0.5 (variation)

次に、骨材として以下の配合からなる湿式法(抄紙法)によるシート基材を準備する。
シート基材(100×100mm)の重量は1.4〜1.5g、総厚は0.25〜0.35mmである。
<シート基材の基本配合>
珪藻土粉末(メソポア珪藻土、平均粒径:φ2.5μm) 60(単位:質量部)
(真比重:2.0〜2.1、見掛け比重:0.5〜0.7)
合成繊維ステープル(ポリエステル繊維、比重:1.4) 40
Next, a sheet base material by a wet method (paper making method) having the following composition is prepared as an aggregate.
The weight of the sheet substrate (100 × 100 mm) is 1.4 to 1.5 g, and the total thickness is 0.25 to 0.35 mm.
<Basic composition of sheet base material>
Diatomaceous earth powder (Mesopore diatomaceous earth, average particle diameter: φ2.5 μm) 60 (unit: part by mass)
(True specific gravity: 2.0 to 2.1, Apparent specific gravity: 0.5 to 0.7)
Synthetic fiber staple (polyester fiber, specific gravity: 1.4) 40

前記で調整したイオン交換樹脂希釈液を80〜100℃に加熱した中に前記シート基材(S1)を浸漬(11)してシート基材中にイオン交換樹脂希釈液を含浸させる。その後、表面を自然乾燥させ(12)、130〜160℃で約1時間加熱処理し(13)架橋させ、シート基材にイオン交換樹脂を付着した処理シート基材(S2)を得た。   The sheet base material (S1) is immersed (11) while the ion exchange resin dilution liquid prepared above is heated to 80 to 100 ° C., and the sheet base material is impregnated with the ion exchange resin dilution liquid. Thereafter, the surface was naturally dried (12), heat-treated at 130 to 160 ° C. for about 1 hour (13) and crosslinked to obtain a treated sheet substrate (S2) having an ion exchange resin attached to the sheet substrate.

次に、前記で調整したイオン交換樹脂希釈液中に珪藻土粉末(K1)を投入して約1時間攪拌混合して(14)、珪藻土粉末にイオン交換樹脂を付着させる。必要により減圧下で処理してもよい。その後、容器に入れて、150〜170℃で約1時間加熱処理(15)、するとイオン交換樹脂が珪藻土粉末に固着した塊状物が得られるので、この塊状物をボールミルで粉砕し(16)、粉状の前処理珪藻土(K2)を得た。   Next, the diatomaceous earth powder (K1) is put into the ion exchange resin diluted solution adjusted as described above, and the mixture is stirred and mixed for about 1 hour (14) to adhere the ion exchange resin to the diatomaceous earth powder. If necessary, you may process under reduced pressure. Then, put in a container and heat-treat at 150-170 ° C. for about 1 hour (15). Then, a mass in which the ion exchange resin is fixed to the diatomaceous earth powder is obtained, and this mass is crushed with a ball mill (16), A powdery pretreated diatomaceous earth (K2) was obtained.

以下の配合に従って、イオン交換樹脂(濃度30質量%水溶液)と漆と分散媒(エタノール)と前処理珪藻土(K2)と界面活性剤を攪拌混合し(17)コーティング液(C)を得た。
<コーティング液の配合>
前処理珪藻土 100 (単位:質量部)
フェノール水溶液 100
漆(比重:0.44) 35
分散媒(エタノール) 30
界面活性剤 0.5
According to the following formulation, ion exchange resin (concentration 30% by weight aqueous solution), lacquer, dispersion medium (ethanol), pretreated diatomaceous earth (K2), and surfactant were mixed by stirring (17) to obtain a coating liquid (C).
<Composition of coating liquid>
Pre-treated diatomaceous earth 100 (Unit: parts by mass)
Aqueous phenol 100
Lacquer (specific gravity: 0.44) 35
Dispersion medium (ethanol) 30
Surfactant 0.5

前記コーティング液(C)に前記処理シート基材(S2)を浸漬して(18)処理シート基材にコーティング液をそれぞれ含浸させる。その後処理シート基材(S2)を前記コーティング液から引き上げて、基材の表裏面に付着したコーティング液を所定厚み平面状に残してガラス棒で掻き取った後、約20〜190℃で所定時間加熱乾燥し(19)、レドックスフロー電池用隔膜(1)を得た。得られたレドックスフロー電池用隔膜のサンプル(100×100mm)の総厚は約1.15〜1.18mm、重量は4.2〜4.3gであった。   The treatment sheet substrate (S2) is immersed in the coating solution (C) (18), and the treatment sheet substrate is impregnated with the coating solution. Thereafter, the treated sheet substrate (S2) is pulled up from the coating solution, and the coating solution adhering to the front and back surfaces of the substrate is scraped off with a glass rod, leaving a predetermined thickness on the plane, and then at a temperature of about 20 to 190 ° C. for a predetermined time. Heat drying (19) to obtain a redox flow battery diaphragm (1). The obtained redox flow battery diaphragm sample (100 × 100 mm) had a total thickness of about 1.15 to 1.18 mm and a weight of 4.2 to 4.3 g.

