TWI253202B - Containment system - Google Patents

Containment system Download PDF

Info

Publication number
TWI253202B
TWI253202B TW093111788A TW93111788A TWI253202B TW I253202 B TWI253202 B TW I253202B TW 093111788 A TW093111788 A TW 093111788A TW 93111788 A TW93111788 A TW 93111788A TW I253202 B TWI253202 B TW I253202B
Authority
TW
Taiwan
Prior art keywords
substance
volume
container
variable
total volume
Prior art date
Application number
TW093111788A
Other languages
Chinese (zh)
Other versions
TW200423462A (en
Inventor
Sadeg M Faris
Tsepin Tsai
Original Assignee
Reveo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reveo Inc filed Critical Reveo Inc
Publication of TW200423462A publication Critical patent/TW200423462A/en
Application granted granted Critical
Publication of TWI253202B publication Critical patent/TWI253202B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A container is provided generally including a first portion configured for containing a first substance and a second portion configured for containing a second substance. The first substance is applied to process, generally for production of a useful byproduct. Further, the second substance may be a useful byproduct of the process, or may be a different byproduct of the process. The volume of the first portion may be variable, the volume of the second portion may variable, or the volumes of the first portion and the second portion may be variable, such that the first portion and the second portion fit within the total volume of the container.

Description

1253202 玖、發明說明:1253202 玖, invention description:

