TW200423217A - Nanowire filament - Google Patents

Nanowire filament Download PDF

Info

Publication number
TW200423217A
TW200423217A TW092135804A TW92135804A TW200423217A TW 200423217 A TW200423217 A TW 200423217A TW 092135804 A TW092135804 A TW 092135804A TW 92135804 A TW92135804 A TW 92135804A TW 200423217 A TW200423217 A TW 200423217A
Authority
TW
Taiwan
Prior art keywords
nanowire
connection point
conductor
oxide
conductors
Prior art date
Application number
TW092135804A
Other languages
English (en)
Inventor
Neal W Meyer
James E Ellenson
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW200423217A publication Critical patent/TW200423217A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

玖、發明說明: 【發明所屬之技術甸域】 發明領域 本發明揭露-種製造奈米線絲之方法,包括形成及溶 合作用。在-形成仙中,形成緊鄰導體。在另—形成作 用中,在緊鄰導體之間形成氧化物連接點。在ϋ用 中,經由氧化物連接點,溶合界於緊鄰導體之間妓米線 絲。本發明亦提供-電路,其具有第—及第二緊鄰導體, 以及熔合於緊鄰導體之間的奈米線絲。 t lltT 3 人們對於化學、生物、微機械、微電子及微流體之監 測及感測的興趣日糾高。由於人們對於有關影響健康、 安全、具性能及環境的因素之意識及關心,產生對於能 夠以小規模、較小包裝及及時制、歡及監測化學、生 物及ί哀境狀況之技術的需求。 回應此等需求,著重於開發、簡化、改良及降低成本 的精密實驗室程序及硬體已出現成功的商業市場。家用一 氧化碳監測器、飲用水純度監測器及煙霧檢測器目前已非 常普遍。許多此等裝置已成為新建築物的必備要件。除了 環境感測產品之外,著重於個人健康監測器及健康篩選裝 置的市場正快速成長。舉例而言,在市面上有許多用於葡 萄糖監測之能夠採樣及分析血液的系統。類似於計算演 化’由中心式感測至分布及包埋式感測的進化正進行中。 在此等趨勢下,可保險地預測在不遠的將來,對於開發廣 fe圍之化學、環境及生物感測技術的智慧型、可攜式、無 線、網路下運行(web-enabled)、自診斷的產品將有需要。 再者’將要求感測器及感測裝置愈小愈好,甚至為奈米等 級。 在每一上述應用及其他應用中,現在及未來不斷地要 求較低的檢測限制、較高的選擇性及靈敏度、可攜帶性及 即時反應。 【發明内容】 本發明揭露一種製造奈米線絲之方法,包括形成及溶 合作用。在一形成作用中,形成緊鄰導體。在另一形成作 用中,在緊鄰導體之間形成氧化物連接點。在一熔合作用 中,經由氧化物連接點,熔合界於緊鄰導體之間的奈米線 絲。本發明亦提供一電路,其具有第一及第二緊鄰導體, 以及熔合於緊鄰導體之間的奈米線絲。 圖式簡單說明 第1圖係概要地說明呈緊鄰對組的導體之數個具體實 施例; 第2A及2B圖係概要地說明緊鄰之導體的二具體實施 例’該導體已氧化或該導體上已沈積有氧化物; 第3、4A及4B圖為概要地說明位在緊鄰之導體的具體 實施例之間的奈米線絲的具體實施例的頂視圖; 第5A圖為概要地說明位在緊鄰之導體的具體實施例之 間的奈米線絲的具體實施例的側截面圖; 第5B圖為概要地說明位在緊鄰之導體的具體實施例之 200423217 間的懸吊奈米線絲的具體實施例的側截面圖; 第6圖係概要地說明用於作為感測器之經處理的奈米 線絲的一具體實施例; 第7圖係說明可用於建構一經處理之奈米線絲之作用 5 的具體實施例; 第8圖係概要地說明一溫度測量裝置的具體實施例; 第9圖係概要地說明一熱耦參考連接點之具體實施例; 第10圖為概要地說明耦合至緊鄰之導體的具體實施例 之熱源的具體實施例的側截面圖; 10 第11圖為概要地說明熱耦參考連接點之具體實施例的 側截面圖; 第12圖係概要地說明一溫度測量裝置的具體實施例; 第13圖為概要地說明熱耦參考連接點之具體實施例的 側截面圖;以及 15 第I4-15圖係概要地說明奈米線感測器電路之具體實 施例。 【實施方式3 較佳具體實施例的詳細說明 第1圖為概要地說明呈緊鄰對組38、40、42及44之導體 20 30A、30B、32A、32B、34A、34B、36A及36B之數個具體 實施例的頂視圖。更詳細地說,奈米線絲可形成於呈緊鄰 對組的導體之間。然而而,應瞭解到,在本案說明書中之 概要說明並未按一定比例晝出,所示之呈緊鄰對組3 8、4 〇、 42及44之導體係間隔約60埃,雖然“緊鄰,,亦可意指較小 7 200423217 或較大的間隔距離。 導體30A-36B係形成在基板46上,該基板可為矽或其他 適當的微電子、微機械或積體電路材料,例如坤化錄。依 基板46之導電性而定,其可依需要以形成絕緣層,例如界 5於基板46及導體30A-36B之間氧化物層,以避免經由基板46 之短路現象。導體30A-36B可利用微影技術來形成,利用在 基板46上設置例如使用於半導體製造期間之感光光罩。導 體30A-36B亦可利用奈米壓印(nano_imprinting)技術來形 成,例如美國專利第6,432,740號中所描述者。 10 導體川A_36B可形成各種不同的形狀。在一具體實施例 中,導體30A及30B在緊鄰對組38中具有尖銳的鄰近表面 48。在另一具體實施例中,導體34八及34]3在緊鄰對組42中 具有矩形的鄰近表面50。在又另一具體實施例中,導體36A 及36B在緊鄰對組44中具有弓形的鄰近表面52。亦可使用其 15他形狀及幾何構形的鄰近表面。除了改變導體的幾何構形 及形狀之外,導體不需要如緊鄰對組38、42及44般設定成 相隔180度。導體32A及32B為相隔角度非180度之緊鄰對組 40的具體實施例的一例子。為了簡化的目的,於下述說明 中將使用類似於第1圖之尖銳導體3〇A及30B之尖銳導體, 20然而’應可瞭解到,依應用而定,也可使用其他形式、形 狀及導體之間的角度。 第2A圖為概要地說明緊鄰導體3〇A、30B之一具體實施 例的頂視圖,該緊鄰導體上已形成有氧化物54。氧化物54 可藉由自導體30A、30B之材料生長氧化物層或藉由沈積氧 8 化物54來形成。氧化物54應形成以致於氧化物54橋接界於 緊鄰導體30A、30B之間的區域,以形成氧化物連接點56。 