コーティング液の塗布方法は前記ディップコーティング法に限定されるものではなく、例えば、ナイフコーティング法、ローラーコーティング法、スプレーディングコーティング法、ロータリースクリーンコーティング法、スプレッドコーティング法、ロールコーティング法(ダイレクトロールコーター、リバースロールコーター)、エクアライザーロッドコーティング法、含浸塗装(インプレグネーション法)、スラッシュモールディング法、ローティショナルモールディング法、キャビティモールディング法等が利用可能である。   The application method of the coating liquid is not limited to the dip coating method. For example, the knife coating method, roller coating method, spraying coating method, rotary screen coating method, spread coating method, roll coating method (direct roll coater, Reverse roll coater), equalizer rod coating method, impregnation coating (impregnation method), slash molding method, rotational molding method, cavity molding method, etc. can be used.

次に実施例2について図4に基づいて説明する。実施例1において、前記イオン交換樹脂希釈液に代えて下記イオン交換樹脂珪藻土混液をシート基材に含浸させ乾燥後1〜3%の水希釈酢酸に浸漬した後、約80℃で1時間加熱処理して得られた(13)処理シート基材(S2)を下記配合のコーティング液(C)に浸漬する(18)以外は実施例1と同様にしてレドックスフロー電池用隔膜(1)を得た。   Next, Example 2 will be described with reference to FIG. In Example 1, instead of the ion exchange resin diluent, the sheet base material was impregnated with the following ion exchange resin diatomaceous earth mixture, dried, immersed in 1 to 3% water diluted acetic acid, and then heated at about 80 ° C. for 1 hour. A membrane (1) for redox flow battery was obtained in the same manner as in Example 1 except that (13) the treated sheet substrate (S2) obtained in the above was immersed in a coating liquid (C) having the following composition (18). .

<イオン交換樹脂珪藻土混液の調整>
フェノール水溶液 100 (単位:質量部)
前処理珪藻土 33.2
水 16.6
<Preparation of ion exchange resin diatomaceous earth mixture>
Phenol aqueous solution 100 (Unit: parts by mass)
Pretreatment diatomaceous earth 33.2
Water 16.6

<コーティング液の配合>
漆 100 (67) (単位:質量部)
前処理珪藻土 150 (100)
分散媒(1.3倍水希釈エタノール) 325 (217)
<Composition of coating liquid>
Lacquer 100 (67) (Unit: parts by mass)
Pretreatment Diatomite 150 (100)
Dispersion medium (1.3 times water diluted ethanol) 325 (217)

次に実施例3について図5に基づいて説明する。実施例2において、イオン交換樹脂珪藻土混液をシート基材に含浸させた後、130℃で10分間加熱処理し、水洗して表面自然乾燥(12)させた後、前記水希釈酸に浸漬した後引き上げて、130℃で10分間加熱処理して(13)得られた処理シート基材(S2)を下記のコーティング液(C)に前記シート処理基材を浸漬する(18)以外は実施例2と同様にしてレドックスフロー電池用隔膜(1)を得た。   Next, Example 3 will be described with reference to FIG. In Example 2, after impregnating the ion-exchange resin diatomaceous earth mixed solution into the sheet base material, heat-treating at 130 ° C. for 10 minutes, washing with water and naturally drying the surface (12), and then dipping in the water-diluted acid The treated sheet base material (S2) obtained by pulling up and heating at 130 ° C. for 10 minutes (13) is immersed in the following coating liquid (C). In the same manner as above, a redox flow battery diaphragm (1) was obtained.

<コーティング液の配合>
漆 60 (150)(単位:質量部)
前処理珪藻土 40 (100)
分散媒(1.2倍水希釈エタノール) 120 (300)
<Composition of coating liquid>
Lacquer 60 (150) (unit: parts by mass)
Pretreatment diatomaceous earth 40 (100)
Dispersion medium (1.2 times water diluted ethanol) 120 (300)

次に実施例4について図6に基づいて説明する。前記シート基材に下記のコーティング液(C)を含浸させ、その後加熱乾燥させ(19)。次に、下記のイオン交換樹脂珪藻土混液に浸漬した後取り出して自然乾燥する。次に、5%濃度の水希釈酢酸に浸漬した後取り出し、その後加熱乾燥して(19)以外は実施例2と同様にしてレドックスフロー電池用隔膜(1)を得た。   Next, Example 4 will be described with reference to FIG. The sheet base material was impregnated with the following coating liquid (C) and then heated and dried (19). Next, after being immersed in the following ion exchange resin diatomaceous earth mixed solution, it is taken out and dried naturally. Next, it was taken out after being immersed in 5% strength water-diluted acetic acid, and then heated and dried to obtain a redox flow battery diaphragm (1) in the same manner as in Example 2 except for (19).