t發明所屬之技術領域I 發明領域 本發明廣泛關於一種分隔容器系統,特別是安裝用來 5 輸送及收集物質的分隔容器系統。 I:先前技術3 發明背景 許多系統需要一個或多個輸入容器及一個或多個輸出 容器以進行操作。例如,化學程序及電化學程序典型地具 ίο 有一種或多種從各別容器來的輸入物質及一種或多種從各 別容器來的輸出物質。 化學程序(諸如有機及無機化學合成、發電反應、材料 合成、生物反應等等)全部需要使用一種或多種輪入物質且 會產生一種或多種輸出物質。例如,生物反應通常為一種 15 生物在輸入物質上作用而將其轉換成不同輸出物質的程 序。例如,廢水處理通常會使用喜氧與厭氧細菌來從廢水 中移除污染物,其藉由使廢棄物種沉澱而使移除容易。 許多化學物質(包括有機化學物質、無機化學物質及其 不同的組合)之合成通常包括將一種或多種物質放入反應 20 器中以形成想要的輸出物質或產物。在大部分的狀況下, 此亦會形成副產物。該系統會對每種輸入物質、每種產物 和形成的任何副產物(若需要的話)提供一容器或其它分隔 容器。因此,貯存該系統所需的總區域空間會因不同的容 器或其它容器而增加。當在程序尚未開始的情況時容器(諸 1253202 如輸出容器)會是空的,或當在程序完成的情況時輸入物質 之容器會是空的,如此該些空間實質上是浪費掉的。再者, 某些系統會安裝成讓該些輸入物質於容器中產生部分内在 壓力,而至少一部分的力量可將該些物質運輸至反應器。 5 當該容器的容積減少時,則離開其容器的物質之壓力會減 低。 發電程序通常會將一種或多種物質轉換成一副產物物 質,同時產生可使用的能量。典型的電化學系統包括燃料 電池,諸如金屬空氣燃料電池、以烴類為基底的燃料電池 10 (諸如以質子交換薄膜為基底的燃料電池)及固態氧化物燃 料電池。多種生物程序會額外地產生可使用的能量,而此 通常使用以酵素及葡萄糖為基底的物質作為燃料。再者, 多種已熟知的電池系統實質上包含燃料電池,如此燃料的 供應會受到限制,特別是,某些電池會使用流體陽極電解 15 質及陰極電解質。 金屬空氣燃料電池則以金屬(諸如鋅或鋰)於空氣及腐 蝕性電解質存在下電化學轉換成該金屬的氧化物為基礎。 多種金屬空氣燃料電池系統則描述在例如2000年5月12曰 由法利思(Faris)等人所主張的(共審查中、共同讓予)美國專 20 利申請序號〇9/578,798中,發表名稱為’’燃料分隔容器及再 循環系統’’。 固態氧化物燃料電池典型地以烴類燃料為基底,諸如 曱醇與水組合。這些燃料會消耗掉而產生電能及水作為副 產物。典型地,該燃料可以混合物方式提供,且該副產物 6 1253202 可經排出或貯存。將副產物儲存在個別的容器中,會由於 空間限制而在許多應_如汽車應用)上並不實際。許多應 用會將副產物再引人該燃料混合物。技,此會稀釋該燃 料混合物且會減低該燃料電池操作的燃料效率。 5 10 另-種以氫為基底的燃料電池則使用諸如蝴氮化納的 氫源:此電池例如解在美國專利案號5,948,55 %發表名稱 為”高能量密度的硼化物電池’,)及美國專利案號 5,804,329(發表名翁,電轉換電池”)中。於此通常會將㈣ 化鈉與水混合而釋放出能轉換成有用的能量之氫,而產生 石朋氧化鈉作為副產物。 另一種型式的電化學裝置為氧化還原電池’其中各別 提供金屬及鹵化物作為陽極電解質及陰極電解質,且於+ 解質存在下反應而產生電力。傳統上,該陽極電解質及= 陰極電解質會連續地進料,或會以遍及整個電化學反應程 15序稀釋之成批方式操作。 先前提及的許多系統和許多其它的系統必需使用數個 佔有個別體積的容器來分離不_物質。而程序物質不需 佔用個別體積之其它系統則會犧牲效率,因它們會讓反應 物質減低濃度。 20 已描述之可用來解決先前提及的問題之系統(特別是 金屬空氣燃料電池)則完全揭示在2〇〇〇年5月U日所主張的 (共審查中、共同讓予)美國專利申請序號〇9/57〇,598中,發 表名稱為”燃料分隔容ϋ及再_系統”,其全文以參考方 式併入本文巾。雖然先前提及的中請案聲稱—種涵蓋許多 7 1253202 將進一步於本文中描述的系統之系統,本公告提供更多落 在這些申請專利範圍和其它具體實施例範圍中更詳細的具 體實施例。 【明内】 5 發明概要 10 上述所㈣及先述技藝的其它問題和㈣可由本發明 之數種方法及裝置而克服或減輕,本發明所提供的容^包 括裝配用來包含第-物質的第一部分及裝配用來包含第二 物質的第二部分。第一物質會施加至程序,其通常用來製 造有用的副產物。再者,第二物質可為該程序有用的副產 物或可為該程序不同的副產物。 15 〜通常來說,該容器的主要優點為第—物f與第二物質 可貯存在一容積較佳地與第一物質或第二物質的較大體積 =之容積中。例如,此在運輸系統中,諸如汽車、飛機、 工船、水上飛機或其類似物;人造衛星系統,建築物· 個人裝置;及其它渴望減少體積的系統非常有用/、, 旦2不同的具體實施例中,該副產物可產生能使用的能 =典”電力形式。在進—步的具體實施例中,該有用 個|體f 士 执-度會增加或減少。在另一 化學該有用的副產物可為-種物質,諸如- 產H在仍然進—步的具體實施例中,該有用的副 上述封論和本發明之其它特徵及優點將由熟知此技藝 20 1253202 之人士從下列詳細的描述及圖形中察知及了解。 圖式簡單說明 第1圖為一複室分隔容器系統之圖式具體實施例,其具 有一輸入物質部分及一輸出物質部分而操作地連結至一程 5 序; 第2圖為包含一處理步驟的複室分隔容器系統之另一 個具體實施例; 第3圖為一對與一程序連結的複室分隔容器系統結構 之具體實施例; 10 第4圖為使用額外的輸入(在該複室分隔容器系統外部) 之複室分隔容器系統的具體實施例; 第5圖為具有一對輸入物質部分之複室分隔容器系統 的具體實施例; 第6圖為具有一對輸出物質部分之複室分隔容器系統 15 的具體實施例; 第7A及7B圖為一複室分隔容器系統結構的具體實施 例; 第8A及8B圖為一複室分隔容器系統結構之另一個具 體實施例; 20 第9A及9B圖為一複室分隔容器系統結構之進一步具 體實施例;及 第10A及10B圖為一複室分隔容器系統結構之仍然另 一個具體實施例。 t實^^方式】 1253202 幸父佳實施例之詳細說明 —於本文中揭不一種包含數種物質(特別是輸入物質及 輸出物質)的容器,其中名稱”輸入”及”輸出”通常與相關的 牙壬序有關。該容器包括裝配用來包含第一物質的第一部分 及表配用來包含第二物質的第二部分。第一物質會施加至 程序,而通常用來生產有用的副產物。再者,第二物質可 為該程序有㈣副產物,或可為雜序不_副產物。 10 •。玄転序可包含多種操作。通常來說,可在一種或多種 輸入物質上進行任何需要的程序步驟,以產生一種或 輸出物質。例如,該程序可為一使用來將氣體轉換成液體 或I縮氣體之凝結器或液化器。此外,該程序可為一運輸 步驟,諸如系。在此方法中,該處理可提供將一種或多種 流體排入該容器的一個或多個部分中。再者,該程序可為 15 -分離程序,諸如結晶操作或蒸賴作。在此方法中,該 程序可具有額外的輸入及/或輸出多 ^ 含在該容器中。該程序可額外地包含一屋實裝置實 -固體或固體/液體混合物用以進_步管理容積。 20 該容器具有—總容積,其可由一個或多個堅硬 性的邊壁定出輪廓。該容器包括用來包含第一物質的第一 部分及用來包含第二物質的第二部分。第一、第 與第二部分二者的體積為可㈣,如此第—部分與第 分可安裝在該總容積中。在—個具體實施例中八 的體積與第二部分的體積可相反地改變。在另—個且體= 施例令,第-部分與第二部分 、版貝 J由τ移動的阻隔物分 10 1253202 離。該阻隔物可利用外力移動(諸如人力或機械力),其亦可 為可經控制的。該阻隔物可藉由電力、化學物注入、熱、 光等等而活動移位。該結構亦可例如為一合適的材料袋 子,其能膨脹及收縮且與想要包含的物質具惰性及化學穩 5 定性。 再者,該阻隔物其自身可包含一程序,例如,可讓流 體或固體在容器的多個部分間流通。例如,電解質薄膜、 電極、可滲透薄膜、過濾器或其它結構或材料可包含在阻 隔物中或上,以將物質從一部分轉換成不同物質或包含在 10 其它部分中而為不同的狀態。 於本文中描述的容器與由沙德格(Sadeg)M.法利思 (Faris)、蔡洗萍(Tsepin Tsai)、姚維尼(Wayne Yao)及張袁明 (Yuen-Ming Chang)於2000年5月12曰所主張之共審查中的 美國專利申請序號09/570,798(發表名稱為,,燃料分隔容器 15及再循環系統’’,其全文以參考方式併入本文)中所描述的 那些類似。多種典型的容器結構則圖式地描述在第7八及 7B、8A及 8B、9A及9B和 10A及 10B圖中。 第7A圖顯示出-容器71〇,其具有第—部分712及由可 移動的阻隔物716(例如,可使用一協助結構722(其可包含一 20螺桿、一線性驅動裝置或其類似物)來移動)分隔之第二部分 714。第7B圖顯示出第二部分714的體積較大(由於阻隔物 716移動)之容器710。 第8A圖顯示出一谷為810,其具有第一部分812及由可 移動的製程阻隔物824(例如,可使用—協助結構822(其可包 1] 1253202 含一螺桿、一線性驅動裝置或其類似物)來移動)分隔的第二 部分814。第8B圖顯示出第二部分814的體積較大(由於阻隔 物816移動)之容器810。在容器810中,一相關的程序(其實 例亦進一步描述於本文中)可將物質從一個部分轉換成不 5 同物質或不同狀態,同時亦可提供作為阻隔物以維持個別 的分隔容器。 第9A圖顯示出具有第二部分914與第一部分912的容器 910,其中第一部分912的容積可由在容器910的内壁與第二 部分914的外壁間之空間定出。第9B圖顯示出第二部分914 10 的體積較大(由於填入物質)之容器910,因此部分912的體積 會減少。 第10A圖顯示出一容器1010,其具有第一部分1012與第 二部分1014,而它們在容器1010中的體積具有相反變化之 關係。第10B圖顯示出第一部分1014的體積較大(由於填入 15 物質)之容器1010,因此部分1014的體積會減少。 在第一與第二部分中的物質可相同或不同。例如,在 第一部分具有與第二物質相同物質的系統中,第一部分的 物質可經控制地提供至一個或多個成批的程序而例如作為 一載體。其它來源(或在該容器中的第三部分)可提供一種會 20 作用在該程序上的載體物質。然後,在完成批次操作後, 該載體物質將貯存在第二部分中。 在含有不同物質的系統中,例如,使用在結合該些物 質的特別程序中,該第一物質與該第二物質可完全不同。 此外,該第一物質可由該程序使用以衍生出第二物質,例 12 1253202 〃將第物貝改質而形成第二物質的程序。應注意的是 該第—物質可由製程單獨(例如,電力、溫度、磨力、過遽、 =應用)改質;或可與另一種物質(其可經該容器的另一個 拼、丁存或進料,或可為在容^外部的來源)混合且反應而 文貝’或製程且與另—種物質組合二者而改質。 口在不同部分中所使用的物質可為任何想要的物質,且 的組合°該第—物質可包括任何能使用在複室結 構白=、液、氣相或該些相的組合之材料。同樣地,該第 10 貝可匕括由5亥程序所產生的任何材料之固、液、氣相 或該些相之組合。因此,多種第-物質/第二物質組合則顯 不在表1中:TECHNICAL FIELD OF THE INVENTION The present invention relates generally to a separate container system, and more particularly to a separate container system for transporting and collecting materials. I: Prior Art 3 Background of the Invention Many systems require one or more input containers and one or more output containers for operation. For example, chemical and electrochemical procedures typically have one or more input materials from separate containers and one or more output materials from separate containers. Chemical procedures (such as organic and inorganic chemical synthesis, power generation reactions, material synthesis, biological reactions, etc.) all require the use of one or more wheeled materials and produce one or more output materials. For example, a biological response is usually a procedure in which a living organism acts on an input material to convert it into a different output material. For example, wastewater treatment typically uses aerobic and anaerobic bacteria to remove contaminants from the wastewater, which is easily removed by precipitating the waste species. The synthesis of many chemicals, including organic chemicals, inorganic chemicals, and various combinations thereof, typically involves placing one or more substances into a reaction unit to form a desired output material or product. In most cases, this will also form by-products. The system provides a container or other separate container for each input material, each product, and any by-products formed, if desired. Therefore, the total area space required to store the system will increase due to different containers or other containers. The container (the 1253202 as the output container) may be empty when the program has not yet started, or the container of the input substance may be empty when the program is completed, so that the space is substantially wasted. Further, some systems may be installed such that the input material creates a partial internal pressure in the container, and at least a portion of the force transports the material to the reactor. 5 When the volume of the container is reduced, the pressure of the material leaving the container is reduced. Power generation programs typically convert one or more substances into a by-product material while producing usable energy. Typical electrochemical systems include fuel cells, such as metal air fuel cells, hydrocarbon-based fuel cells 10 (such as fuel cells based on proton exchange membranes), and solid oxide fuel cells. A variety of biological programs additionally produce usable energy, which is usually based on enzymes and glucose-based substances. Furthermore, many well-known battery systems essentially contain fuel cells, and thus the supply of fuel can be limited. In particular, some batteries use fluid anodic electrolysis and catholyte. Metal air fuel cells are based on the electrochemical conversion of metals, such as zinc or lithium, into the presence of air and corrosive electrolytes. A variety of metal air fuel cell systems are described, for example, on May 12, 2000, published by Faris et al. (to be reviewed and jointly granted) in the US Patent Application No. 〇9/578,798. The name is ''fuel separation container and recycling system''. Solid oxide fuel cells are typically based on a hydrocarbon fuel such as decyl alcohol in combination with water. These fuels are consumed to produce electricity and water as a by-product. Typically, the fuel can be supplied as a mixture and the by-product 6 1253202 can be discharged or stored. Storing by-products in individual containers can be impractical in many applications, such as automotive applications, due to space constraints. Many applications introduce the by-products into the fuel mixture. This will dilute the fuel mixture and will reduce the fuel efficiency of the fuel cell operation. 5 10 Another hydrogen-based fuel cell uses a hydrogen source such as a naphthalene nitride: this battery is disclosed, for example, in U.S. Patent No. 5,948, 55%, entitled "High Energy Density Boride Battery",) And U.S. Patent No. 5,804,329 (published as a famous electrician, electric conversion battery). Here, it is common to mix (4) sodium with water to release hydrogen which can be converted into useful energy, and to produce Sipeng sodium oxide as a by-product. Another type of electrochemical device is a redox battery which provides a metal and a halide as an anolyte and a catholyte, respectively, and reacts in the presence of +-desolvation to generate electricity. Traditionally, the anolyte and = catholyte are fed continuously or in batches that are diluted throughout the entire electrochemical reaction sequence. Many of the previously mentioned systems and many other systems must use several containers that occupy individual volumes to separate the material. Programs that do not require a single volume of other systems sacrifice efficiency because they reduce the concentration of the reactants. 