第2B圖為概要地說明緊鄰導體3〇A、3〇B之一具體實施例的 頂視圖,在該緊鄰導體30A、30B上已藉由沈積形成氧化物 58。再者,氧化物58橋接界於緊鄰導體3〇八及3(^之間的區 域,以形成氧化物連接點56。氧化物54、58可採用許多形 狀’其依(a)是否使用光罩,(1))緊鄰導體3〇a、3叩的形狀, 以及(c)用於形成氧化物54、58之製造方法的本質而定。簡 曰之,氧化物之一形式將就每一具體實施例來討論。然而, 應瞭解的是,基於特殊設計的要求,只要氧化物54、58形 成橋接界於緊鄰導體30A&30B之間的區域之氧化物連接 ”、、占56,氧化物54、58之形狀及/或形成氧化物54、58的方 法可改變。舉例而言,氧化物54之形成可完全覆蓋緊鄰導 體30A及30B,藉此使緊鄰導體3〇A、3〇B與在後續製造階段 期間可形成之其他元件隔離。 第3圖係概要地說明電路59之一具體實施例,該電路% 具有經由氧化物連接點56,已形成於緊鄰導體3〇A及3〇β之 間的不米線絲6G。藉由應用變化及/或固定的電塵通過緊 鄰導體肅及·,請電流可產生於緊料體3GA及30B 之間右牙隧電流夠大,由於電熱反應,氧化物連接點56 的一部分絲化,以及來自緊鄰導體3GA及3GB之金屬材料 可^由氧化物連接點56遷移至形成奈米線絲6〇。藉由電致 遷移形成的奈米線_為金屬性的,且由與緊料體3〇a、 30B相同之金屬所組成。 第3圖之奈米線絲60具有電阻性,其部分依據下列因素 來決定··緊鄰導體30A及30B内的金屬;緊鄰導體3〇a及3〇b 的幾何構形及角度關係;在熔合過程期間,施用通過緊鄰 導體30A、30B的電壓電平;在熔合過程期間,電壓施予至 緊鄰導體30A、30B的期間;以及對於使用於熔合過程之電 壓供應源所設定的任何電流限制。 如弟4A圖所5兒明之具體實施例,氧化物μ可自環繞奈 米線絲60之£域62去除。或者,如第4B圖所說明之具體實 施例,大部分的氧化物54,或所有氧化物54可自奈米線絲 60及緊鄰導體30A及30B去除。如第5A及5B圖為說明自第 4A及4B圖,沿著橫截線5-5所得之電路59的二可能具體實施 例。在第5A圖所例示說明的電路59中,奈米線絲6〇係與基 板46實質接觸地形成,因此奈米線絲6〇係藉由基板牝支持 但在頂部及側面部是開放的。在第5B圖所例示說明的電路 59中’奈米線絲6〇係懸吊在緊鄰導體3〇a、30B之間,且在 上方、下方及側面皆未與緊鄰導體3〇a及30B接觸。在此例 子中’奈米線絲60係經由氧化物54熔合,以致於未與基板 46接觸。當氧化物54自奈米線絲6〇之區域去除時,可產生 懸吊之奈米線絲6〇。為了簡化的目的,奈米線絲6〇係以懸 吊怨樣來解釋說明,但應瞭解到,在所討論之上述具體實 施例中’奈米線絲60亦可被支持或為其他等效態樣。 第6圖概要地說明電路64之具體實施例,其係耦合至控 制器66以形成一感測器68。控制器66可包括微處理器、特 殊應用之積體電路(Application Specific Integrated Circuit (ASIC))、數位電子元件、類比模擬電子元件或其組合。 感測器電路64具有基祕及-_合至基祕之緊料體 30A、30B。奈米線絲6〇係耦合在導體3〇A及3〇b之間,且係 根據前述之具體實施例或料效具體實施例的作用所形 成。在感測器電路64中的奈米線絲6〇係經過功能化。‘‘功 能化”意指包括各種不同的製程,經由此等製程,奈米線 表面可藉由應用促進或抑制與特定分析物7〇之化學或電子 父互作用的受體物質來進行化學或物理改質。“分析物” :為任何可接受測試、測量、監測或_之任何形式的物 質。功能化產生物理或化學貼附的塗層72,其可與分析物 70反應或父互作用,其巾,當反應時,可電子地感測到電 荷轉移發生。或者,塗層72可為介電層,其·加至奈米 線絲60的表面,以致於改變的自由電荷將吸引或吸附至分 析物70。舉例而言’ #分析物黏著在介電層的表面上時, 未平衡的電荷將在奈米線細感應出—相反電荷,其可接 著藉由控制H 66感測。在此等方法中,控制器66可經由電 阻、電容’或甚至預定料下之複合阻抗的測量,來監測 奈米線絲6G的電子狀態。雖然僅顯示—感測器電路64耗合 至控制器66,制n電路64的_可_合至控制器%以增 加感測表面積。 第7圖就明可用於建構一經處理之奈米線絲的作用之 具體實施例。在形成作用中,74代表在緊鄰接觸點之間形 成氧化物。在熔合作用中,76代表透過界於緊鄰接觸點之 間的氧化物熔合奈米線絲。在去除作用中,78代表去除氧 200423217 化物至暴露至少一部分奈米線絲。在一處理作用中,8〇代 表處理奈米線絲以使奈米線對至少一分析物敏感。 弟8圖概要地說明溫度測量元件82之一具體實施例。控 制器84係耦合至參考連接點%及感測連接點88。控制器84 5可包括一微處理器、特殊應用之積體電路(Application Specific Integrated Circuit (ASIC))、數位電子元件、類比 模擬電子元件或其組合。感測連接點88為界於二不同金屬 之間的雙金屬連接點。不同金屬的連接點產生一隨著溫度 改變的小電壓,且可稱為熱電偶。藉由熱電偶中使用不同 10 的成對金屬或合金,可測量廣範圍的溫度,例如-270°C至 2500°C。可用於作為熱電偶之金屬對及合金對為熟習該技 術者所知。為了簡化的目的,統稱為金屬,但亦可使用合 金,且合金應包括在“金屬,,或“金屬類,,一詞中。 參考連接點86亦為一熱電偶連接點,且可在感測導體 15接觸控制器時,避免在系統中使用額外不同的熱電偶。第 一感測導體90使控制器84耦合至感測連接點88之第一側面 92。第一感測導體90係由第一金屬製成,該第一金屬與該 第一感測導體所連接之感測連接點88的第一側面92的金屬 相同。第二感測導體94使感測連接點88之第二側面96耦合 20 至參考連接點86之第一側面98。第二感測導體係由第二金 屬製成,該第二金屬與該第二感測導體所連接之感測連接 點88的第二側面96及參考連接點86的第一側面98的金屬相 同。第三感測導體100使參考連接點86之第二侧面102耦合 至控制器84。第三感測導體100係由第一金屬製成,該第一 12 200423217 金屬與該第三感測導體所連接之參考連接點86的第二側面 102的金屬相同。一般而言,溫度測量元件以將可看出第— 感測導體90及第三感測導體100之間的電壓V1,該電壓與感 測連接點8 8之溫度以及參考連接點8 6之溫度間的差異成正 5比。藉由使參考連接點86的溫度維持在一已知溫度,可利 用此已知溫度及電壓VI來計算感測連接點88的溫度。此_ 熱電偶計算技術為熟習該項技術者所已知者。 第9圖概要地說明一可保持在一已知溫度下之熱電偶 參考連接點104的一具體實施例。在此熱電偶參考連接點 10 1〇4的具體實施例中,熱源1〇6係耦合至雙金屬奈米線絲 108。此雙金屬奈米線絲108為一熱電偶,以及熱源1〇6係耦 合至雙金屬奈米線絲108以致於使經校準或已知量的熱傳 送至雙金屬奈米線絲108。