<イオン交換樹脂珪藻土混液の配合>
フェノール水溶液 75 (単位:質量部)
前処理珪藻土 25
水 10
<Composition of ion exchange resin diatomaceous earth mixture>
Phenol aqueous solution 75 (Unit: parts by mass)
Pretreatment Diatomite 25
Water 10

<コーティング液の配合>
漆 60 (100) (単位:質量部)
前処理珪藻土 60 (100)
分散媒(3倍水希釈エタノール) 360 (600)
<Composition of coating liquid>
Lacquer 60 (100) (unit: parts by mass)
Pre-treated diatomaceous earth 60 (100)
Dispersion medium (3 times water diluted ethanol) 360 (600)

次に実施例5について説明する。実施例1において、このコーティング液(C)に処理シート基材(S2)を2〜3分間放置した後引き上げること2〜3回繰り返してコーティング液を処理シート基材に含浸させた後、加熱乾燥する以外は前記実施例1と同様にしてレドックスフロー電池用隔膜(1)を得た。   Next, Example 5 will be described. In Example 1, the treated sheet base material (S2) was allowed to stand for 2-3 minutes in this coating liquid (C) and then pulled up repeatedly. The treated liquid was impregnated in the treated sheet base material by repeated 2-3 times, followed by drying by heating. A membrane (1) for a redox flow battery was obtained in the same manner as in Example 1 except that.

前記の各工程を経て得られたレドックスフロー電池用隔膜は、従来のレドックスフロー電池用隔膜のように、プラスチックフィルムに穿設した孔にイオン交換性樹脂を付着させたものとは全く異なり、無機多孔質体にイオン交換性樹脂を含浸させ、天然の漆類又はイオン交換性樹脂で固着したものからなるので、プロトン伝導性が優れていて極液の透過を抑制し、且つ、乾燥保存ができて、優れた電池性能と耐薬品性と耐久性を有し、湿った状態で保存する必要がない。ただし、隔膜を取り付けた後に極液に浸漬して隔膜に極液を充分に湿潤させてから充放電することは従来の隔膜の場合と同様である。   The redox flow battery diaphragm obtained through the above steps is completely different from the one in which an ion exchange resin is attached to the hole formed in the plastic film, like the conventional redox flow battery diaphragm. Since the porous body is impregnated with an ion exchange resin and fixed with natural lacquer or ion exchange resin, it has excellent proton conductivity, suppresses permeation of polar liquid, and can be stored in a dry state. It has excellent battery performance, chemical resistance and durability, and does not need to be stored in a wet state. However, it is the same as in the case of the conventional diaphragm that the diaphragm is attached and immersed in the polar liquid to sufficiently wet the polar liquid in the diaphragm and then charged and discharged.

次に、前記で得られた前記レドックスフロー電池用隔膜のサンプルをレドックスフロー電池に装着してその性能を確認した。この隔膜の性能試験に用いたレドックスフロー電池は、図1に示すように前記のレドックスフロー電池用隔膜1を、中央部にカーボンフェルト電極2(正極2aと負極2b)を配置した正極フレーム3aと負極フレーム3bで両側から挟み、その外側に双極板4a,4bを当接したセル5を構成単位とし、図2に示すように配線し、セル5を複数個積層した構造体をセルスタック6として用いた。正極フレーム3a及び負極フレーム3bにはそれぞれ吸引口7と排出口8を設け、正極フレーム3a側の吸引口7a同士をそれぞれパイプで連結し正極ポンプ10aを介して正極液タンク9aに連結し、正極フレーム3a側の排出口8a同士をそれぞれパイプで連結して正極液タンク9aに連結する。同様にして、負極フレーム3b側の吸引口7b同士をそれぞれパイプで連結し負極ポンプ10bを介して負極液タンク9bに連結し、負極フレーム3b側の排出口8b同士をそれぞれパイプで連結して負極液タンク9bに連結する。正極ポンプ10a及び負極ポンプ10bにより極液を循環するように構成した。   Next, the redox flow battery sample obtained above was attached to a redox flow battery, and its performance was confirmed. As shown in FIG. 1, the redox flow battery used for the performance test of the diaphragm includes the redox flow battery diaphragm 1 and a positive electrode frame 3a in which a carbon felt electrode 2 (a positive electrode 2a and a negative electrode 2b) is arranged at the center. A cell 5 sandwiched from both sides by the negative electrode frame 3b and having the bipolar plates 4a and 4b in contact with the outside is used as a structural unit, wiring as shown in FIG. Using. The positive electrode frame 3a and the negative electrode frame 3b are each provided with a suction port 7 and a discharge port 8. The suction ports 7a on the positive electrode frame 3a side are connected to each other by pipes and connected to the positive electrode liquid tank 9a via the positive electrode pump 10a. The discharge ports 8a on the frame 3a side are connected to each other by pipes and connected to the cathode solution tank 9a. Similarly, the suction ports 7b on the negative electrode frame 3b side are connected by pipes and connected to the negative electrode liquid tank 9b via the negative electrode pump 10b, and the discharge ports 8b on the negative electrode frame 3b side are connected by pipes. Connected to the liquid tank 9b. The polar liquid was circulated by the positive electrode pump 10a and the negative electrode pump 10b.

