TW200408865A - Electro-optical light modulation element, display and medium - Google Patents

Electro-optical light modulation element, display and medium Download PDF

Info

Publication number
TW200408865A
TW200408865A TW092123574A TW92123574A TW200408865A TW 200408865 A TW200408865 A TW 200408865A TW 092123574 A TW092123574 A TW 092123574A TW 92123574 A TW92123574 A TW 92123574A TW 200408865 A TW200408865 A TW 200408865A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
layers
light modulation
modulation
Prior art date
Application number
TW092123574A
Other languages
Chinese (zh)
Inventor
Michael Heckmeier
Achim Goetz
Markus Czanta
Herbert Plach
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Publication of TW200408865A publication Critical patent/TW200408865A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/07Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical liquids exhibiting Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Abstract

The present invention relates to an electro-optical light modulation element and to electro-optical displays and display systems containing such elements, such as, for example, television screens and computer monitors. The light modulation elements according to the invention contain a mesogenic modulation medium which is in an optically isotropic phase, preferably in the blue phase, on operation of the light modulation elements and are distinguished, in particular, by relatively low driving voltages in addition to good contrast, low viewing-angle dependence and very short response times. The electro-optical light modulation elements according to the invention have an electrode structure which is designed in such a way that the electrically conductive layers adjacent to one another in the plane of the modulation layer have a separation of 20 μ m or less from one another and/or the conductive layer or, if a plurality of electrically conductive layers is present, one or more of these layers of the electrode structure is or are raised and/or the electrode structure in each case comprises two or more superjacent layers, are connected to one another in an electrically conductive manner and at the same time are separated from one another over significant parts of their surface by a dielectric layer, and/or the electrically conductive layer or, if a plurality of electrically conductive layers is present, one or more of the conductive layers of the electrode structure is or are separated from the respective underlying substrate by a solid dielectric layer. The mesogenic modulation media used in the electro-optical light modulation elements are likewise a subject-matter of the present invention.

Description

200408865 玖、發明說明: 【發明所屬之技術領域】 本發明係關於光調變元件與包含光調變元件之顯示器。 光調變元件最好使用在特定溫度上具有各向異性之性=的 調變媒體’如,舉例來說,;夜晶。光調變元件是在調變媒 體處於光學各向同性相的溫度下操作,其中以在藍色相或 各向同性相中操作較佳,而在藍色相中則是特佳。德國專 利Μ皿172 73.0中,敘述調變媒體是各向同性㈣顧示 器。 本發明係關於一種光電之光調變元件與光電顯示器,以 及包含此等元件之顯示系統,如,舉例來說,電视螢幕或 電腦監視器。根據本發明之光調變元件包含一中間型 (meS0genic)調變媒體,其於光調變元件之操作期間,處ς 光學各向同性相的狀態。除了良好的對比與低的對比視角 依賴,其非常短的反應時間是特別顯著的。 本發明進一步關於一種媒體,與使用此一媒體當作此一 類型之光調變元件中的調變媒體。 【先前技術】 在一般的術語中,傳統光電液晶顯示器是已知的。這些 頰示态是在其碉變媒體處於中間相的溫度下操作,而大部 分的顯示器類型是處於向列相中。在中間相中,調變媒體 已經具有各向異性的性質,如,舉例來說,雙折射(△ η)。 這只有在施加電場時沒有誘發。最普遍的是「扭轉向列 (ΤΝ)」與「超扭轉向列(STN)」顯示器。這些顯示器中的液 87586 200408865 晶單元’在液晶媒體之兩個相對面的基板上,具有電極。 因此電場基本上垂直於液晶層。第一種顯示器特別是用於 結合薄膜電晶體(TFT),處理具有大量資訊内容與高解析度 的顯示器,舉例來說,膝上型電腦或筆記型電腦。最近特 別是在桌上型電腦監視器中,愈來愈多使用平面開關(Ips, 舉例來說,德國專利DE 40 00 451與歐洲專利EP 〇 588 568)類 型,或者是垂直排列向列(VAN)類型的液晶顯示器。VAN顯 示器電子控制雙折射(ECB)顯示器的改版。在多區域垂直排 列(MVA)頟不器之最新改版中,對每個指定電極安定複數 個區域,此外,並使用特殊的光學補償層。這些顯示器, 如已經提到的TN顯示器,使用垂直於液晶層的電場。相反 地,IPS顯示器通常只有在一個基板上使用電極,亦即,在 液晶層的一面上使用電極,亦即,其特徵為電場的有效分 里平行液晶層。 所有這些傳統顯示器的共同特徵是相當慢的開關,這對 於更普遍的電視(τν)與多媒體應用,尤其是不能勝任的。 =幾乎晋遍存在的陰極射線管相比,這是特別的顯著。液 晶顯示器中使用之已知光電效應的進一步缺點,是所達到 的對比有明顯的視角依賴。在大部分情況中,㈣依賴是 如此大,以致於以直接檢視操作的顯示器,在某此具有複 雜結構的情況中,必須使用補償層’纟中此—補償層通^ 是各向異性薄膜。 、曰 德國專利DE 1()217273.〇敘述光調變元件,其中在操作溫 度下,中間型(mesogenic)調變媒體處於各向同性相中。這 87586 200408865 些光調變元件開關特別快速, 賴。, 並具有艮好之對比視角依 m 可疋,對4多應用來說, .¾動電壓太高了。 德國專利DE 10217273.0中敘逑 ^ <尤私I勤7C件堂要相舍 高的驅動電壓。從技術的觀點 田 个項 k些通常不是得點, 而且對很多應用來說太高了。 *, ^ ^ ^ ^ 在二炀況中,經由相對應 曰 工 以#並且可能降低驅動電壓。可 疋’用這種方法降低驅動電壓需 木 土而要51進新極性的物質與相 高的工夫,因此限制了降 …、 夕 干私於動私壓的大小。此外,在很 夕應用中,使用高極性的化合 士 U㈡物導致可罪性與光調變元件 哥期的問題。 本發明之目的在於開發特別快速開關的光調變元件,其 具有艮好的視角依賴,尤其是具有低的驅動電壓。這些光 調變元件應該具有最低可能之層厚度的調變媒體,以適合 用作平面顯示器(FPDs)的元件,如,舉例來說,電腦之平 面螢幕。此外,它們應該是可以用最簡單的電極組態來定 址,並具有低的操作電壓。此外,用於光電顯示器中時, b們應該具有低視角依賴之良好的對比。 k疋對改良的光調變元件,特別是具有降低之驅動電壓 的光調變元件的要求。 【發明内容】 如下所述’很驚訝地發現德國專利DE 1〇217273.0中所敘 述之光調變元件可以明顯地改良,特別是可以獲得具有明 顯降低之特徵電壓的光調變元件。 根據本發明之光電的光調變元件,包括: 87586 200408865 —一基板或複數個基板, -一電極配置, 土少一個或複數個用於光線極化的元件,及 -一調變媒體, 而其特徵為: -在未定址狀態中,光調變元件係在調變媒體處於光 學各向同性相的溫度下操作,及 -電極配置可以產生一電場,其具有明顯平行於中間 型碉變媒體之表面的分量,以及 -以此一方法設計電極配置,以滿足至少下列四個條 件之一: -導電層緊鄰調變層之平板中的另一導電層,並 具有20微米m)或更少的分隔,其中彼此以分 隔15微米或更少較佳,而以1〇微米特佳, -如果存在導電層或複數層導電層的話,一或更 多這些電極結構層是突起的, -在每一情況中,電極結構包括兩層或更多層覆 蓋在上面的層,其以導電的方式互相連接,而 在此同時’彼此之表面被介電層分開相當的距 離, -如果存在複數層導電層的話,電極結構之一或 更多導電層會被固態介電層,從各自下面的基 板中分離開來。 除了低的驅動電壓’這些顯示器特別具有極佳的對比與視 角依賴,而且反應時間非常短。 87586 -10- 200408865 下面更詳細解說本發明。 【實施方式】 光周史元件中使用之調變媒體最好是中間型(mes〇genic) 媒體。在本專利申請案中,中間型(mesogenic)媒體一詞或 化$物係用於具有中間相之媒體或化合物,其於中間相中 疋可溶的’或者是會引起中間相。中間相是一種層列相 (SmeCtlC)或向列相(nematic),兩者也可以是對掌性(chiral) 的,或者是監色相,其中以對掌向列相或藍色相較佳,而 以藍色相特佳。 用來研究媒體之中間型(mesogenic)性質的媒體不具中間 相’其最好是德國’達馬史塔特(Darmstadt)之Merck KGaA 的向列相混合ZLI-4792。在此混合中,從10%溶液向展延, 中間型媒體最好有一個攝氏_1〇〇度或更高的清除點吨 P nt)其中以知1氏-50度或更向較佳,而以攝氏_2〇度或更 馬特佳。 可以發 根據本發明之光調變元件最好包含一種中間型媒體,其 於操作溫度下,處於光學各向同性相,而其中以藍色相較 X在本專利中請案中’除非聲明,《學各向同性相指的 疋監色相,各向同性相或是另一種光學各向同性相,其中 最好是藍色相,而藍色相指的是已知之藍色相之一。因 此,1984年時,由葛雷(Gray)與古德比(Go〇dby)所著,並由 加拿大,美國之Leonhard Hill所出版的「層列相液晶,組 織與結構」一書中,敘述三種藍色相:藍色相zsm,這些 相可以在沒有場的狀態下被觀察到。施加電場時, 87586 -11 - 200408865 生或引起進一步的藍色相。 中間相是層列相,向列相或藍色相。此處之層列相與向 列相最好是對掌性的。在本專利申請書中,除非特別說 明,否則所使用之「對掌性之向列相」與「膽固醇相」等 詞是同義的。「藍色相」一詞意指任何已知之藍色相,而 且除非特別說明,否則其同時包含複數個這些相。 H.S.Kitzerow 發表於 1991 年 Mol.Cryst.Liq.Cryst·期刊 第202冊,第51-83頁之「電場在藍色相上的效應」論文 中’敘述電場在藍色相形式之液晶上的效應。其中也提 到’在沒有場作用之液晶中,可以觀察到的這三種類型的 藍色相(BP I至BP III)。可是,沒有敘述利用場致雙折射的 光電顯不為。在電場的影響下,可能出現進一步之藍色 相’或不同於藍色相I,^與⑴之其他相。 在電場的應用上,可能出現電場所引起的相,如,舉例 來說,BPH與βρΧ。在高電場強度的情況中,更可能從一種 相變成低溫時在沒有電場下出現的相。材料特性之相的決 疋,特別是碉變媒體本身,總是與沒有施加電場的情況有 關,然而除非特別說明,否則光調變元件特性之相的決 足’是在應用相對應之電壓,通常是操作電壓,或者是臨 界電壓的情況下實施。 調變媒體以最好具有藍色相,特別是藍色相與進一步之 中間相,尤其是膽固醇相。 调又媒最好位於基板下面或兩基板之間。 调變媒體通常位於兩基板之間。此一具體實施例是較佳 87586 -12- 200408865 的。如果調變媒體位於雨基板之間,則至少這些基板之一 是光線透明的。舉例來說,光線透明的基板包括玻璃,石 英或塑膠。如果使用不透光的基板,尤其可能包括金屬或 半導體材料。這些媒體可以如此使用或放在支架上,舉例 來說,陶瓷上。如果調變媒體是聚合物媒體,則視需要可 以省略第二基板的使用。聚合物調變媒體甚至可以做成自 立的形式。在這種情況下,甚至不需要基板。 根據本發明之調變媒體,在操作溫度或至少光調變元件 之操作溫度之一的光學各向同性相,是光學各向同性相, 或者最好是光學各向同性中間相,如,舉例來說,藍色相 (才即,皇:色相I,藍色相Π或皇:色相I π)。在至少光調變元 件之操作溫度之一,調變媒體是藍色相的具體實施例是較 佳的。 光調變媒體之操作溫度,最好是在調變媒體的特徵溫度 以上,通常是在調變媒體進入藍色相的轉換溫度以上,而 、般疋在這溫度以上從01度到50度的範圍,其中以這溫度 x上從〇·1度到10度的範圍較佳,以這溫度以上從〇1度到5 又的Ι&圍取佳。操作溫度最好是在從調變媒體進入藍色相 園 度到凋、交媒體進入各向同性相之轉換溫度的範 pQUt其中進入各向同性相的轉換溫度即清除點(clearing 是如德时利DE1G1 17 273.G所敘述的,光調 月迁可以在_變媒體處於各向同性才目白勺溫度下操作。 1擁操作電壓之溫度依賴增加了,而這通常是不好的。 本毛明《光m件的操作溫度範圍,宜至少超過 87586 -13- 200408865 20度或更多的溫度範圍,其中以30度或更多較佳,以40度 或更多更佳,60度或更多特佳,而80度或更多最佳。根據 本發明之光調變元件的操作溫度範圍,宜至少攝氏10度或 以下,至攝氏50度或以上,其中以至少攝氏0度或以下,至 攝氏60度或以上較佳,以至少攝氏-20度或以下,至攝氏80 度或以上更佳,以至少攝氏-30度或以下,至攝氏100度或 以上特佳,而以至少攝氏_40度或以下,至攝氏120度或以 上最佳。 在一較佳具體實施例中,根據本發明之光調變元件的操 作溫度範圍,相對於調變媒體之特徵溫度,至少高於特徵 溫度攝氏50度或更多,其中以至少低於特徵溫度攝氏-5度 或更少,至高於特徵溫度攝氏60度或更多較佳,而以至少 低於特徵溫度攝氏-10度或更少,至高於特徵溫度攝氏80度 或更多最佳。 施加電壓時,處於光學各向同性相中的中間型媒體,引 起導致光學延遲的校準,其可以用已知的方式顯現。其中 以使用不均勻的電場較佳。 根據本發明之光調變元件包含至少一種用於光線極化的 元件。此外,其最好包含進一步之光學元件。此一進一步 之光學元件是第二種用於光線極化的元件,反射鏡或轉射 鏡。 如此安排光學元件,使光線在通過光調變元件之中間型 媒體時,於進入中間型媒體之前,以及離開中間型媒體之 後,通過至少一個偏極化元件至少一次。 -14- 87586 200408865 在根據本發明之光調變元件的較佳具體實施例中,中間 型媒體係位於兩個偏光板之間,亦即,一偏光板與一分析 态。其中以使用兩個線性偏光板較佳。在此一具體實施 例,偏光板的吸收軸最好是相交的,而且以形成9〇度角較 佳。 根據本發明之光調變元件,選擇性地包含一或更多雙折 射層。其最好包含一個λ /4層或複數個人/4層,而其中以一 個λ /4層車父佳。又/4層的光學延遲,以大約14〇奈米()較 佳。 中間型調變媒體的層厚度⑷,最好是從〇1微米(//m)到 5000微米(亦即,5釐米,其中以從〇·5微米至1⑻〇微米 (亦即,1釐米)較佳,而以1〇微米至1〇〇微米特佳,以3〇微 米至30¼米最佳,尤其是從3·5微米到微米。在一較佳具 體實施例’中間型調變媒體之層厚度,最好是從〇·5微米以 m) 土 50仏米’其中以ι·〇微米至2〇微米較佳,%以微米至 8 · 0微米最佳。 本發明亦關於一種光電顯示器’其包含一或更多根據本 發明之光調變元件。這些光電顯示器最好是以主動矩陣的 方式定址。 本發月亦進一步關於一種光線顯示系統,其包含一或更 多根據本發明《光電顯示器。這些光電顯示系統最好用作 貝訊頦π,尤其是電視螢幕或電腦監視器。待顯示之資訊 最好是數位信號或視頻信號。 根據本發明《光碉變元件,可能額外包含一或更多傳統 87586 -15- 200408865 光學元件,如雙折射層(舉例來說,補償層),擴散層,以及 增加亮度與/或光線產率及/或檢視角依賴的元件,而所 列舉者並無限定之意。 根據本發明之光調變元件,其特徵為良好之對比,並且 高度且明顯地取決於使用之偏光板的性質。與傳統丁^^單元 相比,這裡使用的TN單元具有〇·5〇微米(# m)的光學延遲, 正的對比,以及與垂直鄰接基板上之向列型液晶之偏好排 列的偏光板吸收軸,並且包含非對掌性液晶。根據本發明 <光碉變元件的對比,尤其取決於所使用之電極的形狀, 類型與結構。如果在根據本發明之光調變元件與傳統tn單 元中使用一些偏光板,則根據本發明之光調變元件的對 比,通常比ΤΝ單元的對比多20%或更多,而在某些情況 中,特別是偏離顯示表面垂直角很大的檢視角度時,比ΤΝ 單元的對比多40%或更多。 根據本發明之光調變元件的對比檢視角依賴是非常好 的。其比已知的ECB單元明顯好多了。其視角依賴更可和 市售之IPS顯示器(舉例來說,日本的日立 與MVA顯TF器(舉例來說,日本的富士(Fujitsu》相比。其比 市售之TN顯示器的檢視角依賴低很多。因此,根據本發明 、光P周曼元件’對已知對比之等對比(isocontrast)曲線,和 TN頒示咨對相等對比之等對比曲線相比,一般是包含大小 起過兩倍’通常是超過三倍的角度範圍。 根據本發明之光調變元件的反應時間是非常短的。他們 通常是1毫秒(ms)或更短的數值,其中以〇·5毫秒或更少較 87586 -16- 200408865 佳,以0·1毫秒或更少最佳。 最棒的是不同灰色色度之間的開關,關閉與尤 的反應時間1乎與使用之驅動電壓無關。這㈣ :200408865 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a light modulation element and a display including the light modulation element. The light modulating element preferably uses a modulation medium having anisotropy at a specific temperature = ', for example, night crystal. The light modulating element is operated at a temperature at which the modulating medium is in an optically isotropic phase. Among them, it is better to operate in a blue phase or an isotropic phase, and particularly preferable in a blue phase. In German patent M 172 73.0, it is described that the modulation medium is an isotropic contemplation indicator. The present invention relates to a photoelectric light modulation element and a photoelectric display, and a display system including these elements, such as, for example, a television screen or a computer monitor. The light modulation element according to the present invention includes a mesogenic modulation medium which is in a state of an optically isotropic phase during operation of the light modulation element. In addition to good contrast and low contrast viewing angle dependence, its very short response time is particularly significant. The invention further relates to a medium and the use of this medium as a modulation medium in this type of light modulation element. [Prior Art] In general terms, a conventional photoelectric liquid crystal display is known. These buccal states are operated at temperatures where the metamorphic media is in the mesophase, while most display types are in the nematic phase. In the mesophase, the modulation medium already has anisotropic properties, such as, for example, birefringence (Δη). This is only induced when an electric field is applied. The most common are "Twisted Nematic (TN)" and "Super Twisted Nematic (STN)" displays. The liquid crystal unit 87586 200408865 in these displays has electrodes on a substrate on two opposite sides of the liquid crystal medium. Therefore, the electric field is substantially perpendicular to the liquid crystal layer. The first display is used in particular to combine thin film transistors (TFTs) to handle displays with a large amount of information content and high resolution, such as laptops or laptops. Recently, especially in desktop computer monitors, more and more flat switch (Ips, for example, German patent DE 40 00 451 and European patent EP 0588 568) type, or vertical nematic (VAN) ) Type liquid crystal display. A modified version of the VAN display's electronically controlled birefringence (ECB) display. In the latest revision of the Multi-Area Vertical Arrangement (MVA) filter, multiple areas are stabilized for each specified electrode, and a special optical compensation layer is used. These displays, such as the TN display already mentioned, use an electric field perpendicular to the liquid crystal layer. In contrast, IPS displays usually use electrodes on only one substrate, that is, electrodes on one side of the liquid crystal layer, that is, they are characterized by an effective electric field parallel to the liquid crystal layer. A common feature of all these traditional displays is the relatively slow switching, which is especially inadequate for more general television (τν) and multimedia applications. = This is particularly significant compared to almost existing cathode ray tubes. A further disadvantage of the known optoelectronic effects used in liquid crystal displays is that the contrast achieved is significantly viewing angle dependent. In most cases, the ㈣ dependence is so large that the display is operated in direct viewing. In the case of a complex structure, a compensation layer must be used. The compensation layer is usually an anisotropic film. German patent DE 1 () 217273.〇 describes a light modulation element in which a mesogenic modulation medium is in an isotropic phase at an operating temperature. These 87586 200408865 switches of these light modulating elements are particularly fast. , And has a good contrast angle depending on m, for more than 4 applications, the dynamic voltage is too high. In German patent DE 10217273.0, ^ < you 7C parts should have a high driving voltage. From a technical point of view, these items are usually not worthwhile, and are too high for many applications. *, ^ ^ ^ ^ In the second case, the corresponding operation is ## and the driving voltage may be reduced. You can use this method to reduce the driving voltage, which requires wood and soil, but it requires 51 new materials and relatively high time. Therefore, it is limited to reduce the amount of private pressure. In addition, in evening applications, the use of highly polar chemical compounds can lead to problems with guilt and light modulation components. The object of the invention is to develop a particularly fast switching light modulation element which has a good viewing angle dependence, especially a low driving voltage. These light modulation elements should have modulation media with the lowest possible layer thickness to be suitable for use as elements of flat panel displays (FPDs), such as, for example, flat screens for computers. In addition, they should be addressable with the simplest electrode configuration and have a low operating voltage. In addition, when used in optoelectronic displays, they should have good contrast with low viewing angle dependence. k 疋 The requirements for improved light modulation elements, especially light modulation elements with reduced driving voltage. [Summary of the Invention] As described below ', it was surprisingly found that the light modulating element described in German Patent DE 10217273.0 can be significantly improved, and in particular a light modulating element having a significantly reduced characteristic voltage can be obtained. The optoelectronic light modulation element according to the present invention includes: 87586 200408865-a substrate or a plurality of substrates,-an electrode configuration, one or more elements for light polarization, and-a modulation medium, and It is characterized in that:-in the unaddressed state, the light modulation element is operated at a temperature at which the modulation medium is in an optically isotropic phase, and-the electrode configuration can generate an electric field, which has an apparent parallel to the intermediate chirped medium Component of the surface, and-designing the electrode configuration in such a way as to satisfy at least one of the following four conditions:-the conductive layer is adjacent to another conductive layer in the plate of the modulation layer, and has 20 μm) or less It is better to separate 15 micrometers or less from each other, and 10 micrometers is particularly preferred.-If a conductive layer or a plurality of conductive layers are present, one or more of these electrode structure layers are protruding,-in each In one case, the electrode structure includes two or more layers overlying each other, which are connected to each other in a conductive manner, while at the same time 'the surfaces of each other are separated by a considerable distance from the dielectric layer, if- A conductive layer in a plurality of words, one or more of the electrode structure is a conductive layer of solid dielectric layers, from each of the following substrate to carve away. In addition to the low driving voltage, these displays are particularly excellent in contrast and viewing angle dependence, and have very short response times. 87586 -10- 200408865 The invention is explained in more detail below. [Embodiment] The modulation medium used in the light week history element is preferably a mesogenic medium. In this patent application, the term mesogenic media or chemical compound is used for media or compounds that have a mesophase, which is 'soluble' in the mesophase or may cause the mesophase. The mesophase is a SmeCtlC or nematic phase. The two can also be chiral or supervised. The opposite phase is the nematic phase or the blue phase. It is particularly good in blue. The media used to study the mesogenic nature of the media does not have a mesophase, which is preferably a nematic phase blend ZLI-4792 from Merck KGaA of Darmstadt, Germany. In this mixing, from 10% solution to the extension, the intermediate media should preferably have a clearing point of 100 degrees Celsius or higher (P nt), which is known to 1 degree -50 degrees or better, At -20 ° C or better. It may be issued that the light modulation element according to the present invention preferably includes an intermediate type medium which is in an optically isotropic phase at the operating temperature, and where blue is compared to X in the patent application 'unless stated, " The isotropic phase refers to the monitor phase, isotropic phase, or another optical isotropic phase. Among them, the blue phase is preferred, and the blue phase refers to one of the known blue phases. Therefore, in 1984, "Smectic liquid crystal, organization and structure" by Gray and Godby and published by Leonhard Hill of Canada and the United States described three kinds of Blue phase: The blue phase zsm, these phases can be observed without a field. When an electric field is applied, 87586 -11-200408865 generates or causes a further blue phase. The mesophase is a smectic phase, a nematic phase or a blue phase. The stratified phase and the nematic phase here are preferably aligned. In this patent application, unless specifically stated otherwise, the terms "comparative nematic phase" and "cholesterol phase" are used synonymously. The term "blue phase" means any known blue phase, and unless specifically stated otherwise, it includes a plurality of these phases simultaneously. H.S. Kitzerow published in 1991 Mol.Cryst.Liq.Cryst · Journal 202, pages 51-83 "Effects of Electric Fields on Blue Phases" Paper 'describes the effects of electric fields on liquid crystals in the blue phase form. It is also mentioned that these three types of blue phases (BP I to BP III) can be observed in liquid crystals without field effect. However, there is no description of photoelectric display using field birefringence. Under the influence of the electric field, further blue phase 'or other phases different from blue phase I, ^ and ⑴ may appear. In the application of electric fields, phases caused by electric fields may appear, for example, BPH and βρχ. In the case of high electric field strength, it is more likely to change from one phase to a phase that appears in the absence of an electric field at low temperatures. The determination of the phase of material characteristics, especially the altered media itself, is always related to the case where no electric field is applied. However, unless otherwise specified, the determination of the phase of optical modulation element characteristics is to apply the corresponding voltage. It is usually implemented under operating voltage or critical voltage. The modulation medium preferably has a blue phase, especially the blue phase and further intermediate phases, especially the cholesterol phase. The tuning medium is preferably located under the substrate or between the two substrates. The modulation medium is usually located between the two substrates. This specific embodiment is preferably 87586-12-200408865. If the modulation medium is located between rain substrates, at least one of these substrates is light transparent. For example, light-transparent substrates include glass, quartz, or plastic. If a light-tight substrate is used, it may especially include metal or semiconductor materials. These media can be used as such or placed on a stand, for example, ceramic. If the modulation medium is a polymer medium, the use of the second substrate may be omitted if necessary. Polymer modulation media can even be made stand-alone. In this case, no substrate is even needed. According to the modulation medium of the present invention, the optically isotropic phase at the operating temperature or at least one of the operating temperatures of the optical modulation element is an optically isotropic phase, or preferably an optically isotropic intermediate phase, for example, for example In other words, the blue phase (ie, emerald: hue I, blue phase Π or emerald: hue I π). A specific embodiment in which the modulation medium is a blue phase at least one of the operating temperatures of the light modulation element is preferred. The operating temperature of the optical modulation medium is preferably above the characteristic temperature of the modulation medium, usually above the transition temperature of the modulation medium into the blue phase, and generally above this temperature from 01 to 50 degrees. Among them, it is better to range from 0.1 degrees to 10 degrees at this temperature x, and it is better to range from 0.1 degrees to 5 degrees above this temperature. The operating temperature is preferably in the range pQUt from the transition temperature of the modulation medium to the blue phase circle to the transition temperature of the isotropic phase to the isotropic phase. The transition temperature of the isotropic phase is the clearing point. As described in DE1G1 17 273.G, light modulation moon migration can be operated at a temperature where the media is isotropic. The temperature dependence of the operating voltage has been increased, and this is usually not good. Ben Maoming "The operating temperature range of light-m components should preferably exceed at least 87586 -13-200408865 20 degrees or more, of which 30 degrees or more is better, 40 degrees or more is better, 60 degrees or more Very good, and 80 degrees or more is the best. The operating temperature range of the light modulating element according to the present invention should be at least 10 degrees or below, to 50 degrees or above, of which at least 0 degrees or below, to 60 ° C or above is preferred, at least -20 ° C or below, more preferably to 80 ° C or above, at least -30 ° C or below, to 100 ° C or above is particularly preferred, and at least _40 ° C Degrees or below, preferably 120 degrees or above. In a preferred embodiment, the operating temperature range of the light modulation element according to the present invention is at least 50 degrees Celsius or more above the characteristic temperature relative to the characteristic temperature of the modulation medium, and at least below the characteristic temperature. -5 degrees Celsius or less, preferably 60 degrees Celsius or more above the characteristic temperature, and at least -10 degrees Celsius or less below the characteristic temperature, or 80 degrees Celsius or more above the characteristic temperature. When voltage is applied, the intermediate-type medium in the optically isotropic phase causes calibration that causes optical delay, which can be manifested in a known manner. Among them, it is better to use an uneven electric field. The optical modulation element according to the present invention includes At least one element for polarizing light. In addition, it preferably includes a further optical element. This further optical element is a second element for polarizing light, a mirror or a reflector. Arrange the optical element in this way When the light passes through the intermediate medium of the light modulation element, before entering the intermediate medium and after leaving the intermediate medium, it passes through at least one polarizing element One less time. -14- 87586 200408865 In a preferred embodiment of the light modulation element according to the present invention, the intermediate-type media is located between two polarizing plates, that is, a polarizing plate and an analytical state. Among them It is better to use two linear polarizers. In this specific embodiment, the absorption axes of the polarizers are preferably intersected, and it is preferred to form an angle of 90 degrees. The light modulation element according to the present invention, optionally includes One or more birefringent layers. It preferably contains one λ / 4 layer or a plurality of individuals / 4 layers, and one of them is preferably a λ / 4 layer. The optical delay of the / 4 layer is about 14 nm () Is preferred. The layer thickness 中间 of the intermediate modulation medium is preferably from 0.1 micrometer (// m) to 5000 micrometers (that is, 5 centimeters, among which from 0.5 micrometers to 100 micrometers (also That is, 1 cm) is preferred, and 10 micrometers to 100 micrometers is particularly preferred, and 30 micrometers to 30¼ meters is most preferred, especially from 3.5 micrometers to micrometers. In a preferred embodiment, the layer thickness of the intermediate modulation medium is preferably from 0.5 micrometers to m) soil 50 仏 m. Among them, ι · μm to 20 micrometers is preferred, and% is from micrometers to 8 · 0 micron is best. The invention also relates to a photovoltaic display ' comprising one or more light modulating elements according to the invention. These optoelectronic displays are preferably addressed in an active matrix manner. This issue is further related to a light display system comprising one or more "photoelectric displays according to the present invention. These optoelectronic display systems are best used as Besson, especially TV screens or computer monitors. The information to be displayed is preferably a digital or video signal. According to the present invention, the optical chirped element may additionally include one or more traditional 87586-15-200408865 optical elements, such as a birefringent layer (for example, a compensation layer), a diffusion layer, and increased brightness and / or light yield And / or viewing angle-dependent components, and the list is not intended to be limiting. The light modulating element according to the present invention is characterized by good contrast, and highly and obviously depends on the nature of the polarizing plate used. Compared with the conventional Ding element, the TN cell used here has an optical retardation of 0.5 μm (# m), a positive contrast, and a preferred arrangement of polarizing plate absorption with nematic liquid crystals on vertically adjacent substrates. Axis, and contains non-aligned liquid crystals. The comparison of < photoconversion elements according to the present invention depends in particular on the shape, type and structure of the electrodes used. If some polarizing plates are used in the light modulating element according to the present invention and the conventional tn unit, the comparison of the light modulating element according to the present invention is usually 20% or more than that of the TN unit, and in some cases In contrast, especially at viewing angles that deviate significantly from the vertical angle of the display surface, the contrast of the TN unit is 40% or more. The contrast viewing angle dependence of the light modulating element according to the present invention is very good. It is significantly better than the known ECB units. Its viewing angle dependency is more comparable to commercially available IPS displays (for example, Hitachi in Japan and MVA display TF devices (for example, Fujitsu in Japan). It has a lower viewing angle dependency than commercially available TN displays Many. Therefore, according to the present invention, the optical P Zhouman element 'isocontrast curve of the known contrast, and the equivalent curve of the equivalent contrast of the TN presentation pair, generally contains more than twice the size' Usually more than three times the angular range. The response time of the light modulating element according to the present invention is very short. They are usually a value of 1 millisecond (ms) or less, with 0.5ms or less being less than 87586. -16- 200408865, best with 0.1 milliseconds or less. The best is the switch between different gray chromaticities. The response time between turning off and turning off is almost independent of the driving voltage used. This:

統光調變凡件的明顯優點,其中傳統 J 元,舉例來說,ΤΝ單元。 …牛如液晶單 a為:::處理灰色色度開關的性能’根據本發明之光調 Μ件在:一種情況中’皆以不同的驅動電壓來開關。這 裡選擇的端點是光電特性線的特徵電壓,舉例來說,^, V2°’ V3°’ ....··至V9°’接著從已知之特徵電壓至其他電、 並返回,舉例來說,從Vl〇到每一個電壓、,乂⑽,,至 v2。。接著’選擇另—特徵電壓,而該元件則從此—電壓至 每一個更高的電壓並返回,舉例來說,從V一每一電歷 %〇’ V8〇’ Kg,至Vs。’如此直到從元件之起始電壓切 換到v90並返回。結據本發明之光調變元件中,從打開新 電壓的時間開始,直到達到個別最大傳輸變化的90%,就第 一近似而言,其與所有這些開關操作是相同的。 根據本發明之光電顯示器’包含一或更多根據本發明之 光凋又元件。在一較佳具體實施例中,這些係藉由主動矩 陣來定址。 在另車乂佳具體貫施例中,根據本發明之光調變元件係 以所謂的「場序列模式(field sequential mode)」來定址。此 處,藉由孩疋址,連續不同顏色的光,同時照射開關元 件為了產生脈衝之彩色光,舉例來說,可以使用色輪, 頻閃儀燈光或閃光燈。 87586 -17- 200408865 根據本發明之光電顯示器’特別是當其用作電視勞幕, «監視器或其類似之使用日其可以包含供彩色影像顯 不:色濾光片…彩色滤光片最好由不同色彩之馬賽 克濾光片兀件所組成。通常’每—電光開關元件賦予一色 彩之彩色濾光片馬赛克元件。 不,據本發明之光調變元件,包括-電極結構,其產生一 電場,此-電場具有平行中間型媒體層的分量。此一電極 結構可以設計成梳形(inteI&gt;digital)電極的形式。也可以設計 成梳:或梯狀的形式。層疊ΓΗ」與雙「τ」4 Γι」形式的 to實她例也很好。電極結構最好只在中間型媒體之一側 面’在其與中間型媒體之間,則使用至少一基板。電極结 構宜位於至少兩個不同平面之間,而兩平面皆位於中間型 週’交媒體〈-側面;尤其是對於在電極結構包含鄰接次結 構4 h况這些次結構最好以介電層將彼此分離開來。如 果/入、、、β構位於絕緣層之對面上,則可以選擇容許電容產生 次結構的設計。在使用主動矩陣之顯示器定址的情況中, 這特別有好處ϋ型之主動料顯示器,&amp;用具有非 線性之電流/電壓特性曲,缘的矩陣式驅動元件,其中非線 性之電流/電壓特性曲線係指定給個別的光調變元件, 如,舉例來說,TFTS或ΜΙΜ(金屬_絕緣體_金屬)二極體。 本發明之主要態樣包括根據本發明之光電開關元件的電 極、、、α構汉计。這裡可能有各種不同的具體實施例。下面敘 述根據本無明之光調變元件之電極的較佳具體實施例,敎 述過程中參考附圖。 87586 -18 - 200408865 具有中間型調變物質之光調變元件的結構,主要敘述於 德國專利DE 102 172 73.0中。此處參考圖1簡短地說明。、 孩圖概要地顯示根據德國專利DE 102 172 73.0之開關元 件或開關70件之構件的結構截面。調變媒體(2)位於基板(1) Λ (1 )之内表面之間。彼此不同之電位,可以施加於電極結 冓、兩境極(3)與(4)’其中電極結構位於基板(1)之内表面。 = vGp」表示電壓,電荷或電流源。從V”發出的線,象徵 廷極之電氣饋線(electric feed lines)。 電極可以由透明材料所組成,如,舉例來說,氧化銦錫 =τ〇)。在這種情況下,最好,且有時必須,以黑色遮罩覆 盍邵分光調變元件。這改善了未能有效屏蔽電場的區域, 因而改善對比。可是,電極也可以由非透明材料所組成, 廷些材料通常是金屬,舉例來說’鉻,鋁,钽,銅,銀或 至,其中以鉻較佳。在此一情況下,使用分離的黑色遮罩 是不必要的。 所使用之電場最好是不均勻的場。 已經發現電極之互相橫向分隔,可以施加不同電位,在 光調變元件之特徵電壓上有相當的影響。冑著減少分隔, 所需之驅動電壓也隨之降低。可是,如果分隔變得更小, 則光調變元件之相對孔隙也變得更小,而且亮度降低。電 極最好具有範圍從〇.5微米Um^Uoo微米的互相分隔,其 中以1微米到20微米的範圍較佳,從丨微米到15微米的範圍 更佳,從2微米到12微米的範圍特佳,而從3微米到u微米 的範圍則是最佳。電極之互相分隔最好是19微米或更少, 87586 -19- 200408865 其中以15微米或更少較佳,以1〇微米或更少特佳,而9微米 或更少則是最佳。 可以施加不同電位之鄰接電極方向中的電極寬度,比此 一方向中的電極分隔不重要。其對光調變元件之特徵電壓 幾乎沒有效應。可是隨著電極寬度的增加,光調變元件之 相對孔隙變得更小,而且亮度降低,尤其是在電極由不透 光材料所組成的情況下。相反地,隨著電極寬度的減少, 其電阻增加。電極可能具有範圍從〇 5微米(^m^j3〇微米的 寬度,其中以從0.5微米到20微米的範圍較佳,從〇·7微米到 19微米的範圍更佳,從!微米的9微米的範圍特佳,而從 微米到6微米的範圍最佳。 在第一特佳具體實施例(實施例Α)中,電極具有突起的設 計。此處突起意指電極具有較大的厚度,其和調變層的層 厚度相比是不能忽略的。在每一種情況中,電極的層厚度 最好是基板之間分隔的5%或更多,#中以職或更多較 佳,以20%或更多更佳;其中基板之間的分隔,亦即,沒有 電極之單元點上之調變媒體的層厚度。 在此一具有突起之電極的具體實施例中,因此其具有一 特定之厚度’ Λ-厚度和中間型媒體之層厚度相比是不可 以忽略的。在此-情況下,電極結構可以具有各種不同的 外形。電極結構可以延伸相當比例之中間型調變媒體的全 部層厚度。可是’電極層之最大高度最好明顯小於中間型 媒體之厚度。比例最好是1:3或更少,其中以㈣或更少較 佳’而以1:5 〇或更少最佳。*奚此格、、 87586 -20 - 200408865 和中間型媒體之厚度相比是可以忽略的,纟中比例最好是 1:100或更少。 可是,也要考慮具體實施例之性能,其中如此設計光調 .¾:兀件的電極配置,使其延伸中間型調變媒體之層厚度的 主要部分,最好是超過60%,其中基本上以超過中間型調變 媒體&lt;整個層厚度較佳,以超過80%或更多特佳,而超過 90%或更多最佳。 在-較佳具體實施例中,電極之層厚度的下限是〇5微米 Um),其中以丨微米較佳,以2微米更佳,而上限則最好是 10微米,其中以5微米較佳,以3微米最佳。 圖2至6概要地顯示根據本發明之開關元件的五種不同具 月庄貝犯例的截面,其中開關元件具有根據較佳具體實施例 (A)之突起電極。 在圖2所描繪之具體貫施例中,電極具有與圖1之具體實 施例類似的設計。電極(3)與(4)具有長方形或幾乎是長方形 的截面。可是,電極具有—厚度,其和調變層⑺之層厚度 [d(2)]相比,或是和特徵層厚度相比,是不可以忽略的,舉 例來說,其通常具有範圍從〇·5微米(#叫到3微米的厚度, 而其中以1微米至2微米的範圍較佳。 在圖3所描繪之具體實施例中,電極(3)與(4)具有與圖二所 描績之具體實施例類似的設計。可是,這些電極延伸超過 調變層(2)之整個厚度[d(2)]。 在圖4所描繪之具體實施例中,電極(3)與(4)再一次具有 與圖2所描繪之具體實施例類似的設計。可是電極(巧與 87586 -21 - 200408865 的層厚度不疋苇數’而是與位置有關。電極具有三角 面。 在圖5所描繪之具體實施例中,電極(3)與⑷具有與圖*所 描績之具體實施例類似的設計,其中圖4之具體實施例且有 取決於位置的層厚度。可是,這些電極係由兩層(3)與(3,) 與(4)與(4’)所組成’其中—層疊在另一層的上自,而每— 上層(3 ’)與(4,)分別覆蓋比各自對應之較低層(3)與(4)小的開 關元件區域。 在圖6所描緣《具體實施例中,電極(3)與(4)再-次具有 與圖2所描緣之具體實施例類似的設計。可是,此處之電極 ^與⑷具有圓形截面,並且以中空導體的形式顯示。可 是’它們也具有其他圓的截自’而且’舉例來說,固體金 屬線的形^ ’或具有傳導包覆之圓柱形式的非導電材料。 其亦涵盍其他具體實施例,其中包含一對具有不同共同 電位側面之電極,或一且 ^ ”有不同電位之電極,或者是至少 一對電極,JL —说^ 1 ’、 口或可以施加另一電位。此處之電極可The obvious advantages of traditional light modulation are traditional J units, for example, TN units. ... Niu Ru LCD single a ::: Performance of processing gray chroma switches 'according to the light modulation device of the present invention: In one case,' all switch with different driving voltages. The end point selected here is the characteristic voltage of the photoelectric characteristic line. For example, ^, V2 ° 'V3 °' ..... to V9 ° ', then from the known characteristic voltage to other electricity, and return, for example. Say, from V10 to each voltage, 乂 ⑽, to v2. . Then ‘select another—the characteristic voltage, and the component goes from there—to each higher voltage and back, for example, from V-per-calendar% 〇’ V8〇 ’Kg, to Vs. 'So until switching from the element's initial voltage to v90 and back. In conclusion, in the light modulating element of the present invention, from the time when the new voltage is turned on until it reaches 90% of the individual maximum transmission variation, it is the same as all these switching operations for the first approximation. The optoelectronic display &apos; according to the invention comprises one or more light-reducing elements according to the invention. In a preferred embodiment, these are addressed by an active matrix. In another embodiment, the light modulation element according to the present invention is addressed in a so-called "field sequential mode". Here, different colors of light are continuously irradiated through the address of the device to generate pulsed colored light. For example, a color wheel, a stroboscope light, or a flash can be used. 87586 -17- 200408865 The optoelectronic display according to the present invention 'especially when it is used as a TV screen, «monitor or the like can be used for color image display: color filter ... color filter It is composed of different color mosaic filter elements. Usually, each of the electro-optical switching elements is given a color filter mosaic element. No, the light modulating element according to the present invention includes an electrode structure which generates an electric field, which has a component parallel to the middle-type media layer. This electrode structure can be designed in the form of a comb-shaped (inteI> digital) electrode. Can also be designed as a comb: or ladder. It is also good to have examples of cascade ΓΗ "and double" τ "4 Γι". The electrode structure is preferably only on one side of the intermediate type medium 'between it and the intermediate type medium, and at least one substrate is used. The electrode structure should be located between at least two different planes, and both planes are located on the median side of the intersecting medium <-side; especially for 4 h when the electrode structure contains adjacent substructures, these substructures are best separated by a dielectric layer. Separated from each other. If the / in,, and β structures are on the opposite side of the insulation layer, you can choose a design that allows the capacitor to produce a substructure. In the case of addressing using an active matrix display, this is particularly beneficial. The type of active display is &amp; using a matrix-type drive element with a non-linear current / voltage characteristic curve and a non-linear current / voltage characteristic. The curves are assigned to individual light modulating elements, such as, for example, TTS or MIM (metal_insulator_metal) diodes. The main aspects of the present invention include the electrodes of the photoelectric switching element according to the present invention. There may be various specific embodiments here. The preferred embodiments of the electrode of the light modulation element according to this ignorance are described below, and the drawings are referred to in the description. 87586 -18-200408865 The structure of a light modulation element with an intermediate modulation substance is mainly described in German patent DE 102 172 73.0. Briefly explained here with reference to FIG. 1. The figure shows the structural cross-section of a switch element or 70 switch elements according to German patent DE 102 172 73.0. The modulation medium (2) is located between the inner surfaces of the substrate (1) Λ (1). Potentials different from each other can be applied to the electrode junction, the two surrounding electrodes (3) and (4) ', wherein the electrode structure is located on the inner surface of the substrate (1). = vGp ”means voltage, charge or current source. The line from V "symbolizes the electric feed lines of the Tingji. The electrode may be composed of a transparent material, such as, for example, indium tin oxide = τ〇). In this case, preferably, And sometimes it is necessary to cover the spectroscopy modulation element with a black mask. This improves the areas that are not effectively shielded from the electric field, thereby improving the contrast. However, the electrodes can also be made of non-transparent materials, which are usually metal For example, 'chrome, aluminum, tantalum, copper, silver or to, of which chromium is preferred. In this case, it is not necessary to use a separate black mask. The electric field used is preferably non-uniform Field. It has been found that the electrodes are laterally separated from each other, and different potentials can be applied, which has a considerable impact on the characteristic voltage of the light modulation element. By reducing the separation, the required driving voltage is also reduced. However, if the separation becomes If it is smaller, the relative porosity of the light modulating element becomes smaller and the brightness is reduced. The electrodes are preferably separated from each other in the range of 0.5 micrometers Um ^ Uoo micrometers, in the range of 1 micrometer to 20 micrometers. Better, the range from 丨 micron to 15 micron is better, the range from 2 micron to 12 micron is particularly good, and the range from 3 micron to u micron is the best. The electrodes are preferably separated from each other by 19 micron or less 87586 -19- 200408865 Among them, 15 micrometers or less is preferred, 10 micrometers or less is particularly preferred, and 9 micrometers or less is most preferred. The electrode width in the direction of the adjacent electrodes that can apply different potentials, The electrode separation in this direction is not important. It has almost no effect on the characteristic voltage of the light modulation element. However, as the electrode width increases, the relative porosity of the light modulation element becomes smaller and the brightness decreases, especially In the case where the electrode is made of opaque material. Conversely, as the width of the electrode decreases, its resistance increases. The electrode may have a width ranging from 0.05 micrometers (^ m ^ j30 micrometers, with 0.5 micrometers The range from 20 microns is better, the range from 0.7 microns to 19 microns is better, the range from! Microns to 9 microns is particularly good, and the range from microns to 6 microns is the best. Specific implementation in the first best Example (Example A) The electrode has a protruding design. Here protruding means that the electrode has a larger thickness, which cannot be ignored compared with the layer thickness of the modulation layer. In each case, the layer thickness of the electrode is preferably separated between the substrates. 5% or more, ## is preferred or more, and 20% or more is better; the separation between the substrates, that is, the layer thickness of the modulation medium on the unit point without electrodes. In this specific embodiment of the electrode with protrusions, it has a specific thickness' Λ-thickness compared with the layer thickness of the intermediate-type media. In this case, the electrode structure can have various Different shapes. The electrode structure can extend a considerable proportion of the entire layer thickness of the intermediate-type modulation medium. However, the maximum height of the electrode layer is preferably significantly smaller than the thickness of the intermediate-type modulation medium. The ratio is preferably 1: 3 or less, with ㈣ or less being preferred 'and 1:50 or less being most preferred. * The thickness of this grid, 87586 -20-200408865 is negligible when compared with the thickness of intermediate media, and the middle ratio is preferably 1: 100 or less. However, it is also necessary to consider the performance of the specific embodiment, in which the light tone is designed. ¾: The electrode configuration of the element is to extend the main part of the layer thickness of the intermediate modulation medium, preferably more than 60%, of which basically It is better to exceed the intermediate-type modulation medium &lt; the thickness of the entire layer, more preferably 80% or more, and more preferably 90% or more. In a preferred embodiment, the lower limit of the layer thickness of the electrode is 0.05 micrometers (Um), of which micrometers are preferred, 2 micrometers are more preferred, and the upper limit is 10 micrometers, with 5 micrometers being preferred It is best to be 3 microns. Figs. 2 to 6 schematically show cross sections of five different examples of the switching element according to the present invention, wherein the switching element has a protruding electrode according to a preferred embodiment (A). In the specific embodiment depicted in FIG. 2, the electrodes have a design similar to that of the specific embodiment of FIG. The electrodes (3) and (4) have a rectangular or almost rectangular cross section. However, the electrode has a thickness that is not negligible compared to the layer thickness of the modulation layer [d (2)] or the thickness of the feature layer. For example, it usually has a range from 0. 5 micrometers (# to 3 micrometers in thickness, with a range of 1 micrometer to 2 micrometers is preferred. In the specific embodiment depicted in FIG. 3, the electrodes (3) and (4) have the same as described in FIG. 2 The specific embodiment is similar in design. However, these electrodes extend beyond the entire thickness [d (2)] of the modulation layer (2). In the specific embodiment depicted in FIG. 4, the electrodes (3) and (4) Once again, the design is similar to the specific embodiment depicted in FIG. 2. However, the electrode thickness (which is coincident with 87586-21-200408865 is not dependent on the number of layers) but is related to the position. The electrode has a triangular surface. It is depicted in FIG. 5 In a specific embodiment, the electrodes (3) and ⑷ have a design similar to the specific embodiment described in FIG. *, Where the specific embodiment of FIG. 4 has a layer thickness depending on the position. However, these electrodes are composed of two Layers (3) and (3,) and (4) and (4 ') are composed of' where — stacked on top of another layer And each—the upper layers (3 ′) and (4,) respectively cover smaller switching element regions than the corresponding lower layers (3) and (4). In the specific embodiment described in FIG. 6, the electrode (3 ) And (4) have a design similar to that of the specific embodiment described in FIG. 2 again. However, the electrodes ⑷ and ⑷ here have a circular cross section and are shown in the form of a hollow conductor. But 'they also have The other circles are cut from 'and', for example, the shape of a solid metal wire or a cylindrical non-conductive material with a conductive coating. It also encompasses other specific embodiments, including a pair of sides with different common potentials Electrode, or an electrode with different potentials, or at least a pair of electrodes, JL — say ^ 1 ', or another potential can be applied. The electrodes here can be

以位於單一平s卜十+ τ J 或在不同的平面上。具有相同電位,或 者疋連接或可以施加相同電位之《,最好位於相同的平 面0 在根據本喬明〈光碉變元件之一較佳具體實施並 中電極的導電厣#_ 八 入兩所 、、,包極結構之鄰接電極藉由固體 ::貝’’至少是邵分地,*中以主要地較佳,以實質上 地最佳,水平地從另一電極中分離出來。 … 在另—具ff實施例中’電極結構之次結構位於中間型媒 87586 -22- 200408865 =個相對的側面上。在這種情況下,相對應之電極部 二:互相垂直,而是以產生平行於中間型媒體層之電場 刀里的万式,橫向地互相補償。To lie on a single plane s Bu ten + τ J or on different planes. It has the same potential, or is connected or can be applied with the same potential, preferably located on the same plane Adjacent electrodes of the enclosed electrode structure are separated from the other electrode horizontally by solid :: '' at least Shaofen ground. … In another embodiment, the secondary structure of the electrode structure is located on the middle-type medium 87586 -22- 200408865 = opposite sides. In this case, the corresponding electrode sections II are perpendicular to each other, but compensate each other laterally in a manner that generates an electric field parallel to the intermediate-type media layer.