藉由將參考連接點1〇4保持在一 已知溫度下,可與感測熱電偶連接點88—起用於溫度測量。 15 第10_丨1圖為概要地說明熱電偶參考連接點1〇9之具體 實施例及製造熱電偶參考連接點109之具體化方法的側截 面圖。電阻層110可沈積在基板112上。舉例而言,基板112 可為具有二氧化矽層的矽,以及電阻層110可為钽-鋁。接 觸點114A及114B可形成在電阻層11〇上,在電阻層11〇留下 20 未被接觸點114A、114B覆蓋的區域116。電阻層11〇的厚度 可調整,以使界於接觸點114A、114B之間的區域116達到 理想的電阻。施予至接觸點114A及114B之間的電壓可造成 區域116中的電阻器加熱至一可重覆且已知的溫度。因為, 使用半導體方法可產生耐用之小規模熱源。 13 氧化物層118可形成在接觸點114及經暴露之電阻器 區域116上,以使此等元件電氣絕緣。第一導體120可由第 一金屬形成,以及第二導體122可由與第一金屬不同之第二 金屬形成。每-導體120、122係以緊鄰導體方式形成,以 製&緊鄰n類似於第圖中有關於鄰對組的敎述。 雖然第1至7圖中的緊鄰導體可由相同金屬或不同金屬形 成,第10至11圖中的緊鄰導體12〇及122必須由不同金屬形 成。氧化物連接點124係形成於雙金屬緊鄰導體12〇、122之 間。藉由施與不同及//或固定之橫過雙金屬緊鄰導體12〇及 122的電壓,可在雙金屬緊鄰導體120及122之間產生穿隧電 流。右穿隧電流夠大,由於電熱反應,氧化物連接點124的 一部分將熔化,以及來自緊鄰導體120及122之不同金屬材 料可經由氧化物連接點124遷移,以形成如第U圖所示之形 成雙金屬奈米線絲126。藉由電致遷移形成的雙金屬奈米線 絲126為熱電偶,且由與緊鄰導體120、122之金屬所組成。 第11圖中的熱電偶參考連接點1〇9可使用於溫度測量 兀件82,如第12圖之具體實施例所示。提供感測連接點 128。感測連接點128可如前述所討論般,以類似於第5]3圖 之電路59的方式形成。在此具體實施例,導體3〇a及30B應 由不同金屬形成,以致於所得的奈米線絲6〇為雙金屬奈米 線絲,以及因此為熱電偶。 第11圖之熱電偶參考連接點1〇9係耦合至第12圖之感 測連接點128。參考連接點1〇9及感測連接點128皆耦合至控 制器84。第一感測導體9〇使控制器84耦合至感測連接點丨28 200423217 之第一側面92。第一感測導體90係由第一金屬製成,該第 一金屬與該第一感測導體所連接之感測連接點128之第一 側面92的緊鄰導體30B之金屬相同。第二感測導體94使感測 連接點128之第二側面96耦合至參考連接點109的第一側面 5 98。第二感測導體94係由第二金屬製成,該第二金屬係與 該第二感測導體所連接之感測連接點128之第二側面96之 緊鄰接觸點30A的金屬相同,以及與參考連接點109之第一 側面98之緊鄰接觸點122的金屬相同。第三感測導體100係 由第一金屬製成,該第一金屬與該第三感測導體所連接之 10 參考連接點109之第二側面102的緊鄰導體120之金屬相 同。一般而言,溫度測量元件82將可看出第一感測導體90 及第三感測導體100之間的電壓VI,該電壓與參考連接點 109及感測連接點128之間的溫度差成正比。藉由加熱具區 域116中具有電阻器110的雙金屬奈米線絲丨26,可使參考連 15 接點1〇9保持在已知的溫度下。感測連接點128之奈米線絲 60的溫度可利用雙金屬奈米線絲126之已知溫度以及第一 感測導體90及第三感測導體1〇〇之間的電壓vi來計算。 弟12圖中具體實施的溫度測量元件82,由於在製造上 使用半導體方法,故可以相當低的成本及小封裝來建構。 2〇 當啟動時,參考連接點109的熱源具有快速開動的反應以及 穩定化時間,且容易保持在一固定、已知的溫度下。雖然 所例示說明之感測連接點12 8之奈米線絲6 〇不具有環繞奈 米線絲60的氧化物層,在一些應用中,可理想地使氧化物 連接點環繞奈米線絲60,類似第3圖之具體實施例的氧化物 15 200423217 連接點56。若感測連接點128用於化學、機械及/或環境上 嚴苛的測量區域,氧化物連接點可提供 保護作用,雖然仍容許奈米線絲60熱耗合至測量區^同 樣地,當元件82使用於導電性或腐蚀性測量區域時,奈米 5線絲60可塗覆介電材料以提供電氣絕緣性,或塗覆化:物 質以提供化學隔絕作用。 關於參考連接點1〇9,當藉由施與通過緊鄰接觸點 120、122之電壓來料氧化物連接點124,以形成雙金屬性 奈米線絲126 ’必須小心、勿使炼合經由絕緣氧化物118而在 H)電阻㈣110發生。避免需注意關狀方式為製造例如具 體實施於弟13圖中的參考連接點丨3〇。 第13圖係概要地說明熱電偶參考連接點130之一具體 實施例及製造熱電偶參考連接肋G之具體化方法的側截 面圖。緊鄰導體132A及132B係形成在絕緣基板134上。緊 b鄰導體132入及13犯係由不同金屬製成。氧化物連接點136 係形成於緊鄰導體132A、132B之間,以及接著施與一通過 緊鄰導體132A、132B的電壓,以經由氧化物連接點136炼 合雙金屬奈米線絲138。絕緣層14〇係形成在緊鄰導體 132A、132B上,以供防止到其他形成在熱電偶參考連接點 20 130上之導電性元件的短路。若絕緣層14〇及氧化物連接點 136為可相容的㈣,理想地,在形絲錄連接點136時, 同枯形成絕緣層140。電阻器層142可接著.以鄰近雙金屬奈 米線絲138方式,形成在絕緣層14〇上。接觸點144a&144b 係形成在電阻器層142上,以界定麵合至雙金屬奈米線絲 16 200423217 138之電阻器區域146。因此,熱電偶參考連接點13〇之具體 實施例可承受加熱至一可重覆的溫度。此具體實施例亦具 有在形成加熱器電阻器之前,熔合雙金屬奈米線絲138的優 點,因此沒有在製造過程期間熔合至電阻器層142的危險。 5 奈米線感測電路之超靈敏性質可供微小改變之電阻的 精細測量量。第14-15圖概要地說明奈米線感測器電路148 的具體實施例。四奈米線絲6〇A、6〇B、6〇c及6〇D可使用前 文中已討論過之方法的具體實施例或其等效方法,分別形 成在緊鄰導體30A及30B、150A及150B、152A及152B,以 10及154A及154B之間。緊鄰對組38、156、158,及160可耦 合形成惠司通電橋(Wheatstone bridge) 162。奈米線絲 60B、60C及60D之電阻可經由可重覆的製造過程而得知。 奈米線絲60A可暴露或耦合至一測試或測量環境。奈米線絲 60A的電阻可受到各種不同環境條件的影響,且可用於測量 15此等環境條件,如同在整個本案說明書中所討論者。在另 一具體實施例中,熱可影響奈米線絲60A的電阻,使奈米線 絲可作為一熱敏電阻器(thermistor)。電路148可檢測奈米 線絲60A之電阻的微小改變,提供一種用於測量溫度的裝置 及方法。