20 The system that has been described to solve the previously mentioned problems (especially metal air fuel cells) fully reveals the US patent application (commonly reviewed, jointly granted) as claimed on May 5, 2002. The serial number is 〇9/57〇, 598, and the name is “Fuel Separation and Re-System”, which is incorporated herein by reference in its entirety. While the previously mentioned claims claim to cover a system of many of the systems described in this document, which is further described herein, this disclosure provides more specific embodiments that fall within the scope of these claims and other specific embodiments. . [Inventive] 5 Summary of the Invention 10 (4) and other problems of the prior art and (4) may be overcome or alleviated by several methods and apparatus of the present invention, and the contents provided by the present invention include an assembly for containing a first substance. A portion and assembly are used to contain a second portion of the second substance. The first substance is applied to the procedure, which is typically used to make useful by-products. Further, the second substance can be a by-product useful for the procedure or can be a different by-product of the procedure. 15 - In general, the main advantage of the container is that the first substance f and the second substance can be stored in a volume which is preferably larger than the volume of the first substance or the second substance. For example, this is very useful in transportation systems such as automobiles, airplanes, workboats, seaplanes or the like; satellite systems, buildings, personal installations, and other systems that are eager to reduce volume. In an embodiment, the by-product can produce a usable "canonical" power form. In a further embodiment, the useful one will increase or decrease. The by-products may be a substance, such as - in the specific embodiment of the production of H, the useful sub-clauses and other features and advantages of the invention will be apparent from the following by those skilled in the art 20 1253202 BRIEF DESCRIPTION OF THE DRAWINGS AND FIGURES. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic embodiment of a double compartment divider container system having an input material portion and an output material portion operatively coupled to a one-pass sequence Figure 2 is another embodiment of a complex chamber separation container system including a processing step; Figure 3 is a concrete implementation of a pair of chamber separation container system structures linked to a program Example 4 is a specific embodiment of a complex compartment separation vessel system using additional inputs (outside the compartment separation vessel system); Figure 5 is a specific embodiment of a complex compartment separation vessel system having a pair of input material sections Embodiments; Figure 6 is a specific embodiment of a multi-chamber divided container system 15 having a pair of output material portions; Figures 7A and 7B are specific embodiments of a double-chambered container system structure; Figures 8A and 8B are a Another embodiment of the structure of the compartment separation container system; 20 Figures 9A and 9B show a further embodiment of the structure of a double compartment separation container system; and Figs. 10A and 10B show the structure of a double compartment separation container system. A specific embodiment. t real ^^ mode] 1253202 Detailed description of the embodiment of the father-family - a container containing several substances (especially input substances and output substances), wherein the name "input" and "" The output "generally relates to the associated gum sequence. The container includes a first portion that is assembled to contain the first substance and a second portion that is configured to contain the second substance. Will be applied to the procedure, and is usually used to produce useful by-products. Further, the second substance may have (iv) by-products for the procedure, or may be a heterologous no-by-product. 10 • Xuanxu may contain multiple operations In general, any desired procedural steps can be performed on one or more of the input materials to produce an or output material. For example, the procedure can be a condenser or liquefaction used to convert a gas into a liquid or a condensed gas. Further, the program can be a transport step, such as a system. In this method, the process can provide for discharging one or more fluids into one or more portions of the container. Again, the program can be 15- Separation procedures, such as crystallization operations or steaming. In this method, the program can have additional inputs and/or outputs contained in the container. The program may additionally include a solid-solid or solid/liquid mixture for the house to manage the volume. 20 The container has a total volume that can be contoured by one or more rigid side walls. The container includes a first portion for containing a first substance and a second portion for containing a second substance. The volume of both the first, second and second portions is (four) such that the first portion and the first portion can be installed in the total volume. In a particular embodiment, the volume of the eighth portion and the volume of the second portion may be reversed. In another case, the body = the order, the first part and the second part, the version of the shell J moved by the τ is divided into 10 1253202. The barrier may be moved by an external force (such as a human or mechanical force), which may also be controllable. The barrier can be actively displaced by electricity, chemical injection, heat, light, and the like. The structure can also be, for example, a suitable material pouch that expands and contracts and is inert and chemically stable with the material to be included. Further, the barrier may itself comprise a procedure which, for example, allows fluid or solid to circulate between portions of the container. For example, an electrolyte membrane, electrode, permeable membrane, filter or other structure or material may be included in or on the barrier to convert the material from a portion to a different material or to another portion of the 10 to be in a different state. The containers described in this article were developed by Sadeg M. Faris, Tsepin Tsai, Wayne Yao, and Yuen-Ming Chang in May 2000. The similarities described in U.S. Patent Application Serial No. 09/570,798, the entire disclosure of which is incorporated herein by reference. A variety of typical container configurations are schematically depicted in Figures 7 and 7B, 8A and 8B, 9A and 9B, and 10A and 10B. Figure 7A shows a container 71A having a first portion 712 and a movable barrier 716 (e.g., an assisting structure 722 (which may include a 20 screw, a linear actuator, or the like) To move) the second part 714 of the separation. Figure 7B shows the container 710 of the second portion 714 having a larger volume (due to the movement of the barrier 716). Figure 8A shows a valley 810 having a first portion 812 and a movable process barrier 824 (e.g., usable-assisted structure 822 (which may include 1) 1253202 including a screw, a linear drive or The analog) is to move) the separated second portion 814. Figure 8B shows the container 810 of the second portion 814 having a larger volume (due to the movement of the barrier 816). In container 810, a related procedure (which is further described herein) (which is further described herein) can convert a substance from a portion to a different material or a different state, while also providing a barrier to maintain individual separate containers. Figure 9A shows the container 910 having the second portion 914 and the first portion 912, wherein the volume of the first portion 912 can be defined by the space between the inner wall of the container 910 and the outer wall of the second portion 914. Fig. 9B shows the container 910 of the second portion 914 10 which is relatively bulky (due to the filling of the substance), so that the volume of the portion 912 is reduced. Figure 10A shows a container 1010 having a first portion 1012 and a second portion 1014, and their volume in the container 1010 has an inversely varying relationship. Fig. 10B shows the container 1010 of the first portion 1014 which is relatively bulky (due to the filling of 15 substances), so that the volume of the portion 1014 is reduced. The substances in the first and second portions may be the same or different. For example, in a system in which the first portion has the same substance as the second substance, the first portion of the substance can be controlled to be supplied to one or more batches of procedures, for example, as a carrier. Other sources (or a third portion of the container) may provide a carrier material that will act on the procedure. The carrier material will then be stored in the second portion after the batch operation is completed. In systems containing different materials, for example, in a special procedure for combining such materials, the first material can be completely different from the second material. In addition, the first substance can be used by the program to derive a second substance, Example 12 1253202. The procedure for modifying the first item to form a second substance. It should be noted that the first substance may be modified by the process alone (for example, electric power, temperature, grinding force, excessive enthalpy, = application); or may be combined with another substance (which may be spliced or smeared by another one of the containers) The feed, or may be a source external to the mixture, is mixed and reacted while being modified or combined with another material. The substance used in the different parts of the mouth may be any desired substance, and the combination of the first substance may include any material which can be used in the white room structure, the liquid, the gas phase or a combination of the phases. Similarly, the 10th can include solid, liquid, gas phase or a combination of these materials of any material produced by the 5H procedure. Therefore, a variety of first-substance/second substance combinations are not shown in Table 1:

-----—— - _ 弟一部分成分 —----- 氣 氣-液 氣-固 液 液-固 固 氣 X X -----— X X X X 第二部 氣-液 X X X X X X 分成分 氣, X X X X X X 液 X X X X X X 液, X X X X X X 固 X X X X X X 現在將參照至圖形描述本發明之閣明具體實施例。為 15 I料地描述,在圖中所顯示的相似特徵以相似的參考數 子指出,且顯示在另一個具體實施例中的類似特徵亦以類 13 ^3202 似的參考數字指出。-----—— - _ Part of the brother------ gas-liquid-solid-liquid-solid-solid gas XX ------ XXXX second gas-liquid XXXXXX XXXXXX Liquid XXXXXX Liquid, XXXXXX Solid XXXXXX A specific embodiment of the present invention will now be described with reference to the drawings. The similar features shown in the figures are indicated by like reference numerals, and similar features shown in another embodiment are also indicated by reference numerals like 13 ^ 3202.

Τ 王弟 _ _。該系_包括具;7:入、本文的容器之圖式系统 器110。第-«(或在此If 12與紅部分114的容 在部分112中。 4實施例㈣—輸人物質)包含 理结構存和狀可為—分離的物 10 15 20 指為停留現象Μ其組合):分112此之後 該程序12哼實上可為—此’程序12⑽虛線表示指出 -停留現象。該程序12。會::構”f合在容器110中或 ^5511Λ,, ^ 生苐一物貝(或產物)(其包含在 114巾)。軸㈣磁—種或 不同的副產物,諸如電力、熱、化學、機械或光。 隔物116而最小化(即,可接近或到達零)。在操作期間,當 第-物質消耗且第二物質產生時,阻隔物116可移動(例二 藉由機械設備、膨脹等等),因此可在部分1 14中產生用於 第二物質之可獲得的體積。此外,除了阻隔物116(或例如 與具有多於二個艙室的容器連接)外,第一部分112與第二 在程細操作_,至少—定量的第—㈣(在部分 」中)會消耗或經運輸’且至少有-部分會轉換成第二物 貝亚包含在苐二部分114中。可摻入額外的物質(無顯示)至 程序120。當第二物質產生時,其會被導人容器⑽的第二 部分m。阻隔物m會分隔開第一部分112與第二部分 114。在程序120操作開始時,部分114的體積可藉由操作阻 ]4 1253202 部分114可為在容器110中的個別容器(例如,可膨脹及可收 縮以調節體積變化)。 例如,在系統中,若無額外的物質導入程序120,則容 器110的容積可遍及程序120的操作皆等於輸入物質或輸出 5 物質之較大體積。 複室系統100的第一個電化學電池具體實施例 在一般遵循圖式系統100之系統的具體實施例中,程序 120包含一電化學電池,諸如金屬空氣電池。在連續或批次 程序下進料至電池的第一物質包含該燃料,諸如含有電解 ίο 質的金屬糊狀物。在該金屬空氣電池操作後,該金屬燃料 會轉換成金屬氧化物而貯存在容器110的部分114中作為第 二物質。該金屬氧化物可以批次或連續的方式貯存。該金 屬空氣電池有用的副產物為電力,其可經控制而用於外部 使用(無顯示)。 15 若程序120包含一電化學電池(諸如金屬空氣電池),則 容器110可為一種例如合適於膝上型電腦、蜂窩式電話、動 力工具、其它手握式裝置、小型運輸裝置(諸如小型摩托車) 等等之可攜帶式裝置。再者,容器110可與諸如田園、儲水 或儲氣筒系統整合。額外地,容器110可整合在就地發電系 20 統中。 該金屬氧化物可藉由向其施加電流而再充電。於可再 充電的系統中,在該材料再充電後(即,該材料仍然在其中 或返回至其各別的部分112或114),進一步放電乃經由從部 分114來的”第二物質”作為該金屬空氣電池的燃料,其中從 15 1253202 程序120形成的金屬氧化物可貯存在第一部分112中。 在I遵循圖式系統100之系統的另一個具體實施例 中’該程序120為一 f醇燃料電池。第—物質(於此實例中 5為甲醇或曱醇與水之組合)包含在第—部分112中。在該燃 料電池的操作期間(通常為連續操作),從該燃料電池來的排 出物(主要為水)則貯存在容器110的第二部分114中作為第 二物質。在此方式中,該排出物(其典型地已受污染至某種 程度)乃經貯存而非排至環境中,同時可維持容積管理。再 10者’在燃料電池的操作期間’甲醇或曱醇與水的混合物會 =固定的濃度存在於第-部分巾。加人至該直接甲醇燃料 =池系統的額外反應物為氧(通“空氣提供),且該直接甲 醇燃料系統有用的副產物為電力。 15 20 :般遵猶圖式系統⑽的系統之額外具體實施例包括 原Γ電池的程序12G。從第—部分⑴提供 勺第物貝包含一陽極電解皙ΛΛ 序⑽操作後(即,氧彳_^ )。在程 於電解4 之操作),該陽極電解質會 =在下與陰極電解質反應。在陽極電解質溶液中 二二ΓΓ氧化㈣在於溶液中。該已消耗的 ”則貯存在第二部分叫作為第二物質。 在另一個氧化還原雷 該第—物質,mm , 該陰極電解液可包含 通常合轉μ /、冷液。在該氧化還原電池操作後,溴 W.離子奸存在第二部分m㈣為第二物 ]6 1253202 質。 複室系統100的第四個電化學電池具體實施例 一般遵循圖式系統100的系統之仍然另一個具體實施 例則使用一包含生物-電化學程序的程序120。典型的生物-5 電化學程序使用一可氧化的有機化合物作為燃料。亦典型 地提供不同的酵素以提高電化學反應。該可氧化的有機化 合物可包括碳水化合物(諸如葡萄糖)。許多系統需要純的或 實質上純的葡萄糖以最小化或防止產生不能轉換成能量的 副產物。 10 因此,在本文的生物-電化學電池系統中,包含葡萄糖 的物質可提供在第一部分112中。可使用多種機械裝置來收 集包含葡萄糖的物質(例如,草)。例如,平地機刮刀或機械 裝置可切割並進料該包含葡萄糖的物質,隨之將其貯存在 第一部分112中,且利用生物-電化學程序120消耗。至於從 15 該生物-電化學程序120產生的廢棄物(或第一物質無消耗的 部分),則可貯存在容器110的第二部分114中。一個使用此 生物-電化學電池系統之有用的實例為一種能消耗(或切割) 草的自身供給燃料裝置。當草消耗掉時,從草來的葡萄糖 可提供電能而使得該自身供給燃料裝置可移動並連續切割 20 草,且可進一步控制任何所提供的系統電子設備。該廢棄 物可貯存在部分114中作為第二物質。因為燃料可貯存在部 分112中且可直接由程序120消耗,故該系統可自身提供動 力,甚至在無草或其它包含葡萄糖物質存在的區域處。當 部分114已填滿而餘留的部分112之體積比想要的還少時, 17 1253202 可將部分Π 4在混合物堆處倒空。 複室系統100的第一程序具體眚偷你丨 在系統1〇〇的另一個具體實施例中,容器U0的第一部 刀112包含一可b解的物質,諸如生化物。於此,該程序 5可包括一停留現象或一個別或整合的有效程序,諸如加熱 及/或加壓。該第二物質可包括曱烷(一種生化物分解的氣體 副產物)。因此,此曱烷可收集在第二部分114(其在容器110 中為可膨脹的收集容器,或為容器110之一部分而由阻隔物 116與第一部分112分隔)中。例如,其可包含-單向閥'(例 W如,需要-定的氣體壓力才可在一個方向上打開)以允許甲 燒從第一部分進入第二部分,但是不會從第二部分進入第 一部分。 糸統1QP迫弟三皇^盤實施你j 15 20 系統100的另一個具體實施例包括油程序,諸Τ Wang Di _ _. The system includes a graphical system 110 of the container of the present invention. The first-« (or here the If 12 and the red portion 114 are accommodated in the portion 112. The fourth embodiment (four) - the input material) contains the structure and the shape can be - the separated object 10 15 20 refers to the phenomenon of staying Combination): After 112, the program 12 can be arbitrarily - this 'program 12 (10) dashed line indicates the point-stay phenomenon. The program 12. Will: "conform" in container 110 or ^5511Λ, ^ 苐 a shell (or product) (which is contained in 114 towels). Axis (four) magnetic species or different by-products, such as electricity, heat, Chemical, mechanical or optical. The spacer 116 is minimized (ie, accessible or reaches zero). During operation, when the first substance is consumed and the second substance is produced, the barrier 116 can be moved (eg, by mechanical means) , expansion, etc.), thus an achievable volume for the second substance can be created in portion 14. 14. Further, in addition to the barrier 116 (or for example, connected to a container having more than two compartments), the first portion 112 With the second in-process operation, at least - the quantitative - (four) (in the portion) will be consumed or transported 'and at least - part will be converted into the second object contained in the second portion 114. Additional material (not shown) may be incorporated into Procedure 120. When the second substance is produced, it is guided to the second part m of the container (10). The barrier m separates the first portion 112 from the second portion 114. At the beginning of the operation of the program 120, the volume of the portion 114 can be an individual container in the container 110 (e.g., expandable and contractible to adjust for volume change) by the operational resistance. For example, in the system, if there is no additional material introduction procedure 120, the volume of the container 110 can be equal to the larger volume of the input material or the output material 5 throughout the operation of the program 120. First Electrochemical Cell Embodiment of Complex System 100 In a particular embodiment of a system generally following the schematic system 100, the program 120 includes an electrochemical cell, such as a metal air battery. The first material that is fed to the battery under a continuous or batch process contains the fuel, such as a metal paste containing an electrolytic material. After operation of the metal air battery, the metal fuel is converted to metal oxide and stored in the portion 114 of the vessel 110 as a second material. The metal oxide can be stored in a batch or continuous manner. A useful by-product of the metal air battery is electricity, which can be controlled for external use (no display). 15 If the program 120 includes an electrochemical cell (such as a metal-air battery), the container 110 can be, for example, a laptop, a cellular phone, a power tool, other hand-held devices, a small transport device (such as a small motorcycle). Cars, etc. Portable devices. Further, the container 110 can be integrated with a system such as a pastoral, water storage or air reservoir. Additionally, the vessel 110 can be integrated into an in situ power generation system. The metal oxide can be recharged by applying a current thereto. In a rechargeable system, after the material is recharged (i.e., the material is still therein or returned to its respective portion 112 or 114), further discharge is via the "second substance" from portion 114. The fuel of the metal-air battery, wherein the metal oxide formed from the 15 1253202 program 120 can be stored in the first portion 112. In another embodiment of the system in which I follows the schema system 100, the program 120 is a f-alcohol fuel cell. The first substance (in this example, 5 is methanol or a combination of decyl alcohol and water) is included in the first portion 112. During operation of the fuel cell (typically continuous operation), the effluent (primarily water) from the fuel cell is stored in the second portion 114 of the vessel 110 as a second material. In this manner, the effluent (which is typically contaminated to some extent) is stored rather than discharged to the environment while maintaining volume management. Further 10 'during the operation of the fuel cell', a mixture of methanol or sterol and water would be present at a fixed concentration in the first portion of the towel. The additional reactant added to the direct methanol fuel = pool system is oxygen (provided by "air supply") and the useful by-product of the direct methanol fuel system is electricity. 15 20 : Additional of the system of the conventional system (10) A specific embodiment includes a procedure 12G for an original tantalum battery. From the first portion (1), the spoon is provided to contain an anodic electrolysis sequence (10) after operation (i.e., oxime _^). The anolyte will react with the catholyte underneath. In the anolyte solution, dioxane is oxidized (four) in solution. The "consumed" is stored in the second portion as the second material. In another redox mine, the first substance, mm, the catholyte may comprise a normally combined μ / / cold liquid. After the operation of the redox battery, bromine W. is present in the second part m(d) as the second substance] 6 1253202. A fourth electrochemical cell embodiment of the complex system 100. Still another embodiment of the system of the schematic system 100 is followed by a procedure 120 comprising a bio-electrochemical procedure. A typical bio-5 electrochemical procedure uses an oxidizable organic compound as a fuel. Different enzymes are also typically provided to enhance the electrochemical reaction. The oxidizable organic compound can include a carbohydrate such as glucose. Many systems require pure or substantially pure glucose to minimize or prevent the production of by-products that cannot be converted into energy. Thus, in the bio-electrochemical battery system herein, a substance comprising glucose can be provided in the first portion 112. A variety of mechanical devices can be used to collect substances containing glucose (e.g., grass). For example, a grader blade or mechanism can cut and feed the glucose-containing material, which is then stored in the first portion 112 and consumed by the bio-electrochemical procedure 120. As for the waste generated from the bio-electrochemical procedure 120 (or the portion of the first material that is not consumed), it can be stored in the second portion 114 of the vessel 110. A useful example of the use of such a bio-electrochemical battery system is a self-fueling device that can consume (or cut) grass. When the grass is consumed, the glucose from the grass can provide electrical energy such that the self-fueling device can move and continuously cut 20 grass, and any provided system electronics can be further controlled. The waste can be stored in portion 114 as a second material. Because the fuel can be stored in portion 112 and can be consumed directly by program 120, the system can provide its own power, even in the absence of grass or other areas containing glucose. When the portion 114 has been filled and the remaining portion 112 is less than desired, 17 1253202 may emptied a portion of the crucible 4 at the mixture stack. The first procedure of the plenum system 100 specifically steals you. In another embodiment of the system 1, the first knife 112 of the container U0 contains a substance that can be decomposed, such as a biochemical. Here, the program 5 may include a stay phenomenon or an additional or integrated effective program such as heating and/or pressurization. The second substance may include decane (a gaseous by-product of biochemical decomposition). Thus, the decane can be collected in the second portion 114 (which is an expandable collection container in the container 110, or a portion of the container 110 separated by the barrier 116 from the first portion 112). For example, it may include a - check valve (eg, if a predetermined gas pressure is required to open in one direction) to allow the fire to enter the second portion from the first portion, but not from the second portion. portion.糸 1QP forced the three emperors to implement your j 15 20 Another specific embodiment of the system 100 includes oil programs,