在本發明之特定具體實施例(具體實施例B)中,如此設計 電極結構’使電極位於其各自基板上面的分隔物上,並且 以從其表面之重要部分上面分離出來較佳,其中以從表面 《王要#分上面分離出來更佳,而以幾乎從其整個表面上 或就2其整個表面上分離出來最佳。為此,電極最好形成 於固怨介電質上。這以實例的方式描繪於圖7,9與Η至B 中。所使用之固態介電質最好是固態絕緣體,如,舉例來 說,如以下所敘述之玻璃。固態介電質以層或平臺的形式 較佳。此處有簡單的製造方式。在最簡單的基板情況中, %質之平臺可以藉由蝕刻介電質層之平臺間的空間來獲 得。 &amp; 結合電極結構之面積比例,In a specific embodiment (specific embodiment B) of the present invention, it is better to design the electrode structure so that the electrodes are located on a separator above their respective substrates, and separated from an important part of the surface thereof, of which The surface "Wang Yao #" is better separated from the top, and it is best to separate from almost the entire surface or just the entire surface. For this reason, the electrodes are preferably formed on a solid dielectric. This is depicted by way of example in Figures 7, 9 and Η to B. The solid dielectric used is preferably a solid insulator such as, for example, glass as described below. Solid dielectrics are preferably in the form of layers or platforms. Here is a simple manufacturing method. In the simplest case of a substrate, a% quality platform can be obtained by etching the space between the platforms of the dielectric layer. &amp; area ratio of combined electrode structure,

-相當邵分意指最好20%或更多,其中以3〇〇/0或更多較 佳,而40%或更多最佳, 一主要部分意指最好55%或更多,其中以60〇/〇或更多較 佳,而70%或更多最佳, •幾乎整個意指最好80%或更多,其中以90%或更多較 佳’而9 5 %或更多最佳,而 -整個意指最好是98%或更多,其中以99%或更多較佳, 而100%最佳。 圖7概要地顯示開關元件具體實施例之較佳具體實施例 87586 -23- 200408865 (B)的、‘構截面,其係根據本發明。此處之電極具有與圖1 所描繪之具體實施例類似的設計。可是,電極並不是直接 位於基板的表面上 與(6)上,舉例來說 而是在具有特定厚度之固態絕緣層(5) 厚度通常是1微米m)至2微米。這裡 以種万H十電極配置,使像素的電極對被介電質從相 關的基板中分離開來。I然電極僅位於一個基板上,這使 :調變兀件與光電顯示器容易製造,目此此一具體實施例 疋車乂佳。給足選擇之電極導電層下面的固態絕緣層厚度, 可以獲侍驅動電壓上很大的效應,而後者則是顯著地降 低0 在此佳具體實施例(B)中’電極結構的導電層突起於 鄰接基板的表面。在此一具體實施财,固態絕緣層位於 各自基板與鄰接導電層之間。此—固態絕緣層可以由玻 璃’石英’-或更多無機層所組成,如,舉例來說,二氧 化珍(Si〇2)或氮切(SiN),有機聚合物或與其類似之物。 在本毛明芡一較佳具體實施例中,舉例來說,絕緣層是 基板(平r形式的哭起部分。此—具體實施例可以簡單地 獲得,而其中以在不需要平臺的點上,㈣基板至對應之 深度來獲得較佳。電極結構之各個導電層視需要可以當作 蝕刻期間的光罩,或者是可以在單一步驟巾,經由相同的 光罩’蝕刻兩層。在另一具體實施例中,α已知的方式, 採用結構或非結構式的方法,施加或沈積固態絕緣層至基 板的表面上,而且視需要,可以依序建構。 固態絕緣層的層厚度,最好是從01微米um)mo微米 87586 -24- 200408865 的厚度,其中以從〇·2微米到7微米的 到5微米的尸声面 又乂 ,從〇·4微米 勺尽度更佳,而從微米到4微米的厚度最佳。 結構之=佳之具體實施例(具體實施例〇中,電極 =加相同的電位’其由兩個或更多導電層所組 面^層排列於開關元件之單元中,一個接著一個上 分開較ΓΓ質’絕緣地將彼此從其表面之相當部分上 整個表…要部分分開來更佳,幾乎從其 中的導電分開來最佳。如果光調變元件 式㈣表面的職’則其以導電連接的方 流源。 4連接到光調變元件外面的電壓,電荷或電 ::《較佳具體實施例中’至少電極結構之一導 電滑位於母—其4k u * r 土 。在此一具體實施例中,調變媒體戶 在電極層之間,形成介電質。 k媒-層 声,彼此t佳具體貫施例中,電極結構之兩層或更多導電 曰彼此被固態介電質分隔開來。 示根據本發明之開關元件之較佳具體實施例 (c)的、、、口構截面,並且. . — /、/、有—黾極結構,其中電極結構由兩層 、 母i位於基板其中之-上面。此處之電極如此 权汁,使得施加第一泰 罘兒“於弟一基板(1)上之電極(3),並且 施加相同電位於第二其4 上严卜 、基板(1 )之弟二電極(3,)。同樣地,施 =二電位於第一基板之電極⑷,也可以施加第二電位於 奸土之电極㈠卜在每一種情況中,電極對(3)與(3,)以 及⑷與(4’)是彼此相對的。既然其允許特徵電壓非常大的 87586 -25- 200408865 降低,而且所獲得的效應與進一步的參數無關,其中參數 如所使用之固悲介電質的材料與層厚度,因此,此一具體 實施例是較佳的。 每一電極結構最好具有彼此分派的兩對電極,其中至少 這些彼此分派的電極對之一,在每一種情況下,施加或可 以施加相同的電位。 在此一具體實施例中,彼此成對地分派之傳導電極層, 可此位於相對基板(比較圖8與9)或相同基板(舉例來說,比 較圖1 〇與11)上。 在此一具體實施例(C)與具體實施例(B)的改良中,電極配 f中的電極’最好由兩層或更多層彼此傳導地連接的層所 、、’且成。在每—情況下’此處之個別的電極層,基本上: •藉由-介電質’彼此從其整個表面上分離開來, β是等面積的,及 _按規定將一層平放於另一層上面。 :斤敘…體實施例也可以互相結合。因此,舉則 ★在取後敘述《具體f施例(c)的特佳具體實施例中,Ί 驻 ^ 寸私層的弟一導電層面向基板,其中 精由固態介電質与r t i# ^ 較佳JL _〜、以、寸电層分離開來,而如同所敘述之 孕乂佳具m貫施例,其可 己 離開來。 ^由固悲介電質層從各自之基板分 圖9 土 13概要地顯示根、 一 體實施例結構的截面 * 〈開關几件之各種不同 實施例。 ,/、係根據本發明之進一步較佳具 87586 -26 - 200408865 例的二V,貫施例,其表示圖7與8所描繪之具體實施 。和圖7所描繪之具體實施例相反,突起之電極(3) 與⑷不只是形成於基板表面之固態絕緣層(5)與⑹上。而 =:圖8所騎的具體實施例,電極(3,)與(4,)皆形成於相 、《土板(1,)的表面上。如同第—基板上相對應的電極,這 些電極藉由固態絕緣層(5,)與(6,),從表面(1,)突起。-Quite sharp means the best is 20% or more, of which 300/0 or more is better, and 40% or more is the best, a major part means 55% or more is the best, of which It is better to be 60/0 or more, and 70% or more is the best. • Almost whole means to be the best 80% or more, of which 90% or more is better, and 95% or more. Best, and-the whole means the best is 98% or more, of which 99% or more is better, and 100% is best. FIG. 7 schematically shows a preferred embodiment of a specific embodiment of a switching element 87586 -23- 200408865 (B), a 'structural cross-section, according to the present invention. The electrodes here have a similar design to the specific embodiment depicted in FIG. 1. However, the electrodes are not directly on the surface of the substrate and (6), for example, but on a solid insulating layer (5) with a specific thickness (the thickness is usually 1 μm) to 2 μm. Here, a 10,000-H ten-electrode configuration is used to separate the pixel electrode pair dielectric from the related substrate. Although the electrode is located on only one substrate, this makes it easy to manufacture the modulation element and the photoelectric display. Therefore, a specific embodiment is preferred. The thickness of the solid insulating layer under the conductive layer of the electrode can be selected to give a large effect on the driving voltage, which is significantly reduced by 0. In this preferred embodiment (B), the conductive layer of the electrode structure protrudes. On the surface of the adjacent substrate. In this specific implementation, solid-state insulating layers are located between the respective substrates and adjacent conductive layers. The solid-state insulating layer may be composed of glass 'quartz'-or more inorganic layers, such as, for example, silicon dioxide (SiO2) or nitrogen cut (SiN), organic polymers, or the like. In a preferred embodiment of the present invention, for example, the insulation layer is a substrate (a crying portion in the form of a flat r). This—a specific embodiment can be simply obtained, and the It is better to get the substrate to the corresponding depth. Each conductive layer of the electrode structure can be used as a photomask during etching, or two layers can be etched through the same photomask in a single step. In another In a specific embodiment, in a known manner of α, a structured or unstructured method is used to apply or deposit a solid insulating layer on the surface of the substrate, and it can be sequentially constructed as needed. The layer thickness of the solid insulating layer is preferably Is from 01 micron um) mo micron 87586-24-200408865 thickness, in which the cadaver sound surface from 0.2 micron to 7 micron to 5 micron is again, from 0.4 micron spoon is better, and from Micrometers to 4 microns are optimal. Structure = good specific embodiment (in the specific embodiment 0, the electrode = the same potential is applied), which is composed of two or more conductive layers, and the layers are arranged in the unit of the switching element, one by one and separated by ΓΓ Insulate the entire surface of each other from a considerable part of their surface ... It is better to separate them in part, and it is best to separate them from the conductive ones. If the light modulating element type surface is used, it is connected conductively. Square current source. 4 Voltage, charge or electricity connected to the outside of the light modulating element: "In a preferred embodiment, 'at least one of the electrode structures is conductively located in the mother-its 4k u * r soil. In this specific embodiment The modulation medium is formed between the electrode layers to form a dielectric. K media-layer sound, which is good for each other. In the specific embodiment, two or more layers of the electrode structure are electrically separated from each other by a solid dielectric. 。 Shows a preferred embodiment (c) of the switching element according to the present invention, and, the cross-section, and ...-/, /,--pole structure, where the electrode structure consists of two layers, the mother i is located Among the substrates-above. The electrodes here are The right juice, so that the first electrode (3) on the first substrate (1) is applied, and the same electricity is placed on the second electrode (3,) on the second substrate, (4). Similarly, Shi = Electrode 位于 located on the first substrate can also be applied with a second electric 位于 electrode located on the ground. In each case, the electrode pair (3) and (3,) and ⑷ and ( 4 ') are opposite to each other. Since it allows the characteristic voltage to be reduced by 87586 -25- 200408865, and the effect obtained is independent of further parameters, where the parameters are the material and layer thickness of the solid dielectric material used Therefore, this specific embodiment is preferred. Each electrode structure preferably has two pairs of electrodes assigned to each other, and at least one of these electrode pairs assigned to each other, in each case, applies or can apply the same In this specific embodiment, the conductive electrode layers assigned in pairs to each other may be located on the opposite substrate (compare FIGS. 8 and 9) or the same substrate (for example, compare FIGS. 10 and 11). This specific embodiment (C) In the improvement of the specific embodiment (B), the electrode 'in the electrode arrangement f' is preferably composed of two or more layers which are conductively connected to each other. In each case, 'the individual here The electrode layer is basically: • separated from its entire surface by -dielectrics, β is of equal area, and _ one layer is laid flat on top of the other according to regulations. They can also be combined with each other. Therefore, as a rule, in the following description of the "excellent specific embodiment of the specific f embodiment (c), the conductive layer of the ^ inch private layer is facing the substrate, where the solid dielectric质 与 rti # ^ Preferably JL _ ~, separated from the electric layer, and as described in the premise of the case, it can be left. ^ By the solid sad dielectric layer from each The base plate is divided into Figures 9 and 13 to schematically show the cross section of the structure of the root and the integrated embodiment * <various embodiments of several switches. , /, Is a second V according to a further preferred embodiment of the present invention with 87586 -26-200408865, which shows the specific implementation depicted in Figs. 7 and 8. Contrary to the specific embodiment depicted in FIG. 7, the protruding electrodes (3) and rhenium are not only formed on the solid insulating layer (5) and rhenium on the surface of the substrate. == In the specific embodiment shown in FIG. 8, the electrodes (3,) and (4,) are all formed on the surface of the phase, "soil plate (1,)". Like the corresponding electrodes on the first substrate, these electrodes protrude from the surface (1,) through the solid insulating layers (5,) and (6,).

μ、圖T丑極具有與圖7中所描繪之具體實施例類似的 設計。可是,如圖8所㈣之具體實施例中的電極,每一個 由兩層(3)與(3,),及⑷與(4,)所組成,i以成對的方式對每 一電,施加相同的電位。可是,和圖8所示之具體實施例相 反的疋,Ώ椏結構之個別的兩對導電層與(3,),及(4)與 (4,) ’彼此不是被介電質調變層⑺分開來,而是分別被固 態絕緣層(5)與(6)分開來。The figure T is extremely similar in design to the specific embodiment depicted in FIG. However, the electrodes in the specific embodiment shown in FIG. 8 are each composed of two layers (3) and (3,), and ⑷ and (4,). I applies electricity to each pair in a paired manner. Apply the same potential. However, in contrast to the specific embodiment shown in FIG. 8, the individual two pairs of conductive layers of the 疋 and Ώ 桠 structures are respectively (3,), and (4) and (4,) 'are not each other by the dielectric modulation layer ⑺ is separated, but separated by solid insulation layers (5) and (6), respectively.

、在圖11中,電極具有與圖1〇所示之具體實施例類似的設 計。可是,如圖7所示之具體實施例,這裡的第一層電極結 構(3)人(4),为剎是以固態絕緣層(5)與(6)從基板分離開來 (犬起)的。如圖1〇所描述之具體實施例,可以施加相同電位 的兩層電極結構(3)與(3,)及(4)與(4,),分別藉由固態絕緣層 (5’)與(6’),將彼此分離開來。 在圖12中,電極結構之每一個電極皆由四層導電層(3)至 (3’’’),與(4)至(4’’’)所組成。在每一種情況下,這四層中的 兩層位於相同的基板上。層(3)與(3,),及(4)與(4,)位於具有 表面(1)的基板上,而(3,,)與(3,,,),及(4,,)與(4,,,)則位於具 有表面(Γ)的基板上。層(3)與(4)或(3,,)與(4,,)鄰接各自之 87586 -27- 200408865 基板(1)或(1 ’),其分別由固態絕緣層(5)與(6)或(5,)與(6,)分 離開來。同樣地’位於相同基板[(3)與(3,)]及[(4)與(4,)], 以及[(3’’)與(3’’’)]及[(4’’)與(4,,,)]上的兩層導電層,由固態 絕緣層(5,)與(6,)及(5,,,)與(6,,,),將彼此分離開來。 在圖13中,如圖丨2所示之具體實施例,電極結構之每一 電極皆由四層導電層(2)至(2,,,)或(3)至(3,,,)所組成。可 疋不同順序的導電層與絕緣層延伸到整個調變層的層厚 度。因此,同樣地,較裡面的導電層對(2,)與(2,,,)及(3,)與 (3 ),分別由固態絕緣層(5,,,,)與(6,,,,),將彼此分離開 來。 中間型媒體層或邵分層(舉例來說,比較圖8與9),或者是 一(比較圖10與11}或更多固態介電質可以位於電極結構之電 極的導電層之間,當作介電質。 在電極包括兩層或更多導電層的情況中,電極之導電層 或各自較低之導電層,可以用突起的方式安排於基板之絕 、彖層上(比較圖7,9,11,12與1 3 )。 道$本發明之一較佳具體實施例中,每一電極至少由四層 導電層所組成(比較圖12與13),其中至少導體層中的兩層位 万、基板上,而且最好施加不同電位或可能施加不同的電 位。=此一具體實施例中,分派進一步之電極給這兩個^ 極的每一個,而此一電極具有相同之電位,或者是可以施 加㈣的電位。在每-種情況中,以介電質將分派給電: 士之母笔極的進一步電極,從電極對中分隔開來。 可是,也可能利用超過四層導電層,其一層接著另一 87586 -28- 200408865 上面。 在較佳具體實施例 極的道……),、特佳具體貫施例(C)中,可能將電 Γ 成如具體實施例⑷中所描述的突起” 在具體實施例(c)中,A蘇你# 田k旳大起形式。 面並施加相同之電位,兑層—層接著另一層上 來較佳,而在此同時:::介電質調變層將彼此分離開 a從各自广下沾 猎固態介電質層(比較圖9),將 八攸各自辰下的基板或任 開來。和圖7盘8所-、目 步的導電層中分離 、不乏具體貫施例相比,既然此一且##每 施例允亀驅動電壓,此一具體實施例是較佳的… 在具&quot;犯例(C)中,電極結構的導電層是一層接著另— =上面《例來說’圖8至13中的(3)與(3,)),其以導電的方 式彼此連接或連接到驅動電子。如果相對應的層是以導電 的万式彼此連接’而且電阻是低的,則相對應的層可以處 於相同的電位或具有相同的電壓。可是,在特定具體實施 例中,這些層也可以處於不同的電位或在不同的時期定 址,使其可能在不同的時期處於不同的電位。可以經由連 接到對應之層的對應驅動電子的使用,獨立或電氣地獲得 電極結構之對應的鄰接導電層的耦合定址。因此,舉例來 說’可能同時或在不同的時期’對相對應的層施加不同的 電位。這促進改良的定址,而舉例來說,其可以改善光調 變元件的反應時間與/或對比。 根據本結果,所觀察到的光電效應強度取決於各向同性 調變媒體的層厚度。在範圍低於一微米之低的層厚度上, 所需之驅動電壓隨著層厚度的增加而增加。此一效應維持 87586 -29- 200408865 到飽和發生時的特徵層厚度(de)。層厚度進一步增加到數值 超過此一特徵之層厚度,不會造成任何明顯的改善,亦 即,特徵電壓的降低。特徵層厚度一般是從0.5微米m)到 10铽米的範圍,而通常是從1〇微米到5 〇微米的範圍。對於 實際的情況而言,應該採用從約2微米到3微米的數值,特 別是約3微米的數值。 在具貫施例(A)之光調變元件中,各向同性調變層的層 厚度,最好是至少跟特徵層厚度一樣大。 在具把見施例(B)與(C)中,各向同性調變層的層厚度最好 是兩倍特徵層厚度或更大。此一較佳之調變媒體層厚度下 限,適用於具體實施例(B)與具體實施例中,其中在具體 只犯例(B)中,電極結構包括兩層施加或可以施加相同電位 的層,而在具體實施例(c)中,電極結構明確地包括一導電 層,此一導電層具有或可以施加已知之電位。 、在電極結構中明確地具有一導電層之具體實施例卜造 成與=體實施例(B)相類似的結果。隨著基板與導電層之間 &lt;固虑絕緣層厚度的增加,只要飽和,特徵電壓便下降, 其中只要調變層的全部層厚度夠大,t固態絕緣層之声厚 :達到特徵厚度的值時,便發生飽和。在此一具體實施例 、’、在面對基板之第—導電層下面的絕緣層高纟,最好等 於或大於特徵層厚度。電極結構之導電層上面之調變層之 剩下部分的厚度,同樣等於或大於特徵層厚度,因此,如 =具體實施例(B)’在此-具體實施例中,調變層之全部層 予度的下限,最好是特徵層厚度的兩倍。#導電層位於; 87586 -30 - 200408865 變層厚度的中心或幾乎中心的地方,並且在每一基板之方 向中’延伸特徵層厚度或更多時,其達到最佳的效果。 如果使用複數個導電層,一層在另一層上面,在每〜種 情況下,彼此以固態絕緣層分開,則調變媒體層厚度之下 限,增加了兩倍特徵層厚度,其中每一個多了進一步之導 電層。In Fig. 11, the electrode has a design similar to that of the embodiment shown in Fig. 10. However, as shown in the specific embodiment shown in FIG. 7, the first layer electrode structure (3) and the person (4) here are separated from the substrate by a solid insulating layer (5) and (6) (from a dog) of. As shown in the specific embodiment shown in FIG. 10, the two-layer electrode structures (3) and (3,) and (4) and (4,) which can apply the same potential, are respectively provided by a solid insulating layer (5 ') and ( 6 ') to separate each other. In FIG. 12, each electrode of the electrode structure is composed of four conductive layers (3) to (3 '' ') and (4) to (4' ''). In each case, two of the four layers are on the same substrate. Layers (3) and (3,), and (4) and (4,) are on a substrate having a surface (1), and (3 ,,) and (3 ,,,), and (4 ,,) and (4 ,,,) is on a substrate having a surface (Γ). Layers (3) and (4) or (3 ,,) and (4 ,,) adjoin the respective 87586 -27- 200408865 substrates (1) or (1 '), which are respectively composed of solid insulating layers (5) and (6) ) Or (5,) is separated from (6,). Similarly 'located on the same substrate [(3) and (3,)] and [(4) and (4,)], and [(3' ') and (3' '')] and [(4 '') And the two conductive layers on (4 ,,,)] are separated from each other by the solid insulating layers (5,) and (6,) and (5 ,,,) and (6 ,,,). In FIG. 13, as shown in the specific embodiment shown in FIG. 2, each electrode of the electrode structure is composed of four conductive layers (2) to (2 ,,,) or (3) to (3 ,,,). composition. The thickness of the conductive layer and the insulating layer in different orders can be extended to the entire modulation layer. Therefore, similarly, the inner conductive layer pairs (2,) and (2 ,,,) and (3,) and (3) are respectively composed of solid insulating layers (5 ,,,,) and (6 ,,, ,), Separate from each other. Intermediate-type media layers or layered layers (for example, comparing FIGS. 8 and 9), or one (comparing to FIGS. 10 and 11) or more solid dielectrics may be located between the conductive layers of the electrodes of the electrode structure. In the case where the electrode includes two or more conductive layers, the conductive layer of the electrode or the respective lower conductive layer can be arranged on the insulating layer and the base layer of the substrate in a protruding manner (compare Fig. 7, 9, 11, 12, and 1 3). In a preferred embodiment of the present invention, each electrode is composed of at least four conductive layers (compare FIGS. 12 and 13), of which at least two of the conductive layers On the substrate, and it is better to apply different potentials or possibly different potentials. = In this specific embodiment, a further electrode is assigned to each of the two ^ electrodes, and this electrode has the same potential, Or it is possible to apply a plutonium potential. In each case, a dielectric is assigned to electricity: further electrodes of the female pen of the driver are separated from the electrode pair. However, it is also possible to use more than four layers of conductivity Layer, one layer after another 87586 -28- 200408865 Above. In the embodiment of the preferred embodiment ...), particularly preferred embodiment (C), it may be possible to turn the electric Γ into a protrusion as described in the specific embodiment ”" In the specific embodiment (c)中 , A 苏 你 # 田 k 旳 大 起 式. The surface and the same potential are applied, it is better to layer-to-layer and then another layer, while at the same time ::: the dielectric modulation layer separates each other from a The solid dielectric layer (see Figure 9) is attached to each of them, and the substrates under each of them are separated from each other. They are separated from the conductive layer in Figure 8 and Figure 8, and there are no specific examples. Compared to this, since this and ## each example allows driving voltage, this specific embodiment is better ... In &quot; Criminal Case (C), the conductive layer of the electrode structure is one layer followed by another-= above "For example, (3) and (3,) in Figs. 8 to 13 are connected to each other or to the driving electrons in a conductive manner. If the corresponding layers are connected to each other in a conductive manner" and the resistance Is low, the corresponding layers may be at the same potential or have the same voltage. However, in certain embodiments These layers can also be located at different potentials or addressed at different times, making it possible to be at different potentials at different times. The electrode structure can be obtained independently or electrically through the use of corresponding driving electrons connected to the corresponding layers. Coupling addressing of corresponding adjacent conductive layers. Thus, for example, different potentials may be applied to corresponding layers 'at the same time or at different times'. This facilitates improved addressing, which, for example, can improve light modulation Element response time and / or contrast. According to this result, the intensity of the observed photoelectric effect depends on the layer thickness of the isotropic modulation medium. The required driving voltage for layer thicknesses below a micron range It increases as the layer thickness increases. This effect maintains 87586 -29- 200408865 to the characteristic layer thickness (de) when saturation occurs. The layer thickness is further increased to a value exceeding the layer thickness of this feature without causing any noticeable improvement, that is, a reduction in the characteristic voltage. The thickness of the feature layer is generally in a range from 0.5 μm to 10 μm, and is usually in a range from 10 μm to 50 μm. For practical purposes, values from about 2 to 3 microns should be used, especially values from about 3 microns. In the light modulating element having the embodiment (A), the layer thickness of the isotropic modulation layer is preferably at least as large as the thickness of the characteristic layer. In the specific examples (B) and (C), the layer thickness of the isotropic modulation layer is preferably twice the thickness of the characteristic layer or more. This preferred lower limit of the thickness of the modulation media layer is applicable to the specific embodiment (B) and the specific embodiment, wherein in the specific only case (B), the electrode structure includes two layers that apply or can apply the same potential, In the specific embodiment (c), the electrode structure explicitly includes a conductive layer, which has or can apply a known potential. The specific embodiment that explicitly has a conductive layer in the electrode structure produces similar results to the embodiment (B). As the thickness of the insulating layer between the substrate and the conductive layer increases, as long as it is saturated, the characteristic voltage decreases. As long as the thickness of the entire layer of the modulation layer is large enough, the sound thickness of the solid insulating layer is: Value, saturation occurs. In this specific embodiment, the insulation layer under the first conductive layer facing the substrate is high, preferably equal to or greater than the thickness of the feature layer. The thickness of the remaining portion of the modulation layer above the conductive layer of the electrode structure is also equal to or greater than the thickness of the feature layer. Therefore, such as = specific embodiment (B) 'in this-specific embodiment, all layers of the modulation layer The lower limit of the degree is preferably twice the thickness of the feature layer. #Conductive layer is located at the center or almost the center of the variable layer thickness, and the best effect is achieved when the feature layer thickness or more is extended in the direction of each substrate. If multiple conductive layers are used, one layer on top of the other, in each case separated from each other by a solid insulating layer, the lower limit of the thickness of the media layer is adjusted and the feature layer thickness is doubled, each of which is further Of the conductive layer.

根據本發明,中間型媒體宜具有一向列相,一對掌相與 /或藍色相,其中以藍色相較佳。可是,也可能使用—種 令木把其中向列相之溫度範圍如此窄,使得轉變實際上夢 生於從結晶相或層列相到各向同性相。According to the present invention, the intermediate type medium preferably has a nematic phase, a pair of palm phase and / or a blue phase, and the blue phase is preferred. However, it is also possible to use a species that makes the temperature range of the nematic phase in the wood so narrow that the transformation actually dreams of going from the crystalline or smectic phase to the isotropic phase.

根據本發明(S I周變元件中之根據本發曰月白勺調變媒體, 在高於特徵溫度2度的溫度上,宜具有範圍從5伏特(va)到 150伏特的特徵電壓〜,其中以從15伏特到伏特較佳, 乂仗20伏特到9〇伏特特佳,而以3〇伏特到伏特最佳。除 =特別說明,否則在專利申請書中,具有师米(㈣電極 又、及1〇微米包極分隔的單元,就是具有特徵電壓。根 據本發明之光調變㈣中之根據本發明的調變媒體,在言 ::徵溫度2度的溫度上’宜具有1〇5伏特或更少之特徵電 :其中以95伏特或更少較佳,以75伏特或更少特佳, 而以50伏特或更少最佳。 根據本發明之光調變 在高於特徵溫度2度的 11 〇伏特的特徵電壓 而以10伏特到80伏特 在本發明之一較佳具體實施例中, 元件中之根據本發明的光調變媒體, /服度上,宜具有範圍從5伏特(V)到 Vl〇 ’其中以從10伏特到90伏特較佳, 87586 31 200408865 最佳。 、在根據本發明之進一步較佳具體實施例中,根據本發明 之光凋又元件中之根據本發明的光調變媒體,在高於特徵 /皿度2度的溫度上,宜具有範圍從2伏特(乂)到丨⑽伏特的特 欲電壓V1G,其中以從3伏特到5〇伏特較佳,以從4伏特到Μ 伏特特佳,以從5伏特到20伏特更佳,而以5伏特或7伏特到 1 5伏特最佳。 在本專利申請案中,特徵溫度(Tehar)定義如下: 如果特徵電壓通過最小值而成為溫度函數的最小值,則 此一最小值之溫度稱作特徵溫度, 如果特欲電壓並不通過最小值成為溫度的函數,而是調 變媒體具有-或更多藍色相,則轉變成藍色相的溫度,或 是在有複數的藍色相發生的情況下,轉變成藍色相之溫度 首次成為上升溫度者,稱為特徵溫度, 如果特欲電壓並不通過最小值成為溫度的函數,而且調 又媒體也不具有藍色相,則轉變成各向同性相的溫度稱為 特徵溫度。 … 具有向列相之中間型媒體的清除點,宜為從攝氏_2〇。到 攝氏80。的範圍,其中以從攝氏〇。到攝氏⑼。的範圍較佳,而 以從攝氏20。到攝氏60。的範圍最佳。在具有背光之顯示器 的情況中,清除點最好是從攝氏丨〇。到攝氏7〇。的範圍,其 中以從攝氏30。到攝氏5〇。的範圍較佳。 向列相Jl在低達攝氏_ 1 〇。時仍是穩定的,其中以低達攝 氏-30。較佳,而以低達攝氏·4〇度最佳。 87586 -32- 200408865 根據本發明之中間型媒體,在溫度低於清除點4度的向列 相中立具有0·090或更多之雙折射(△ η),其中以〇.1 〇〇或 更多較佳,以0.150或更多特佳,而以〇 2〇〇或更多最佳。根 據本發明之應用,雙折射的值幾乎是沒有限制的。可是, 實際上其通常為0.500或更少,而通常是〇·45〇或更少。此 處根據本發明之媒體的雙折射數值,係在溫度低於清除 點Ρ的向列相中測量的。如果媒體在此一溫度上並不是向 歹J %疋的,或者是至少在向列相中可超冷低達此一溫度, j、;椒氏2〇 ,決定I5%混合之媒體與85%之Merck &amp;(^八向 J相/叱σ ZLI_4792的雙折射,並從比較混合zli_4792的變 化中’外插獲得純粹媒體的數值。 、根據本發明之中間型媒體,宜具有4德拜(Debye)或更多 偶;L矩其中以6德拜或更多較佳,而以8德拜或更多最 佳0 根據本發明之光調變元件’可能使用在中間相中,具 屯j頁各向兴性(△ ε)的中間型調變媒體,以及具有負 介質各向異性的中間型調變媒體。使用在中間相中具有 私貝《向矢性(△ ε )的中間型調變媒體是較佳的。 如果中間型調變媪,1古 J夂杲把具有正的電介質各向異性(△ ε ), 其在1千赫茲(kHz)與溫度低於转 又万、狩欲溫度或清除點4。時, 具有15或更多之數值,复 ^ ”千以30或更多較佳,以45或更 取佳’而且最好是向歹^ , e w 。。果媒體不具有向列相,或 疋在 &gt;皿度低於特徵溫度. 4,同除點4時,其不處於向列相 則類似於雙折射,其介 私貝各向異性是由外插混合ΖΙ 87586 -33- 200408865 4792中15%之混合的數值來決定 如果中間型調變媒體具有負的 貝合句兴性,則並宜 具有-5或更少的數值,其中以_7 、 少最佳 尺y f乂佳,而以-1 〇或更 具有正電介質各向異性的調變媒體是特佳的。 根據本發明之中間型媒體,宜由2到40種化合物所组成, 其中以5到30種化合物較佳’而以7到25種化合物最佳。 根據本發明之正電介質各向異性之根據本發明的中間型 媒體’最好包括·· •一組份A,其由一或更多之化八妝阱 〜\ 7 &lt;儿口物所組成,而此等化合 物具有30或更多之非常高的正電介質各向異性, -視需要包括一組份B,其由一或更多之化合物所組成, 而該等化合物具有從10到&lt;30之非常高的正電介質各向 異性, 視而要包括一組份C,其由一或更多之化合物所組成, 而遠等化合物具有從&gt; 1 · 5到&lt; 1 〇之一般的正電介質各向 異性, -视需要包括一組份D,其由一或更多之中性電介質化合 物所組成,而該等化合物具有範圍從__ 1 · 5到+1 · 5之介電 貝各向異性,及 -视需要包括一組份E,其由一或更多之化合物所組成, 而該等化合物具有小於-1.5之負的電介質各向異性。 這些媒體的組份A,宜包括一或更多分子式I之化合物, 其中以主要部分由其組成較佳,而以實際上完全由一或更 87586 -34- 200408865 多分子式i之化合物所組成者最佳。According to the present invention (the modulation medium of the SI periodic change element according to the present invention, at a temperature 2 degrees higher than the characteristic temperature, it should have a characteristic voltage ranging from 5 volts to 150 volts ~, where It is preferably from 15 volts to volts, preferably 20 volts to 90 volts, and most preferably 30 volts to volts. Unless otherwise specified, otherwise, in the patent application, Units separated by 10 micron envelopes have characteristic voltages. The modulation medium according to the present invention in the light modulation unit according to the present invention should have a temperature of 10 ° at a temperature of 2 degrees: Characteristic electricity of volts or less: Among them, 95 volts or less is preferred, 75 volts or less is most preferred, and 50 volts or less is most preferred. The light modulation according to the present invention is above the characteristic temperature 2 Characteristic voltage of 10 volts and 10 volts to 80 volts. In a preferred embodiment of the present invention, the optical modulation medium according to the present invention in the element should preferably have a range from 5 volts. (V) to V10 ', preferably from 10 volts to 90 volts, 87586 31 20 0408865 is the best. In a further preferred embodiment of the present invention, the light modulation medium according to the present invention in the light withering element according to the present invention is at a temperature 2 degrees higher than the characteristic / plate degree, It should have a specific voltage V1G ranging from 2 volts (乂) to ⑽ ⑽ volts, of which 3 volts to 50 volts is preferred, 4 volts to M volts is better, and 5 volts to 20 volts is more It is best to use 5 volts or 7 volts to 15 volts. In this patent application, the characteristic temperature (Tehar) is defined as follows: If the characteristic voltage passes the minimum value and becomes the minimum value of the temperature function, then the minimum value The temperature is called the characteristic temperature. If the desired voltage does not become a function of the temperature through the minimum value, but the modulation medium has-or more blue phases, the temperature of the transition to the blue phase, or occurs in a complex blue phase. In the case of temperature, the temperature that turns into the blue phase becomes the rising temperature for the first time, which is called the characteristic temperature. If the specific voltage does not become a function of the temperature through the minimum value, and the media does not have the blue phase, it changes into various The temperature of the isotropic phase is called the characteristic temperature.… The clearing point of the intermediate media with nematic phase should be in the range from -20 ° C to 80 ° C, with the range from 0 ° C to ⑼ ° C. It is better, and the range from 20 ° C to 60 ° C is the best. In the case of a display with a backlight, the clearing point is preferably in the range from 0 ° C to 70 ° C, in which the range is from 30 ° C. The range from 50 to 50 ° C is better. The nematic phase Jl is stable at as low as -10 ° C, of which -30 ° C is better, and it is the lowest at 40 ° C. 87586 -32- 200408865 The intermediate-type medium according to the present invention has a birefringence (Δη) of 0.090 or more in a nematic phase neutral at a temperature 4 degrees below the clearing point, in which 0.1 to 〇〇 Or more is preferred, 0.150 or more is particularly preferred, and 0,200 or more is most preferred. According to the application of the present invention, the value of birefringence is almost unlimited. However, actually it is usually 0.500 or less, and usually 0.45 or less. Here, the birefringence value of the medium according to the present invention is measured in a nematic phase whose temperature is lower than the clearing point P. If the media is not 歹 J% 疋 at this temperature, or at least this temperature can be supercooled in the nematic phase, j ,; Jiao 20, decided to mix I5% media with 85% Merck & (^ octet J-phase / 叱 σ ZLI_4792 birefringence, and 'extrapolate' from the comparison of the mixed zli_4792 changes to obtain the value of the pure media. According to the present invention, the intermediate media should preferably have 4 Debye ( Debye) or more; L moment is preferably 6 Debye or more, and 8 Debye or more is best. The light modulation element according to the present invention 'may be used in the mesophase, with Page anisotropy (△ ε) intermediate modulation media, and medium modulation media with negative media anisotropy. Use the median modulation with the "vector-isotropy (△ ε)" in the mesophase. Variable media is better. If the intermediate modulation 媪, the ancient J 夂 杲 has a positive dielectric anisotropy (△ ε), which is below 1 kilohertz (kHz) and the temperature is The temperature or clearing point is 4. When it has a value of 15 or more, it is better to use “30 to 30 or more, 45 or more” It is best to be nematic ^, ew ... if the media does not have a nematic phase, or if the degree is lower than the characteristic temperature. 4, the same as the division point 4, it is similar to birefringence if it is not in the nematic phase, Its median anisotropy is determined by the value of 15% of the extrapolated mixture IZ 87586 -33- 200408865 4792. If the intermediate modulation media has a negative Beggar interest, it should preferably have -5 or Fewer values are preferred, with _7 and less optimal rule yf being better, and modulation media with positive dielectric anisotropy of -10 or better are particularly preferred. The intermediate-type media according to the present invention is preferably It is composed of 2 to 40 compounds, of which 5 to 30 compounds are preferred, and 7 to 25 compounds are most preferred. The intermediate dielectric medium according to the present invention, which includes the positive dielectric anisotropy, preferably includes: · A group of A, which is composed of one or more chemical makeup makeup ~ \ 7 &lt; children's mouth, and these compounds have a very high positive dielectric anisotropy of 30 or more,- It is necessary to include a group B consisting of one or more compounds having a range from 10 to &lt; 30 has a very high positive dielectric anisotropy, depending on which component C is to be composed, which is composed of one or more compounds, and the distant compounds have a range from &gt; 1.5 to &lt; 1 General positive dielectric anisotropy,-include a set of D as needed, which consists of one or more neutral dielectric compounds, and these compounds have a range from __ 1 · 5 to +1 · 5 Electron anisotropy, and-if necessary, includes a component E consisting of one or more compounds that have a negative dielectric anisotropy of less than -1.5. Component A of these media should preferably include one or more compounds of formula I, in which the main part is preferably composed of them, but in fact it is composed entirely of one or more of 87586-34-200408865 compounds of formula i optimal.

R1是燒基(alkyl),院氧基(alkoxy),其中以η-燒基或n_燒 氧基較佳,每一個具有從1到7個碳原子,或者是晞基 (alkenyl),烯氧基(alkenloxy),块基(alkynyl)或燒氧燁 (alkoxyalkyl),每一個具有2到7個碳原子,R1 is alkyl, alkoxy, among which n-alkyl or n-alkyl is preferred, each having 1 to 7 carbon atoms, or alkenyl, Alkenloxy, alkynyl or alkoxyalkyl, each having 2 to 7 carbon atoms

每一個彼此獨立,Each one is independent of each other,

F FF F

和 一—而且 其中之一是And one—and one of them is

雨者之’ -35- 87586 200408865 iOf The Rainer ’-35- 87586 200408865 i

而且,如果有的話,And, if any,

Z11與Z12是彼此各自獨立的,單一鍵結-CO-O·,橫向- 1 . 1 CH=CH-,-CH=CF_,-CF = CH-,-CF = CF-,-CH=CH_CO-0-,-CF=CF-C0-0-,-CF=CH-C0-0',-CH=CF-C0-0_,-CF2_0-,-o-cf2-或-c三c-,或者是這些群之兩個或更乡的結合。 X1是 F,-OCF3,-CF3,-OCF2H,Cl,CN,-C 三 C-CN, 或NCS,最好是CN,C_CN或NCS,及 n1是0或1, 其中 87586 -36- ZUU4U88t)^ 在X^F的情況中 個額外的氟(F)原子 丰環全邵帶有至少2個,最好至少有3 在 X1==_OCF3, 3,-0CF2H或Cl的情況中,苯環全部帶 有至少一個額外沾^ 勺亂(F)原子,而最好至少有2個額外的氟 原子,及 在X —CN,_Csc-CN或NCS的情況中,苯環最好帶有至 少1個額外的氨(F)原子。 根據本發明之媒體,宜包^一個或更多個選自由分子式工_ 1至1-7之牝合物所組成之群的化合物,以及/或者是一個或 更多個選自由分子式〖^至〗^之化合物所組成之群的化合 物,其類似於分子式I之次分子式。Z11 and Z12 are independent of each other, single-bonded -CO-O ·, transverse-1.1. CH = CH-, -CH = CF_, -CF = CH-, -CF = CF-, -CH = CH_CO- 0-, -CF = CF-C0-0-, -CF = CH-C0-0 ', -CH = CF-C0-0_, -CF2_0-, -o-cf2- or -c triple c-, or A combination of two or more of these groups. X1 is F, -OCF3, -CF3, -OCF2H, Cl, CN, -C three C-CN, or NCS, preferably CN, C_CN or NCS, and n1 is 0 or 1, where 87586 -36- ZUU4U88t) ^ In the case of X ^ F, there are at least two, preferably at least 3, full fluorine (F) atomic rings. In the case of X1 == _ OCF3, 3, -0CF2H or Cl, all benzene rings With at least one extra (F) atom, and preferably at least 2 additional fluorine atoms, and in the case of X-CN, _Csc-CN or NCS, the benzene ring is preferably with at least 1 Extra ammonia (F) atoms. According to the media of the present invention, one or more compounds selected from the group consisting of adducts of molecular formulas 1 to 1-7, and / or one or more compounds selected from the formulas ^ to The compound of the group consisting of the compounds is similar to the sub-molecular formula of the molecular formula I.

-4 R1 R1 R1-4 R1 R1 R1

CEC-C〇〇CEC-C〇〇

-5 -6-5 -6

C三C^C三N 87586 -37- - 7 200408865C three C ^ C three N 87586 -37--7 200408865

其中參數定義如上,位於分子式i之下。 : 根據本發明媒體,最好包括一個或更多個選自由分子式I-la至 I-le,I-2a至 I-2c,I-3a至 I_3c,I-4a至 I-4c,I-5a至 I-5c,I-6a至I-6c與l-7a至I-7c所組成之群的彳b合物,以及/或者是 一個或更多個選自由分子式ΙΙ-la至II-lc,II-2a至II-2c,II-3a, II-3b,II-4a,II-4b,IUa.ilUb所組成之君_ 的化合物。The parameters are defined as above and are located below the formula i. : According to the media of the present invention, it is preferable to include one or more selected from the formulae I-la to I-le, I-2a to I-2c, I-3a to I_3c, I-4a to I-4c, I-5a To I-5c, a hydrazone b complex of the group consisting of I-6a to I-6c and l-7a to I-7c, and / or one or more selected from the formulae III-la to II-lc, Compounds consisting of II-2a to II-2c, II-3a, II-3b, II-4a, II-4b, IUa.ilUb.

87586 -38- 200408865 R1—&lt; A12)— R! 1287586 -38- 200408865 R1— &lt; A12) — R! 12

FF

R! ,12R!, 12

R1 ,12R1, 12

FF

R1—( A12)—C三C—COO—&lt; 〇 &gt;—C三NR1— (A12) —C triple C—COO— &lt; 〇 &gt; —C triple N

FF

R1—&lt; A12&gt;—C三C—COO—&lt; 〇 &gt;—C三NR1— &lt; A12 &gt; —C triple C—COO— &lt; 〇 &gt; —C triple N

FF

R1——( A12&gt;t~CEC—C〇0—&lt; 0 &gt;—CENR1 —— (A12 &gt; t ~ CEC—C〇0— &lt; 0 &gt;-CEN

FF

CEN CEN R1~~( A 12CEN CEN R1 ~~ (A 12

F I ! C=C—C〇O I FF I! C = C—C〇O I F

O &gt;—C 三 N l-2c l-3a l-3b l-3c l-4a l-4b . · * I-4c l-5a l-5b l-5c l-6a 87586 -39- 200408865O &gt;-C three N l-2c l-3a l-3b l-3c l-4a l-4b. * * I-4c l-5a l-5b l-5c l-6a 87586 -39- 200408865

l-6b l-6c l-7a l-7b l-7c IMa IMb IMg ll-2a 87586 -40- 200408865l-6b l-6c l-7a l-7b l-7c IMa IMb IMg ll-2a 87586 -40- 200408865

ll-2c ll-2bll-2c ll-2b

ll-3a ll-3b ll-4a ll-4b ll-5a ll-5b 87586 -41 - 200408865 其中參數定義如上,位於分子式i之下。 分子式1-13至1-;^之化合物'宜選自由分子式1-;^-1至1-la-6,Ι-lb-l 至 I-lb-9,Ι-lc-l 至 I-lc_9,I-ld-1 至 I-ld-5,與 I-le-1至l-le-2之化合物所組成之群。ll-3a ll-3b ll-4a ll-4b ll-5a ll-5b 87586 -41-200408865 where the parameters are defined as above and are located below the molecular formula i. The compounds of formulae 1-13 to 1-; ^ are preferably selected from formulae 1-; ^ -1 to 1-la-6, I-lb-1 to I-lb-9, I-lc-1 to I-lc_9 , I-ld-1 to I-ld-5, and I-le-1 to l-le-2.

C三NC three N

Ma-1Ma-1

CnH2n+1 -CnH2n + 1-

FF

Ma-2 卜 1a-3 1-13-4Ma-2 Bu 1a-3 1-13-4

Ma-5Ma-5

CnH2n+1nTCH=CH—CmH2V 〇—\ 〇 C三Ν l«1a-6CnH2n + 1nTCH = CH—CmH2V 〇— \ 〇 C 三 Ν l «1a-6

FF

1-1 b-11-1 b-1

CnH2n+f 〇&gt;—C三N FCnH2n + f 〇 &gt;-C triple N F

C三NC three N

Mb-2 卜 1b-3 87586 -42- 200408865Mb-2 Bu 1b-3 87586 -42- 200408865

1-1 b-41-1 b-4

FF

F 1-1 b-5 lr1b-6F 1-1 b-5 lr1b-6

CnH2n+1—\ /—&lt; 〇 &gt;~〇ΞΝ FCnH2n + 1— \ / — &lt; 〇 &gt; ~ 〇ΞΝ F

Mb-7 W+i一 1-1 b-8Mb-7 W + i-1 1-1 b-8

CnH2n+r-〇-&lt; 〇 λ&quot;( 0 &gt;-C^N 1-1 b-9CnH2n + r-〇- &lt; 〇 λ &quot; (0 &gt; -C ^ N 1-1 b-9

F ^n^2n+fF ^ n ^ 2n + f

〇 C=N F 1-1 c-1〇 C = N F 1-1 c-1

CnH2n+r-CH=CH—Cm々CnH2n + r-CH = CH—Cm々

FF

FF

Mc-2 87586 -43- 200408865Mc-2 87586 -43- 200408865

FF

Mc-3Mc-3

CnH2n+1—三N 'CnH2n + 1—Three N '

CnH2n+1 \ /N~\^CnH2n + 1 \ / N ~ \ ^

F FF F

Mc-4Mc-4

F FF F

1-1 c-5 1-1 c-61-1 c-5 1-1 c-6

卜 1c-7Bu 1c-7

1-1 c-8 1-1 c-9 87586 -44- 2004088651-1 c-8 1-1 c-9 87586 -44- 200408865

Md-2Md-2

Md-3 1-1 d-4Md-3 1-1 d-4

Md-5Md-5

Me-1 1-1Θ-2 » 其中. n是從0至7的整數,其中以1至7較佳, m是從0至5的整數, n+m是從0至7的整數,其中以1至5較佳。 分子式I-2a至I-2c之化合物,宜選自由分子式Ida-l至I-2a-5,I-2b-l 至 I-2b_9,與 I-2c-l 至 I-2C-17 所組成之群。 87586 -45 - 200408865 C Η 2n+1Me-1 1-1Θ-2 »where .n is an integer from 0 to 7, where 1 to 7 is preferred, m is an integer from 0 to 5, n + m is an integer from 0 to 7, where 1 to 5 are preferred. The compounds of the formulae I-2a to I-2c are preferably selected from the group consisting of the formulae Ida-1 to I-2a-5, I-2b-1 to I-2b_9, and I-2c-1 to I-2C-17 group. 87586 -45-200408865 C Η 2n + 1

COO-( 0 )—C=N :n+1COO- (0) —C = N: n + 1

COO—(C三NCOO— (C three N

CnH2n+i~ \ 0 /一-〇〇-〇*—( 0 )一&quot;CENCnH2n + i ~ \ 0 / 一 -〇〇-〇 * — (0) 一 &quot; CEN

FF

CnH2n+r \ 0 /—COO—〇 y—ΟΞΝ F FCnH2n + r \ 0 / —COO—〇 y—〇ΞΝ F F

CnH2n+1 一~\ 〇 /—COO—〇 y—CSN F FCnH2n + 1 1 ~ \ 〇 / —COO—〇 y—CSN F F

CnH2n+1—O—0 y—COO—\ 〇 /—C=N FCnH2n + 1—O—0 y—COO— \ 〇 / —C = N F

CnH2n+1·—C三C&quot;-( O )—CQO—\ 〇 )一&quot;C三N F F l-2si-1 l-2a - 2 l-2a-3 1-23-4 l‘2a-5 l-2b-2 l-2b-3 l-2b-4 l-2b-5 87586 -46- 200408865CnH2n + 1 · —C triple C &quot;-( O) —CQO— \ 〇) 一 &quot; C triple NFF l-2si-1 l-2a-2 l-2a-3 1-23-4 l'2a-5 l-2b-2 l-2b-3 l-2b-4 l-2b-5 87586 -46- 200408865

l-2b-6 l-2b-7 Fl-2b-6 l-2b-7 F

F FF F

CnH2n+1—^( 〇 )—COO—&lt; 〇 }~C=H l-2b-8CnH2n + 1 — ^ (〇) —COO— &lt; 〇} ~ C = H l-2b-8

FF

l-2b-9 I-2C-1l-2b-9 I-2C-1

CnH2 n+1CnH2 n + 1

FF

F l-2c-2F l-2c-2

CnH2n+1 (〇)—COO—\ 〇 )—ΟΞΝ l-2c-3CnH2n + 1 (〇) —COO— \ 〇) —ΟΞΝ l-2c-3

F 87586 -47- 200408865 V-cF 87586 -47- 200408865 V-c

1-2〇41-2〇4

CnH2n+{ CnH2n+fCnH2n + {CnH2n + f

1-20-5 l-2c-61-20-5 l-2c-6

CnH2n+i -CH=CH~CmH2-CnH2n + i -CH = CH ~ CmH2-

F COOF COO

C三N l-2c-7C three N l-2c-7

CnH2n+i CnH2n+iCnH2n + i CnH2n + i

l-2c-8 l-2c-9l-2c-8 l-2c-9

CnH2n+iCnH2n + i

I-2C-10 87586 -48 - 200408865I-2C-10 87586 -48-200408865

l-2c-11 1-20-12 I-2C-13 I-2C-14 1-20-15 I-2C-16 I-2C-17 87586 -49- 200408865 其中 η是從0至7的整數,其中以〇至5較佳’而以1至5最佳’ ‘ m是從0至5的整數,及 n+m是從0至7的整數,其中!以1至5較佳。 分子式1-3 a至I-3c之化合物,宜選自由分子式1-3 a-1至 3a-4,I_3b-1 至 I-3b-4 與 I-3c-l 至 1-3〇4 所組成之群。l-2c-11 1-20-12 I-2C-13 I-2C-14 1-20-15 I-2C-16 I-2C-17 87586 -49- 200408865 where η is an integer from 0 to 7, Among them, 0 to 5 is preferred, and 1 to 5 is optimal. 'M is an integer from 0 to 5, and n + m is an integer from 0 to 7, wherein! Is preferably from 1 to 5. The compounds of the formulae 1-3a to I-3c are preferably selected from the group consisting of the formulae 1-3a-1 to 3a-4, I_3b-1 to I-3b-4 and I-3c-1 to 1-304. Group.

l-3a-1 1-38-2 l-3a-3 1-33-4l-3a-1 1-38-2 l-3a-3 1-33-4

F ^η^2η+ί W+i*F ^ η ^ 2η + ί W + i *

CnH2n+{ ^n^2n+fCnH2n + {^ n ^ 2n + f

CnH2n+f CnH2n+i PnH2n+1CnH2n + f CnH2n + i PnH2n + 1

I - 3b-1 l-3b-2 l-3b-3 87586 -50- 200408865I-3b-1 l-3b-2 l-3b-3 87586 -50- 200408865

FF

FF

CnH2n+1一~( O &gt;—CF^O Ο &gt;~·〇ΞΝ l-3b - 4CnH2n + 1 1 ~ (O &gt; -CF ^ O Ο &gt; ~ · 〇ΞΝ l-3b-4

FF

CnH2n+「CnH2n + 「

CFpCFp

FF

I4c-1I4c-1

C H 2n+1 F 〇 &gt;-cf2oC H 2n + 1 F 〇 &gt; -cf2o

F l-3b-2F l-3b-2

FF

CnH2n+1—( 〇 h-CFp 〇7~C^N l-3b-3CnH2n + 1— (〇 h-CFp 〇7 ~ C ^ N l-3b-3

FF

F F l-3b-4F F l-3b-4

CnH2n+1 ~\ 0 ^CFp—ΟΞΝCnH2n + 1 ~ \ 0 ^ CFp—ΟΞΝ

V F 其中n是從0至7的整數,其中以0至5較佳,而以1至5最 佳。 分子式I-4a至I-4c之化合物,宜選自由分子式I-4a_l至I-4a-3,I-4b-l 至 I-4b-4 與 I-4c-l 至 I-4c-3 所組成之群。 87586 -51 - 200408865 C Η 2n+1 -CEC—C〇,0V F where n is an integer from 0 to 7, with 0 to 5 being preferred, and 1 to 5 being most preferred. The compounds of the formulae I-4a to I-4c are preferably selected from the group consisting of the formulae I-4a_1 to I-4a-3, I-4b-1 to I-4b-4 and I-4c-1 to I-4c-3 Group. 87586 -51-200408865 C Η 2n + 1 -CEC—C〇, 0

CnH2n+1 一CnH2n + 1 a

〇)—c三c一c〇-〇 F〇) -c three c-c0-〇 F

〇 &gt;—CEN:〇 &gt; -CEN:

1-43-21-43-2

cnH2n+i—~^ ^CEC—C〇-〇一\ 〇 CEN 1-43-3cnH2n + i— ~ ^ ^ CEC-C〇-〇 一 \ 〇 CEN 1-43-3

F ^n^2n+1~F ^ n ^ 2n + 1 ~

C三c^c〇〇一&lt; 〇&gt;—CEN F 卜 4b-1C three c ^ c〇〇 一 &lt; 〇 &gt; —CEN F BU 4b-1

CnH2n+1 \ 〇 /—CEC-COO—( 〇 )—C=N F F l-4b-2CnH2n + 1 \ 〇 / —CEC-COO— (〇) —C = N F F l-4b-2

FF

CnH2n+1一~^ 〇 /—C三C—COO—\ 〇)一C三N l-4b-3CnH2n + 1 one ~ ^ 〇 / —C triple C—COO— \ 〇) one C triple N l-4b-3

FF

CnH2n+1~、O &lt;&gt;—CEC—C〇〇—(0 &gt;~C=N F l-4b-4CnH2n + 1 ~, O &lt; &gt; -CEC-C〇〇- (0 &gt; ~ C = N F l-4b-4

CnH2n+fCnH2n + f

CEC—CCKDCEC—CCKD

FF

C三N F l-4c-1C triple N F l-4c-1

l-4c-2l-4c-2

PnH2n+1—\ 〇;)一CEC—C〇-0 〇 C三NPnH2n + 1— \ 〇;) a CEC-C〇-0 〇 C three N

F 87586 -52- 200408865F 87586 -52- 200408865

F FF F

C三N 1-4〇3 其中n是從0至7的整數,其中以0至5較佳,而以1至5最佳。 分子式I-5a至I-5c之化合物,宜選自由分子式I-5a-l至1_ 5a-3,I-5b-l 至 I-5b-3 與 I-5c-l 至 I-5c-3 所組成之群。:C triple N 1-4〇3 where n is an integer from 0 to 7, with 0 to 5 being preferred, and 1 to 5 being most preferred. The compounds of the formulae I-5a to I-5c are preferably selected from the group consisting of the formulae I-5a-1 to 1-5a-3, I-5b-1 to I-5b-3 and I-5c-1 to I-5c-3 Group of people. :

CnH2n+1—^ 0 )~C = C-COO- FCnH2n + 1— ^ 0) ~ C = C-COO- F

H H ^,η^2η+Γ 1-53-1H H ^, η ^ 2η + Γ 1-53-1

〇 &gt;—CEN 卜 5a-2〇 &gt; --CEN Bu 5a-2

… H 0 &gt;—C=C—CO〇 H… H 0 &gt; —C = C—CO〇 H

0 &gt;—CEN 1-53-30 &gt; —CEN 1-53-3

F l-5b-1 〇 &gt;—c=c-co-o-F l-5b-1 〇 &gt; --c = c-co-o-

FF

CnHCnH

HH

〇 c二c —ca〇 H〇 c 二 c —ca〇 H

l-5b-2l-5b-2

2n+1 F2n + 1 F

HH

O &gt;~Cf COO-^ O 六-C三N 丨· 87586 -53」 200408865O &gt; ~ Cf COO- ^ O Six-C Three N 丨 · 87586 -53 」200408865

l-5c-1 l-5c-2l-5c-1 l-5c-2

CnH2n+iCnH2n + i

i-5c-3 ,其中n是從0至7的整數,其中以〇至5較佳,而以1至5最 佳。 分子式I-6a至I-6c之化合物,宜選自由分子式I-6a-1至1-6a-3,I_6b-1 至 I-6b-3 與 I-6c_l 至 I-6c-3 所組成之群。 87586i-5c-3, where n is an integer from 0 to 7, with 0 to 5 being preferred, and 1 to 5 being most preferred. The compounds of the formulae I-6a to I-6c are preferably selected from the group consisting of the formulae I-6a-1 to 1-6a-3, I_6b-1 to I-6b-3 and I-6c_l to I-6c-3 . 87586

-54- 200408865-54- 200408865

F O &gt;—C^C-COO F F F CnH2n.i-^ 0 /-C-C-COO ,F F 0 )-〇=〇-〇〇〇 FF O &gt; -C ^ C-COO F F F CnH2n.i- ^ 0 / -C-C-COO, F F 0) -〇 = 〇-〇〇〇 F

CnH 2n+1CnH 2n + 1

FF

l-6b-2 |-6b**3 l-6b-1 ^n^2n+1l-6b-2 | -6b ** 3 l-6b-1 ^ n ^ 2n + 1

F 0 -C=C-COO FF 0 -C = C-COO F

FF

FF

CnH 2n+1CnH 2n + 1

0 &gt;—C=C-COO F0 &gt; —C = C-COO F

FF

F Ic=c 一 c〇〇 I FF Ic = c-c〇〇 I F

l-6c-1 卜6o2 卜 6c-3 87586 -55- 200408865 其中η是從0至7的整數,其中以0至5較佳,而以1至5最 佳。 分子式I-7a至I-7c之化合物,宜選自由分子式I-7a-l至I-7a-2,I-7b-l 至 I-7b-2 與 Wc-l 至 I-7c-2 所組成之群。l-6c-1 BU 6o2 BU 6c-3 87586 -55- 200408865 where η is an integer from 0 to 7, where 0 to 5 is preferred, and 1 to 5 is preferred. The compounds of the formulae I-7a to I-7c are preferably selected from the group consisting of the formulae I-7a-1 to I-7a-2, I-7b-1 to I-7b-2 and Wc-1 to I-7c-2 Group.

CnH2n+iCnH2n + i

CEC—CEN F F ·CEC—CEN F F ·

CnH2n+{ &lt; , )—CEC—C三N c 卜 7a-1 l-7a-2 l-7b-1 l-7b-2 l-7b-1 l-7c-2CnH2n + {&lt;,) —CEC—C triple N c BU 7a-1 l-7a-2 l-7b-1 l-7b-2 l-7b-1 l-7c-2

F 87586 -56- 200408865 其中η是從0至7的整數,其中以0至5較佳,而以1至5最 佳。 根據本發明之媒體,最好包括一個或更多個化合物,其 選自由分子式II-lc-1,II-2c-l,II-3b-l,II-4b-l 與 II-5b-l 之 化合物所組成之群。F 87586 -56- 200408865 where η is an integer from 0 to 7, with 0 to 5 being preferred and 1 to 5 being most preferred. The medium according to the present invention preferably includes one or more compounds selected from the group consisting of the formulae II-lc-1, II-2c-1, II-3b-1, II-4b-1 and II-5b-1 A group of compounds.

Ρη^2η+ί ^η^2η+ί CnH2n+fΡη ^ 2η + ί ^ η ^ 2η + ί CnH2n + f

-57- 87586 200408865 其中η是從0至7的整數,其中以〇至5較佳,而以1至5最 佳。 根據本發明之媒體,最好包括一個或更多個選自由分子 式Μ至I-7之化合物所組成之群的化合物,以及一個或更多 個選自由分子式11_1至11_5之化合物所組成之群的化合物。 下表顯示較佳分子式之化合物的—些實例,其特別適合 根據本發明之媒體的製備。 較佳化合|夕實例-57- 87586 200408865 where η is an integer from 0 to 7, with 0 to 5 being preferred, and 1 to 5 being most preferred. According to the medium of the present invention, it is preferable to include one or more compounds selected from the group consisting of compounds of molecular formulas M to I-7, and one or more compounds selected from the group consisting of compounds of molecular formulas 11_1 to 11_5 Compounds. The following table shows some examples of compounds of preferred formula which are particularly suitable for the preparation of media according to the invention. Better combination

87586 -58- 200408865 16 I-lb-7 5 C94I 17 I-lb - 8 3 賴 C54I 18 I-lb-9 3 C76I 19 I-lb-9 4 麵 C41 I 20 I-lc-1 2 C46I 21 I-lc-1 3 Μ C57I 22 I-lc-2 0 0 C41 I 23 Mc-2 1 0 C43I 24 Mc-3 5 C46I 25 1-1c-4 1 C51I 26 Mc-4 3 _ C67I 27 I-lc-5 2 C43I 28 I- lc-5 3 C43I 29 I-lc-6 5 C23I 30 Mc-7 0 2 C64I 31 I-lc-8 4 C78I 32 Mc-8 5 C78I 33 1-1c-9 4 _ C85I 34 I-ld-1 5 - C84I 35 I-ld-5 3 麵 C85I 36 1-1d-5 5 C36I 37 I-le-1 3 C 1171 87586 -59- 20040886587586 -58- 200408865 16 I-lb-7 5 C94I 17 I-lb-8 3 Lai C54I 18 I-lb-9 3 C76I 19 I-lb-9 4 sides C41 I 20 I-lc-1 2 C46I 21 I -lc-1 3 Μ C57I 22 I-lc-2 0 0 C41 I 23 Mc-2 1 0 C43I 24 Mc-3 5 C46I 25 1-1c-4 1 C51I 26 Mc-4 3 _ C67I 27 I-lc- 5 2 C43I 28 I- lc-5 3 C43I 29 I-lc-6 5 C23I 30 Mc-7 0 2 C64I 31 I-lc-8 4 C78I 32 Mc-8 5 C78I 33 1-1c-9 4 _ C85I 34 I-ld-1 5-C84I 35 I-ld-5 3 sides C85I 36 1-1d-5 5 C36I 37 I-le-1 3 C 1171 87586 -59- 200408865

38 I-2a-3 2 - C 77 N (43.1)1 39 I-2a-3 3 C 100 N (46)1 40 I-2b-l 2 C78N(11)I 41 I-2b-l 3 C 70 N (19)1 42 I-2b-l 4 麵 C 13 N (6.7)1 43 I - 2b_l 5 C 30 N (23.8)1 44 HI 6 C 35 N (17)1 45 I-2b-l 7 C 29 N (28) I 46 I-2b-2 4 睡 C33I 47 I-2b-3 4 C 57 N (21.8)1 48 I-2b-4 3 C55I 49 I-2b-4 4 麵 C49I 50 I-2b-4 5 細 C46I 51 I-2b-5 3 脚 C67I 52 I - 2b-5 5 C41 I 53 I-2b-5 6 TS-59C31N(-30)I 54 I-2b - 6 2 未決定 55 I-2b-7 3 C59I 56 I-2b-7 4 C39I 57 I-2b-7 5 C31 I 58 I-2b-8 4 塞 C47I 59 I-2b-9 4 T&gt;57C 191 60 I-2c-l 3 痛 C61 I -60- 87586 200408865 61 I-2c-2 5 C31 I 62 I-2c-3 3 細 C77I 63 I-2c-3 5 讀 C47I 64 I-2c-4 0 1 C77I 65 I-2c-4 0 2 C 37 N (8.2)1 66 I-2c-4 0 3 未決定 67 I-2c-5 4 C52I 68 I-2c-6 4 C70I 69 1_2〇7 0 2 C 47 N (1.0)1 70 I-2c-9 3 C52I 71 I-2c-9 4 麵 C39I 72 I-2c-9 5 晒 C39I 73 I-2c-10 4 _ C60I 74 I-2c-ll 3 晒 C50I 75 I-2c-12 4 C56I 76 I-2c-13 3 咖 C80I 77 I-2c-13 4 C59I 78 I-2c-14 麵 2 C60I 79 I-2c-15 3 C69I 80 I-2c-15 4 晒 C47I 81 I-2c-15 5 C33I 82 I-2c-16 4 Te-54Xr35X2-7 I 83 I-2c-17 4 晒 C 78 N (50.8)1 87586 -61- 20040886538 I-2a-3 2-C 77 N (43.1) 1 39 I-2a-3 3 C 100 N (46) 1 40 I-2b-l 2 C78N (11) I 41 I-2b-l 3 C 70 N (19) 1 42 I-2b-l 4 sides C 13 N (6.7) 1 43 I-2b_l 5 C 30 N (23.8) 1 44 HI 6 C 35 N (17) 1 45 I-2b-l 7 C 29 N (28) I 46 I-2b-2 4 Sleep C33I 47 I-2b-3 4 C 57 N (21.8) 1 48 I-2b-4 3 C55I 49 I-2b-4 4 sides C49I 50 I-2b -4 5 Fine C46I 51 I-2b-5 3 pin C67I 52 I-2b-5 5 C41 I 53 I-2b-5 6 TS-59C31N (-30) I 54 I-2b-6 2 Not determined 55 I- 2b-7 3 C59I 56 I-2b-7 4 C39I 57 I-2b-7 5 C31 I 58 I-2b-8 4 stopper C47I 59 I-2b-9 4 T &57; 191 60 I-2c-l 3 pain C61 I -60- 87586 200408865 61 I-2c-2 5 C31 I 62 I-2c-3 3 Fine C77I 63 I-2c-3 5 Read C47I 64 I-2c-4 0 1 C77I 65 I-2c-4 0 2 C 37 N (8.2) 1 66 I-2c-4 0 3 Not determined 67 I-2c-5 4 C52I 68 I-2c-6 4 C70I 69 1_2〇7 0 2 C 47 N (1.0) 1 70 I- 2c-9 3 C52I 71 I-2c-9 4 sides C39I 72 I-2c-9 5 C39I 73 I-2c-10 4 _ C60I 74 I-2c-ll 3 C50I 75 I-2c-12 4 C56I 76 I-2c-13 3 coffee C80I 77 I-2c-13 4 C59I 78 I-2c-14 noodle 2 C60I 79 I-2c-15 3 C 69I 80 I-2c-15 4 C47I 81 I-2c-15 5 C33I 82 I-2c-16 4 Te-54Xr35X2-7 I 83 I-2c-17 4 C 78 N (50.8) 1 87586 -61- 200408865

84 I-2c-17 5 C 72 N (55.0)1 85 I-3b - 4 2 每 C35I 86 I-3c-l 3 麵 Tg-72C 17N(-18)I 87 I-4b -1 3 C50I 88 I-4c-l 3 Tg-47 C 30 I 89 I-4c-2 3 睡 Tg-37 C 63 I 90 I-4c-2 5 Ts-46 C 56 I 91 I -5b-3 3 晒 C 75 N (68.0) I 92 I - 6a-l 3 C56N65.1 I 93 I-6c-l 2 罐 C76I 94 I-7b-l 2 画 C 39 N 46.41 95 I-7c-l 2 画 C44I 96 I-7c-2 0 0 C 61 N (48.8) I 97 I-7c-2 0 2 C 57 N (78.9) I 98 I-7c-4 3 C 75 N (51.0) I 99 I-7c-4 5 C 61 N (48.8) I 100 II-lc-1 5 C 85 N (75)I 101 II - 2ol 2 麵 C 59 N 95.2 I 87586 -62- 20040886584 I-2c-17 5 C 72 N (55.0) 1 85 I-3b-4 2 per C35I 86 I-3c-l 3 sides Tg-72C 17N (-18) I 87 I-4b -1 3 C50I 88 I -4c-l 3 Tg-47 C 30 I 89 I-4c-2 3 Sleep Tg-37 C 63 I 90 I-4c-2 5 Ts-46 C 56 I 91 I -5b-3 3 Sun C 75 N ( 68.0) I 92 I-6a-l 3 C56N65.1 I 93 I-6c-l 2 tank C76I 94 I-7b-l 2 drawing C 39 N 46.41 95 I-7c-l 2 drawing C44I 96 I-7c-2 0 0 C 61 N (48.8) I 97 I-7c-2 0 2 C 57 N (78.9) I 98 I-7c-4 3 C 75 N (51.0) I 99 I-7c-4 5 C 61 N (48.8 ) I 100 II-lc-1 5 C 85 N (75) I 101 II-2ol 2 sides C 59 N 95.2 I 87586 -62- 200408865

102 II-3b-l —3 C 78 Sa (55) I 103 IH1 104 nJ ---------- —=_ __C65 SA (62) I IH1 2 C 82 I 105 ------ II-5b-l 3 C 77 T 根據本&amp;明之正電介質各向異性的中間型媒體,主要部 分宜由組份A所組成,且以實際上完全由其組成最佳。 在一較佳具體實施例中,才艮據本發明之正電介質各向異 性的中間型媒體’包括—或更多組份,其選自由組份 所組成之群,其中以選自由B與D所組成之群較佳。 4些媒體中的組份D,最好包括—或更多化合物。根據本 發明《負電介質各向異性的中間型媒體,宜包括 組份A’,其由具有_5或更少之高的負電介質各向異 性的化合物所組成, -視需要包括一組份B,,其由具有從_15到&lt;乃之一般的 負電介質各向異性的化合物所組成, -視需要包括一組份C,,其由具有從_15到+15之介電質 各向異性的中性電介質化合物所組成,及 -視需要包括一組份D,,其由具有大於15之正電介質各 向異性的化合物所組成。 根據本發明之中間型媒體,最好包括對掌性化合物,其 感應對尊性中間相,其中以藍色相較佳。 根據本發明之中間型媒體,可以進一步包括一般濃度的 ’小、加物或對掌性掺雜物。這些額外組份的全部濃度,取決 於整個混合,範圍從〇%到1〇%,其中以從〇1%到6%的範圍 87586 -63- 200408865 車乂佳化二化合物之個別的濃度,是從01至3%的範圍。當 具體說明其他混合物組份之濃度範圍時,&amp;了對掌性摻雜 物以外並/又有考慮這些化合物與混合之類似組份的濃 度。 媒體係以-般的方式從化合物中獲得。$少一點化合物 比用多-點化合物容易溶解。如果混合操作期間的溫度增 加到王要組份之清除點以上,則可以容易地觀察到完全溶 解。可疋,根據本發明之媒體也可以用其他的方式製備, 舉例來2使用預先混合。這裡可以使用之預先混合物, 特別疋同日曰系w合物(h〇m〇i〇gue mixtures)與/或共晶系混 合物(eutectic mixtures)。可是,預先混合物也已經適合媒 體本身。這適用於所謂的雙瓶(tw〇_b〇ule)或多瓶系統。 在本專利之申請中,除非特別說明,下列是適用的。 正電介質化合物具有&gt;1.5之^£,中性電介質化合物具 有-1.5$八£$1.5範圍的^£,負電介質化合物則具有&lt;_1.5 之△ ε。相同的定義也適用於混合物之組份。 化合物之介電質各向異性,係在!千赫茲(kHz)與攝氏 2〇°,以主混合物中個別化合物佔10%的溶液,到個別混合 物佔100%之比例的溶液的數值,藉由外插來獲得。在具有 同向邊緣排列(homeotropic edge alignment)的單元與具有均 相邊緣排列(homogenous edge alignement)的單元中,均決 定測試混合物的電容量。兩種單元類型的層厚度大約2〇微 米(# m)。此一測量係使用具有1千赫茲(kHz)之方波與通常 是〇·1伏特(V)或從0.2伏特到1.0伏特的有效電壓(方均根, 87586 -64- 200408865 rms)來實施。在每一情況中,所使用之電壓低於每一情況 中要研究之混合物的電容量臨界值。 對於正電介質化合物,使用混合物ZLI-4792當作主混合 物,而中性電介質與負電介質化合物,則使用混合物ZLI-3086當作主混合物,兩者皆來自德國的Merck KGaA。 在本專利申請案中,臨界電壓一詞意指光學臨界值,並 指示10%(V10)的相對性對比。同樣光學地決定中間灰色 (mid-grey)電壓與飽和電壓,而其分別指示50%與90%的相 對性對比。如果指的是電容量臨界電壓(VG),亦稱為斐德 里克(Freedericks)臨界值,將明確地說明。 所指出的數值範圍包含極限值。 濃度以重量百分比表示,並且是基於完全的混合。溫度 以攝氏溫度表示,而溫差則是攝氏溫差。所有物理性質決 定於1997年11月德國Merck KGaA所發行之「Merck液晶, 液晶之物理特性」一書中,而所指示的是攝氏2 0 °的溫度。 光學各向異性(An)亦稱為雙折射,係在589.3奈米(nm)的波 長上決定。介電質各向異性(△ ε )係在1千赫茲(kHz)的頻率 下決定。 在一系列只有指示複數的可能選擇中,也有指示單數的 意思。 連同媒體的組成份的細節, -「包括」意指所提到之參考單元中之個別材料的濃 度,宜為10%或更多,其中以20%或更多較佳,而以 3 0%或更多最佳,此處之參考單元即媒體或化合物, 87586 -65- 200408865 而個別材料即化合物的組份, 「主要由…組成」意指該材料在參考單元中的濃度, 宜為50%或更多,其中以60%或更多較佳,而以7〇%或 更多最佳,及 「實際上由…組成」意指該材料在參考單元中的濃 度,宜為80%或更多,其中以90%或更多較佳,而以 95%或更多最佳。 介電性質,光電性質(舉例來說,臨界電壓)與反應時間, 是在德國,Darmstadt之Merck KGaA所製造的測試單元中決 定。決定△ ε的測試單元具有22微米m)的層厚度,而氧 化銦錫(ITO)之圓形電極具有M3平方公分(cm2)的面積與保 護環。決定ε丨丨之同向排列時,使用具有同向排列之聚醯亞 胺的排列層。或者是,可以使用卵磷脂(Merck仏⑷當_ 排列媒介。決^ ε丄的單元,具有日本之日本合成橡膠 (Japan Synthetic Rubber)之聚醯亞胺AL_1〇54的排列層。電 容量通常使用Solatron 1260頻率分析儀,以方波及〇3伏特 (U的有效電壓來測量。光電分析以白光來實施。特徵電 壓以垂直的觀察來決定。 在本專利巾叫案巾,尤其是在下面將要敘述的實例中, 化學化合物的結構以縮寫來表示。個別縮寫的意思顯示於 下面表A與B中。所有㈣州與c』—群都是直鍵燒基 群’其分別具有η與m個碳原子。表B是不言可喻的,因為 :每-情況中,其指示均相化合物之分子式的縮寫。在表A ’只有顯示化合物核心結構的縮寫。如下表所示,各個 87586 -66 - 200408865 單獨化合物的縮寫,由這些化合物核心之各自適當的縮 寫,以及以破折號附加之群R1,R2,L1與L2的縮寫所組 成0102 II-3b-l --3 C 78 Sa (55) I 103 IH1 104 nJ -----------= _ __C65 SA (62) I IH1 2 C 82 I 105 ------ II-5b-l 3 C 77 T According to this &amp; Ming positive dielectric anisotropy intermediate type media, the main part should be composed of component A, and it is best to actually consist of it completely. In a preferred embodiment, the positive dielectric anisotropic intermediate-type medium according to the present invention includes' or more components selected from the group consisting of components, wherein The formed group is better. Component D in some media preferably includes-or more compounds. According to the present invention, the "negative dielectric anisotropy intermediate type medium" should preferably include component A ', which is composed of a compound having a negative dielectric anisotropy as high as -5 or less,-including component B as needed , Which is composed of compounds with general negative dielectric anisotropy from _15 to &lt; or even the negative dielectric anisotropy,-if necessary, includes a component C, which is anisotropic with a dielectric from _15 to +15 An anisotropic neutral dielectric compound and, if necessary, a group D, which is composed of a compound having a positive dielectric anisotropy greater than 15. According to the intermediate-type medium of the present invention, it is preferable to include a palmitic compound which senses a counter-phase mesophase, of which a blue phase is preferred. The intermediate-type medium according to the present invention may further include a small concentration, an adduct or a palmar dopant at a normal concentration. The total concentration of these additional components, depending on the overall mix, ranges from 0% to 10%, with individual concentrations of the two compounds in the range 8786 -63- 200408865 from 0.01 to 6%. Range from 01 to 3%. When specifying the concentration ranges of the other mixture components, &amp; additions to the palm dopants and / or taking into account the concentrations of these compounds and similar components mixed. Media is obtained from compounds in a general way. $ A little bit of compound is easier to dissolve than a multi-point compound. If the temperature during the mixing operation increases above the clearing point of the Wang Yao component, complete dissolution can be easily observed. However, the media according to the present invention can also be prepared in other ways, for example, 2 using a premix. The pre-mixtures that can be used here are, in particular, w-type mixtures and / or eutectic mixtures. However, the premix is already suitable for the medium itself. This applies to so-called two-bottle or multi-bottle systems. In this patent application, the following applies, unless specifically stated otherwise. The positive dielectric compound has a value of &gt; 1.5, the neutral dielectric compound has a value of -1.5 $, and the negative dielectric compound has a value of &lt; _1.5, Δε. The same definition applies to the components of a mixture. The dielectric anisotropy of the compound is tied! The values in kilohertz (kHz) and 20 ° C are obtained by extrapolating the values from a solution containing 10% of the individual compounds in the main mixture to a solution containing 100% of the individual mixtures. In cells with homeotropic edge alignment and cells with homogenous edge alignment, the capacitance of the test mixture is determined. The layer thickness of the two unit types is approximately 20 μm (# m). This measurement is performed using a square wave with 1 kilohertz (kHz) and an effective voltage (root mean square, 87586 -64- 200408865 rms) which is usually 0.1 volts (V) or from 0.2 volts to 1.0 volts. In each case, the voltage used is lower than the critical capacitance value of the mixture to be studied in each case. For positive dielectric compounds, the mixture ZLI-4792 is used as the main mixture, and for neutral and negative dielectric compounds, the mixture ZLI-3086 is used as the main mixture, both of which are from Merck KGaA in Germany. In this patent application, the term critical voltage means an optical critical value and indicates a relative contrast of 10% (V10). The mid-grey voltage and the saturation voltage are also determined optically, and they indicate a relative contrast of 50% and 90%, respectively. If it refers to the capacitance threshold voltage (VG), also known as the Freedericks threshold, it will be clearly stated. The indicated numerical ranges include the limit values. Concentrations are expressed in weight percent and are based on complete mixing. Temperature is expressed in degrees Celsius, and temperature difference is the difference in degrees Celsius. All physical properties are determined in the book "Merck Liquid Crystals, Physical Properties of Liquid Crystals" issued by Merck KGaA, Germany, in November 1997, and the temperature indicated is 20 ° C. Optical anisotropy (An), also known as birefringence, is determined at a wavelength of 589.3 nanometers (nm). The dielectric anisotropy (Δε) is determined at a frequency of 1 kilohertz (kHz). In a series of possible choices that only indicate the plural, there is also the meaning of the singular. Together with the details of the composition of the media, "include" means the concentration of the individual materials in the reference unit mentioned, preferably 10% or more, with 20% or more being preferred, and 30% Or better, the reference unit here is the media or compound, 87586 -65- 200408865 and the individual material is the component of the compound, "consisting mainly of" means the concentration of the material in the reference unit, preferably 50 % Or more, with 60% or more being better, and 70% or more being the best, and "consisting essentially of" means the concentration of the material in the reference unit, preferably 80% or More, 90% or more is preferred, and 95% or more is most preferred. The dielectric properties, optoelectronic properties (for example, critical voltage) and response time are determined in a test cell manufactured by Merck KGaA, Darmstadt, Germany. The test cell that determines Δε has a layer thickness of 22 micrometers (m), and the circular electrode of indium tin oxide (ITO) has an area of M3 square centimeter (cm2) and a guard ring. In order to determine the same-direction arrangement of ε, the alignment layer of polyfluorene imide having the same-direction arrangement is used. Alternatively, a lecithin (Merck 仏 ⑷ 仏 ⑷ _ arranging medium can be used. The unit of ε ε 丄 has an alignment layer of polyimide AL_1054 of Japan Synthetic Rubber. The capacitor is usually used. The Solatron 1260 frequency analyzer is measured with square wave and effective voltage of 0. 3 volts. The photoelectric analysis is performed with white light. The characteristic voltage is determined by vertical observation. In the example, the structure of the chemical compound is represented by an abbreviation. The meaning of the individual abbreviations is shown in Tables A and B below. Atoms. Table B is self-evident, because: in each case, it indicates the abbreviation of the molecular formula of the homogeneous compound. In Table A ', there are only abbreviations showing the core structure of the compound. As shown in the table below, each 87586 200408865 Abbreviations for individual compounds, consisting of the appropriate abbreviations for these compound cores, and the abbreviations for the groups R1, R2, L1, and L2 appended with a dash. 0

R1,R2,L1 與 L2 之縮寫 R1 R2 L1 L2 nm CnH2n+l CmH2m+l H H nOm CnH2n+l OCmH2m+l H H nO.m OCnH2n+l CmH2m+l H H η CnH2n+l CN H H nN.F CnH2n+l CN H F nN.F.F CnH2n+l CN F F nON.F.F 〇CnH2n+i CN F F nOF OCnH2n+l F H H nCl CnH2n+l Cl H H nCl.F CnH^n+l Cl H F nCl.F.F CnH2n+l Cl F F nF CnH2n+l F H H nF.F CnH2n+l F H F nF.F.F CnH2n+l F F F NmF CnH2n+l F H nCF3 CnH2n+i cf3 H H nOCF3 CnH2n+i 〇cf3 H H nOCF3_F CnH2n+i 〇cf3 H F nOCF3.F.F CnH2n+l 〇cf3 F F 87586 -67 200408865 nOCF2 CnH2n+l nOCF2.F CnH2n+l nOCF2.F.F CnH2n-fl nS CnH2n+l nS.F CnH2n+i nS.F.F CnH2n+i rYsN CrH2r+1-CH=CH CsH2S- rOsN CrH2r+l-〇-CsH2S nAm CnH2n+iR1, R2, L1 and L2 abbreviations R1 R2 L1 L2 nm CnH2n + l CmH2m + l HH nOm CnH2n + l OCmH2m + l HH nO.m OCnH2n + l CmH2m + l HH η CnH2n + l CN HH nN.F C l CN HF nN.FF CnH2n + l CN FF nON.FF 〇CnH2n + i CN FF nOF OCnH2n + l FHH nCl CnH2n + l Cl HH nCl.F CnH ^ n + l Cl HF nCl.FF CnH2n + l Cl FF nF CnH2n + l FHH nF.F CnH2n + l FHF nF.FF CnH2n + l FFF NmF CnH2n + l FH nCF3 CnH2n + i cf3 HH nOCF3 CnH2n + i 〇cf3 HH nOCF3_F CnH2n + HF OCF cf3 FF 87586 -67 200408865 nOCF2 CnH2n + l nOCF2.F CnH2n + l nOCF2.FF CnH2n-fl nS CnH2n + l nS.F CnH2n + i nS.FF CnH2n + i rYsN CrH2r + 1-CH-CH rHs + l-〇-CsH2S nAm CnH2n + i

ochf2 H H ochf2 H F ochf2 F F NCS H H NCS H F NCS F F CN H Hochf2 H H ochf2 H F ochf2 F F NCS H H NCS H F NCS F F CN H H

CN H H COOCmH2m+i H HCN H H COOCmH2m + i H H

❿ 87586 -68- 200408865 表A:❿ 87586 -68- 200408865 Table A:

BCHBCH

CCPCCP

CPTP L1CPTP L1

R 1 —c2h4—(^)—c三c—&lt;^oy~R2 ^L2R 1 —c2h4 — (^) — c three c— &lt; ^ oy ~ R2 ^ L2

CEPTPCEPTP

D 87586 -69- 200408865D 87586 -69- 200408865

RlRl

— CH2CH2 -Qy~ coo— CH2CH2 -Qy ~ coo

RR

EHPEHP

87586 -70- 200408865 表B :87586 -70- 200408865 Table B:

F F F FF F F F

CnH2n+r(〇)CnH2n + r (〇)

0 CrnH2m+1 CnH2n+r(°) -&lt;, 0 〇-C m^2m+1 PY-n(0)-0m0 CrnH2m + 1 CnH2n + r (°)-&lt;, 0 〇-C m ^ 2m + 1 PY-n (0) -0m

PCH-n(0)mFFPCH-n (0) mFF

F F F F cnH2n+r(〇&gt;~&lt;^y^^ 〇_CmH2m+i YY-n(0)-0m • ,- ; . / - !F F F F cnH2n + r (〇 &gt; ~ &lt; ^ y ^^ 〇_CmH2m + i YY-n (0) -0m •,-;. /-!