実施例で得られたレドックスフロー電池用隔膜1を前記の性能試験用レドックスフロー電池にそれぞれセットし、ポンプ10を稼働してレドックスフロー電池用隔膜1が極液で充分湿潤した時点で電池の両極間に交直変換器を介して電圧をかけ、極液の色の変化を目視により観察した。正極液と負極液は正極液タンク9aと負極液タンク9bからそれぞれ正極フレーム3a側と負極フレーム3b側にポンプ10によって別々に送られる。初充電では、正極液タンク9aと負極液タンク9bそれぞれに4価のバナジウム電解液を入れて、電解還元がはじまると、正極ではバナジウムは4価(青色)から5価(ピンク系の黄色)に酸化され、負極では4価(青色)から3価(青緑色)を経て2価(黒系の青色)に還元され、色が変化するので目視により判断が可能である。   The redox flow battery diaphragm 1 obtained in the example was set in the redox flow battery for performance test, and when the pump 10 was operated and the redox flow battery diaphragm 1 was sufficiently wetted with the polar liquid, In the meantime, a voltage was applied via an AC / DC converter, and the change in the color of the polar liquid was visually observed. The positive electrode solution and the negative electrode solution are separately sent from the positive electrode solution tank 9a and the negative electrode solution tank 9b to the positive electrode frame 3a side and the negative electrode frame 3b side by the pump 10, respectively. In the initial charge, when a tetravalent vanadium electrolyte is placed in each of the positive electrode liquid tank 9a and the negative electrode liquid tank 9b and the electrolytic reduction starts, vanadium is changed from tetravalent (blue) to pentavalent (pink yellow) at the positive electrode. Oxidized and reduced from tetravalent (blue) to trivalent (blue green) to divalent (black blue) at the negative electrode, and the color changes, so that it can be judged visually.

前記の性能試験用レドックスフロー電池に乾燥保存した前記実施例で得られたレドックスフロー電池用隔膜をそれぞれ空間域で組み立てて性能試験をしたところ、実施例1〜5について、正極液は4価の青色から5価のピンク系黄色に変化し、負極液は4価の青色から3価の青緑色に変化し、更に2価の黒系青色に変化した。実施例1で得られた隔膜が、特に正極液と負極液の流動による混液現象もなく、且つ、速やかに極液の色が変化した。実施例5で得られた隔膜は実施例1で得られた隔膜に比較して漏液性を抑制する効果に優れるが、極液の湿潤にやや時間がかかる。また、実施例2〜4の隔膜は、極液の湿潤にやや時間がかかり、更に、満充電までに時間がかかるが交直変換器の電圧を上げることによって対応可能である。起電力は単位セル当たり1.3Vであった。その後、充放電を複数回繰り返し行ったが何れの隔膜も性能低下は見られなかった。   When the performance test was carried out by assembling each of the redox flow battery diaphragms obtained in the above-described examples dried and stored in the above-described redox flow battery for performance test in a spatial region, the positive electrode solution was tetravalent for Examples 1 to 5. The color changed from blue to pentavalent pink yellow, and the negative electrode solution changed from tetravalent blue to trivalent blue-green, and further to divalent black blue. The diaphragm obtained in Example 1 did not have a mixed liquid phenomenon due to the flow of the positive electrode liquid and the negative electrode liquid, and the color of the polar liquid changed rapidly. Although the diaphragm obtained in Example 5 is excellent in the effect of suppressing liquid leakage as compared with the diaphragm obtained in Example 1, it takes some time to wet the polar liquid. In addition, the diaphragms of Examples 2 to 4 require some time for wetting of the polar liquid and further takes time to fully charge, but can be dealt with by increasing the voltage of the AC / DC converter. The electromotive force was 1.3 V per unit cell. Thereafter, charging and discharging were repeated a plurality of times, but no performance degradation was observed in any of the diaphragms.

実施例1によって得られたレドックスフロー電池用隔膜を愛知県産業技術研究所で、交流インピーダンスを測定し、プロトン伝導性を求めた結果を以下に示す。
測定機器:燃料電池評価システム(チノー社製FC5100series)付属ポテンショ/ガルバノ
スタット(AUTO LAB社製PGSTAT302)
抵抗値(Ω) 89.33
膜厚(cm) 0.0456
電極間距離(cm) 0.5
プロトン伝導性(S/cm)0.2455
The results obtained by measuring the AC impedance of the redox flow battery diaphragm obtained in Example 1 at the Aichi Industrial Technology Research Institute and determining the proton conductivity are shown below.
Measuring equipment: Potentiometer / galvano with fuel cell evaluation system (FC5100series manufactured by Chino)
Stat (PGSTAT302 made by AUTO LAB)
Resistance value (Ω) 89.33
Film thickness (cm) 0.0456
Distance between electrodes (cm) 0.5
Proton conductivity (S / cm) 0.2455