精鍊成不同賴分〜或衍生物。例如,可將原油維持在L Γ0的第—部分112中。程細可包括_、裂解= t°在程序後,該產物(例如,汽油)可貯存在第:部二 。因此,當原油從第—部分112進行程序時,第 ::二會減少。因此’當汽油產生且貯存在第二部: 夺弟一邛分114的體積會增加。 中 系統100的另一個具體實施例包括 =或廢水純化之水純化。.,用於水 容器110的第一部分112 、1化的水維持在 奸序⑽可包括-個或多個水 .18 1253202 處理程序步驟。在程序後,該產物(例如,已純化或已部分 純化的水)可貯存在第二部分112中。因此,當水從第一部 分112進行程序時,第一部分112的體積會減少。因此,當 已純化或已部分純化的水產生且貯存在第二部分114中 5 時,第二部分114的體積會增加。 複室系統200 參照現在至第2圖描述另一個併入本文之容器的圖式 系統。系統200包括一具有第一部分212及第二部分214的容 器210。第一物質包含在部分212中,其可經控制地提供至 10 程序220。程序220可產生第二物質而包含在第二部分214 中。該程序220可產生一種或多種不同的副產物,諸如電 力、熱、化學、機械、光或其組合。 在被導入第二部分214之前,第二物質(通常從程序220 來)會接受處理224。處理224可運輸第二物質、改變第二物 15 質的某些性質(諸如化學或物理性質)或其組合。例如,處理 224可包含一與泵連結的反應器。再者,處理224可包含一 物理處理,例如凝結該物質或分離該物質。 複室系統200的第一個燃燒具體實施例 在一般遵循圖式系統200的系統之具體實施例中,程序 20 220包含一燃燒引擎,該第一物質包含該壓縮引擎用之燃料 (諸如汽油),而有用的副產物為引擎的機械能量。當汽油消 耗時,二氧化碳及其它廢棄產物會排出引擎。這些廢棄產 物可提供至處理224(諸如凝結器),其通常會將體積較大的 廢棄氣體轉換成體積較小的氣體或甚至液體。然後,將此 ]9 1253202 經處理的廢棄物會運輸至容器210的第二部分214。 在此方法中,燃燒引擎可在實質上零污染排放下操 作。全部或部分的廢棄物可貯存在第二部分214中(其可例 如為一袋子或其它收集裝置,而提供在一類似於習知的燃 5 料槽之槽中)。當第二物質(或燃燒引擎廢棄物)增加時,第 二部分214的體積會增加,而相對地第一部分212的體積(其 裝配來容納該燃燒引擎用之燃料,諸如汽油)因此減少。 用來包含汽油及包含廢棄產物的燃燒系統可進一步配 備一與第二部分214連接的排空裝置。此排空裝置可經操作 10 而移除該廢棄產物。再者,該排空裝置可與一指示器連結, 以指示出何時部分214為最大容量。該排空系統可以手動或 自動地操作。此排空系統可經由例如最接近燃料槽輸入的 埠而使用。在此方法中,容器210可使用燃料來裝填部分212 而填充,且同時或隨後藉由從部分214移除(例如,一種合 15 適的而連結至習知的真空裝置之轉接器)廢棄產物而倒空。 複室系統200的第二個燃燒具體實施例 再者,使用與燃燒引擎用的燃料槽相同之原理,可採 用一容器來提供燃料(作為輸入物質)至燃燒程序以產生熱 副產物,而可藉此捕捉灰燼及其它燃燒廢棄物並將其貯存 20 作為輸出物質。 複室系統300 現在參照至第3圖,系統300包含第一輸入用之第一容 器310A、各別包含在部分312A、314A中之第一輸出物質; 及第二輸入用之第二容器310B、各別包含在部分312B、 20 1253202 314B中之第二輸出物質。在各別的電池中提供阻隔物舰 及3·。將第—與第二輪入物質二者提供至相同程序 320(其可以不同迷率及/或間隔提供),而產生第—及第二輸 出物質。當第—及第二輸出物質產生時,阻隔物316A與 5 316B因此移開(藉由流體力量、外部力量或其組合)。 i复寬系統學電池具體 在-般遵循圖式系統_之系統的具體實施例中,程序 320包含-氧化還原電池,其類似於上述描述的實例般操 作。第-谷益31〇a包含陽極電解質的輪入及輸出,而第二 1〇容器遞包含陰極電解質的輸入及輸出。將二流體流提供 至該氧化還原電池。 在該具有-個或多個複室容器的氧化還原電池中,該 電池總是以新鮮的材料操作。該電池可經控制,如此可在 各別的階段接收陽極電解質及/或陰極電解質,或可連續地 b釋放該陽極電解質及陰極電解質。就其本身而論,其可適 用於電子積分。 缝翻趟體實施例 20 在-般遵循圖式系統3 〇 G之系統的另—個具體實施例 中’程序32〇包含一飢氧化還原電池]。第一容器應包含 陽極電解質的輸人及輸出,而第二容器遲包含陰極電解 質的輸入及輸出。將二流體流提供至該氧化還原電池。 ^陰極電解質則根據下列半電池反應在電池320中反 V5++e~ 21 1253202 該陽極電解質則根據下列半電池反應在電池32〇中反 應·· V2+㈠ V3++e-。 1例如,參見1998年3月17日釩氧化還原電池發展計劃妝 5 通,C.曼尼克特斯(Menictas)等人,釩電池發展實驗室(Vanadium Battery Development Laboratory),化學工程及工業化學學校 (School of Chemical Engineering ancUndustrial Chemistry),新南 威爾斯大學(The University of New South Wales),澳洲戡新敦 NSW2033郵政信箱 1 號(p〇 Box 1 Kensington NSW2033), 10 (Mtp : //www.ceic,unsw.edu.au/centere/vrb/eec94a.htm) ° 複室系統400 現在參照至第4圖,所提供的系統400包含一與程序420 連結的容器410。該容器410具有用來容納第一物質(其通常 輸入至程序420)的第一部分412,及包含第二物質(其通常為 15程序420的輸出或排出)之第二部分414。額外地,來源422 提供一額外的輸入物質至程序420。從來源422來之額外的 輸入物質:可變成包含在第二部分414中的輸出物質部分; 可轉換成一部分有用的副產物(例如,電力、熱、化學、機 械或光);可分別地從程序320移除;或其組合。 20 蓋-IA^400的電化學電池具體實施例 在一般遵循圖式系統400之系統的具體實施例中,程序 420包含一以氫為基底的燃料電池。第一物質包含一氫來 源’其可於觸媒(其從來源422提供)存在下在反應後釋放 出。例如,此氫來源可為硼氫化鈉(NaBIi4))。硼氫化鈉可 22 1253202 與水提供在溶液中作為第一物質。於觸媒存在下反應後, 會從硼氫化鈉釋放出氫氣並由燃料電池消耗以產生電能, 且產生硼酸鈉(NaB〇2)為副產物。此副產物(其可與水在溶 液中)包含在容器410的第二部分412中。 5 複室系統500 現在參照至第5圖描述使用連結至程序520的容器510 之系統500。該容器510包含該具有第一物質的第一部分512 及該具有第二物質的第二部分513,此二者通常會提供輸入 物質至程序520。第一及第二輸入物質可以不同的速率及間 10 隔(其可彼此相同或不同)釋放至程序520。程序520的輸出 (第三物質)則提供至容器510之部分514。 複室系統500的第一程序具體實施例 一般遵循圖式系統500之系統的具體實施例為一化學 合成程序。第一反應物與第二反應物各別地包含第一物質 15 及第二物質。該程序520包含一反應器,且當第一與第二反 應物導入反應器時會形成一產物(或第三物質)。在此方法 中,可使用一容器以貯存多種反應物及單一產物。再者, 該反應器可產生其它產物。此些其它產物可包含在容器510 的額外部分(無顯示)中或可經分別地貯存。再者,這些額外 20 的產物可為該系統分別包含之副產物。同樣地,該第三物 質可包含一有用的副產物,其隨後可從部分414放出而用以 進一步處理。 複室系統500的第二程序具體實施例 使用系統500的化學合成之特定具體實施例包括水氣 1253202 轉移反應。在典型的水氣轉移反應中,一氧化碳加水反應 以產生二氧化碳與氫。因此,在系統500中,第一部分512 包含一氧化碳及第二部分513包含水。為了形成二氧化碳與 氫,將第一部分512與第二部分513的成分進料至程序520。 5 程序520典型地在高溫下,且在一種或多種觸媒上。然後, 將所產生的二氧化碳與氫之混合物貯存在第三部分514 中。因此,當反應物(一氧化碳與水)形成產物(二氧化碳及 氫)時,容器510的體積可保持定數,因為部分512及513縮 小而部分514膨脹。 1〇 複室系統500的第三裎序具體實施例 在使用一般圖式系統500的系統之另一個具體實施例 中,該有用的副產物可為光,其中該程序520包含一混合該 第一及第二物質用之透明混合室。第一及第二物質為一些 當其結合時會產生光的化學物質。例如,美國專利案號 15 4,859,369(‘“369專利,,)(於此以參考方式併入本文)描述在 水性化學光配方中使用可溶於水的聚合物。在‘369專利 中,將4〆’-乙二醯雙[(三氟曱基颯基)亞胺基;]亞乙基卜雙[心 甲基嗎福啉三氟甲烷-磺酸鹽](指為METQ)的水溶液與聚 (乙烯吼略烷酮)及螢光劑四f磺酸鹽混合。然後加入過氧化 20氫水溶液,當其混合時能產生生物螢光材料。應注意的是 任何或全部的反應物可貯存在容器5〇〇中作為第一物質及 第二物質,或具有額外的用來容納多於二種反應物之部分 的類似容器。在容器510的部分514中貯存所產生的生物螢 光材料(例如,如描述在第5圖)作為第三物質。為了提供連 24 1253202 續的光,可將反應队0,, 心物(例如,射存作為第一及第— 器(例如,第一及第二部⑽、513)中釋放出弟广從容 可使用包含全部或部分反應 在此方法中, 續的光源。 來提供連 斤兴篮夏族例 該發光系統“合適地提供熱能,諸 使用在不同的埶及太 13田將化學反應 、、、及Q包裹時,藉此化學物質八 熱或冷的溫度。再^ ^ 3而提供 再次,可實行連續程序,藉此,延 10 的副產物產生時間可與安全及方便儲存反 紅 用來再循環或適合的處理。 子在而 複室系統6〇^ …、第6圖描述系統600,其包括一可輪入至程 序620的容器61〇,# 藉此’該程序620可輸出數種物質。該輸 入物貝包合在部分612中,且該輸出物質包含在部分614、 15 615 中0 序具體管放例 遵猶圖式系統600的系統之具體實施例為一水電 解程序。該齡λ心。 則入物質(欲經電解的水)包含在部分612中。該 水將接受一你念7? 兒角午程序620,於此水將分裂成輸出物質氫及 2〇氧丄並分別包含在部分614、615中。 程序具體實施例 'w 〇的另一個具體實施例為一消電離程序,諸如水 的去鹽私序。將海水貯存在艙室612中。該反應器620可為 二斤熟知的技術。例如,逆渗透、電渗析或一種或 25 1253202 多種流經貯存器的流體可包含該程序/反應器620。這些程 序可產生經濃縮的鹽水與新鮮的水。該經濃縮的水可收集 在艙室615中而該新鮮的水可貯存在艙室614中。 複室系統600的第三程序具體實施例 5 系統600可應用至緊湊型鹼-氯產生程序。鹽水可貯存 在艙室612中。該反應器620可包括一含有二個電極的電化 學電池。在一個電極上,產生氯氣並貯存在搶室615中。而 遺留在上方的液體為NaOH,其可貯存在艙室614中。 從描述於本文的系統來之主要利益為容積管理。通常 10 來說,整體儲存容器的容積可對輸入物質或輸出物質保有 最大的體積。 雖然已顯示及描述較佳的具體實施例,但是可沒有離 開本發明之精神及範圍而製得不同的改質及取代。因此, 需了解的是本發明已藉由闡明而描述,但並不限制於此。 15 【圖式簡單說明】 第1圖為一複室分隔容器系統之圖式具體實施例,其具 有一輸入物質部分及一輸出物質部分而操作地連結至一程 序; 第2圖為包含一處理步驟的複室分隔容器系統之另一 20 個具體實施例; 第3圖為一對與一程序連結的複室分隔容器系統結構 之具體實施例; 第4圖為使用額外的輸入(在該複室分隔容器系統外部) 之複室分隔容器系統的具體實施例; 26 1253202 第5圖為具有一對輸入物質部分之複室分隔容器系統 的具體實施例; 第6圖為具有一對輸出物質部分之複室分隔容器系統 的具體實施例; 5 第7A及7B圖為一複室分隔容器系統結構的具體實施 例; 第8A及8B圖為一複室分隔容器系統結構之另一個具 體實施例; 第9A及9B圖為一複室分隔容器系統結構之進一步具 10 體實施例;及 第10A及10B圖為一複室分隔容器系統結構之仍然另 一個具體實施例。 【圖式之主要元件代表符號表】 100···複室系統 110···容器 112···第一部分 114…第二部分 116···阻隔物 120…程序 200···複室系統 210···容器 212···第一部分 214…第二部分 220···程序 224···處理 300···複室系統 310A···第一容器 312A···部分 314A…部分 310B···第二容器 312B…部分 314B…部分 316A···阻隔物 316B···阻隔物 320…程序 1253202 400···複室系統 412···第一部分 420…程序 500.··複室系統 512···第一部分 514···部分 600···複室系統 612…部分 615…部分 710···容器 714···第二部分 722…結構 812···第一部分 816···阻隔物 824···製程阻隔物 912···第一部分 1010···容器 1014…第二部分 410···容器 414···第二部分 422…來源 510···容器 513···第二部分 520…程序 610…容器 614…部分 620…程序 712···第一部分 716···阻隔物 810···容器 814···第二部分 822…結構 910···容器 914···第二部分 1012…第一部分 28Refined into different reliances ~ or derivatives. For example, crude oil can be maintained in the first portion 112 of L Γ 0 . The process may include _, cleavage = t° After the procedure, the product (for example, gasoline) may be stored in the second part. Therefore, when crude oil is processed from the first part 112, the second: second will decrease. Therefore, when gasoline is produced and stored in the second part: the volume of the younger one will increase. Another embodiment of the system 100 includes = or water purification for wastewater purification. The first portion 112 of the water container 110, the water maintained in the order (10) may include one or more waters. 18 1253202 process steps. This product (e.g., purified or partially purified water) can be stored in the second portion 112 after the procedure. Therefore, when water is programmed from the first portion 112, the volume of the first portion 112 is reduced. Therefore, when purified or partially purified water is produced and stored in the second portion 114, the volume of the second portion 114 is increased. The plenum system 200 is described with reference to now to Figure 2 a diagram system of another container incorporated herein. System 200 includes a container 210 having a first portion 212 and a second portion 214. The first substance is contained in portion 212, which is controllably provided to process 10 220. The program 220 can generate a second substance and be included in the second portion 214. The program 220 can produce one or more different by-products such as electrical, thermal, chemical, mechanical, optical, or a combination thereof. The second substance (usually from program 220) will undergo processing 224 before being introduced into the second portion 214. Process 224 can transport the second substance, alter certain properties of the second substance (such as chemical or physical properties), or a combination thereof. For example, process 224 can include a reactor coupled to a pump. Further, process 224 can include a physical process, such as clotting the substance or separating the substance. First Combustion Specific Embodiment of the Residing System 200 In a specific embodiment of a system generally following the Schematic System 200, the program 20 220 includes a combustion engine that includes fuel for the compression engine (such as gasoline) And a useful by-product is the mechanical energy of the engine. When gasoline is consumed, carbon dioxide and other waste products are emitted from the engine. These waste products can be supplied to a process 224 (such as a condenser) which typically converts a larger volume of waste gas into a smaller volume of gas or even a liquid. The treated waste of this 9 1253202 is then transported to the second portion 214 of the vessel 210. In this method, the combustion engine can operate with substantially zero pollution emissions. All or part of the waste may be stored in the second portion 214 (which may be, for example, a bag or other collection device provided in a tank similar to conventional fuel cells). As the second substance (or combustion engine waste) increases, the volume of the second portion 214 increases, while the volume of the first portion 212 (which is assembled to contain the fuel for the combustion engine, such as gasoline) is thus reduced. The combustion system for containing gasoline and containing waste products may be further provided with an evacuation device coupled to the second portion 214. This venting device can remove the waste product via operation 10. Again, the venting device can be coupled to an indicator to indicate when portion 214 is at maximum capacity. The venting system can be operated manually or automatically. This evacuation system can be used, for example, via a crucible that is closest to the fuel tank input. In this method, the container 210 can be filled with fuel to fill the portion 212 and simultaneously or subsequently discarded by removal from the portion 214 (e.g., a suitable adapter that is coupled to a conventional vacuum device). The product is emptied. Second Combustion Embodiment of the Residing System 200 Further, using the same principle as the fuel tank for the combustion engine, a vessel can be used to provide fuel (as an input material) to the combustion process to produce thermal by-products, but This captures ash and other burning waste and stores it as an output material. The present invention is now referred to FIG. 3, which includes a first container 310A for a first input, a first output material for each of the portions 312A, 314A, and a second container 310B for a second input, The second output material is included in portions 312B, 20 1253202 314B, respectively. Provide a barrier ship and 3· in each battery. Both the first and second rounds of material are provided to the same procedure 320 (which may be provided at different rates and/or intervals) to produce first and second output materials. When the first and second output materials are produced, the barriers 316A and 5 316B are thus removed (by fluid force, external force, or a combination thereof). i Complex Wide Systematic Battery In particular, in a specific embodiment of a system that generally follows a schematic system, the program 320 includes a redox battery that operates similarly to the examples described above. The first-thickness 31〇a contains the rounding and output of the anolyte, while the second one contains the input and output of the catholyte. A two fluid stream is provided to the redox battery. In the redox battery having one or more multi-chamber containers, the battery is always operated with fresh material. The battery can be controlled such that the anolyte and/or catholyte can be received at various stages, or the anolyte and catholyte can be continuously released. For its part, it can be applied to electronic integration. Slit Turning Body Embodiment 20 In another embodiment of the system that generally follows the graphical system 3 〇 G, the 'program 32 〇 contains a starred redox battery. The first container should contain the input and output of the anolyte, while the second container contains the input and output of the cathode electrolyte. A two fluid stream is provided to the redox battery. ^ Catholyte is reacted in battery 320 according to the following half-cell reaction. V5++e~ 21 1253202 The anolyte reacts in battery 32〇 according to the following half-cell reaction · V2+(1) V3++e-. 