在其他情況中,在可或不可懸吊在緊鄰導體3〇A 20 及3〇B之間的奈米線絲60A上的應力及應變,可改變奈米線 絲60A的電阻。電路148可檢測此等微小改變的電阻,藉此 可進行奈米級應力及應變的偵測。在第15圖所具體實施的 奈米線感測電路148中,奈米線絲60A已藉由類似於第6圖之 具體實施例所描述的塗層72的塗層72來功能化。塗層72可 17 200423217 選擇性地結合至分析物70或與其反應,藉此回應各種不同 的環境條件來改變奈米線絲60A的電阻。電路148可檢測微 小改變的電阻,藉此可進行微流體(氣體或液體)、微化 學及微電子之監測、測量及檢測。 5 在第14及15圖之具體實施例中,惠司通電橋 (Wheatstone bridge) 162可藉由控制器164來監測。控制器 164可包括微處理器、特殊應用之積體電路(Application Specific Integrated Circuit (ASIC))、數位電子元件、類比 模擬電子元件或其組合。惠司通電橋(Wheatstone bridge ) 10 162具有四個節點166、168、170及172,其中耦合有四緊鄰 對組38、156、158、160。感測奈米線絲60A係位在第一節 點166及第二170之間。感測奈米線絲可作為第一電阻器, 具有未知的電阻。第一已知的奈米線絲60C係位在第二節點 170及第三節點168之間。第一已知奈米線絲60C可用於作為 15 第二電阻器,具有已知電阻。自第一節點166,經過由第二 節點170,至第三節點168之電路通路可視為惠司通電橋 (Wheatstone bridge) 162的第一腳部。第二已知奈米線絲 60B係位在第一節點166及第四節點172之間。第二已知之奈 米線絲60B可用於作為第三電阻器,具有已知電阻。第三已 20 知奈米線絲60D係位在第四結點172及第三節點168之間。第 三已知奈米線絲60D可用於作為第四電阻器,具有已知電 阻。自第一節點166經由第四節點172至第三節點168之電路 通路可視為惠司通電橋(Wheatstone bridge ) 162的第二腳 部。 18 電壓174可施與至惠司通電橋(Wheatstone bridge ) 162 之一端的第一節點162處,同時可使惠司通電橋(Wheatstone bridge) 162之另一端的第三節點168處設接地線176。控制 器164可搞合至惠司通電橋(Wheatstone bridge ) 162之第二 5節點170處及第四節點172處。在一實施例中,假設奈米線 絲60B、60C及60D的已知電阻相等,當控制器164在第二節 點17 0處測得的電壓等於控制器16 4在第四節點丨7 2處測得 的電壓時’感測器奈米線絲60A之電阻等於已知電阻中之一 的笔阻。右在弟_郎點170處的電壓小於在第四節點172處 10的電壓’感測器奈米線絲60A的電阻大於已知電阻中之一的 電阻,且可依腳部的電流及通過感測器奈米線絲6〇A的電壓 降,由歐姆定律(Ohm’s Law)計算。另一方面,若在第二 節點170的電壓大於在第四節點172的電壓,感測器奈米線 絲6 0 A的電阻小於已知電阻中之一的電阻,且可依腳部的電 15 流及通過感測器奈米線絲60A的電壓降,由歐姆定律 (Ohm’s Law)計算。此等計算為熟習該項技術者所已知。 顯然地,在實行及製造奈米線絲,以及應用根據本案 說明書所涵蓋的技術思想以實行及製造感測器電路及積體 電路時’可進行各種不同的其他結構及功能上的等效改良 20及替代’其係依特殊實行方式而定,且仍落在下述申請專 利範圍的範轉内。 【圖式簡單說明3 第1圖係概要地說明呈緊鄰對組的導體之數個具體實 施例; 19 200423217 第2A及2B圖係概要地說明緊鄰之導體的二具體實施 例,該導體已氧化或該導體上已沈積有氧化物; 第3、4A及4B圖為概要地說明位在緊鄰之導體的具體 實施例之間的奈米線絲的具體實施例的頂視圖; 5 第5A圖為概要地說明位在緊鄰之導體的具體實施例之 間的奈米線絲的具體實施例的側截面圖; 第5B圖為概要地說明位在緊鄰之導體的具體實施例之 間的懸吊奈米線絲的具體實施例的側截面圖; 第6圖係概要地說明用於作為感測器之經處理的奈米 10 線絲的一具體實施例; 第7圖係說明可用於建構一經處理之奈米線絲之作用 的具體實施例; 第8圖係概要地說明一溫度測量裝置的具體實施例; 第9圖係概要地說明一熱耦參考連接點之具體實施例; 15 第10圖為概要地說明耦合至緊鄰之導體的具體實施例 之熱源的具體實施例的側截面圖; 第11圖為概要地說明熱耦參考連接點之具體實施例的 側截面圖; 第12圖係概要地說明一溫度測量裝置的具體實施例; 20 第13圖為概要地說明熱耦參考連接點之具體實施例的 側截面圖;以及 第14 -15圖係概要地說明奈米線感測器電路之具體實 施例。 20 25 200423217 【圖式之主要元件代表符號表】 5-5 橫截線 60B 奈米線絲 30A 導體 60C 奈米線絲 30B 導體 60D 奈米線絲 32A 導體 62 區域 32B 導體 64 電路 34A 導體 66 控制器 34B 導體 68 感測器 36A 導體 70 分析物 36B 導體 72 塗層 38 緊鄰對組 74 在緊鄰接觸點之間形 40 緊鄰對組 成氧化物 42 緊鄰對組 76 透過界於緊鄰接觸點 44 緊鄰對組 之間的氧化物熔合奈 46 基板 米線絲 48 鄰近表面 78 去除氧化物至暴露至 50 鄰近表面 少一部分奈米線絲 52 鄰近表面 80 處理奈米線絲以使奈 54 氧化物 米線對至少一分析物 56 氧化物連接點 敏感 58 氧化物 82 溫度測量元件 59 電路 84 控制器 60 奈米線絲 86 參考連接點 60A 奈米線絲 88 感測連接點 21 200423217 90 第一感測導體 92 第一側面 94 第二感測導體 96 第二側面 98 第一側面 100 第三感測導體 102 第二側面 104 熱電偶參考連接點 106 熱源 108 雙金屬奈米線絲 109 熱電偶參考連接點 110 電阻層 112 基板 114A 接觸點 114B 接觸點 116 區域 118 氧化物層 120 第一導體 122 第二導體 124 氧化物連接點 126 雙金屬性奈米線絲 128 感測連接點 130 熱電偶參考連接 132A 緊鄰導體 132B 緊鄰導體 134 絕緣基板 136 氧化物連接點 138 雙金屬奈米線絲 140 絕緣層 142 電阻器層 144A 接觸點 144B 接觸點 146 電阻器區域 148 奈米線感測電路 150A 緊鄰導體 150B 緊鄰導體 152A 緊鄰導體 152B 緊鄰導體 156 緊鄰對組 158 緊鄰對組 160 緊鄰對組 162 惠司通電橋 164 控制器 166 節點 168 節點 170 節點 172 節點 174 電壓 22 200423217 176 接地線 VI 電壓
23

Claims (1)

  1. 拾、申請專利範圍: 丨·種製造奈轉絲⑽)之方法,包含下述步驟: 形成緊鄰導體(132A); 形成界於,鄰導體(132A)之間的氧化物連接點 5 (56);以及 經由該氧化物連接點(56),將奈米線絲(6〇)炼合在 該緊鄰導體(132A)之間。 •如申—明專利祀圍第!項之方法,其中該氧化物連接點⑽ 係藉由沈積法形成。 10 3·如申請專利範圍第㈣之方法,其中該氧化物連接點⑽ 係自該緊鄰導體⑽A)中至少一者,藉由生長氧化物 來形成。 4·如申請專利範圍第旧之方法,進—步包含自該奈米線 絲(60)去除至少部分該氧化物連接點(56),以暴露出該 5 奈米線絲(60)。 &如申料利第4項之杨,進一步包含功能化該暴 露之奈米線絲(60)。 6.如申請專利範圍第4項之方法,其中功能化該暴露之奈 米線絲(6G)造成-物理或化學連接的塗層,該塗層可與 0 —分析物(70)反應或相互作用。 7·如申請專利第5項之枝,其中功能化該暴露之奈 米線絲(60)造成可添加至奈米線絲(6〇)的一介電層。 8. —種製造熱電偶之方法,包含如申請專利範圍第丨項所 述之方法,其中: 24 200423217 形成緊鄰導體(132A),其包含形成第一金屬之第一 導體,以及形成第二金屬之第二導體;以及 經由氧化物連接點(56)熔合奈米線絲(60),其包含 經由氧化物連接點(56),將雙金屬奈米線絲(60)熔合在 5 緊鄰導體(132A)之間。 9. 一種製造熱電偶參考連接點(104)之方法,包含: 形成如申請專利範圍第8項所述之熱電偶;以及 將熱源耦合至該熱電偶。 10. 如申請專利範圍第1項之方法,其中經由該氧化物連接 10 點,將奈米線絲(60)熔合在緊鄰導體(132A)之間包含: 施用一通過緊鄰接觸點之電壓,該電壓足以在該緊 鄰導體(132A)之間產生一穿隧電流;以及 由於該穿隧電流,使自緊鄰導體(132A)電遷移之材 料形成奈米線絲(60)。 25
TW092135804A 2002-12-20 2003-12-17 Nanowire filament TW200423217A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/326,708 US6936496B2 (en) 2002-12-20 2002-12-20 Nanowire filament

Publications (1)

Publication Number Publication Date
TW200423217A true TW200423217A (en) 2004-11-01

Family

ID=32393133

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092135804A TW200423217A (en) 2002-12-20 2003-12-17 Nanowire filament

Country Status (4)

Country Link
US (2) US6936496B2 (zh)
EP (1) EP1432019A1 (zh)
JP (1) JP4041063B2 (zh)
TW (1) TW200423217A (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235421B2 (en) * 2003-09-16 2007-06-26 Nasreen Chopra System and method for developing production nano-material
US7562433B2 (en) * 2004-09-29 2009-07-21 Oxford Superconducting Technology Method for producing metal nanofibers, yarns and textiles
US20060188934A1 (en) * 2005-02-22 2006-08-24 Ying-Lan Chang System and method for implementing a high-sensitivity sensor with improved stability
US20070200187A1 (en) * 2006-02-28 2007-08-30 Amlani Islamshah S Nanowire device and method of making
US7591193B2 (en) * 2006-10-11 2009-09-22 Hewlett-Packard Development Company, L.P. Hot-wire nano-anemometer
US8154127B1 (en) * 2007-07-30 2012-04-10 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
EP2144054A1 (en) * 2008-07-08 2010-01-13 ETH Zürich Sensor and measurement method using one-dimensional nanostrustures
FR2939256B1 (fr) * 2008-12-01 2011-06-17 Commissariat Energie Atomique Oscillateur radiofrequence a vanne de spin ou a jonction tunnel
FR2940458B1 (fr) * 2008-12-24 2011-03-04 Commissariat Energie Atomique Dispositif et procede pour la caracterisation de composants electriques ou electroniques.
CZ2009279A3 (cs) * 2009-05-04 2010-12-08 Fyzikální ústav AV CR, v.v.i. Zpusob úpravy a/nebo kontroly funkcních mechanických vlastností zejména transformacní deformace a/nebo pevnosti kovových vláken z materiálu s tvarovou pametí a zarízení k provádení tohoto zpusobu
US8568027B2 (en) * 2009-08-26 2013-10-29 Ut-Battelle, Llc Carbon nanotube temperature and pressure sensors
WO2011084120A1 (en) * 2009-09-18 2011-07-14 Northwestern University Bimetallic integrated on-chip thermocouple array
US9606148B2 (en) 2012-03-26 2017-03-28 Battelle Memorial Institute Chemical/ biological sensors employing functionalized nanoswitch array
US10078107B2 (en) * 2015-10-27 2018-09-18 Globalfoundries Inc. Wafer level electrical test for optical proximity correction and/or etch bias
JP7550440B2 (ja) 2020-09-01 2024-09-13 国立大学法人東海国立大学機構 ナノワイヤ製造装置およびナノワイヤ製造方法

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE511293A (zh) 1951-08-24
US2939057A (en) 1957-05-27 1960-05-31 Teszner Stanislas Unipolar field-effect transistors
US3964296A (en) * 1975-06-03 1976-06-22 Terrance Matzuk Integrated ultrasonic scanning apparatus
US4534100A (en) * 1982-06-28 1985-08-13 The United States Of America As Represented By The Secretary Of The Air Force Electrical method of making conductive paths in silicon
US4870472A (en) * 1984-10-18 1989-09-26 Motorola, Inc. Method for resistor trimming by metal migration
US5118801A (en) 1988-09-30 1992-06-02 The Public Health Research Institute Nucleic acid process containing improved molecular switch
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5008616A (en) 1989-11-09 1991-04-16 I-Stat Corporation Fluidics head for testing chemical and ionic sensors
US5132278A (en) * 1990-05-11 1992-07-21 Advanced Technology Materials, Inc. Superconducting composite article, and method of making the same
EP1493825A3 (en) 1990-06-11 2005-02-09 Gilead Sciences, Inc. Method for producing nucleic acid ligands
US5237523A (en) 1990-07-25 1993-08-17 Honeywell Inc. Flowmeter fluid composition and temperature correction
GB2248151A (en) * 1990-09-24 1992-03-25 Philips Electronic Associated Temperature sensing and protection circuit.
JP2976995B2 (ja) 1991-10-02 1999-11-10 株式会社アドバンテスト 金属原子細線成長方法及び原子細線デバイス
JP3390468B2 (ja) 1991-10-16 2003-03-24 バイエル コーポレーション 新規の無水混合物法による遺伝子プローブの結合方法
US5202290A (en) 1991-12-02 1993-04-13 Martin Moskovits Process for manufacture of quantum dot and quantum wire semiconductors
US5376755A (en) * 1992-04-10 1994-12-27 Trustees Of Boston University Composite lead for conducting an electrical current between 75-80K and 4.5K temperatures
US5418558A (en) 1993-05-03 1995-05-23 Hewlett-Packard Company Determining the operating energy of a thermal ink jet printhead using an onboard thermal sense resistor
US5493167A (en) * 1994-05-03 1996-02-20 General Electric Company Lamp assembly with shroud employing insulator support stops
FR2722294B1 (fr) 1994-07-07 1996-10-04 Lyon Ecole Centrale Procede d'analyse qualitative et/ou quantitative de substances biologiques presentes dans un milieu liquide conducteur et capteurs biochimiques d'affinite utilises pour la mise en oeuvre de ce procede
JP3378413B2 (ja) 1994-09-16 2003-02-17 株式会社東芝 電子線描画装置及び電子線描画方法
US5747180A (en) 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
US5716852A (en) 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
US5591896A (en) 1995-11-02 1997-01-07 Lin; Gang Solid-state gas sensors
US5772905A (en) 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6120844A (en) 1995-11-21 2000-09-19 Applied Materials, Inc. Deposition film orientation and reflectivity improvement using a self-aligning ultra-thin layer
US6445006B1 (en) * 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same
AU713667B2 (en) 1996-04-12 1999-12-09 Phri Properties, Inc. Detection probes, kits and assays
US6355436B1 (en) 1996-05-17 2002-03-12 L'ecole Centrale De Lyon Method for analyzing biological substances in a conductive liquid medium
JP3470012B2 (ja) 1996-05-30 2003-11-25 日本碍子株式会社 ガス分析計及びその校正方法
DE19621996C2 (de) 1996-05-31 1998-04-09 Siemens Ag Verfahren zur Herstellung einer Kombination eines Drucksensors und eines elektrochemischen Sensors
US5801124A (en) * 1996-08-30 1998-09-01 American Superconductor Corporation Laminated superconducting ceramic composite conductors
US6284979B1 (en) * 1996-11-07 2001-09-04 American Superconductor Corporation Low resistance cabled conductors comprising superconducting ceramics
US5837466A (en) 1996-12-16 1998-11-17 Vysis, Inc. Devices and methods for detecting nucleic acid analytes in samples
US6034389A (en) 1997-01-22 2000-03-07 International Business Machines Corporation Self-aligned diffused source vertical transistors with deep trench capacitors in a 4F-square memory cell array
EP0865078A1 (en) 1997-03-13 1998-09-16 Hitachi Europe Limited Method of depositing nanometre scale particles
US6231744B1 (en) 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
US6463124B1 (en) * 1998-06-04 2002-10-08 X-Technologies, Ltd. Miniature energy transducer for emitting x-ray radiation including schottky cathode
US7416699B2 (en) * 1998-08-14 2008-08-26 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US6438501B1 (en) 1998-12-28 2002-08-20 Battele Memorial Institute Flow through electrode with automated calibration
US6238085B1 (en) 1998-12-31 2001-05-29 Honeywell International Inc. Differential thermal analysis sensor
US6156626A (en) * 1999-02-27 2000-12-05 Philips Electronics North America Corp. Electromigration bonding process and system
US6256767B1 (en) 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
US6680377B1 (en) 1999-05-14 2004-01-20 Brandeis University Nucleic acid-based detection
CA2372707C (en) 1999-07-02 2014-12-09 President And Fellows Of Harvard College Nanoscopic wire-based devices, arrays, and method of their manufacture
US6573213B1 (en) 1999-07-16 2003-06-03 Degussa Ag Metal catalysts
EP1085320A1 (en) 1999-09-13 2001-03-21 Interuniversitair Micro-Elektronica Centrum Vzw A device for detecting an analyte in a sample based on organic materials
WO2001044796A1 (en) 1999-12-15 2001-06-21 Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
CA2394428A1 (en) 1999-12-16 2001-06-21 Katayanagi Institute Method for detecting target nucleotide sequences
US6360582B1 (en) 2000-01-18 2002-03-26 Texas Instruments Incorporated Method for calibration of chemical sensor in measuring changes in chemical concentration
CN1250741C (zh) 2000-02-03 2006-04-12 研究发展基金会 将分子识别转导成不同信号的信号适体
US6294450B1 (en) 2000-03-01 2001-09-25 Hewlett-Packard Company Nanoscale patterning for the formation of extensive wires
US20040009510A1 (en) 2000-03-06 2004-01-15 Scott Seiwert Allosteric nucleic acid sensor molecules
US6365059B1 (en) 2000-04-28 2002-04-02 Alexander Pechenik Method for making a nano-stamp and for forming, with the stamp, nano-size elements on a substrate
US6482639B2 (en) 2000-06-23 2002-11-19 The United States Of America As Represented By The Secretary Of The Navy Microelectronic device and method for label-free detection and quantification of biological and chemical molecules
EP1299914B1 (de) 2000-07-04 2008-04-02 Qimonda AG Feldeffekttransistor
DE10036897C1 (de) 2000-07-28 2002-01-03 Infineon Technologies Ag Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) * 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
JP2002174973A (ja) * 2000-10-31 2002-06-21 Toshiba Tec Corp 定着装置
DE60135775D1 (de) 2000-12-11 2008-10-23 Harvard College Vorrichtung enthaltend nanosensoren zur ekennung eines analyten und verfahren zu ihrer herstellung
US6562633B2 (en) 2001-02-26 2003-05-13 International Business Machines Corporation Assembling arrays of small particles using an atomic force microscope to define ferroelectric domains
JP3560333B2 (ja) 2001-03-08 2004-09-02 独立行政法人 科学技術振興機構 金属ナノワイヤー及びその製造方法
US20020128067A1 (en) 2001-03-09 2002-09-12 Victor Keith Blanco Method and apparatus for creating and playing soundtracks in a gaming system
JP3554861B2 (ja) 2001-05-09 2004-08-18 日本航空電子工業株式会社 薄膜熱電対集積型熱電変換デバイス
DE10123876A1 (de) 2001-05-16 2002-11-28 Infineon Technologies Ag Nanoröhren-Anordnung und Verfahren zum Herstellen einer Nanoröhren-Anordnung
US7098393B2 (en) * 2001-05-18 2006-08-29 California Institute Of Technology Thermoelectric device with multiple, nanometer scale, elements
NZ513637A (en) * 2001-08-20 2004-02-27 Canterprise Ltd Nanoscale electronic devices & fabrication methods
US20030162190A1 (en) 2001-11-15 2003-08-28 Gorenstein David G. Phosphoromonothioate and phosphorodithioate oligonucleotide aptamer chip for functional proteomics
US6894359B2 (en) 2002-09-04 2005-05-17 Nanomix, Inc. Sensitivity control for nanotube sensors
US6733828B2 (en) * 2002-01-29 2004-05-11 Kuei-Jung Chao Method of fabricating nanostructured materials
US20030219801A1 (en) 2002-03-06 2003-11-27 Affymetrix, Inc. Aptamer base technique for ligand identification
US7049625B2 (en) 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
EP1347290B1 (en) * 2002-03-22 2007-07-25 Instrumentarium Corporation Gas analyzer using thermal detectors
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
DE10221799A1 (de) 2002-05-15 2003-11-27 Fujitsu Ltd Silicon-on-Insulator-Biosensor
US20030224435A1 (en) 2002-05-16 2003-12-04 Scott Seiwert Detection of abused substances and their metabolites using nucleic acid sensor molecules

Also Published As

Publication number Publication date
JP4041063B2 (ja) 2008-01-30
US20060076644A1 (en) 2006-04-13
US20040121509A1 (en) 2004-06-24
US7294899B2 (en) 2007-11-13
US6936496B2 (en) 2005-08-30
JP2004202682A (ja) 2004-07-22
EP1432019A1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
US7294899B2 (en) Nanowire Filament
Mitzner et al. Development of a micromachined hazardous gas sensor array
EP2762867B1 (en) Gas sensor with temperature control
Ngoc et al. Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S-selective sensing
US20120050038A1 (en) Apparatus and Method for Microfabricated Multi-Dimensional Sensors and Sensing Systems
JP2008538051A5 (zh)
US20090312954A1 (en) Sensor
CN107727698B (zh) 微传感器
Firtat et al. Miniaturised MOX based sensors for pollutant and explosive gases detection
JP2019537005A (ja) ブリッジ構造体を備えたマルチパラメーターセンサー
Goto et al. Heat transfer control of micro-thermoelectric gas sensor for breath gas monitoring
JP7454069B2 (ja) 多次元マルチパラメータガスセンサー、その製造方法、及びガス検出方法
Prajapati et al. Self-heating oxidized suspended Pt nanowire for high performance hydrogen sensor
KR100529233B1 (ko) 센서 및 그 제조 방법
CN111157039B (zh) 一种可同时检测湿度、温度和流量的多功能气体传感器及其制备方法
Choi et al. Perfectly aligned, air‐suspended nanowire array heater and its application in an always‐on gas sensor
JP2008275588A (ja) 可燃性ガスセンサ
Kim et al. Batch Nanofabrication of Suspended Single 1D Nanoheaters for Ultralow‐Power Metal Oxide Semiconductor‐Based Gas Sensors
JP4798961B2 (ja) ヒータデバイス及びこれを用いた気体センサ装置
CN113511626A (zh) 多参量气体传感微芯片及其制备方法、气体传感器
Tian et al. Highly Selective and Sensitive Ag-Based Hydrogen Sulfide Gas Sensor Based on Precise Chip Temperature Management
RU2114422C1 (ru) Полупроводниковый датчик газов
JP2012093359A (ja) 横軸に沿い間隔をおいて配置された2つのタブを有する熱電対及び方法
Baloria et al. Chemiresistors and Their Microfabrication
JPS59142446A (ja) 湿度検知素子