また、前記性能試験における正極液及び負極液を酸化還元電位計によって測定した極液の酸化還元電位(ORP)の測定値は以下の通りである。
充電前の4価の電極液(青色)のORP:380mV
充電後の5価の正極液(ピンク系の黄色)のORP:990mV
充電後の2価の正極液(黒系の青色)のORP:−227mV
Moreover, the measured value of the oxidation-reduction potential (ORP) of the polar liquid which measured the positive electrode solution and the negative electrode solution in the said performance test with the oxidation-reduction potentiometer is as follows.
ORP of tetravalent electrode solution (blue) before charging: 380 mV
ORP of pentavalent cathode solution (pink yellow) after charging: 990 mV
ORP of the divalent cathode solution (black blue) after charging: -227 mV

本願発明のレドックスフロー電池用隔膜は、レドックスフロー電池以外に各種燃料電池の電解質膜として、或いは電気透析、脱塩・減塩、医薬、食品加工、メッキ溶剤処理、廃液処理など様々な用途において使用可能である。また、本願発明の技術的範囲は、本願発明の精神に反しない限りにおいて広く及ぶものである。   The membrane for the redox flow battery of the present invention is used as an electrolyte membrane for various fuel cells in addition to the redox flow battery, or in various applications such as electrodialysis, desalting / salting, pharmaceuticals, food processing, plating solvent treatment, waste liquid treatment, etc. Is possible. In addition, the technical scope of the present invention is wide as long as it does not contradict the spirit of the present invention.

本願発明に係るレドックスフロー電池用隔膜は、前記のように乾燥保存できることから、隔膜をセル容器に取り付けるときに、水中で作業することなく、空間域で作業することができるので、取り付け作業が極めて容易にでき、作業用プールのような設備も必要なく経済的であり、水素イオンの透過性に優れ且つ金属イオンと水の漏液性が低い上に耐久性に優れていることから極めて有用である。   Since the diaphragm for redox flow battery according to the present invention can be stored dry as described above, when attaching the diaphragm to the cell container, it can be operated in the space without working in water, so the installation work is extremely It is easy to use, is economical because it does not require equipment such as a working pool, is extremely useful because it has excellent hydrogen ion permeability, low leakage of metal ions and water, and excellent durability. is there.

1:レドックスフロー電池用隔膜、2:カーボンフェルト電極、2a:正極カーボンフェルト電極、2b:負極カーボンフェルト電極、3:フレーム、3a:正極フレーム、3b:負極フレーム、4:双極板、4a:正極双極板,4b:負極双極板、5:セル、6:セルスタック、7:吸引口、7a:正極吸引口、7b:負極吸引口、8:排出口、8:排出口、8a:正極排出口、8b:負極排出口、9:極液タンク、9a:正極液タンク、9b:負極液タンク、10:ポンプ、10a:正極ポンプ、10b:負極ポンプ、
11:浸漬工程、12:水洗・乾燥工程、13:加熱処理工程、14:攪拌混合工程、15:加熱処理工程、16:粉砕工程、17:攪拌混合工程、18:浸漬工程、19:加熱乾燥工程、S1:シート基材、S2:シート処理基材、K1:珪藻土粉末、K2:前処理珪藻土、C:コーティング液
1: redox flow battery diaphragm, 2: carbon felt electrode, 2a: positive electrode carbon felt electrode, 2b: negative electrode carbon felt electrode, 3: frame, 3a: positive electrode frame, 3b: negative electrode frame, 4: bipolar plate, 4a: positive electrode Bipolar plate, 4b: negative electrode bipolar plate, 5: cell, 6: cell stack, 7: suction port, 7a: positive electrode suction port, 7b: negative electrode suction port, 8: discharge port, 8: discharge port, 8a: positive electrode discharge port 8b: negative electrode outlet, 9: polar liquid tank, 9a: positive electrode liquid tank, 9b: negative electrode liquid tank, 10: pump, 10a: positive electrode pump, 10b: negative electrode pump,
11: Immersion step, 12: Washing / drying step, 13: Heat treatment step, 14: Stirring and mixing step, 15: Heating step, 16: Crushing step, 17: Stirring and mixing step, 18: Dipping step, 19: Heat drying Process, S1: Sheet base material, S2: Sheet processing base material, K1: Diatomaceous earth powder, K2: Pre-treated diatomaceous earth, C: Coating liquid

Claims (12)

シートの表裏に連通する多数の空隙を有するシート基材の前記空隙および/またはシート基材面に、イオン交換樹脂を付着させた無機多孔質粉粒状体がマトリクッス中に分散したイオン交換膜を形成してなることを特徴とするレドックスフロー電池用隔膜。 Forms an ion exchange membrane in which an inorganic porous granular material with an ion exchange resin attached is dispersed in a matrix on the surface and / or the surface of the sheet substrate having a large number of voids communicating with the front and back of the sheet. A diaphragm for a redox flow battery. イオン交換樹脂を付着させた無機多孔質粉粒状体がマトリクッス中に分散したイオン交換膜からなるレドックスフロー電池用隔膜。 A diaphragm for a redox flow battery comprising an ion exchange membrane in which an inorganic porous granular material to which an ion exchange resin is adhered is dispersed in a matrix. 前記イオン交換樹脂は、ポリスルホン系のイオン交換樹脂であることを特徴とする請求項1または2記載のレドックスフロー電池用隔膜。 The redox flow battery diaphragm according to claim 1, wherein the ion exchange resin is a polysulfone ion exchange resin. 前記イオン交換樹脂は、
Figure 2012248408
(式中、mは繰り返し単位を表す0または1以上の整数、nは1以上の整数とする。)
(式中、Xはイオン交換基を有するフェノール・その塩またはイオン交換基を有する4,4’−ジヒドロキシジフェニルスルホン・その塩、Rはアルキル基とする。)
で表される架橋が導入された重合体からなることを特徴とする請求項1〜3記載のレドックスフロー電池用隔膜。
The ion exchange resin is
Figure 2012248408
(In the formula, m is 0 or an integer of 1 or more representing a repeating unit, and n is an integer of 1 or more.)
(In the formula, X is a phenol / ion salt having an ion exchange group or 4,4′-dihydroxydiphenyl sulfone / a salt having an ion exchange group, and R is an alkyl group.)
The diaphragm for a redox flow battery according to claim 1, comprising a polymer into which a cross-linkage represented by formula (1) is introduced.
前記マトリクッスを構成する樹脂は、漆類、その他の水酸基を有する合成樹脂あるいは天然由来の樹脂およびこれらの樹脂とイオン交換樹脂との組み合わせの中の少なくとも何れか一種からなることを特徴とする請求項1〜4の何れかに記載のレドックスフロー電池用隔膜。 The resin constituting the matrix is composed of at least one of lacquer, a synthetic resin having a hydroxyl group, a naturally derived resin, and a combination of these resins and an ion exchange resin. The diaphragm for redox flow batteries in any one of 1-4. 前記無機多孔質粉粒状体は、珪藻土、セピオライト、ゼオライト、パーライト、ケイ酸カルシウム、カオリン、アタパルジャイト、バーミキュライト、クリストバライトおよびその他のシリカ多孔質体の中の少なくとも何れか一種からなることを特徴とする請求項1〜5の何れかに記載のレドックスフロー電池用隔膜。 The inorganic porous powder granule is composed of at least one of diatomaceous earth, sepiolite, zeolite, pearlite, calcium silicate, kaolin, attapulgite, vermiculite, cristobalite, and other silica porous bodies. Item 6. The redox flow battery diaphragm according to any one of Items 1 to 5. 無機多孔質粉粒状体にイオン交換樹脂を付着させる工程と、前記イオン交換樹脂を付着させた無機多孔質紛粒状体とマトリクッスと分散媒を含む混合液を調整する工程と、シートの表裏に連通する多数の空隙を有するシート基材に前記イオン交換樹脂を付着させた無機多孔質粉粒状体を充填する工程と、前記無機多孔質粉粒状体を充填したシート基材に前記混合液を含浸させる工程と、前記混合液を含浸させたシート基材を加熱乾燥して前記シート基材にイオン交換膜を形成する工程とを備えることを特徴とするレドックスフロー電池用隔膜の製造方法。 The step of adhering an ion exchange resin to the inorganic porous powder granule, the step of adjusting a mixed liquid containing the inorganic porous powder granule adhering the ion exchange resin, matrix and dispersion medium, and communicating with the front and back of the sheet A step of filling an inorganic porous powder granule in which the ion exchange resin is adhered to a sheet base material having a large number of voids, and impregnating the mixed liquid into a sheet base material filled with the inorganic porous powder granule A process for producing a redox flow battery diaphragm, comprising: a step of heating and drying a sheet base material impregnated with the mixed solution to form an ion exchange membrane on the sheet base material. 無機多孔質粉粒状体にイオン交換樹脂を形成する付着させる工程と、前記イオン交換樹脂を付着させた無機多孔質紛粒状体とマトリクッスと分散媒とを含む混合液を調整する工程と、前記混合液を面状化した後、加熱乾燥してイオン交換膜を形成するする工程とを備えることを特徴とするレドックスフロー電池用隔膜の製造方法。 A step of adhering to form an ion exchange resin on the inorganic porous granular material, a step of adjusting a mixed liquid containing the inorganic porous granular material to which the ion exchange resin is adhered, a matrix and a dispersion medium, and the mixing And a step of forming an ion exchange membrane by heating and drying after planarizing the liquid. A method for producing a membrane for a redox flow battery. 前記イオン交換樹脂は、ポリスルホン系のイオン交換樹脂であることを特徴とする請求項7または8記載のレドックスフロー電池用隔膜の製造方法。 9. The method for manufacturing a redox flow battery diaphragm according to claim 7, wherein the ion exchange resin is a polysulfone ion exchange resin. 前記イオン交換樹脂は、
Figure 2012248408
(式中、mは繰り返し単位を表す0または1以上の整数、nは1以上の整数とする。)
(式中、Xはイオン交換基を有するフェノール・その塩またはイオン交換基を有する4,4’−ジヒドロキシジフェニルスルホン・その塩、Rはアルキル基とする。)
で表される芳香族ポリスルホン系重合体であって架橋導入性能を有する重合体およびそのプレポリマーからなることを特徴とする請求項7〜9記載のレドックスフロー電池用隔膜の製造方法。
The ion exchange resin is
Figure 2012248408
(In the formula, m is 0 or an integer of 1 or more representing a repeating unit, and n is an integer of 1 or more.)
(In the formula, X is a phenol / ion salt having an ion exchange group or 4,4′-dihydroxydiphenyl sulfone / a salt having an ion exchange group, and R is an alkyl group.)
The method for producing a redox flow battery diaphragm according to claim 7, comprising a polymer having a cross-linking ability and a prepolymer thereof.
前記マトリクッスを構成する樹脂は、漆類、その他の水酸基を有する合成樹脂あるいは天然由来の樹脂およびこれらの樹脂とイオン交換樹脂との組み合わせの中の少なくとも何れか一種からなることを特徴とする請求項7〜10の何れかに記載のレドックスフロー電池用隔膜の製造方法。 The resin constituting the matrix is composed of at least one of lacquer, a synthetic resin having a hydroxyl group, a naturally derived resin, and a combination of these resins and an ion exchange resin. The manufacturing method of the diaphragm for redox flow batteries in any one of 7-10. 前記無機多孔質粉粒状体は、珪藻土、セピオライト、ゼオライト、パーライト、ケイ酸カルシウム、カオリン、アタパルジャイト、バーミキュライト、クリストバライト及びその他のシリカ多孔質体の中の少なくとも何れか一種からなることを特徴とする請求項7〜11の何れかに記載のレドックスフロー電池用隔膜の製造方法。 The inorganic porous powder granule is composed of at least one of diatomaceous earth, sepiolite, zeolite, pearlite, calcium silicate, kaolin, attapulgite, vermiculite, cristobalite, and other silica porous bodies. Item 12. A method for producing a redox flow battery diaphragm according to any one of Items 7 to 11.
JP2011119319A 2011-05-27 2011-05-27 Membrane for redox flow battery and method for producing the same Active JP5750604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011119319A JP5750604B2 (en) 2011-05-27 2011-05-27 Membrane for redox flow battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119319A JP5750604B2 (en) 2011-05-27 2011-05-27 Membrane for redox flow battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012248408A true JP2012248408A (en) 2012-12-13
JP5750604B2 JP5750604B2 (en) 2015-07-22

Family

ID=47468671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119319A Active JP5750604B2 (en) 2011-05-27 2011-05-27 Membrane for redox flow battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5750604B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052501A (en) * 2015-11-02 2017-05-12 세종대학교산학협력단 Separator for redox-flow battery and redox-flow battery including the same
CN108461787A (en) * 2017-02-17 2018-08-28 中国科学院金属研究所 A kind of preparation method of integrated composite membrane used for all-vanadium redox flow battery
CN109818024A (en) * 2019-01-30 2019-05-28 湖北工程学院 A kind of compound proton exchange membrane and preparation method thereof
US10340493B2 (en) 2015-11-05 2019-07-02 Smasung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable battery including the same
WO2020261793A1 (en) * 2019-06-27 2020-12-30 パナソニックIpマネジメント株式会社 Redox flow battery
WO2021059643A1 (en) * 2019-09-27 2021-04-01 ニダイキ株式会社 Separation membrane for redox flow battery, and method of producing said separation membrane
JP2021178322A (en) * 2016-02-02 2021-11-18 ユニヴァーシティ オブ ワシントン Ceramic selective membranes
CN115693022A (en) * 2022-11-23 2023-02-03 浙江大学杭州国际科创中心 Zinc-iodine battery diaphragm based on covalent organic framework and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188005A (en) * 1992-01-13 1994-07-08 Kashimakita Kyodo Hatsuden Kk Redox battery
JP2003263999A (en) * 2002-03-07 2003-09-19 Toyota Central Res & Dev Lab Inc Membrane electrode assembly and fuel cell and electrolytic cell having the same
WO2005101428A1 (en) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. Proton conductor, electrolyte film, electrode, and fuel cell
JP2006155999A (en) * 2004-11-26 2006-06-15 Hitachi Chem Co Ltd Proton conductive electrolyte membrane and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188005A (en) * 1992-01-13 1994-07-08 Kashimakita Kyodo Hatsuden Kk Redox battery
JP2003263999A (en) * 2002-03-07 2003-09-19 Toyota Central Res & Dev Lab Inc Membrane electrode assembly and fuel cell and electrolytic cell having the same
WO2005101428A1 (en) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. Proton conductor, electrolyte film, electrode, and fuel cell
JP2006155999A (en) * 2004-11-26 2006-06-15 Hitachi Chem Co Ltd Proton conductive electrolyte membrane and its manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877634B1 (en) * 2015-11-02 2018-07-16 세종대학교산학협력단 Separator for redox-flow battery and redox-flow battery including the same
KR20170052501A (en) * 2015-11-02 2017-05-12 세종대학교산학협력단 Separator for redox-flow battery and redox-flow battery including the same
US10340493B2 (en) 2015-11-05 2019-07-02 Smasung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable battery including the same
JP2021178322A (en) * 2016-02-02 2021-11-18 ユニヴァーシティ オブ ワシントン Ceramic selective membranes
CN108461787A (en) * 2017-02-17 2018-08-28 中国科学院金属研究所 A kind of preparation method of integrated composite membrane used for all-vanadium redox flow battery
CN108461787B (en) * 2017-02-17 2020-01-03 中国科学院金属研究所 Preparation method of integrated composite membrane for all-vanadium redox flow battery
CN109818024A (en) * 2019-01-30 2019-05-28 湖北工程学院 A kind of compound proton exchange membrane and preparation method thereof
WO2020261793A1 (en) * 2019-06-27 2020-12-30 パナソニックIpマネジメント株式会社 Redox flow battery
WO2021059643A1 (en) * 2019-09-27 2021-04-01 ニダイキ株式会社 Separation membrane for redox flow battery, and method of producing said separation membrane
JP6931447B1 (en) * 2019-09-27 2021-09-08 ニダイキ株式会社 Redox flow battery diaphragm and method for manufacturing the diaphragm
CN114667622A (en) * 2019-09-27 2022-06-24 尼大意器株式会社 Diaphragm for redox flow battery and method for manufacturing the diaphragm
US11735754B2 (en) 2019-09-27 2023-08-22 Nidaiki Co., Ltd. Separation membrane for redox flow battery, and method of manufacturing said separation membrane
CN114667622B (en) * 2019-09-27 2023-11-21 尼大意器株式会社 Separator for redox flow battery and method for manufacturing same
CN115693022A (en) * 2022-11-23 2023-02-03 浙江大学杭州国际科创中心 Zinc-iodine battery diaphragm based on covalent organic framework and preparation method and application thereof
CN115693022B (en) * 2022-11-23 2023-08-18 浙江大学杭州国际科创中心 Zinc-iodine battery diaphragm based on covalent organic framework and preparation method and application thereof

Also Published As

Publication number Publication date
JP5750604B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5750604B2 (en) Membrane for redox flow battery and method for producing the same
KR101494289B1 (en) Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite
Su et al. Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery
KR101493268B1 (en) Method of manufacturing proton-conducting membranes
Fang et al. Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance
JP6005065B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
CN103446899B (en) Organic and inorganic surface chemically-crosslinked alginate-based hybrid hydrogel filter membrane, and preparation method thereof
KR101330571B1 (en) Manufacturing method of hybride ion exchange membrane
KR101538683B1 (en) Bipolar ion exchange sheet and method of manufacturing the same
JP5106101B2 (en) Proton conductive clay particle production method and composite material containing the particle
JP2012529144A (en) Ceramic porous support, reinforced composite electrolyte membrane using the same, and membrane-electrode assembly including the same
CN104813529A (en) Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
CN103342829A (en) Preparation method of lithium ion battery separator
Hyeon et al. Composite membranes based on sulfonated poly (ether ether ketone) and SiO 2 for a vanadium redox flow battery
WO2020066911A1 (en) Diaphragm for electrolysis of alkaline water
JP6747091B2 (en) Porous film and method for producing the same
Zheng et al. Preparation and characterization of Ti3C2TX MXene/PVDF cation exchange membrane for electrodialysis
Terbish et al. Improved performance of organic–inorganic nanocomposite membrane for bioelectricity generation and wastewater treatment in microbial fuel cells
JP3891820B2 (en) Ion exchange resin membrane
JP2016192294A (en) Ion exchange membrane for vanadium-based redox battery, complex and vanadium-based redox battery
CN107088367B (en) Preparation method of anti-pollution PVDF (polyvinylidene fluoride) hybrid membrane
JP6502500B2 (en) Porous support excellent in packing characteristics of ion conductor, method for producing the same, and reinforced membrane containing the same
Chen et al. Fabrication and application of TiO2-modified PMIA separators with strong mechanical properties in lithium-ion batteries
JP4925091B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
CN109728231A (en) A kind of inorganic composite separator and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140919

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5750604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250