1 For example, see the March 17, 1998 vanadium redox battery development plan makeup, C. Manictas et al., Vanadium Battery Development Laboratory, School of Chemical Engineering and Industrial Chemistry (School of Chemical Engineering ancUndustrial Chemistry), The University of New South Wales, NSW 2020, PO Box1 Kensington NSW2033, 10 (Mtp: //www. Ceic, unsw.edu.au/centere/vrb/eec94a.htm) ° Complex Room System 400 Referring now to Figure 4, a system 400 is provided that includes a container 410 coupled to a program 420. The container 410 has a first portion 412 for containing a first substance (which is typically input to the program 420) and a second portion 414 containing a second substance (which is typically the output or discharge of the 15 program 420). Additionally, source 422 provides an additional input to program 420. Additional input material from source 422: may become part of the output material contained in second portion 414; may be converted into a portion of useful by-products (eg, electrical, thermal, chemical, mechanical, or optical); Program 320 is removed; or a combination thereof. 20 Electrochemical Cell Embodiment of Cap-IA^400 In a specific embodiment of a system generally following the schematic system 400, the process 420 includes a hydrogen-based fuel cell. The first species comprises a source of hydrogen 'which can be released after the reaction in the presence of a catalyst (provided from source 422). For example, the source of hydrogen can be sodium borohydride (NaBIi4). Sodium borohydride 22 1253202 is supplied as a first substance in solution with water. After the reaction in the presence of a catalyst, hydrogen is released from sodium borohydride and consumed by the fuel cell to generate electrical energy, and sodium borate (NaB 2 ) is produced as a by-product. This by-product, which may be in solution with water, is contained in the second portion 412 of the vessel 410. 5 Complex Room System 500 Referring now to Figure 5, a system 500 using a container 510 coupled to a program 520 is described. The container 510 includes the first portion 512 having a first substance and the second portion 513 having a second substance, which generally provide an input to the process 520. The first and second input materials can be released to the process 520 at different rates and intervals (which may be the same or different from one another). The output of program 520 (the third substance) is provided to portion 514 of container 510. First Program Specific Embodiment of Complex Room System 500 A specific embodiment of the system generally following the schematic system 500 is a chemical synthesis procedure. The first reactant and the second reactant each comprise a first substance 15 and a second substance. The procedure 520 includes a reactor and a product (or third species) is formed as the first and second reactants are introduced into the reactor. In this method, a vessel can be used to store a plurality of reactants and a single product. Again, the reactor can produce other products. Such other products may be included in an additional portion of the container 510 (not shown) or may be separately stored. Again, these additional 20 products can be by-products of the system separately. Likewise, the third substance can contain a useful by-product which can then be discharged from portion 414 for further processing. Second Program Specific Embodiment of the Complex System 500 A particular embodiment of the chemical synthesis using the system 500 includes a water vapor 1253202 transfer reaction. In a typical water gas shift reaction, carbon monoxide is reacted with water to produce carbon dioxide and hydrogen. Thus, in system 500, first portion 512 contains carbon monoxide and second portion 513 contains water. To form carbon dioxide and hydrogen, the components of first portion 512 and second portion 513 are fed to process 520. 5 Program 520 is typically at elevated temperatures and on one or more catalysts. The resulting mixture of carbon dioxide and hydrogen is then stored in the third portion 514. Thus, when the reactants (carbon monoxide and water) form products (carbon dioxide and hydrogen), the volume of vessel 510 can be maintained constant as portions 512 and 513 are reduced and portion 514 is expanded. A third embodiment of a single chamber system 500. In another embodiment of a system using a general pattern system 500, the useful by-product can be light, wherein the program 520 includes a mixing of the first And a transparent mixing chamber for the second substance. The first and second substances are chemicals that produce light when combined. For example, the use of water-soluble polymers in aqueous chemical light formulations is described in U.S. Patent No. 5,859,369, the disclosure of which is incorporated herein by reference. 〆'-Ethylene bis[(trifluoromethyl fluorenyl) imide;] ethylene bis [heart methyl morpholine trifluoromethane sulfonate] (referred to as METQ) aqueous solution and poly (Ethylene sulphonone) and a fluorescent agent tetraf sulfonate are mixed. Then, a hydrogen peroxide aqueous solution of 20 is added, and when it is mixed, a bioluminescent material can be produced. It should be noted that any or all of the reactants can be stored in The container 5 is used as the first substance and the second substance, or has an additional similar container for containing more than two of the reactants. The bioluminescent material produced is stored in the portion 514 of the container 510 (eg, , as described in Figure 5) as a third substance. In order to provide continuous light for 24 1253202, the reaction team 0, the heart object (for example, the shot as the first and the first) (for example, the first and the first The second part (10), 513) released the brothers can be used to contain all or part of the reaction in this method , Continued light source. To provide the Lien Xing Xing basket Xia nationality example of the illuminating system "properly provide thermal energy, the use of different 埶 and Tai 13 Tian will chemical reaction,, and Q package, the chemical eight heat Or cold temperature. Further provided, the continuous procedure can be carried out, whereby the by-product generation time of the extension 10 can be used for safe and convenient storage of anti-red for recycling or suitable treatment. System 6A, FIG. 6 depicts a system 600 that includes a container 61〇 that can be rotated into the program 620, whereby the program 620 can output a plurality of substances. The input object is enclosed in the portion 612. And the output material is included in the portion 614, 15 615. The specific embodiment of the system is a one-water electrolysis program. The age of the λ heart. The water is contained in section 612. The water will receive a horn nod 620, which will split into output hydrogen and 2 oxime and will be included in sections 614, 615, respectively. Another specific example of the example 'w 为 is a cancellation Separation procedures, such as desalination of water, store seawater in compartment 612. The reactor 620 can be a well-known technique of two kilograms. For example, reverse osmosis, electrodialysis, or one or more than 25,153,202 fluids flowing through the reservoir The program/reactor 620 can be included. These procedures can produce concentrated brine with fresh water. The concentrated water can be collected in the chamber 615 and the fresh water can be stored in the chamber 614. Third Procedure Specific Embodiment 5 System 600 can be applied to a compact alkali-chlorine generation program. The brine can be stored in compartment 612. The reactor 620 can include an electrochemical cell containing two electrodes. On one of the electrodes, chlorine gas is generated and stored in the grab chamber 615. The liquid remaining above is NaOH, which can be stored in the chamber 614. The main benefit from the system described in this paper is volume management. Typically, the volume of the overall storage container holds the largest volume of input or output material. While the preferred embodiment has been shown and described, various modifications and substitutions may be made without departing from the spirit and scope of the invention. Therefore, it is to be understood that the invention has been described by way of illustration and not limitation. 15 [Simple Description of the Drawings] Fig. 1 is a schematic embodiment of a double compartment separating container system having an input material portion and an output material portion operatively coupled to a program; Another 20 specific embodiments of the step-separated container system of the steps; Figure 3 is a specific embodiment of a system of a separate compartment divider container system coupled to a program; Figure 4 is the use of additional inputs (in the complex A specific embodiment of a double compartment separation vessel system for the exterior of the chamber separation vessel system; 26 1253202 Figure 5 is a specific embodiment of a complex chamber separation vessel system having a pair of input material portions; Figure 6 is a portion having a pair of output materials A specific embodiment of a double compartment separation container system; 5 FIGS. 7A and 7B are specific embodiments of a double compartment separation container system structure; and FIGS. 8A and 8B are another embodiment of a double compartment separation container system structure; Figures 9A and 9B show a further embodiment of a double-chambered container system; and Figures 10A and 10B show another structure of a double-chambered container system. example. [Main component representative symbol table of the drawing] 100···Re-room system 110··· container 112···first part 114...second part 116···barrier 120...program 200···recovery system 210 Container 212···First part 214...Second part 220···Program 224···Process 300···Re-room system 310A···First container 312A···Part 314A...Part 310B·· Second container 312B...part 314B...part 316A···barrier 316B···barrier 320...program 1253202 400···room system 412···first part 420...program 500.··recovery system 512 ···The first part 514···Part 600···Re-room system 612...Part 615...Part 710···Container 714···Second part 722...Structure 812···The first part 816···Barrier 824···Process blocker 912···first part 1010··· container 1014...second part 410··· container 414···second part 422...source 510··· container 513···the second part 520...program 610...container 614...part 620...program 712···first part 716···barrier 810···container 814···Part II 822...Structure 910···Container 914···Part 2 1012...Part 1 28