F F F F CH2=CH-CnH2n-(〇) 〇-CmH2m-CH=CH2F F F F CH2 = CH-CnH2n- (〇) 〇-CmH2m-CH = CH2

YY-Vn(0)-0mVYY-Vn (0) -0mV

F FF F

CCP-n(0)mFFCCP-n (0) mFF

F FF F

CnH2nTT 0 &gt;~&lt;^-(〇)-CmH2m+1 CPY-n(0)-rh 87586 -71 - 200408865CnH2nTT 0 &gt; ~ &lt; ^-(〇) -CmH2m + 1 CPY-n (0) -rh 87586 -71-200408865

CnH2n~CnH2n ~

.F F F F (〇)-CmH2m+1 CYY-n-(0)m.F F F F (〇) -CmH2m + 1 CYY-n- (0) m

2m+12m + 1

CnH 2n+1 〇CnH 2n + 1 〇

F FF F

(〇)-CmH2m+1(〇) -CmH2m + 1

F FF F

〇 V-c = c^ 〇 V-(0)-CmH〇 V-c = c ^ 〇 V- (0) -CmH

CPTP-n(0)mFFCPTP-n (0) mFF

CnH2n+CnH2n +

〇 h-x〇 h-x

CGP-n-X (X = particularly F, Cl, CN, NCS)CGP-n-X (X = particularly F, Cl, CN, NCS)

CnH2n+1CnH2n + 1

F F 〇)—(〇F F 〇) — (〇

InmInm

C H 2n+1C H 2n + 1

FF

CGU-n-X (X = particularly F, Cl, CN, NCS) 87586 -72- 200408865CGU-n-X (X = particularly F, Cl, CN, NCS) 87586 -72- 200408865

CHCH

C2H5-CH-CH2—O CB15C2H5-CH-CH2—O CB15

CnH2nf1CnH2nf1

2m+1 ^n^2n+1 CmH2m+12m + 1 ^ n ^ 2n + 1 CmH2m + 1

ECBC-nmECBC-nm

CN h2g=ch —~¢7)-CN h2g = ch — ~ ¢ 7)-

CP-V-N 87586 -73- 200408865CP-V-N 87586 -73- 200408865

_2m+1 0 )~( 〇 V-C H 2m+1_2m + 1 0) ~ (〇 V-C H 2m + 1

H2C = CHH2C = CH

CPP-V-mCPP-V-m

C H 2n+1C H 2n + 1

IfIf

CPP-nV-mCPP-nV-m

'~(^)~CmH2m+1 h2c CPP-V2-m'~ (^) ~ CmH2m + 1 h2c CPP-V2-m

HX = CHHX = CH

CnH2n+1 CCP-V-mCnH2n + 1 CCP-V-m

IfIf

CmH2 2m+1 CCP-nV-mCmH2 2m + 1 CCP-nV-m

CnH2n+1—&lt;^)-CH20H2—&lt;^&gt;~CN G3n 87586 -74- 200408865CnH2n + 1— &lt; ^)-CH20H2— &lt; ^ &gt; ~ CN G3n 87586 -74- 200408865

M3 ηM3 η

Ο V—CN PVG-n-S 87586 -75 200408865Ο V—CN PVG-n-S 87586 -75 200408865

PVG - nO-SPVG-nO-S

FF

UPP-n-SUPP-n-S

CPU-n-SCPU-n-S

CGU-n-S 87586 •76- 200408865CGU-n-S 87586 • 76- 200408865

FF

cn^r\^〇 三cn ^ r \ ^ 〇 three

PTG-n-S F CnH2-^r\ O')-C =PTG-n-S F CnH2- ^ r \ O ')-C =

PTU 介 sPTU s

CnH2n+1—\ O )~( 〇 )—CH=CH~( 〇 V-NCS PPVP-n-SCnH2n + 1— \ O) ~ (〇) —CH = CH ~ (〇 V-NCS PPVP-n-S

CnH2n+1—( 〇CnH2n + 1— (〇

PPVG-n-SPPVG-n-S

CnH 2n+1 〇CnH 2n + 1 〇

FF

FF

PPVU-n-SPPVU-n-S

FF

CnH2n+r(〇)-\ 〇 )-C=C—( 0 &gt;-CN PTG-n(0)-N 87586 -77- 200408865CnH2n + r (〇)-\ 〇) -C = C— (0 &gt; -CN PTG-n (0) -N 87586 -77- 200408865

PTU-n(0)-NPTU-n (0) -N

FF

GZU-n(0)-NGZU-n (0) -N

UZU-n(0)-NUZU-n (0) -N

co—Ο GZU-nA-N 87586 -78- 200408865co—〇 GZU-nA-N 87586 -78- 200408865

C〇一〇 UZU-nA-NC〇〇〇 UZU-nA-N

CN F 10CN F 10

CnH2n+1--&lt; 〇CnH2n + 1-&lt; 〇

F FF F

UVZG-n-N 15UVZG-n-N 15

CnH2n+1—&lt; 〇CnH2n + 1— &lt; 〇

PWZU-3-N 20PWZU-3-N 20

2525

CUZU-n-NCUZU-n-N

3030

CCZU-n-F 87586 -79- 200408865CCZU-n-F 87586 -79- 200408865

F FF F

CnH2n+1—&lt; ΟCnH2n + 1— &lt; Ο

PGU 普 FPGU Pu F

FF

UM-n-NUM-n-N

FF

DU-n-NDU-n-N

CnH2n+f -CH 二 CH。CnH2n + f -CH two CH.

CC-n-VCC-n-V

CnH2n+f -C=〇-〇mH2m+1 CC-n-VmCnH2n + f -C = 〇-〇mH2m + 1 CC-n-Vm

^n^2n+1 87586 -80- 200408865^ n ^ 2n + 1 87586 -80- 200408865

〇、 I B(OC)2C*H-C^3 or R-5011 / S-5011 ο- n - C3H7〇, I B (OC) 2C * H-C ^ 3 or R-5011 / S-5011 ο- n-C3H7

CnH2n+1CnH2n + 1

CnH2n+iCnH2n + i

◦Λη+1 ,◦Λη + 1,

^n^2n+1^ n ^ 2n + 1

^n^2n+1 6〇2C*H-CC-n^ n ^ 2n + 1 6〇2C * H-CC-n

^n^2n+1 87586 -81 - 200408865^ n ^ 2n + 1 87586 -81-200408865

CnH2n+1CnH2n + 1

;O^〇-CnH 加 V (nOPZ}2X*O ^ 〇-CnH plus V (nOPZ) 2X *

H W〆0—O^C〇〇'*O^ CC^ 〇 〇〇C_^^-〇-CnH2n+1 (nOPZPZ)2X*H W〆0—O ^ C〇〇 '* O ^ CC ^ 〇 〇〇C _ ^^-〇-CnH2n + 1 (nOPZPZ) 2X *

^n^2n+1 SS-(nCPZ)2BE^ n ^ 2n + 1 SS- (nCPZ) 2BE

CnH; 2n+1 RR-(nCPZ)2BE C2H5-CH-GH2〇—( 0 )~( 0 )-CN CH. C 15 87586 -82- 200408865CnH; 2n + 1 RR- (nCPZ) 2BE C2H5-CH-GH2〇— (0) ~ (0) -CN CH. C 15 87586 -82- 200408865

c2h5-ch-ch2—〇 CH3 ♦ CB 15c2h5-ch-ch2—〇 CH3 ♦ CB 15

R-811/S-811R-811 / S-811

CcHCcH

H c5h11—h &gt;~( o ycoo R - 1011/S-1011H c5h11—h &gt; ~ (o ycoo R-1011 / S-1011

CH c3h7〇,c6H13CH c3h7〇, c6H13

V R-2011/S-2011 87586V R-2011 / S-2011 87586

F FF F

R-3011/S-3011R-3011 / S-3011

R-4011/S-4011 -83 - 200408865R-4011 / S-4011 -83-200408865

CM 44CM 44

Pm^2m+1 O 1 F cnH2n+r〇-&lt; 〇 〇、 f CmH2m+1Pm ^ 2m + 1 O 1 F cnH2n + r〇- &lt; 〇 〇, f CmH2m + 1

FF

P(m)UQU-n-FP (m) UQU-n-F

CmH2 O F *2m+1CmH2 O F * 2m + 1

CmH 2m+1CmH 2m + 1

FF

P《m)UQU-n-CIP 《m) UQU-n-CI

CnH2n+r°~^ 0CnH2n + r ° ~ ^ 0

〇\ F〇 \ F

CmH 2m+1CmH 2m + 1

P(m)UQU-n-(0)T 87586 -84- 200408865 /CmH 〇 / ^ 2m+lP (m) UQU-n- (0) T 87586 -84- 200408865 / CmH 〇 / ^ 2m + l

P(m)UQU&gt;n-SF5 〇 /CnnH2m+1P (m) UQU &gt; n-SF5 〇 / CnnH2m + 1

FF

根據本專利申請之中間型媒體,宜包括·· -4或更多化合物,,其中以6或更多較佳,其選自由 表B之化合物所組成之群,及/或 與 -5或更多化合物,其選自由表B之化合物所組成之君, -2或更多化合物,其選自由表A之化合物所組成之群。 實例 ' 以下敘述之實例說明本發明,.而不以任何方式限制本發 明。此外’其亦對熟讀此藝之士表明,可藉由本發明而獲 得之性.質與性質的組合。 比較實例 製備具有下列組成份的中間型混合物。 87586 -85 - 200408865 化合物/縮寫 濃度/重量百分比 UZU-3A-N 12.0 UZU-5A-N 12.0 GZU-3A-N 12.0 GZU-4A-N 11.0 GZU-40-N 10.0 UVZG-3-N 10.0 CUZU-2-N 10.0 CUZU-3-N 10.0 CUZU-4-N 10.0 HP-5N.F 3.0 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°c : 23.7 ne(2〇C ’ 589.3奈米(nm)): 1.6187 △ n(2(TC,589.3 奈米):0.0925 將專利申凊DE 1 〇2 172 73 ·0之液晶混合物引進測試單元 中’並於攝氏24。的溫度,分析其光電性質。 如圖1所示,所使用之測試單元只有在兩基板之其中之一 上面有電極。製備具有光開關元件的光電測試單元,其中 光開關元件包含液晶混合物。基板係由玻璃組成。使用沒 有排列層的基板。電極結構係由彼此咬合的梳子狀電極所 組成。電極互相分隔2〇微米(// m),而電極的寬度是1〇微 米。電極的層厚度是6〇微米。所有電極皆位於同一平面 87586 -86- 200408865 上。調變媒體的層厚度是6.8微米。 單元的前面使用第一偏光板,而單元的後面則使用第二 偏光板當作分析器。兩偏光板之吸收軸彼此形成90度角。 偏光板之最大吸收軸與顯示器平面之電場分量之間的角度 是 45度。使用德國 Karlsruhe之 Autronic-Melchers 的 DMS 703 光電測量站,決定電壓/傳輸特性線。操作溫度是攝氏 24.0°。在垂直觀察上,獲得具有電場控制雙折射(舉例來 說,ECB)之典型單元的曲線。臨界電壓(V1G)的數值是40.5 伏特(V),中間灰色(mid-grey)電壓:的數值是56伏特(V50), 而飽和電壓(V9G)的數值則是65伏特(V)。在73伏特(V)時, 達到最大對比。在80伏特與90伏特電壓時,相對性對比分 別降回90%與50%。這些結果也顯示於下表中。 表2 :特徵電壓 實例 比較1 1 2 3 電極結構 根據附圖之電極類型 1 1 7 8 分隔///m 20 10 10 10 寬度/#m 10 5 5 5 特徵線 相對性對比/% 電壓/伏特(V) 0 0 0 0 0 10 40.5 26.5 25 21 50 56 38 33.5 29 90 65 46 41 35 100 73 51 45 37.5 90 80 60 n.d. 41 50 90 n.d. n.d. 47 87586 -87- 200408865 注意:n.d.:未決定。 由方、特欲、、袁之強烈溫度依賴,這裡的測量準確度只 有+/-3伏特(V)。 實例1 口根據本專利申請的教導,冑比較性實例之混合引進測試 單元中而其光電特性同樣是在攝氏24。的溫度下決定。測 試單元具有與比較性實财所使用者相同的結構,但是此 處之包極之間的分隔是10微米(从m),而電極寬度則是5微 米。 以此一万式後得&lt;單元,在26·5伏特(V)的電壓時,達到 10%的相對性對比,在38伏特時達到5〇%的相對性對比,並 ^在46伏特時達到9〇%的相對性對比。在51伏特⑺時達到 最大對比。在60伏特之電壓時,才目對性對比降回9〇%。這些 結果顯示於表2,與比較性實例的那些相比較。 從此表可以看出,實例1之液晶開關元件的所有特徵電 [都U低於比較性貫施例中的特徵電壓。對於前4個數 值,平均降低約31%。 實例2 將比較性實例與實例1中使用的混合,引進根據另一具體 實施例之測試單元中,而此-具體實施制是根據本專利 申請案之教導,其光電特性同樣是在攝氏24。下決定。測試 單兀具有如圖7所不結構。如實例丨中使用的單元,電極之 間的分隔是10微米(#m),而電極寬度則是5微米。可口 這裡的電極位料臺上。其具有—層15微米厚度的層疋並 87586 -88- 200408865 且由基板材料所組成。 以此一方法獲得之單元,在25伏特(V)的電壓時,達至| 10%的相對性對比,在33·5伏特時達到50%的相對性對=到 並且在41伏特時達到90%的相對性對比。在45伏特時達 到最大對比。這些結果同樣顯示於表2中。 ^Intermediate media according to this patent application should preferably include -4 or more compounds, of which 6 or more is preferred, selected from the group consisting of compounds of Table B, and / or with -5 or more Multiple compounds selected from the group consisting of compounds of Table B, -2 or more compounds selected from the group consisting of compounds of Table A. EXAMPLES The examples described below illustrate the invention without limiting it in any way. In addition, it also shows to those skilled in the art that the combination of sex, quality and properties that can be obtained by the present invention. Comparative Example An intermediate type mixture having the following composition was prepared. 87586 -85-200408865 Compound / abbreviation concentration / weight percentage UZU-3A-N 12.0 UZU-5A-N 12.0 GZU-3A-N 12.0 GZU-4A-N 11.0 GZU-40-N 10.0 UVZG-3-N 10.0 CUZU- 2-N 10.0 CUZU-3-N 10.0 CUZU-4-N 10.0 HP-5N.F 3.0 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / ° c: 23.7 ne (2〇 C '589.3 nm (nm)): 1.6187 Δ n (2 (TC, 589.3 nm): 0.0925 The liquid crystal mixture of patent application DE 1 〇 2 172 73 · 0 was introduced into the test unit' and at 24 ° C. Temperature, and analyze its photoelectric properties. As shown in Figure 1, the test unit used has electrodes on only one of the two substrates. A photoelectric test unit with an optical switching element is prepared, where the optical switching element contains a liquid crystal mixture. The substrate system Consists of glass. Uses a substrate without an alignment layer. The electrode structure consists of comb-shaped electrodes that engage each other. The electrodes are separated from each other by 20 microns (// m), and the width of the electrodes is 10 microns. The layer thickness of the electrodes is 60 microns. All electrodes are on the same plane 87586-86-200408865. The layer thickness is 6.8 microns. The first polarizer is used on the front of the unit, and the second polarizer is used as the analyzer on the back of the unit. The absorption axes of the two polarizers form a 90-degree angle with each other. The maximum absorption axis of the polarizer and the display The angle between the electric field components on the plane is 45 degrees. The DMS 703 photoelectric measuring station of Autronic-Melchers, Karlsruhe, Germany, is used to determine the voltage / transmission characteristic line. The operating temperature is 24.0 ° C. On vertical observation, a dual electric field control is obtained. The curve of a typical unit of refraction (for example, ECB). The value of the critical voltage (V1G) is 40.5 volts (V), the mid-grey voltage: the value is 56 volts (V50), and the saturation voltage ( The value of V9G) is 65 volts (V). At 73 volts (V), the maximum contrast is reached. At 80 volts and 90 volts, the relative contrast drops back to 90% and 50%, respectively. These results are also shown in In the table below: Table 2: Comparison of characteristic voltage examples 1 1 2 3 Electrode structure Electrode type according to the drawing 1 1 7 8 Separate // m 20 10 10 10 Width / # m 10 5 5 5 Relative comparison of characteristic lines / % Voltage / volt ( V) 0 0 0 0 0 10 40.5 26.5 25 21 50 56 38 33.5 29 90 65 46 41 35 100 73 51 45 37.5 90 80 60 n.d. 41 50 90 n.d. n.d. 47 87586 -87- 200408865 Note: n.d .: Not determined. Due to the strong temperature dependence of Fang, Teyu, and Yuanzhi, the measurement accuracy here is only +/- 3 Volts (V). Example 1 According to the teachings of this patent application, a mixture of comparative examples was introduced into a test cell and its photoelectric characteristics were also at 24 ° C. The temperature is determined. The test cell has the same structure as the user of the comparative real estate, but the separation between the enveloping poles here is 10 micrometers (from m), and the electrode width is 5 micrometers. With this 10,000 formula, the unit is 10% relative contrast at 26 · 5 volts (V), 50% relative contrast at 38 volts, and ^ at 46 volts. A 90% relative comparison was reached. Maximum contrast is reached at 51 volts. At a voltage of 60 volts, the eye-to-eye contrast dropped back to 90%. These results are shown in Table 2 compared to those of the comparative examples. It can be seen from this table that all the characteristic voltages of the liquid crystal switching element of Example 1 are lower than the characteristic voltages in the comparative embodiment. For the first 4 values, the average reduction is about 31%. Example 2 The comparative example and the mixture used in Example 1 were introduced into a test unit according to another specific embodiment, and this specific implementation is based on the teaching of this patent application, and its photoelectric characteristics are also at 24 ° C. make decision. The test unit has a structure as shown in FIG. As in the unit used in Example 丨, the separation between the electrodes is 10 micrometers (#m) and the electrode width is 5 micrometers. Delicious here on the electrode table. It has a layer with a thickness of 15 microns and is composed of a substrate material 87586 -88- 200408865. The unit obtained in this way achieves a relative contrast of | 10% at a voltage of 25 volts (V), reaches a relative value of 50% at 33.5 volts = to and reaches 90 at 41 volts % Relative comparison. Maximum contrast is reached at 45 volts. These results are also shown in Table 2. ^

從此表可以看出,實例2之液晶開關元件的所有特徵電 壓,再一次都明顯低於實例丨的特徵電壓。與比較性會例1 的那些相比,相對應的數值平均降低約4〇%(38%)。 J 實例3 將使用於比較性實例與以上實例丨與2的混合,引進根據 進一步具體實施例之測試單元中,其中該進一步具體會施 例係根據本專利申請案之教導,而且其光電特性同樣是在 攝氏24°的溫度下決定。 如圖8所示,測試單元具有位於基板兩側面上之電極對。 在兩基板上之直接相對的電極,彼此以導電的方式相連, 或者是施加相同的電位到這些電極上。如同實例丨與2,電 極之間的分隔是1 〇微米,而電極寬度是5微米。 以此一方法獲得之單元,在2丨伏特的電壓時,達到 1〇%的相對性對比,在29伏特時達到50%的相對性對比,並 且在35伏特時達到90%的相對性對比。在37·5 v時達到最大 對比。在4 1伏特(卩)與47伏特的電壓時,相對性對比分別降 回90%與50%。這些結果同樣顯示於表2中。 «此表可以看出’實例2之液晶開關元件的所有特徵電壓 P C ν降低了。與比較性實例的那些相比’相對應的數 87586 -89- 200408865 值平均降低約48%,因此數值只有比較性實施例那些的一半 大。 實例4 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 ME2N.F 3.0 ME3N.F 3.0 ME4N.F 8.0 ME5N.F 8.0 UM-3-N 4.0 PTG-3-N 8.0 PTG-5-N 8.0 PTU-40-N 8.0 PU-3-AN 8.0 PU-5-AN 8.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 10.0 HP-3N.F 4.0 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C : 23.8 ne(20°C,589·3 奈米(nm)): 1.6971 △ n(20°C,589·3奈米): 0· 1441 87586 -90- 200408865 ε N(20°C,1千赫茲(kHz)) : 47.4 △ ε (20°C,1千赫茲(kHz)) : 27.3 如實例3,製造光電顯示器並測量其特徵線。溫度是攝氏 24.0。。臨界電壓(V10)的值是22伏特(V),中間灰色電壓 (^5〇)的值是35.5伏特(¥),而飽和電壓(乂9〇)是44.5伏特(\〇。 實例 製備具有下列組成份的液晶混合物。 化合物/縮窝 濃度/重量百分比 UM-3-N 10.0 PYP-3N.F.F 15.0 HP-3N.F 10.0 CUZU-2-N 10.0 CUZU-3-N 10.0 UVZG-3-N 10.0 GZU-40-N 10.0 GZU-4-N 1.0 GZU-3A-N 12.0 UZU-3A-N 12.0 Σ 100.0 此一混合物具有下列性質 清除點(T(N,I))/t : 24.8 ne(21°C,589.3 奈米(nm)) : 1.6372 △ n(21°C,589.3奈米): 0.1122 如實例3 ’製造光電顯示器並測量其特徵線。溫度是攝氏 87586 -91 - 200408865 26·5°。特徵線從具有0%之相對強的低電壓開始,並隨著電 壓增加而上升。臨界電壓(V10)的值是18伏特(V),中間灰色 電壓(V^)的值是28伏特(V),而飽和電壓(V9())是34伏特 (V)。在37伏特(V)之電壓時,達到最大強度。 實例6 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 UM-3-N 10.0 GZU-3 A-N 10.0 UVZG-3-N 10.0 PWZU-3-N 7.0 PU-3-AN 16.0 PU-5-AN 16.0 PTG-3-N 15.0 PTU-40-N 15.0 HP-3N.F 1.0 Σ 100.0 此一混合物具有下列性質 參 • 清除點(T(N,I))/t : 22.9 ne(!9C ’ 589.3 奈米(nm)) : 1.7298 △ n(19°C,589·3 奈米): 0.1765 如實例3,製造光電顯示器並測量其特徵線。實施測量的 溫度是攝氏23.1。。 臨界電壓(V1(})的值是16.5伏特(V),中間灰色電壓(v5〇)的 87586 -92- 200408865 值是28伏特(V),而飽和電壓(V9〇)是3 1.5伏特(V)。最大相對 性對比是在34伏特(V) ° 實例7 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 CGU-2-F 11.0 CGU-3-F 11.0 CGU-5-F 10.0 BCH-3F.F.F 18.0 BCH-5F.F.F 14.0 PGU-2-F 11.0 PGU-3-F 11.0 PGU-5-F 11.0 BCH - 32 3.0 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C : 23.5 ne(2〇C ’ 589.3 奈米(nm)): 1.6138 △ n(20°C,589.3奈米): 〇· 0854 ε n(20°C,1千赫兹(kHz)): 16.5 △ ε (20 C ’ 1 千赫兹(kHz)): 9.1 實例8 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 87586 -93 - 200408865 ME2N.F 10.0 UM-3-N 8.5 PTG-5-N 15.0 PTG-3-N 15.0 PU-3-AN 15.0 PU-5-AN 15.0 PTU-40-N 15.0 HP - 3N.F 6.5 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C : 29.6 ne(20°C,589.3 奈米(nm)): 1.7549 △ n(20°C,589_3奈米): 0.2092 ε ^(20^:,1千赫茲(kHz)): 59.2 △ ε (20°C,1千赫茲(kHz)): 42.9It can be seen from this table that all the characteristic voltages of the liquid crystal switching element of Example 2 are again significantly lower than the characteristic voltages of Example 丨. Compared to those of Comparative Example 1, the corresponding values were reduced by an average of about 40% (38%). J Example 3 will be used in the comparison of the comparative example with the above examples 丨 and 2 and introduced into a test unit according to a further specific embodiment, wherein the further specific embodiment is based on the teaching of this patent application, and its photoelectric characteristics are the same It is determined at a temperature of 24 ° C. As shown in FIG. 8, the test unit has electrode pairs on both sides of the substrate. The electrodes that are directly opposite on the two substrates are connected to each other in a conductive manner, or the same potential is applied to these electrodes. As in Examples 1 and 2, the separation between the electrodes was 10 microns, and the electrode width was 5 microns. The unit obtained by this method reached a relative contrast of 10% at a voltage of 2 volts, a relative contrast of 50% at 29 volts, and a relative contrast of 90% at 35 volts. Maximum contrast was reached at 37.5 v. At 41 volts (卩) and 47 volts, the relative contrast drops back to 90% and 50%, respectively. These results are also shown in Table 2. «This table shows that all characteristic voltages P C ν of the liquid crystal switching element of Example 2 are reduced. Compared to those of the comparative example, the numbers 87586-89-200408865 decreased by about 48% on average, so the values were only half as large as those of the comparative example. Example 4 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration /% by weight ME2N.F 3.0 ME3N.F 3.0 ME4N.F 8.0 ME5N.F 8.0 UM-3-N 4.0 PTG-3-N 8.0 PTG-5-N 8.0 PTU-40-N 8.0 PU-3 -AN 8.0 PU-5-AN 8.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 10.0 HP-3N.F 4.0 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I )) / ° C: 23.8 ne (20 ° C, 589.3 nanometers (nm)): 1.6971 △ n (20 ° C, 589.3 nanometers): 0 · 1441 87586 -90- 200408865 ε N (20 ° C, 1 kilohertz (kHz)): 47.4 Δ ε (20 ° C, 1 kilohertz (kHz)): 27.3 As in Example 3, a photoelectric display was manufactured and its characteristic line was measured. The temperature is 24.0 degrees Celsius. . The value of the threshold voltage (V10) is 22 volts (V), the value of the intermediate gray voltage (^ 50) is 35.5 volts (¥), and the saturation voltage (乂 90) is 44.5 volts (\ 〇. Example preparation has the following Liquid crystal mixture of components. Compound / condensation concentration / weight percent UM-3-N 10.0 PYP-3N.FF 15.0 HP-3N.F 10.0 CUZU-2-N 10.0 CUZU-3-N 10.0 UVZG-3-N 10.0 GZU-40-N 10.0 GZU-4-N 1.0 GZU-3A-N 12.0 UZU-3A-N 12.0 Σ 100.0 This mixture has the following properties. Clearance point (T (N, I)) / t: 24.8 ne (21 ° C, 589.3 nanometers (nm)): 1.6372 △ n (21 ° C, 589.3 nanometers): 0.1122 The photovoltaic display was manufactured as in Example 3 and its characteristic line was measured. The temperature was 87586-91-200408865 26 · 5 °. The characteristic line starts with a relatively strong low voltage of 0% and rises with increasing voltage. The value of the threshold voltage (V10) is 18 volts (V), and the value of the middle gray voltage (V ^) is 28 volts (V ), And the saturation voltage (V9 ()) is 34 volts (V). The maximum strength is reached at a voltage of 37 volts (V). Example 6 A liquid crystal mixture having the following composition was prepared. Compound / Abbreviation concentration /% by weight UM-3-N 10.0 GZU-3 AN 10.0 UVZG-3-N 10.0 PWZU-3-N 7.0 PU-3-AN 16.0 PU-5-AN 16.0 PTG-3-N 15.0 PTU-40 -N 15.0 HP-3N.F 1.0 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / t: 22.9 ne (! 9C '589.3 nm (nm)): 1.7298 △ n ( 19 ° C, 589.3 nm): 0.1765 As in Example 3, a photovoltaic display was manufactured and its characteristic line was measured. The temperature at which the measurement was performed was 23.1 ° C. The value of the threshold voltage (V1 (}) was 16.5 volts (V), The middle gray voltage (v50) has a value of 87586 -92- 200408865 of 28 volts (V) and the saturation voltage (V90) is 3 1.5 volts (V). The maximum relative contrast is at 34 volts (V) ° Example 7 A liquid crystal mixture having the following composition was prepared: Compound / abbreviation concentration / weight percent CGU-2-F 11.0 CGU-3-F 11.0 CGU-5-F 10.0 BCH-3F.FF 18.0 BCH-5F.FF 14.0 PGU-2- F 11.0 PGU-3-F 11.0 PGU-5-F 11.0 BCH-32 3.0 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / ° C: 23.5 ne (2〇C '589.3 na Meter (nm)): 1.6138 △ n (20 ° C, 589.3 nm): 0. 0854 ε n (20 ° C, 1 kilohertz (kHz)): 16.5 △ ε (20 C '1 kilohertz (kHz)): 9.1 Example 8 Preparation has the following Composition of liquid crystal mixture. Compound / abbreviation concentration /% by weight 87586 -93-200408865 ME2N.F 10.0 UM-3-N 8.5 PTG-5-N 15.0 PTG-3-N 15.0 PU-3-AN 15.0 PU-5-AN 15.0 PTU-40- N 15.0 HP-3N.F 6.5 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / ° C: 29.6 ne (20 ° C, 589.3 nm (nm)): 1.7549 △ n ( 20 ° C, 589_3 nm): 0.2092 ε ^ (20 ^ :, 1 kilohertz (kHz)): 59.2 △ ε (20 ° C, 1 kilohertz (kHz)): 42.9

實例9 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 UM-3-N 8.0 GZU-3A-N 8.0 UVZG-3-N 8.0 PWZU-3-N 10.0 PYP-40N.F.F 6.0 PU-3-AN 15.0 87586 -94- 200408865 PU-5-AN 15.0 PTG-3-N 15.0 PTU-40-N 15.0 Σ 100.0 此一媒體具有攝氏2 1 °的清除點。 實例1 0 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 PTG-3-N 15.0 PTG-5-N 15.0 PTU-40-N 15.0 PU-5-AN 9.0 PGU-5-F 14.0 HP-3N.F 7.0 HP-5N.F 8.0 DU-2-N 15.0 PCH-3N.F.F 2.0 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C : 24.2 ne(20°C,589.3 奈米(nm)) ·· 1.6857 △ n(20°C,589.3 奈米): 0· 1405 ε ^(201,1千赫茲(kHz)): 45.8 △ ε (20°C,1千赫茲(kHz)): 27.8Example 9 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration /% by weight UM-3-N 8.0 GZU-3A-N 8.0 UVZG-3-N 8.0 PWZU-3-N 10.0 PYP-40N.FF 6.0 PU-3-AN 15.0 87586 -94- 200408865 PU- 5-AN 15.0 PTG-3-N 15.0 PTU-40-N 15.0 Σ 100.0 This media has a clearing point of 21 ° C. Example 10 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration /% by weight PTG-3-N 15.0 PTG-5-N 15.0 PTU-40-N 15.0 PU-5-AN 9.0 PGU-5-F 14.0 HP-3N.F 7.0 HP-5N.F 8.0 DU -2-N 15.0 PCH-3N.FF 2.0 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / ° C: 24.2 ne (20 ° C, 589.3 nm (nm)) ·· 1.6857 △ n (20 ° C, 589.3 nm): 0 · 1405 ε ^ (201, 1 kilohertz (kHz)): 45.8 △ ε (20 ° C, 1 kilohertz (kHz)): 27.8

87586 -95- 200408865 實例11 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 CCP-2F.F.F 10.0 CCP-3F.F.F 10.0 CCP-5F.F.F 10.0 ME2N.F 10.0 ME3N.F 10.0 ME4N.F 7.0 ME5N.F 15.0 DU-2-N 6.0 PCH-5N.F.F 2.0 UM-3-N 10.0 HP-3N.F 10.0 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C : 30.1 ne(20°C,589·3 奈米(nm)) ·· 1.6095 △ n(20°C,589_3奈米): 0· 1035 ε 丨l(20°C,1千赫茲(kHz)): 62.6 △ ε (20°C,1千赫茲(kHz)): 45.9 實例12 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 87586 -96- 200408865 UM-3-N 6.0 GZU-3A-N 10.0 UVZG - 3-N 12.0 PWZU-3-N 10.0 PU-3-AN 15.0 PU-5-AN 15.0 PTG-3-N 15.0 PTU-40-N 15.0 HP-3N.F 2.0 Σ 100.0 此一混合物具有下列性質:87586 -95- 200408865 Example 11 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration /% by weight CCP-2F.FF 10.0 CCP-3F.FF 10.0 CCP-5F.FF 10.0 ME2N.F 10.0 ME3N.F 10.0 ME4N.F 7.0 ME5N.F 15.0 DU-2-N 6.0 PCH-5N .FF 2.0 UM-3-N 10.0 HP-3N.F 10.0 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / ° C: 30.1 ne (20 ° C, 589.3 nm) (Nm)) · 1.6095 △ n (20 ° C, 589_3 nanometers): 0 · 1035 ε 丨 l (20 ° C, 1 kilohertz (kHz)): 62.6 △ ε (20 ° C, 1 kilohertz ( kHz)): 45.9 Example 12 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration / weight percent 87586 -96- 200408865 UM-3-N 6.0 GZU-3A-N 10.0 UVZG-3-N 12.0 PWZU-3-N 10.0 PU-3-AN 15.0 PU-5-AN 15.0 PTG- 3-N 15.0 PTU-40-N 15.0 HP-3N.F 2.0 Σ 100.0 This mixture has the following properties:

△ ε (20°C,1千赫茲(kHz))&gt;0 實例13 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比Δ ε (20 ° C, 1 kilohertz (kHz)) &gt; 0 Example 13 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation Concentration / weight percent

CGU-2-F 11.0 CGU-3-F 11.0 CGU-5-F 10.0 BCH-3F.F.F 16.0 BCH - 5F.F.F 14.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 9.0 PCH-7F 9.0 87586 -97- 200408865 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C : 11.5 △ ε (20°C,1千赫茲(kHz))&gt;0 實例14 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 CGU-2-F 12.0 CGU-3-F 12.0 CGU-5-F 11.0 BCH-3F.F.F 18.0 BCH-5F.F.F 14.0 PGU-2-F 11.0 PGU-3-F 11.0 PGU-5-F 11.0 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C : 15.5 △ ε (20°C,1千赫茲(kHz))&gt;0 實例1 5 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 ME2N.F 3.0 ME3N.F 3.0 87586 -98- 200408865 ME4N.F 5.0 ME5N.F 3.0 UM-3-N 4.0 PTG-3-N 8.0 PTG-5-N 8.0 PTU-40-N 7.0 PU-3-AN 8.0 PU-5-AN 8.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 10.0 HP-3N.F 4.0 HP-4N.F 5.0 HP-5N.F 4.0 Σ 100.0CGU-2-F 11.0 CGU-3-F 11.0 CGU-5-F 10.0 BCH-3F.FF 16.0 BCH-5F.FF 14.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 9.0 PCH- 7F 9.0 87586 -97- 200408865 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / ° C: 11.5 △ ε (20 ° C, 1 kilohertz (kHz)) &gt; 0 Example 14 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration /% by weight CGU-2-F 12.0 CGU-3-F 12.0 CGU-5-F 11.0 BCH-3F.FF 18.0 BCH-5F.FF 14.0 PGU-2-F 11.0 PGU-3-F 11.0 PGU -5-F 11.0 Σ 100.0 This mixture has the following properties: Clearance point (T (N, I)) / ° C: 15.5 Δ ε (20 ° C, 1 kilohertz (kHz)) &gt; 0 Example 1 5 Preparation A liquid crystal mixture having the following components. Compound / abbreviation concentration /% by weight ME2N.F 3.0 ME3N.F 3.0 87586 -98- 200408865 ME4N.F 5.0 ME5N.F 3.0 UM-3-N 4.0 PTG-3-N 8.0 PTG-5-N 8.0 PTU-40- N 7.0 PU-3-AN 8.0 PU-5-AN 8.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 10.0 HP-3N.F 4.0 HP-4N.F 5.0 HP-5N.F 4.0 Σ 100.0

此一混合物具有下列性質: 清除點(T(N,I))/°C : 42.3 △ ε (20°C,1千赫茲(kHz))&gt;0 實例1 6 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 ME2N.F 3.0 ME3N.F 3.0 ME4N.F 8.0 87586 -99- 200408865 ME5N.F 9.0 UM-3-N 4.0 PTG-3-N 9.0 PTG-5-N 8.0 PTU-40-N 8.0 PU-3-AN 9.0 PU-5-AN 9.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 10.0 Σ 100.0This mixture has the following properties: Clearance point (T (N, I)) / ° C: 42.3 Δ ε (20 ° C, 1 kilohertz (kHz)) &gt; 0 Example 16 6 Preparation of a liquid crystal mixture having the following composition . Compound / abbreviation concentration /% by weight ME2N.F 3.0 ME3N.F 3.0 ME4N.F 8.0 87586 -99- 200408865 ME5N.F 9.0 UM-3-N 4.0 PTG-3-N 9.0 PTG-5-N 8.0 PTU-40- N 8.0 PU-3-AN 9.0 PU-5-AN 9.0 PGU-2-F 10.0 PGU-3-F 10.0 PGU-5-F 10.0 Σ 100.0

此一混合物具有下列性質: 清除點(T(N,I))/°C : 16.0 △ ε (2(TC,1千赫茲(kHz))&gt;0 實例1 7This mixture has the following properties: Clearance point (T (N, I)) / ° C: 16.0 Δ ε (2 (TC, 1 kilohertz (kHz))) &gt; 0 Example 1 7

製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 YY-2-02 8.0 YY - 3-02 8.0 YY-40-04 10.0 YY-V10-01V 8.0 PY-3 - 02 15.0 PY-1-02 11.0 CYY-3-02 10.0 87586 -100- 200408865 CYY-5-02 PTP-302FF PTP-502FF Σ 此一混合物具有下列性質: △ ε (20°C,1千赫茲(kHz))&lt;0 實例1 8 10.0 10.0 10.0 100.0 製備具有下列組 成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 YY-2-02 8.0 YY-3-02 8.0 YY-30-02 6.0 YY-40-04 6.0 YY-V10-01V 6.0 PY-3-02 9.0 PY-1-02 12.0 CYY-3-02 9.0 CYY-5-02 9.0 PTP-302FF 10.0 PTP-502FF 10.0 CPY-3-02 5.0 CCYY-2-02 2.0 Σ 100.0 此一混合物具有下列性質:A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration /% by weight YY-2-02 8.0 YY-3-02 8.0 YY-40-04 10.0 YY-V10-01V 8.0 PY-3-02 15.0 PY-1-02 11.0 CYY-3-02 10.0 87586 -100- 200408865 CYY-5-02 PTP-302FF PTP-502FF Σ This mixture has the following properties: △ ε (20 ° C, 1 kilohertz (kHz)) &lt; 0 Example 1 8 10.0 10.0 10.0 100.0 Preparation has the following Composition of liquid crystal mixture. Compound / abbreviation concentration /% by weight YY-2-02 8.0 YY-3-02 8.0 YY-30-02 6.0 YY-40-04 6.0 YY-V10-01V 6.0 PY-3-02 9.0 PY-1-02 12.0 CYY -3-02 9.0 CYY-5-02 9.0 PTP-302FF 10.0 PTP-502FF 10.0 CPY-3-02 5.0 CCYY-2-02 2.0 Σ 100.0 This mixture has the following properties:

87586 -101 - 200408865 △ e(20°C,1千赫茲(kHz))&lt;0 實例19 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 PYP-5F 25.0 PCH-32 16.5 PCH-301 15.0 PCH-302 1 1.3 BCH-32 14.3 BCH-52 10.5 CBC-33 3.7 CBC-53 3.7 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/°C ·· 41.0 ne(20°C,589.3 奈米(nm)) : 1.6157 △ n(20°C,589.3 奈米): 0.1066 ε 丨丨(2(TC,1千赫茲(kHz)) : 5.7 △ ε (20°C,1千赫茲(kHz)) : 2.4 實例20 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 PCH-5F 14.6 PCH-6F 12.9 102· 87586 200408865 PCH-7F PTP-20F PTP-40F PTP-60F Σ 此一混合物具有下列性質 12.5 15.2 19.1 25.7 100.0 清除點(T(N,I))/°C : 27.0 ne(2(TC, 5 89.3 奈米(nm)): 1.6470 △ n(20〇C ,589.3 奈米): 0.1350 ε丨丨(2(TC ,1千赫茲(kHz)): 7.4 Δ ε (20°C ,1千赫茲(kHz)): 3.6 k1(20°C )/pN : 5.7 k2(20°C )/pN : 3.1 k3(20〇C )/pN : 6.387586 -101-200408865 Δe (20 ° C, 1 kilohertz (kHz)) &lt; 0 Example 19 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration /% by weight PYP-5F 25.0 PCH-32 16.5 PCH-301 15.0 PCH-302 1 1.3 BCH-32 14.3 BCH-52 10.5 CBC-33 3.7 CBC-53 3.7 Σ 100.0 This mixture has the following properties: Clear Point (T (N, I)) / ° C · 41.0 ne (20 ° C, 589.3 nm): 1.6157 △ n (20 ° C, 589.3 nm): 0.1066 ε 丨 丨 (2 (TC , 1 kilohertz (kHz)): 5.7 Δ ε (20 ° C, 1 kilohertz (kHz)): 2.4 Example 20 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration / weight percent PCH-5F 14.6 PCH- 6F 12.9 102 · 87586 200408865 PCH-7F PTP-20F PTP-40F PTP-60F Σ This mixture has the following properties 12.5 15.2 19.1 25.7 100.0 Clearance point (T (N, I)) / ° C: 27.0 ne (2 (TC , 5 89.3 nanometers (nm)): 1.6470 Δ n (20 ° C, 589.3 nanometers): 0.1350 ε 丨 (2 (TC, 1 kilohertz (kHz)): 7.4 Δ ε (20 ° C, 1,000 Hertz (kHz)): 3.6 k1 (20 ° C) / pN: 5.7 k2 (20 ° C) / pN: 3.1 k3 (20〇C) / pN: 6.3

實例21 製備具有下列組成份的液晶混合物Example 21 Preparation of a liquid crystal mixture having the following components

化合物/縮寫 CCP-2F.F.F CCP-20CF3 CCP-30CF3 CCP-40CF3 PCH-3 Κ9 BCH-3F.F.F 濃度/重量百分比 4.0 4.0 5.0 2.0 6.0 4.0 12.0 87586 -103 200408865 CGU-2-F 10.0 CGU-3-F 6.0 CCZU-2-F 5.0 CCZU-3-F 16.0 CCZU-5-F 5.0 CC-5-V 2.0 CCP-V-1 10.0 CC-3-V1 9.0 Σ 100.0 此一混合物具有下列性質: 清除點(T(N,I))/t:: 30.0 ne(20°C,589·3 奈米(nm)): 1.5856 △ n(20°C,589.3 奈米): 0.1007 ε ^(20^:,1千赫茲(kHz)): 14.5 △ ε (20°C,1千赫茲(kHz)): 10.6 實例22 製備具有下列組成份的液晶混合物。 化合物/縮寫 PCH-5 PCH-302 PCH-304 K15 Σ 濃度/重量百分比 19.0 31.0 31.0 19.0 100.0 此一混合物具有下列性質: 87586 -104- 200408865 清除點(T(N,I))/°C : 33.0 ne(20°C,589.3 奈米(nm)): 1.6010 △ n(20°C,589.3 奈米): 0.1100 ε 丨丨(20°(:,1千赫茲(kHz)): 9.5 △ ε (20°C,1千赫茲(kHz)): 4.9 實例23 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 PCH-302FF 26.0 PCH-502FF 26.0 CCP-V-1 15.0 CC-5-V 19.0 8.0 6.0 100.0 CCH-35 BCH-32 Σ 此一混合物具有下列性質: 清除點(T(N,I))/°C : 50.0 △ ε (20°C,1千赫茲(kHz))&lt;0 實例24 製備具有下列組成份的液晶混合物。 化合物/縮寫 濃度/重量百分比 PCH-302FF 26.0 PCH-502FF 26.0 CCP-V-1 13.0 105 - 87586 200408865 CC-5-V 16.0 CCH-35 5.0 BCH-32 9.0 CCP-21FF 3.0 PCH-301 Σ 100.0 此一混合物具有下列性質: 5〇.〇 1.5640 0.0821 3.9 -2.9 ne(20°C ’ 589.3 奈米(nm)): △ n(20°C,589.3 奈米): ε n(20°C,1千赫兹(kHz)): △ ε (20°C,1 千赫茲(kHz)): 7 i(20°C)/mPa -s : ?2 如實例1至3所敘述的,根據本專 一合物,引進測試單元中專:,教導’將實例4 所件 &lt; 光碉變元件,且 ,於這三個具體實例中所描述之光調變元件的良好性 貝’尤其是與具有相對應之傳統電極結構的光調變元件相 比時’其特徵電壓呈現類似之明顯的降低(與比較性”… 比較)。 t較實例25Compound / abbreviation CCP-2F.FF CCP-20CF3 CCP-30CF3 CCP-40CF3 PCH-3 Κ9 BCH-3F.FF Concentration / weight percent 4.0 4.0 5.0 2.0 6.0 4.0 12.0 87586 -103 200408865 CGU-2-F 10.0 CGU-3 -F 6.0 CCZU-2-F 5.0 CCZU-3-F 16.0 CCZU-5-F 5.0 CC-5-V 2.0 CCP-V-1 10.0 CC-3-V1 9.0 Σ 100.0 This mixture has the following properties: Clear point (T (N, I)) / t: 30.0 ne (20 ° C, 589.3 nanometers (nm)): 1.5856 △ n (20 ° C, 589.3 nanometers): 0.1007 ε ^ (20 ^: ,, 1 kilohertz (kHz)): 14.5 Δ ε (20 ° C, 1 kilohertz (kHz)): 10.6 Example 22 A liquid crystal mixture having the following composition was prepared. Compound / Abbreviation PCH-5 PCH-302 PCH-304 K15 Σ Concentration / weight percent 19.0 31.0 31.0 19.0 100.0 This mixture has the following properties: 87586 -104- 200408865 Purge point (T (N, I)) / ° C: 33.0 ne (20 ° C, 589.3 nanometers (nm)): 1.6010 △ n (20 ° C, 589.3 nanometers): 0.1100 ε 丨 (20 ° (:, 1 kilohertz (kHz)): 9.5 △ ε (20 ° C, 1 kilohertz (kHz)): 4.9 Example 23 A liquid crystal mixture having the following composition was prepared. Compound / abbreviation concentration / weight percent PCH-302FF 26.0 PCH-502FF 26.0 CCP-V-1 15.0 CC-5-V 19.0 8.0 6.0 100.0 CCH-35 BCH-32 Σ This mixture has the following properties: Clearance point (T (N, I)) / ° C: 50.0 △ ε (20 ° C, 1 kilohertz (kHz)) &lt; 0 Example 24 Prepare a liquid crystal mixture with the following components: Compound / abbreviation concentration / weight percent PCH-302FF 26.0 PCH-502FF 26.0 CCP-V-1 13.0 105-87586 200408865 CC-5-V 16.0 CCH-35 5.0 BCH-32 9.0 CCP -21FF 3.0 PCH-301 Σ 100.0 This mixture has the following properties: 50.01.5640 0.0821 3.9 -2.9 ne (20 ° C '589.3 nm (nm)): △ n (20 ° C, 589.3 nm): ε n (20 ° C, 1 kilohertz (kHz)): △ ε (20 ° C, 1 kilohertz (kHz)): 7 i (20 ° C) / mPa -s:? 2 As described in Examples 1 to 3, according to the present compound, a test unit was introduced: "Teach the element of Example 4 &lt; the photoconversion element, and the light modulation described in these three specific examples The goodness of the element, especially when compared with a light modulating element having a corresponding conventional electrode structure, has a similar and significant reduction in its characteristic voltage (compared with a comparative "..." comparison with Example 25

製備具有下列 化合物/縮寫 GZU-3A-N 組成伤的液晶混合物。 濃度/重量百分比 15.0 GZU-4A-N , c Λ 87586 -106-A liquid crystal mixture having the following compounds / abbreviations GZU-3A-N was prepared. Concentration / weight percent 15.0 GZU-4A-N, c Λ 87586 -106-

GZU-30-N !5.〇 8.0 9.0 9.0 9.0 6.0 6.0 !〇〇.0GZU-30-N! 5.〇 8.0 9.0 9.0 9.0 6.0 6.0! 〇〇.0

UZU-3A-NUZU-3A-N

CUZP-2N.F.FCUZP-2N.F.F

CUZP-3N.F.FCUZP-3N.F.F

CUZP-4N.F.FCUZP-4N.F.F

HP-3N.FHP-3N.F

HP-4N.FHP-4N.F

HP-5N.F Σ 此一混合物具有下列性質: 清除點(T(N,I))/°C : 56 8 將此一比較性具體實施例之、、曰一 中並做分析,丨中該單元具有厂合物’引進標準測試單元 微米Um)之電極分隔,这 〇从米電極寬度與10 、 ^些結果顯示於表3中。 實例25 、,丨μ豕+寻利申請之教導,將 實例25a之液晶混合物, &quot;知比 从曰^丨進測试早凡中。所得之光調變 、 個具體實例中所描述之光調變元件 良好性質’而如三會你丨1 &quot;、 土 3所述,與比較實例2 5 a的那此 比,其有相同的改善。 二 C25 表例舉 實例 電極結構HP-5N.F Σ This mixture has the following properties: Clearance point (T (N, I)) / ° C: 56 8 This comparative example, the first, the first, and the analysis, and the analysis The unit has the electrode separation of the introduction of the standard test unit (micron Um), and the results are shown in Table 3 from the electrode width and the electrode width. The teaching of Example 25, μ 之 + profit-seeking application, the liquid crystal mixture of Example 25a, &quot; knowledge is better than the previous test. The obtained light modulation, the good properties of the light modulation element described in a specific example, and as described in Sanhui You 1 &quot; and Soil 3, it has the same ratio as that of Comparative Example 2 5a. improve. Two C25 table exemplified example electrode structure

87586 25 7 C26 26 ' 107- 7 200408865 類型 分隔/微米(// m) 10 10 10 10 寬度/微米(// m) 10 5 10 5 物理參數 T(N?I)/°C 56.8 n.d. n.d. n.d. Tchar. /°C 60 n.d. n.d. n.d. Ttrans. / °C n.d. n.d. 18.1 16.5 T(BP,I)/〇C n.d. n.d. 25,7 26.5 特徵電區 T-T(N,I)/° V7〇/V Vioo/V 0.5 n.d. n.d. 39 27 1.0 76 n.d. 40 28 1.5 84 n.d. n.d. n.d. 2.0 92 n.d. 42 31 2.5 100 n.d. n.d. n.d. 3.0 107 n.d. 43 33 4.0 121 n.d. 45 34 5.0 135 n.d. 46 35 6.0 n.d. n.d. 46.5 36.5 溫度依賴 V7〇(Tchar+2°)/V 92 n.d. n.d. n.d. dV70/dT / V/角度 15 n.d. n.d. n.d. dV*70/dT / %/角度 17 n.d. n.d. n.d. 87586 -108- 200408865 vioo(Tchar.+2〇)/V n.d. n.d. 42+/-2§ 31+/-38 dV1()()/dT/V/角度 n.d. n.d. 1.5+/-1§ 2+/-2§ dV + 100/dT/%/角度 n.d. n.d. 4+/-3 § 8+/-5§ 注意··參見表1。 dVx/dT : [(V70(Tchar+2.5o)-Vx(Tchar+1.5〇))/l。] dV*7〇/dT : [(Vx(Tchar+2.5o)-V70(Tchar+1.5o)^ ·1°)] § :此處使用Ttrans.而不是Tchar. 實例26 將兩種化合物B(OC)2C*H-C-3(=對掌性摻雜物R-5011)與 P(m)UQU-n-F,每一種各5%,添加到實例25的液晶混合物 中’其中液晶混合物佔90.0%。 根據本發明之教導,如實例1至3,將混合物引進測試單 元中,並與標準測試單元,針對其性質做分析,尤其是其 相的行為與其光電特性。 如同在標準單元中發現轉變溫度,Tt_s=i8 rc,在本發 明之單兀中發現Ttrans=165^ 〇 表3顯TF包含光電特性的結果。 【圖式簡單說明】 此圖概要地顯示開關元件或 #; 廿丄 丁心偁忏的結 :面,其中二關罐 間。彼此=二變《⑺位於基板⑴與(1,)之内表面 (4),…:^位,可以施加於電極結構之兩電柄(3、 (4)其中電極結構位於基板⑴之内 —(3' 電荷或電流源。從〜發出的線,象徵電::電壓 ^極的電氣饋 87586 200408865 (electric feed lines) 〇 圖2至圖6:這些圖概要地顯示根據本發明之開關元件之5 種不同具體實施例的結構截面,叾中開i件具有突起的 電極。 在圖2中,電極具有與圖〗所描 曰 &lt; 具肢貫施例類似的設 計。電極(3)與(4)具有長方形或幾乎是長方形的截面。可 是’電極具有-厚度,其和調變層⑺之層厚度[d⑽相比, 或是和特徵層厚度相比,是不可以忽略的,舉例來說,其 通苇具有範圍從〇 · 3微米(# m)到5微米的厚度。 在圖3中,冑極(3)與⑷具有與圖2所描緣之具體實施例類 似的設計。可是,這些電極延伸超過調變層(2)之整個厚产 [d(2)]。 ' 在圖4中,電極(3)與(4)再一次具有與圖2所描繪之具體實 施例類似的設計。可是電極(3)與(4)的層厚度不是常數,而 是與位置有關。電極具有三角形截面。 在圖5中,電極(3)與(4)具有與圖4所描繪之具體實施例類 _ 似的设計’其中圖4之具體實施例具有取決於位置的層厚 度可疋,這裡的這些電極每一個是由兩層(3)與(3,)與(4) · A (4 )所組成,其中一層疊在另一層的上面,而每一上層 · (3 )與(4 )分別覆蓋比各自對應之較低層(3)與(4)小的開關元 件區域。 在圖6中,電極(3)與(4)再一次具有與圖2所描繪之具體實 施例類似的設計。可是,此處之電極(3)與(4)具有圓形截 面,並且是中空導體的形式。 87586 -110- 200408865 圖7 .此圖概要地_不開關元件之具體實施例之較佳具體 實施例的結構截面,其係根據本發明。此處之電極具有與 圖1所描績之具體實施例類似的設計。可是,電極並不是直 接位於基板的表面上,而是在具有特定厚度之固態絕緣層 ⑺與⑷上,舉例來說,厚度通常是】微米(㈣至〗微米。 圖「此圖概要地顯示根據本發明之開關元件之較佳具體 實施例的結構截面,其具有—電極結構,纟中電極結構由 兩層所組成一層位於基板其中之一上面。此處之電極 如此設計’使得施加第-電位於第—基板⑴上之電極⑺, 並且施加相同雷位於筮-i &amp; / ,,、 J兒位万、罘一基板(1,)之第二電極(3,)。同樣 地’施加第二電位於第一基板之電極⑷,也可以施加第二 電位於第二基板之電極(4,)。在每—種情況中,電極對⑺ 與(3,)以及(4)與(4,)是彼此相對的。 圖9至!3:這些圖概要地顯示根據本發明之開關元件之久 種不同具體實施例結構的截面,其係根據本發明之進一步 幸父佳具體貫施例。 圖9顯不一具體實施例,其表示圖7與8所描緣之具體實施 例的結合。和圖7所描繪之具體實施例相反,突起之電柄(3) ,⑷不只是形成於基板表面之固態絕緣層(5)與(6)上。而 疋、’如圖8所描緣的具體實施例’電極(巧與⑹皆形成於相 對(基板(1,)的表面上。如同第—基板上相對應的電極,這 些電極藉由固態絕緣層(5,)與(6,),從表面〇,)突起。 在圖1〇中,電極具有與圖7中所描緣之具體實施例類似的 设计。可是,如圖8所描績之具體實施例中的電極,每一個 87586 111 - 200408865 由=層⑺與(3,),及⑷與(4,)所組成,並以成對的方式對每 =同的電位。可是’和圖8所示之具體實 (4 態絕緣層調變層(2)分開來,^分別被固 在圖U中,電極具有與圖1〇所示之具體實施例類似的設 計。可是,如圖7所示之具體實施例,這裡的第—層電極社 構(3)與⑷,分別是以固態絕緣層(5)與⑹從基板分離開來 (哭起)的。如_描述之具體實施例,可以施加相同電位 的兩層電極結構⑺與(3,)及⑷與(4,),分別藉由固態絕緣層 (5’)與(6,),將彼此分離開來。 在圖12中’電極結構之每一個電極皆由四層導電層⑺至 (3’’,),與(4)至(4,,,)所組成。在每一種情況下,這四層中= 兩層位於相同的基板上。層(3)與(3,),及(4)與(4,)位於具有 表面(1)的基板上,而(3,,)與(3,,,),及(4,,)與(4,,,)則位於具 有表面(1,)的基板上。層(3)與(4)或(3,,)與(4,,)鄰接各自之 基板(1)或(1,),其分別由固態絕緣層(5)與(6)或(5,)與(6,)分 開。同樣地,位於相同基板[(3)與0,)]及[(4)與(4,)],以及 [(3”)與(3,’’)]及[(4,,)與(4,,,)]上的兩層導電層,由固態導電 層(5,)與(6,)及(5’’,)與(6’”),將彼此分開。 在圖13中,如圖12所示之具體實施例,電極結構之每一 電極皆由四層導電層(2)至(2,,,)或(3)至(3,,,)所組成。可 是,此處不同順序的導電層與絕緣層延伸到整個調變層的 層厚度。因此,較裡面的導電層對(2,)與(2,,,)及(3,)與 87586 -112- 200408865 (3’’’),同樣是分別由固態絕緣層(5’’’’)與(6’’’’),將彼此分 開。 【圖式代表符號說明】 1 :第1基板之表面, Γ :第2基板之表面, 2 :調變層, 3至3’’’ :電極結構之第1至第4導電層,其上可以施加第1 電位’ 4至4’’,··電極結構之第1至第4導電層,其上可以施加第2 電位, 5至5’’’’ :電極結構之第1至第5固態絕緣層,其分隔電極 結構之導電層,而導電層上面可以施加第1電位, 6至6’’’’ : 電極結構之第1至第5固態絕緣層,其分隔電 極結構之導電層,而導電層上面可以施加第2電位, :電壓,電荷或電流源。 從νορ引出的線指示其上施加相同電位之電極結構的導電 層0 87586 -113 -87586 25 7 C26 26 '107- 7 200408865 Type separation / micron (// m) 10 10 10 10 Width / micron (// m) 10 5 10 5 Physical parameter T (N? I) / ° C 56.8 ndndnd Tchar. / ° C 60 ndndnd Ttrans. / ° C ndnd 18.1 16.5 T (BP, I) / 〇C ndnd 25,7 26.5 Characteristic electrical area TT (N, I) / ° V7〇 / V Vioo / V 0.5 ndnd 39 27 1.0 76 nd 40 28 1.5 84 ndndnd 2.0 92 nd 42 31 2.5 100 ndndnd 3.0 107 nd 43 33 4.0 121 nd 45 34 5.0 135 nd 46 35 6.0 ndnd 46.5 36.5 Temperature dependent V7〇 (Tchar + 2 °) / V 92 ndndnd dV70 / dT / V / Angle 15 ndndnd dV * 70 / dT /% / Angle 17 ndndnd 87586 -108- 200408865 vioo (Tchar. + 2〇) / V ndnd 42 +/- 2§ 31 +/- 38 dV1 () () / dT / V / Angle ndnd 1.5 +/- 1§ 2 +/- 2§ dV + 100 / dT /% / Angle ndnd 4 +/- 3 § 8 +/- 5§ Note ·· See Table 1. dVx / dT: [(V70 (Tchar + 2.5o) -Vx (Tchar + 1.5〇)) / l. ] dV * 7〇 / dT: [(Vx (Tchar + 2.5o) -V70 (Tchar + 1.5o) ^ · 1 °)] §: Ttrans. is used here instead of Tchar. Example 26 Two compounds B ( OC) 2C * HC-3 (= palmar dopant R-5011) and P (m) UQU-nF, each 5%, were added to the liquid crystal mixture of Example 25, where the liquid crystal mixture accounted for 90.0%. According to the teaching of the present invention, as in Examples 1 to 3, the mixture is introduced into a test unit and analyzed with a standard test unit for its properties, especially its phase behavior and its optoelectronic properties. As found in the standard cell, Tt_s = i8 rc, Ttrans = 165 ^ found in the unit of the present invention. Table 3 shows the results of TF including photoelectric characteristics. [Brief description of the figure] This figure shows the switching element or #; Each other = two changes "⑺ is located on the inner surface of the substrate ⑴ and (1,) (4), ...: ^ position, which can be applied to the two handles of the electrode structure (3, (4) where the electrode structure is located inside the substrate ⑴- (3 'electric charge or current source. Lines from ~ symbolize electricity :: voltage feed of 87586 200408865 (electric feed lines) 〇 Figure 2 to Figure 6: These diagrams schematically show the switching elements according to the present invention The structural cross-sections of 5 different specific embodiments, the middle piece has a protruded electrode. In Figure 2, the electrode has a design similar to the embodiment with limbs described in the figure. The electrode (3) and ( 4) It has a rectangular or almost rectangular cross section. However, the 'electrode has -thickness, which cannot be ignored compared with the thickness of the modulation layer [[d⑽, or compared with the thickness of the characteristic layer, for example , Its through reed has a thickness ranging from 0.3 micrometers (#m) to 5 micrometers. In FIG. 3, the poles (3) and ⑷ have a design similar to the specific embodiment described in FIG. 2. However, These electrodes extend beyond the entire thickness [d (2)] of the modulation layer (2). 'In Figure 4, the (3) and (4) again have a design similar to the specific embodiment depicted in Figure 2. However, the layer thicknesses of the electrodes (3) and (4) are not constant, but are related to the position. The electrodes have a triangular cross section. In FIG. 5, the electrodes (3) and (4) have a design similar to that of the specific embodiment depicted in FIG. 4, wherein the specific embodiment of FIG. 4 has a layer thickness depending on the position. These electrodes here Each one is composed of two layers (3) and (3,) and (4) · A (4), one of which is stacked on top of the other, and each of the upper layers (3) and (4) respectively cover the ratio The lower switching element areas corresponding to the lower layers (3) and (4) respectively. In FIG. 6, the electrodes (3) and (4) again have a design similar to the specific embodiment depicted in FIG. 2. However, The electrodes (3) and (4) here have a circular cross-section and are in the form of hollow conductors. 87586 -110- 200408865 Figure 7. This figure is a summary of the preferred embodiment of the specific embodiment of the non-switching element Structural cross section, according to the present invention. The electrodes here are similar to the specific embodiment described in FIG. However, the electrodes are not directly on the surface of the substrate, but on the solid insulation layers ⑺ and ⑷ with a specific thickness. For example, the thickness is usually [micron] (㈣ to 〖micron). A structural cross section showing a preferred embodiment of a switching element according to the present invention has an electrode structure, and the electrode structure is composed of two layers on one of the substrates. The electrodes here are designed so that the first -The electrode 电 on the first substrate ⑴, and the same electrode located on the 基板 -i &amp; / ,,, J, and the second electrode (3,) on the first substrate (1,). Similarly, the second electrode is applied to the electrode (4,) on the first substrate, and the second electrode is applied to the electrode (4,) on the second substrate. In each case, the electrode pairs ⑺ and (3,) and (4) and (4,) are opposite each other. Figure 9 to! 3: These figures schematically show the cross-sections of the structures of the various specific embodiments of the switching element according to the present invention, which are further detailed embodiments of the present invention. FIG. 9 shows a specific embodiment, which shows a combination of the specific embodiments described in FIGS. 7 and 8. Contrary to the specific embodiment depicted in FIG. 7, the protruding electric handle (3) is not only formed on the solid insulating layers (5) and (6) on the surface of the substrate. And 疋, 'the specific embodiment of the edge as depicted in Figure 8' electrodes (Qiao and ⑹ are formed on the opposite (substrate (1,) surface. Like the corresponding electrodes on the first substrate, these electrodes are insulated by solid state The layers (5,) and (6,) protrude from the surface 0,). In FIG. 10, the electrode has a design similar to the specific embodiment of the edge depicted in FIG. 7. However, as shown in FIG. In the specific embodiment, each of the electrodes 87586 111-200408865 is composed of = layers ⑺ and (3,), and ⑷ and (4,), and each pair has the same potential. However, the and figure The concrete structure shown in FIG. 8 is separated from the modulation layer (2) of the 4-state insulation layer, and is respectively fixed in FIG. U. The electrodes have a design similar to the specific embodiment shown in FIG. 10. However, as shown in FIG. The specific embodiment shown here is the first layer electrode structure (3) and rhenium, which are separated from the substrate (crying) with a solid insulating layer (5) and rhenium, respectively. As described in the specific embodiment , Two-layer electrode structures ⑺ and (3,) and ⑷ and (4,) which can apply the same potential, respectively, through a solid insulating layer (5 ) And (6,), to separate them from each other. In Figure 12, each electrode of the electrode structure is composed of four conductive layers (3), (4) to (4 ,,,). Composition. In each case, of these four layers = two layers are on the same substrate. Layers (3) and (3,), and (4) and (4,) are on a substrate with surface (1) And (3 ,,) and (3 ,,,), and (4 ,,) and (4 ,,,) are on a substrate having a surface (1,). Layers (3) and (4) or ( 3 ,,) and (4 ,,) adjoin the respective substrates (1) or (1,), which are separated by solid insulation layers (5) and (6) or (5,) and (6,) respectively. Similarly, , Located on the same substrates [(3) and 0,)] and [(4) and (4,)], and [(3 ”) and (3, '')] and [(4 ,,) and (4, ,,)] are separated from each other by the solid conductive layers (5,) and (6,) and (5 ",) and (6 '"). In FIG. 13, as shown in FIG. 12 In the specific embodiment shown, each electrode of the electrode structure is composed of four conductive layers (2) to (2 ,,,) or 3) to (3 ,,,). However, the conductive layers and insulating layers in different orders here extend to the entire layer thickness of the modulation layer. Therefore, the inner conductive layer pairs (2,) and (2, ,,) and (3,) and 87586 -112- 200408865 (3 '' ') are also separated from each other by solid insulating layers (5' '' ') and (6' '' '), respectively. [Figure Explanation of formula representative symbols] 1: Surface of the first substrate, Γ: Surface of the second substrate, 2: Modulation layer, 3 to 3 '' ': The first to fourth conductive layers of the electrode structure, on which the first 1 potential '4 to 4 ", · 1 to 4 conductive layers of the electrode structure, a second potential 5 to 5" "can be applied thereon: 1 to 5 solid-state insulating layers of the electrode structure, It separates the conductive layer of the electrode structure, and a first potential can be applied on the conductive layer, 6 to 6 '' '': The first to fifth solid-state insulating layers of the electrode structure separate the conductive layer of the electrode structure, and the top of the conductive layer A second potential can be applied: voltage, charge or current source. The line drawn from νορ indicates the conductive layer of the electrode structure to which the same potential is applied 0 87586 -113-

Claims (1)

200408865 拾、申請專利範園: 1 · 一種光電之光調變元件,包括·· -一基板或複數個基板, -一電極配置, -至少一個或複數個用於光線極化的元件,及 -一調變媒體, 而其特徵為 -在未定址狀態中,光調變元件係在調變媒體處於光 學各向同性相的溫度下操作,及 -電極配置可以產生一電場,其具有明顯平行於中間 j调變媒體之表面的分量,以及 -以此一方法設計電極配置,以滿足至少下列四個條 件之一 : μ 導電層緊鄰調變層之平板中的另一導電層,並具 有20微米(#m)或更少的分隔, 如果存在導電層或複數層導電層的話,一或更多 這些電極結構層是突起的, 在每-情況中’電極結構包括兩層或更多層覆蓋 互相連接,而在此 開相當的距離, 電極結構之一或更 各自下面的基板中 在上面的層,其以導電的方式 同時,彼此之表面被介電層分 如果存在複數層導電層的話, 多導電層會被固態介電層,從 分離開來。 其特徵為以此一方 2·如申請專利範圍第丨項之光調變元件 87586 式设计電極配置,使得 -在调變層平面中彼此J }、 一 褥接 &lt; 導電層,彼此具有20微 米(// m)或更少的分隔。 3.如申請專利範圍第1項之光 、、、 心尤凋、交兀件,其特徵為以此一方 式设計電極配置,使得 _等電層或者是有複數個導電層時…或更多層這些 電極結構是突起的。 4. 5. 如申請專利範圍第β之光調變元件,其特徵為以此一方 式设計電極配置,使得 _電極由兩層或更多層彼此以導電的方式連接的層。 如申請專利範圍第1項之光調變元件,其特徵為 -在每一情況中,電極之單獨層基本上是 -以介電質’如,舉例來說,中間型(mes〇genic)調 變媒體層或層的部分,或者是一或更多固態介電 質層,將彼此從其整個表面上分離, 有相等面積,及 6. 如中請專利範圍第丄項之光調變元件,其特徵為 -至少電極配置之導電層其中之一,是以突起的方 安排於基板之一上面。 7. 如申請專利範圍第!項之光調變元件,其特徵為 -至少電極結構之鄰接電極是藉由一層固態介電質 ta ’彼此水平地分隔開來的。 8. —種光電顯示哭,立句本 々、上 、丁。口八包$ 一或更多根據申請專利範圍斧 87586 -2- 200408865 項之光調變元件。 9. 10. 11. 12. 13. 14. 如&quot;專利範圍第8項之光電顯示器,其特徵為該顯示器 係藉由主動矩卩車來定址。 一種光電顯示系鲚,立句厶— 乐、、无/、巴。或更多根據申請專利範圍 第8項之光電顯示器。 靶圍 如申請專利範圍第则之光電_示系統,其特徵為㈠ 以用作電视螢幕,電腦監視器,或是兩者皆可。 一種根據中請專利範圍第巧光調變元件之使用 訊顯示之用。 F為具 一種根據申請專利範圍第8 jg j 一光電顯示系= 11之使用,使用於 -種根據申請專利範圍第10项光電顯示系統之使 為視頻#號或數位信號之顯示。 87586200408865 Patent application park: 1 · A photoelectric light modulation element, including--a substrate or a plurality of substrates,-an electrode configuration,-at least one or a plurality of elements for polarization of light, and- A modulation medium, which is characterized in that-in an unaddressed state, the light modulation element is operated at a temperature at which the modulation medium is in an optically isotropic phase, and-the electrode configuration can generate an electric field, which has a significant parallel to The intermediate j modulates the surface component of the media, and the electrode configuration is designed in such a way as to meet at least one of the following four conditions: μ The conductive layer is next to another conductive layer in the plate of the modulation layer and has 20 microns (#M) or less, if one or more conductive layers are present, one or more of these electrode structure layers are raised, in each case the 'electrode structure includes two or more layers covering each other Connection, and there is a considerable distance here, one of the electrode structures or the upper layer in the respective underlying substrate is conductive at the same time, and the surfaces of each other are separated by a dielectric layer such as Complex is present, then a conductive layer, the conductive layer may be a multi-solid dielectric layer, away from the points. It is characterized in that this side 2. The electrode configuration of the light modulation element 87586 as in the scope of the patent application, such that-in the plane of the modulation layer, each other}, a mattress & conductive layer, each having 20 microns (// m) or less. 3. If the light, light, heart, and withered parts in the first patent application range are characterized, the electrode configuration is designed in such a way that when an isoelectric layer or a plurality of conductive layers are ... Multiple layers of these electrode structures are raised. 4. If the light modulation element of the scope of the patent application is β, it is characterized in that the electrode configuration is designed in such a way that the _ electrode has two or more layers connected to each other in a conductive manner. For example, the light modulating element of the scope of patent application is characterized in that-in each case, the individual layers of the electrodes are basically-with a dielectric substance, such as, for example, mesogenic modulation The variable media layer or part of the layer, or one or more solid dielectric layers, separates each other from their entire surface, has an equal area, and 6. The light modulating element of item (1) of the patent scope, It is characterized in that at least one of the conductive layers of the electrode arrangement is arranged on one of the substrates in a protruding manner. 7. If the scope of patent application is the first! The light modulation element of Xiang is characterized in that-at least the adjacent electrodes of the electrode structure are horizontally separated from each other by a layer of solid dielectric ta '. 8. — A kind of photoelectric display crying, and the sentence text 々, 上, 丁. Mouth eight packs of one or more light modulation elements according to patent application scope 87586 -2- 200408865. 9. 10. 11. 12. 13. 14. The optoelectronic display of item 8 of the patent scope is characterized in that the display is addressed by an active vehicle. An optoelectronic display system, Li Qu-Le, Wu, Ba. Or more photoelectric display according to item 8 of the scope of patent application. Target range The photoelectric display system, as described in the patent application, is characterized by being used as a TV screen, computer monitor, or both. According to the scope of the patent, the use of a smart light modulation element is used for information display. F is used for a photoelectric display system according to the scope of the patent application No. 8 jg j = 11 for the use of a photoelectric display system according to the scope of the patent application No. 10 for video # or digital signal display. 87586
TW092123574A 2002-09-04 2003-08-27 Electro-optical light modulation element, display and medium TW200408865A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10241301A DE10241301A1 (en) 2002-09-04 2002-09-04 Electrooptic light control element and display and medium for television and computer screens has temperature driven control mechanism

Publications (1)

Publication Number Publication Date
TW200408865A true TW200408865A (en) 2004-06-01

Family

ID=31724428

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092123574A TW200408865A (en) 2002-09-04 2003-08-27 Electro-optical light modulation element, display and medium

Country Status (5)

Country Link
JP (1) JP5106753B2 (en)
AU (1) AU2003264099A1 (en)
DE (2) DE10241301A1 (en)
TW (1) TW200408865A (en)
WO (1) WO2004029697A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062978A (en) * 2010-11-10 2011-05-18 友达光电股份有限公司 Liquid crystal display panel
TWI427379B (en) * 2010-10-26 2014-02-21 Au Optronics Corp Liquid crystal display panel
CN103666483A (en) * 2012-09-18 2014-03-26 默克专利股份有限公司 Liquid crystal medium and liquid crystal display

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1658352B1 (en) * 2003-08-25 2008-04-02 MERCK PATENT GmbH Liquid crystalline medium
JP2007530470A (en) 2004-03-25 2007-11-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Liquid crystal compound, liquid crystal medium and liquid crystal display
US20080167482A1 (en) * 2004-08-10 2008-07-10 Merck Patent Gmbh Liquid Crystal Compounds, Liquid Crystal Medium and Liquid Crystal Display
JP4138759B2 (en) 2005-02-03 2008-08-27 セイコーエプソン株式会社 Liquid crystal display device and electronic device
JP5577566B2 (en) 2007-08-31 2014-08-27 Jnc株式会社 Liquid crystal composition and liquid crystal element
US8339556B2 (en) 2008-03-03 2012-12-25 Hitachi Displays, Ltd. Electro-optical device and display device with interdigital electrode portions on at least first and second substrates which are non-overlapping in a direction normal to the substrates
JP5236529B2 (en) * 2008-03-03 2013-07-17 株式会社ジャパンディスプレイイースト ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE
EP2319898B1 (en) * 2008-09-01 2015-11-25 JNC Corporation Liquid crystal composition and liquid crystal display element
DE102010006488A1 (en) 2009-02-19 2010-12-09 Merck Patent Gmbh Thiophene derivatives and FK media containing them
US8420235B2 (en) 2009-06-04 2013-04-16 Nitto Denko Corporation Emissive diaryl acetylenes
JP4550152B2 (en) * 2009-07-13 2010-09-22 シャープ株式会社 Display element
KR101750577B1 (en) * 2009-10-01 2017-06-23 제이엔씨 주식회사 Liquid crystalline compound with negative dielectric anisotropy, liquid crystal composition using same, and liquid crystal display element
DE102011011836A1 (en) 2010-03-09 2011-09-15 Merck Patent Gmbh Polymerizable compounds and their use in liquid crystal media and liquid crystal displays
DE102011015546A1 (en) 2010-04-26 2012-01-26 Merck Patent Gmbh Polymerizable compounds and their use in liquid crystal media and liquid crystal displays
JP6073296B2 (en) 2011-05-27 2017-02-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Polymerizable compounds and their use in liquid crystal media and liquid crystal displays
JP6058644B2 (en) 2011-06-01 2017-01-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal medium and liquid crystal display
CN103717707B (en) 2011-08-01 2016-06-22 默克专利股份有限公司 Liquid crystal media and liquid crystal display
KR101983867B1 (en) 2011-09-06 2019-05-29 메르크 파텐트 게엠베하 Liquid crystal medium and liquid crystal display
EP2568032B1 (en) 2011-09-06 2014-11-26 Merck Patent GmbH Liquid crystal medium and liquid crystal display
CN104254586B (en) 2012-04-20 2018-01-12 默克专利股份有限公司 Liquid crystal media and liquid crystal display
US9822305B2 (en) 2012-10-02 2017-11-21 Merck Patent Gmbh Liquid crystal medium and liquid crystal display
EP2933310B1 (en) 2012-12-17 2018-06-20 JNC Corporation Octahydro binaphthyl-based chiral compound-containing liquid-crystal composition and optical element
EP2935513B1 (en) 2012-12-21 2018-03-07 Merck Patent GmbH Liquid-crystalline media, components for high-frequency technology, and mesogenic compounds
JP6389509B2 (en) 2013-04-19 2018-09-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Mesogenic compound, liquid crystal medium and liquid crystal display
DE102013021683A1 (en) * 2013-12-19 2015-06-25 Merck Patent Gmbh Liquid crystalline medium
EP3090033B1 (en) 2013-12-30 2018-07-04 Merck Patent GmbH Liquid crystal medium and liquid crystal display
EP3124573B1 (en) 2015-07-31 2018-03-28 Merck Patent GmbH Liquid crystal medium and liquid crystal display
CN108239538B (en) * 2016-12-23 2022-02-08 江苏和成显示科技有限公司 Liquid crystal composition with negative dielectric anisotropy and application thereof
DE102017000406A1 (en) * 2017-01-18 2018-07-19 Stephanie Faustig Electrically controllable optical element, in particular thin-layer cell and method for its production
GB2575579B (en) 2017-03-21 2022-08-10 Merck Patent Gmbh Light modulation element
WO2018073459A2 (en) 2017-03-28 2018-04-26 Merck Patent Gmbh Liquid crystal device
KR20190139987A (en) 2017-04-20 2019-12-18 메르크 파텐트 게엠베하 Light modulation device
US20200299579A1 (en) 2017-11-21 2020-09-24 Merck Patent Gmbh Liquid crystal medium and light modulation element
CN110109295B (en) * 2019-04-08 2022-01-04 Tcl华星光电技术有限公司 Blue phase liquid crystal display panel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH540500A (en) * 1971-07-16 1973-08-15 Hoffmann La Roche Electro-optical light control cell
DE69333323T2 (en) * 1992-09-18 2004-09-16 Hitachi, Ltd. A liquid crystal display device
JPH06250210A (en) * 1993-02-23 1994-09-09 Hitachi Ltd Liquid crystal display device and its production
JP3238230B2 (en) * 1993-02-26 2001-12-10 株式会社東芝 Liquid crystal display
JPH09185080A (en) * 1995-12-28 1997-07-15 Semiconductor Energy Lab Co Ltd Liquid crystal electro-optical device
JP3712772B2 (en) * 1996-01-29 2005-11-02 株式会社半導体エネルギー研究所 Liquid crystal electro-optical device
JP3174497B2 (en) * 1996-03-19 2001-06-11 シャープ株式会社 Liquid crystal display
JP3504159B2 (en) * 1997-10-16 2004-03-08 株式会社東芝 Liquid crystal optical switch element
JP2001249363A (en) * 2000-03-06 2001-09-14 Matsushita Electric Ind Co Ltd Display device
AU2002342821A1 (en) * 2001-05-16 2002-11-25 Merck Patent Gmbh Electro-optic light control element, display and medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427379B (en) * 2010-10-26 2014-02-21 Au Optronics Corp Liquid crystal display panel
CN102062978A (en) * 2010-11-10 2011-05-18 友达光电股份有限公司 Liquid crystal display panel
CN103666483A (en) * 2012-09-18 2014-03-26 默克专利股份有限公司 Liquid crystal medium and liquid crystal display
CN103666483B (en) * 2012-09-18 2017-07-28 默克专利股份有限公司 Liquid crystal media and liquid crystal display
TWI595080B (en) * 2012-09-18 2017-08-11 馬克專利公司 Liquid crystal medium and liquid crystal display

Also Published As

Publication number Publication date
DE10392930D2 (en) 2005-07-07
DE10392930B4 (en) 2015-09-03
DE10241301A1 (en) 2004-03-18
JP5106753B2 (en) 2012-12-26
AU2003264099A1 (en) 2004-04-19
WO2004029697A1 (en) 2004-04-08
JP2005537520A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
TW200408865A (en) Electro-optical light modulation element, display and medium
KR100980561B1 (en) Electro-optic light control element, display and medium
US20060006363A1 (en) Electrooptic light control element, electrooptic display and control medium
JP6903402B2 (en) Liquid crystal medium and liquid crystal display including it
JP6047125B2 (en) Electro-optic light modulation element, electro-optic display and modulation medium
KR101547358B1 (en) Liquid crystalline medium and liquid crystal display
EP1920027A1 (en) Liquid crystal display device
EP1408098A1 (en) Liquid crystalline medium and liquid crystal display
US7777930B2 (en) Electro-optical light control element and display having a control medium with an optically isotropic phase
Chen et al. Anchoring transitions of liquid crystals on SiO x
JP2023554522A (en) Liquid crystal media and liquid crystal displays containing them and compounds
EP1907900A1 (en) Electro-optical light modulation element, display and medium