Claims (1)

!253202 拾'申請專利範圍: 一種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 其中該第一部分在與該第二部分連接的單向流體 中,其中該第一物質包含一可分解的物質,其會在第 一分中分解且釋放出包含該第二物質的流體副產 物。 2 •如申請專利範圍第1項之系統,其中該可分解的物質包 含一生化物且該流體副產物包含曱烷。 3 一 _ ‘ 一種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括·· 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第 4刀與第二部分可安裝在該總容積中, 該系統更包含一化學程序系統,該第一部分在與 °亥化學程序系統連接的流體中,其中該第一物質將進 料至该化學程序系統,而該化學程序系統將加工該第 29 一物質成該第二物質。 申η月專利範圍第3項之系統,其中該化學程序系統將 加工该第一物質成該第二物質及第三物質。 如申請專利範圍第3項之系統,其中該第一物質包括石 油。 如申請專利範圍第5項之系統,其中該第二物質包括一 種石油產物。 如申請專利範圍第3項之系統,其中該第一物質包括一 種水進料且該第二物質包含純水。 種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中遠第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第~部分與第二部分可安裝在該總容積中, 該系統更包含一引擎,該第一部分在與該引擎的 燃料輸入連接之流體中,其中該第一物質包含一種選 自於由汽油及柴油所組成之群的燃料,且將其進料至 該燃料輸入,而該引擎可產生機械能且該第二物質包 含至少一部分的引擎排氣。 如申請專利範圍第8項之系統,其更包含一移出該第二 物質用之排空系統。 如申請專利範圍第9項之系統,其更包含一在將第二物 1253202 貝V入第二部分前將其凝結的凝結器。 1L =種分隔容器系統,其剌於包含數種物f,其包含 具有一總谷積的容器,該容器包括·_ 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可臭、或该第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含一爐,該第一部分在與該爐連接的 流體中,其中該包含燃料的第一物質進料至該爐,該 爐會產生熱能且該第二物質包含至少一部分的爐排 氣。 12. 15 13. 14. 如申睛專利範圍第11項之系統,其更包含一移出該第 二物質用之排空系統。 如申請專利範圍第12項之系統,其更包含一在將第二 物質導入第二部分前將其凝結的凝結器。 一種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含一接收從催化的氫產生系統來之氫 31 1253202 的以氫為基底的燃料電池,該第一部分在與催化的氫 產生系統連接之流體中且包括一可催化釋放的氫來 源,而該氫來源可進料至該產生氫之催化的氫產生系 統,及該第二物質包含一排氣。 5 10 15 20 15·如申請專利範圍第14項之系統,其中該可催化釋放的 氫來源包含删氫化納。 •一種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括·· 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第-部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 該系統更包含用來包含第三物質之第三部分,其 中該第一部分的體積可變、該第二部分的體積可變: 該第三部分的體積可變、該第一部分與該第二部分的 體積可變、該第-部分與該第三部分的體積可變、該 第一部分與該第三部分的體積可變或該第一部分、該 第二部分及該第三部分的體積可變,如此該第—部 分、該第二部分及該第三部分可安裝在總體積中。 17.如中請專利範圍第16項之系統,其更包含—合成程 序,該第-部分會將該第一物質進料至該合成程序, 且該第二部分會將該第二物質進料至該合成程序,盆 中該合成程序會輸出第三物質。 ” 32 1253202 18. 如申請專利範圍第16項之系統,其更包含一透明或半 透明容器,該第一部分及第二部分在與該透明或半透 明容器的輸入連接之流體中,而該第三部分在與透明 或半透明容器的輸出連接之流體中,其中該第一物質 5 包含第一反應物而該第二物質包含第二反應物,該第 一反應物與該第二反應物具有在彼此反應後會放出光 的性質,進一步該第三物質包含該第一反應物與第二 反應物的反應產物。 19. 如申請專利範圍第16項之系統,其更包含一熱收集系 10 統,該第一部分及第二部分在與該熱收集系統之輸入 連接的流體中,而該第三部分在與該熱收集系統之輸 出連接的流體中,其中該第一物質包含第一反應物而 該第二物質包含第二反應物,該第一反應物及第二反 應物具有在彼此反應後會放熱的性質,進一步該第三 15 物質包含該第一反應物與第二反應物之反應產物。 20. 如申請專利範圍第16項之系統,其更包含一分離系 統,該第一部分在與該分離系統的輸入連接之固體或 流體中,該第二部分在與該分離系統的第一輸出連接 之固體或流體中,及第三部分在與該分離系統的第二 20 輸出連接之固體或流體中,其中該第一物質包含一種 欲分離成第二及第三物質的物質。 21. —種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 33 1253202 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積中, 5 該系統更包含一水處理系統,該第一物質包括將 進料至該水處理系統之欲處理的水,其中該水處理系 統可分離從包含一處理廢棄物的第二物質來之經處理 的水。 22. —種分隔容器系統,其係用於包含數種物質,其包含 10 一具有一總容積的容器,該容器包括: 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 可變、或該第一部分與第二部分的體積可變,如此該 15 第一部分與第二部分可安裝在該總容積中, 該系統更包含一水處理系統,該第一物質包括將 進料至該水處理系統之欲處理的水,其中該水處理系 統可分離一從包含經處理的水來之第二物質的處理廢 棄物。 20 23*種分隔容器系統,其係用於包含數種物質,其包含 一具有一總容積的容器,該容器包括·· 包含第一物質用之第一部分;及 包含第二物質用之第二部分; 其中該第一部分的體積可變、該第二部分的體積 34 1253202 可變、或該第一部分與第二部分的體積可變,如此該 第一部分與第二部分可安裝在該總容積令, 5 該系統更包含一水處理系統,該第一物質包括將 進料至該水處理隸之欲處理的水,其中該水處理系 統可分離一從實質上由經處理的水組成之第二物質來 的處理廢棄物。 10 如_請專利翻第3項之⑽,該化學程料、統包含一 消電離系統,該第-物質包括將進料至該水處理系統 而欲去離子化之已離子化的流體,其中該水處理系統 可分離出經去離子化的流體或固體作為第二物質及經 離子化的流體或固體作為第三物質。 25. ^請專姆圍第3項之系統,觀學程序祕包括- 3有一個電極的電化學電池,該第-物質包括將進料 至該電化學電池的鹽水,其中 15 ^ α ^ "電化學電池可將該鹽 水刀離成作為第二物質的氯 NaOH溶液。 作為卓二物質的 35253202 Patent Application: A separate container system for containing a plurality of materials comprising a container having a total volume, the container comprising: a first portion for containing a first substance; and a second substance comprising a second portion; wherein the volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion is variable, such that the first portion and the second portion can be mounted on the total In the volume, wherein the first portion is in a unidirectional fluid connected to the second portion, wherein the first substance comprises a decomposable substance that decomposes in the first portion and releases the fluid comprising the second substance by-product. 2. The system of claim 1, wherein the decomposable material comprises a biochemical and the fluid by-product comprises decane. 3 a separate container system for containing a plurality of materials, comprising a container having a total volume, the container comprising: a first portion for containing the first substance; and a second substance for containing a second portion; wherein the volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion is variable, such that the fourth knife and the second portion can be installed in the total volume The system further includes a chemical program system, the first portion being in a fluid coupled to the °H chemical program system, wherein the first material is to be fed to the chemical program system, and the chemical program system will process the 29th The substance becomes the second substance. The system of claim 3, wherein the chemical program system processes the first substance into the second substance and the third substance. A system of claim 3, wherein the first substance comprises petroleum. A system of claim 5, wherein the second substance comprises a petroleum product. The system of claim 3, wherein the first substance comprises a water feed and the second substance comprises pure water. a separate container system for containing a plurality of materials, comprising a container having a total volume, the container comprising: a first portion for containing a first substance; and a second portion for containing a second substance; The volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion is variable, such that the first portion and the second portion can be installed in the total volume, and the system further comprises An engine, the first portion being in a fluid connected to a fuel input of the engine, wherein the first substance comprises a fuel selected from the group consisting of gasoline and diesel, and is fed to the fuel input, and The engine can generate mechanical energy and the second substance contains at least a portion of the engine exhaust. The system of claim 8 further comprising an evacuation system for removing the second substance. The system of claim 9 further comprising a condenser for condensing the second material 1253202 before it enters the second portion. 1L = a type of separate container system comprising a plurality of materials f comprising a container having a total grain product, the container comprising: - a first portion for containing the first substance; and a second portion for containing the second substance Wherein the volume of the first portion is variable, the volume of the second portion is odorous, or the volume of the first portion and the second portion is variable, such that the first portion and the second portion can be installed in the total volume, the system Further included is a furnace, the first portion being in a fluid coupled to the furnace, wherein the first material comprising fuel is fed to the furnace, the furnace generates thermal energy and the second material comprises at least a portion of furnace exhaust. 12. 15 13. 14. The system of claim 11 further includes an emptying system for removing the second substance. The system of claim 12, further comprising a condenser for condensing the second substance prior to introducing it into the second portion. A separate container system for containing a plurality of materials, comprising a container having a total volume, the container comprising: a first portion for containing a first substance; and a second portion for containing a second substance; The volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion is variable, such that the first portion and the second portion can be installed in the total volume, and the system further comprises a a hydrogen-based fuel cell receiving hydrogen from a catalyzed hydrogen generating system, 31 1253202, the first portion being in a fluid coupled to the catalyzed hydrogen generating system and comprising a source of catalyzable hydrogen released from the hydrogen source Feeding to the hydrogen generating system that produces hydrogen, and the second material comprises an exhaust. 5 10 15 20 15 15. The system of claim 14, wherein the source of catalytically liberable hydrogen comprises sodium hydride. • A separate container system for containing a plurality of materials comprising a container having a total volume, the container comprising: a first portion for containing a first substance; and a second portion for containing a second substance; Wherein the volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion is variable, such that the first portion and the second portion can be installed in the total volume, the system Further included is a third portion for containing a third substance, wherein the volume of the first portion is variable and the volume of the second portion is variable: the volume of the third portion is variable, and the volume of the first portion and the second portion Variable, the volume of the first portion and the third portion is variable, the volume of the first portion and the third portion is variable, or the volume of the first portion, the second portion, and the third portion is variable, such that The first portion, the second portion, and the third portion can be mounted in a total volume. 17. The system of claim 16, wherein the system further comprises a synthesis procedure, the first portion feeding the first material to the synthesis procedure, and the second portion feeding the second material Up to the synthesis procedure, the synthesis program in the basin outputs a third substance. The system of claim 16 further comprising a transparent or translucent container, the first portion and the second portion being in a fluid connected to the input of the transparent or translucent container, and the The three parts are in a fluid connected to the output of the transparent or translucent container, wherein the first substance 5 comprises a first reactant and the second substance comprises a second reactant, the first reactant and the second reactant having The properties of the light are emitted after reacting with each other, and the third substance further comprises a reaction product of the first reactant and the second reactant. 19. The system of claim 16 further comprising a heat collection system 10 The first portion and the second portion are in a fluid connected to an input of the heat collection system, and the third portion is in a fluid connected to an output of the heat collection system, wherein the first substance comprises a first reactant And the second substance comprises a second reactant, the first reactant and the second reactant have a property of exothermic after reacting with each other, and further the third 15 substance comprises the first reaction The reaction product of the second reactant. The system of claim 16 further comprising a separation system, the first portion being in a solid or fluid connected to the input of the separation system, the second portion In a solid or fluid connected to the first output of the separation system, and a third portion in a solid or fluid connected to the second 20 output of the separation system, wherein the first substance comprises a substance to be separated into a second a substance of a third substance 21. A separate container system for containing a plurality of substances, comprising a container having a total volume, the container comprising: a first portion for containing a first substance; and 33 1253202 comprising a second portion for the second substance; wherein the volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion is variable, such that the first portion and the second portion are mountable In the total volume, 5 the system further comprises a water treatment system, the first substance comprising water to be treated to be fed to the water treatment system, wherein the water treatment system The treated water can be separated from a second material comprising a treated waste. 22. A separate container system for containing a plurality of materials comprising a container having a total volume, the container The method includes: a first portion for containing a first substance; and a second portion for containing a second substance; wherein the volume of the first portion is variable, the volume of the second portion is variable, or the volume of the first portion and the second portion Variable, such that the first and second portions can be installed in the total volume, the system further comprising a water treatment system, the first substance comprising water to be treated to be fed to the water treatment system, wherein The water treatment system can separate a process waste from a second material comprising treated water. 20 23* separate container system for containing several materials comprising a container having a total volume, The container includes: a first portion for containing the first substance; and a second portion for the second substance; wherein the volume of the first portion is variable, and the volume of the second portion is 34 1253202 Changing, or the volume of the first portion and the second portion being variable, such that the first portion and the second portion are mountable in the total volume order, 5 the system further comprises a water treatment system, the first substance comprising the feed to The water treatment is directed to the water to be treated, wherein the water treatment system is capable of separating a treatment waste from a second substance consisting essentially of treated water. 10 If the patent is turned over to item (10), the chemical process system includes a deionization system, and the first substance includes an ionized fluid to be deionized to be fed to the water treatment system, wherein The water treatment system can separate the deionized fluid or solid as the second material and the ionized fluid or solid as the third material. 25. ^Please use the system of the third item, the observing program secret includes - 3 an electrochemical cell with an electrode, the first substance including the brine to be fed to the electrochemical cell, where 15 ^ α ^ &quot An electrochemical cell can separate the brine knife into a solution of chlorine NaOH as a second material. 35 as a substance
TW093111788A 2001-10-29 2002-10-29 Containment system TWI253202B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34059201P 2001-10-29 2001-10-29

Publications (2)

Publication Number Publication Date
TW200423462A TW200423462A (en) 2004-11-01
TWI253202B true TWI253202B (en) 2006-04-11

Family

ID=23334064

Family Applications (2)

Application Number Title Priority Date Filing Date
TW093111788A TWI253202B (en) 2001-10-29 2002-10-29 Containment system
TW091132100A TWI226720B (en) 2001-10-29 2002-10-29 Electrochemical system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW091132100A TWI226720B (en) 2001-10-29 2002-10-29 Electrochemical system

Country Status (7)

Country Link
EP (1) EP1565958A2 (en)
JP (1) JP2005512275A (en)
KR (1) KR20040060956A (en)
CN (1) CN1636251A (en)
AU (1) AU2002348108A1 (en)
TW (2) TWI253202B (en)
WO (1) WO2003037512A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034700A1 (en) * 2007-07-16 2009-01-22 Rennebeck, Klaus, Dr. Redox battery
KR101210841B1 (en) * 2011-04-12 2012-12-11 부산대학교 산학협력단 Non-aeration organic matter removing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414437A (en) * 1963-05-13 1968-12-03 Electromechanical Devices Inc Fluid circulating battery system
US3551208A (en) * 1966-12-12 1970-12-29 Yardney International Corp Cell with displaceable electrode
JPS62229665A (en) * 1986-03-29 1987-10-08 Sumitomo Electric Ind Ltd Electrolyte circulating type secondary cell
JPS62271360A (en) * 1986-05-16 1987-11-25 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary battery
HU221405B1 (en) * 1996-10-16 2002-09-28 Gyoergy Pintz Electric currentless arrangement and method for charging accumulators
WO1998016402A1 (en) * 1996-10-16 1998-04-23 Pintz Gyoergy Electric vehicle
JP3915334B2 (en) * 1999-08-30 2007-05-16 株式会社豊田自動織機 Hydrogen supply system for fuel cell, fuel recycling method, mobile body for transporting liquid, fueling facility, and fuel recycling system

Also Published As

Publication number Publication date
TW200423462A (en) 2004-11-01
WO2003037512A3 (en) 2005-06-02
TWI226720B (en) 2005-01-11
KR20040060956A (en) 2004-07-06
JP2005512275A (en) 2005-04-28
EP1565958A2 (en) 2005-08-24
AU2002348108A1 (en) 2003-05-12
WO2003037512A2 (en) 2003-05-08
TW200301978A (en) 2003-07-16
CN1636251A (en) 2005-07-06
AU2002348108A8 (en) 2005-11-17

Similar Documents

Publication Publication Date Title
CN1319849C (en) Water vapor transport power generator
JPS6380487A (en) Generation method and apparatus by thermal and electrochemical conversion of hydrogen
JP5698337B2 (en) Electrochemical hydrogen-catalyst power system
US4818638A (en) System for hydrogen thermal-electrochemical conversion
FR2665303A1 (en) PRODUCTION OF ELECTRICAL ENERGY WITH TWO OPERATING MODES.
CN1934741A (en) Use of an ammonia storage device in production of energy
WO2003054508A2 (en) Integrated oxygen generation and carbon dioxide absorption method, apparatus and systems
KR20170123711A (en) Heterogeneous hydrogen-catalyst power system
JP2013542547A5 (en)
US7504015B2 (en) Method and device for producing oxygen
CA2458589A1 (en) Powder metal hydride hydrogen generator
CN110290866A (en) Use the Water warfare of porous carbon electrodes
JP2005104831A (en) Reactor and method for producing hydrogen from metal hydride
US20170340792A1 (en) A portable regenerative haemodialysis system and a method thereof
US20030118145A1 (en) Multiple chamber containment system
JP2015091572A (en) Biogas producing system and method of producing biogas and carbon dioxide reduced product using biogas producing system
CN100566001C (en) Be used for from the system and method for fuel container removal/oxidation Decomposition fuel
TWI253202B (en) Containment system
US6641945B2 (en) Fuel cell
US20220177304A1 (en) Desalination methods and devices using geothermal energy
JP2003500319A (en) Energy production, storage and transport systems
JP2003132931A (en) Liquid fuel directly supplied fuel cell
WO2004035491A1 (en) Procedure and device for thermophilic temperature range stabilization and mineralization of sludge from wastewater treatment plants
JP2002008706A (en) Alkaline fuel cell
Jadhav et al. Utilization of human waste and animal urine for energy and resource recovery in microbial electrochemical system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees