JP5236529B2 - ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE - Google Patents

ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE Download PDF

Info

Publication number
JP5236529B2
JP5236529B2 JP2009046036A JP2009046036A JP5236529B2 JP 5236529 B2 JP5236529 B2 JP 5236529B2 JP 2009046036 A JP2009046036 A JP 2009046036A JP 2009046036 A JP2009046036 A JP 2009046036A JP 5236529 B2 JP5236529 B2 JP 5236529B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
medium layer
electric field
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009046036A
Other languages
Japanese (ja)
Other versions
JP2009237554A (en
Inventor
新太郎 武田
博之 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to JP2009046036A priority Critical patent/JP5236529B2/en
Publication of JP2009237554A publication Critical patent/JP2009237554A/en
Application granted granted Critical
Publication of JP5236529B2 publication Critical patent/JP5236529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electro-optical element which allows high-speed response and has high luminance and high contrast characteristics. <P>SOLUTION: The elector-optical element includes: a plurality of substrates opposed to each other; a medium layer sandwiched between the plurality of substrates; electrode groups formed on the opposed surfaces of the substrates to apply an electric field to the medium layer; and a pair of polarizing plates arranged so that absorption axes may be approximately orthogonal to each other through the medium layer. Wherein, the electrode groups have interdigital portions which are arranged approximately in parallel, the medium layer includes a medium having substantially optical anisotropy with absence of an electric field and generating the optical anisotropy with application of an electric field, the electrode groups include transparent electrodes, and the optical anisotropy is applied to areas of respective electrodes in a direction normal to the substrates by combining the plurality of electrode groups. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、印加電圧に対する高速応答性と、高光透過率を有する光の透過遮断を制御する液晶素子等の電気光学素子および表示装置に関する。   The present invention relates to an electro-optical element such as a liquid crystal element and a display device that control high-speed response to an applied voltage and transmission blocking of light having high light transmittance.

液晶表示素子は、液晶テレビやパソコン用モニタ、携帯電話やデジタルカメラなど、各種電子機器の表示部に広く用いられており、薄型、軽量、低消費電力といった特徴を有する。   Liquid crystal display elements are widely used in display units of various electronic devices such as liquid crystal televisions, personal computer monitors, mobile phones, and digital cameras, and have features such as thinness, light weight, and low power consumption.

この液晶表示素子には多くの表示方式があるが、広視野角を達成できる代表的な液晶表示方式としてIPS(In Plane Switching)方式が知られている。このIPS方式の液晶表示素子では、ネマティック相を有する液晶が通常用いられ、一対の基板内に保持された液晶分子に電界を印加して配向方向を回転させ実効的な光軸を面内で回転させて、液晶の光透過率を制御し、表示を行う。   There are many display methods for this liquid crystal display element, but an IPS (In Plane Switching) method is known as a typical liquid crystal display method capable of achieving a wide viewing angle. In this IPS liquid crystal display element, a liquid crystal having a nematic phase is usually used, and an effective electric axis is rotated in the plane by applying an electric field to liquid crystal molecules held in a pair of substrates to rotate the alignment direction. Thus, the light transmittance of the liquid crystal is controlled to perform display.

このIPS方式で電界を印加する方式として様々な方式が提案されている。最も一般的な方式は、櫛歯状の画素電極と共通電極を同一基板に形成する方式である。櫛歯電極による電界印加は、画素電極と共通電極を両方とも櫛歯状にする方式と、画素電極と共通電極のどちらか一方を櫛歯状にし、もう一方の電極を平板状とし、絶縁層を介して配置する方式などがある。   Various methods have been proposed for applying an electric field in the IPS method. The most common method is a method in which a comb-like pixel electrode and a common electrode are formed on the same substrate. Electric field application using a comb-teeth electrode consists of a method in which both the pixel electrode and the common electrode are in a comb-teeth shape, one of the pixel electrode and the common electrode is in a comb-teeth shape, the other electrode is in a flat plate shape, and an insulating layer There is a method of arranging through the.

一方、上記のIPS液晶表示方式に対して、近年電界印加により光学等方性から光学異方性に変化する物質を用いる液晶表示方式が提案されている(たとえば、特許文献1を参照。)。これらの液晶表示方式においては、青色相を有する液晶材料やキュービック対称性を有する液晶材料などが用いられ(たとえば、非特許文献1を参照。)、IPS方式と同様に櫛歯状電極により基板に平行な電界を印加する。これらの液晶表示素子では、従来のネマティック液晶を用いたIPS方式よりも、はるかに高速な、数マイクロ秒〜数十マイクロ秒の応答特性が得られ、動画画像を表示する際の表示品質が大幅に向上することが期待される。また、櫛歯状電極の電極間隔を上下基板間隔より小さくした電極構造(たとえば、特許文献2を参照。)は電極上に基板面に平行な電界が弱く、これを光学異方性物質に適用したとしても電極上の媒質に光学異方性を付与できない。   On the other hand, in contrast to the IPS liquid crystal display method, a liquid crystal display method using a substance that changes from optical isotropy to optical anisotropy by applying an electric field has been recently proposed (see, for example, Patent Document 1). In these liquid crystal display methods, a liquid crystal material having a blue phase or a liquid crystal material having cubic symmetry is used (for example, refer to Non-Patent Document 1). A parallel electric field is applied. These liquid crystal display elements can achieve response characteristics of several microseconds to several tens of microseconds, much faster than the conventional IPS method using nematic liquid crystal, and display quality when displaying moving image is greatly improved. It is expected to improve. In addition, an electrode structure in which the electrode spacing of the comb-like electrodes is smaller than the upper and lower substrate spacing (see, for example, Patent Document 2) has a weak electric field parallel to the substrate surface on the electrode, and this is applied to an optically anisotropic material. Even so, optical anisotropy cannot be imparted to the medium on the electrode.

この出願の発明に関連する特許文献1、特許文献2、および非特許文献1、ならびに後述する実施例で挙げる先行技術文献は、以下の通りである。   Patent Document 1, Patent Document 2, and Non-Patent Document 1 related to the invention of this application, and prior art documents listed in Examples described later are as follows.

特許第3504159号公報Japanese Patent No. 3504159 特開2007−086205号公報JP 2007-086205 A 特開平05−336477号公報JP 05-336477 A 特開2006−003840号公報JP 2006-003840 A

Yoshiaki Hisakado etc. “ Large Electro−optic Kerr Effect in Polymer−Stabilized Liquid−Crystalline Blue Phases” , Advanced Materials, Vol. 17, No. 1, 96 (2005)Yoshiaki Hisakado etc. “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases”, Advanced Materials, Vol. 17, No. 1, 96 (2005) 菊池裕嗣、アドバンスド・マテリアルズ、17巻、96−98頁、2005年Hiroki Kikuchi, Advanced Materials, 17, 96-98, 2005 竹添秀男他、日本応用物理学会誌、45巻、L282−284頁、2006年Hideo Takezoe et al., Journal of Japan Society of Applied Physics, 45, L282-284, 2006

しかしながら、例えば液晶材料に青色相液晶を用いて櫛歯状電極で駆動する液晶表示素子では、透明電極を用いても電極部分に光が透過しない。これは、電極上では通常電界強度が弱く、光学異方性が付与されないことが一つの原因である。また、電極上では、基板面に平行な電界成分が少なく、基板面に垂直な電界成分が多いことも原因の一つである。   However, for example, in a liquid crystal display element that is driven by a comb-like electrode using blue phase liquid crystal as a liquid crystal material, light is not transmitted to the electrode portion even if a transparent electrode is used. This is due to the fact that the electric field strength is usually weak on the electrode and no optical anisotropy is imparted. Another reason is that there are few electric field components parallel to the substrate surface and many electric field components perpendicular to the substrate surface on the electrode.

青色相液晶を用いた液晶表示素子では、互いに平行に配列した櫛歯状電極の長手方向に対して、上下の偏光板の偏光軸をそれぞれ約45度の角度で配置する。光学異方性は電界の方向に付与されるため、ほぼ基板面と平行に電界が印加される電極間では、偏光板の偏光軸から45度の方向に光学異方性が付与されて光が透過する。しかしながら電極の真上では、電界強度が弱くかつ基板に垂直な方向の電界成分が多いため、付与される光学異方性が小さくかつ基板に垂直な方向であるため、入射した光軸を回転させることができず光を透過することができない。   In the liquid crystal display element using the blue phase liquid crystal, the polarization axes of the upper and lower polarizing plates are arranged at an angle of about 45 degrees with respect to the longitudinal direction of the comb-like electrodes arranged in parallel to each other. Since the optical anisotropy is applied in the direction of the electric field, between the electrodes to which the electric field is applied substantially parallel to the substrate surface, the optical anisotropy is applied in the direction of 45 degrees from the polarization axis of the polarizing plate, and light is transmitted. To Penetrate. However, just above the electrode, the electric field strength is weak and the electric field component in the direction perpendicular to the substrate is large, so that the applied optical anisotropy is small and the direction is perpendicular to the substrate, so that the incident optical axis is rotated. Cannot transmit light.

図18は、従来の電気光学素子の断面構成の一例を示す模式縦断面図である。また、図19は、図18に示した電気光学素子を矢印Aの方向から見たときの平面構成の一例を示す模式平面図である。従来の電気光学素子は、たとえば、図18および図19に示すように、基板101と基板103間に媒質層203を封入し、基板101上に電極105と電極106を形成する。また、基板101と基板103の外側には偏向板104,207を貼り付け吸収軸を電極長手方向と約45度をなすように設ける。このとき、電極105と電極106に図示しない外部電源より交流電圧を印加すると、印加電圧と透過率の相関関係は、たとえば、図20の(b)の曲線のような関係になる。なお、図20は、本発明の電気光学素子における印加電圧と透過率の相関関係の一例および従来の電気光学素子における印加電圧と透過率の相関関係の一例を示す模式グラフ図である。従来例の電気光学素子は光透過率が非常に低く実際の装置への適用は不可能であった。顕微鏡で観察した結果、従来例の電気光学素子では櫛歯電極上で光が全く透過していなかった。   FIG. 18 is a schematic longitudinal sectional view showing an example of a sectional configuration of a conventional electro-optic element. FIG. 19 is a schematic plan view illustrating an example of a planar configuration when the electro-optical element illustrated in FIG. 18 is viewed from the direction of the arrow A. For example, as shown in FIGS. 18 and 19, a conventional electro-optic element encloses a medium layer 203 between a substrate 101 and a substrate 103, and forms an electrode 105 and an electrode 106 on the substrate 101. Further, deflecting plates 104 and 207 are attached to the outside of the substrate 101 and the substrate 103 so that the absorption axis is about 45 degrees with the electrode longitudinal direction. At this time, when an AC voltage is applied to the electrode 105 and the electrode 106 from an external power source (not shown), the correlation between the applied voltage and the transmittance is, for example, as shown by a curve in FIG. FIG. 20 is a schematic graph showing an example of the correlation between the applied voltage and the transmittance in the electro-optic element of the present invention and an example of the correlation between the applied voltage and the transmittance in the conventional electro-optic element. The conventional electro-optical element has a very low light transmittance and cannot be applied to an actual apparatus. As a result of observation with a microscope, no light was transmitted through the comb electrode in the conventional electro-optic element.

さらに、青色相液晶を用いた液晶表示素子では、ネマティック相液晶とは異なり、液晶分子間の相互作用長が非常に短いため、電極間で光学異方性が発生しても、その影響を電極上まで及ぼすことができない。これらの理由により電極直上部分には光学異方性が付与されないため光が透過せず、結果的に電極面積相当分の透過率が低下する。そのため、適当な輝度を得るためにバックライトの輝度を高くする必要があり、消費電力が大きくなるという問題がある。高速応答性をもつ印加電界に対する光異方性液晶材料を採用する際、鮮明な映像を得るために液晶の光透過率を上げることは不可欠の条件である。   Furthermore, the liquid crystal display element using blue phase liquid crystal, unlike the nematic phase liquid crystal, has a very short interaction length between liquid crystal molecules. You can't affect the top. For these reasons, no optical anisotropy is imparted to the portion immediately above the electrode, so that no light is transmitted. As a result, the transmittance corresponding to the electrode area is reduced. Therefore, it is necessary to increase the luminance of the backlight in order to obtain an appropriate luminance, and there is a problem that power consumption increases. When adopting a light anisotropic liquid crystal material for an applied electric field with high-speed response, it is an indispensable condition to increase the light transmittance of the liquid crystal in order to obtain a clear image.

さらに、青色相液晶と櫛歯状電極を用いた液晶表示素子では、最大透過率を与える電圧が数V/μmと、ネマティック液晶を用いたIPS方式の液晶表示素子の駆動電圧の約10倍以上で、非常に高いという問題がある。そのため薄膜トランジスタなどの低圧駆動スイッチング素子を適用することができない。   Further, in the liquid crystal display element using the blue phase liquid crystal and the comb-like electrode, the voltage giving the maximum transmittance is several V / μm, which is about 10 times or more the driving voltage of the IPS liquid crystal display element using the nematic liquid crystal. There is a problem that it is very expensive. Therefore, a low voltage drive switching element such as a thin film transistor cannot be applied.

また、特許文献1、特許文献2、および非特許文献1に記載された構成を基にした表示装置の特性を評価した結果、画素電極、もしくは共通電極上においては、基板平面に平行な電気力線が生じないため、電極上はほとんど表示に寄与しない。   Further, as a result of evaluating the characteristics of the display device based on the configurations described in Patent Document 1, Patent Document 2, and Non-Patent Document 1, an electric force parallel to the substrate plane is obtained on the pixel electrode or the common electrode. Since no line is formed, the electrode hardly contributes to display.

本発明は、上記の問題点を解決するものであり、その目的は、青色相液晶に代表される、電界印加により光学異方性が変化する物質を用いる電気光学素子において、より高い透過率で低電圧駆動可能な技術を提供することにある。   The present invention solves the above-described problems, and an object of the present invention is to achieve higher transmittance in an electro-optic element using a substance whose optical anisotropy changes by applying an electric field, represented by a blue phase liquid crystal. The object is to provide a technology capable of driving at a low voltage.

また、本発明の他の目的は、等方性液晶と櫛歯状の電極とを用いた電気光学素子を有する表示装置において、電極上の透過率を向上することが可能な技術を提供することにある。   Another object of the present invention is to provide a technique capable of improving the transmittance on an electrode in a display device having an electro-optic element using an isotropic liquid crystal and a comb-like electrode. It is in.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面によって明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概略を説明すれば、以下の通りである。   The outline of typical inventions among the inventions disclosed in the present application will be described as follows.

(1)対向する互いに平行な複数の基板と、前記複数の基板間に狭持された媒質層と、前記媒質層を挟んで吸収軸が互いにほぼ直交するように配置された一対の偏光板と、前記複数の基板の少なくとも二つの面に設けられ互いに略平行に配置された複数の櫛歯状の透明電極からなる電極群を複数備え、前記電極群に印加される電界により光の透過および遮断を制御する電気光学素子において、前記媒質層が、電界無印加時にほぼ光学等方性を有し、電界印加に伴い光学異方性を発現する媒質からなり、前記少なくとも二つの電極群により、前記媒質層の前記透明電極の基板法線上領域を含む全領域に電界を印加して光学異方性を与える電気光学素子。   (1) A plurality of opposing parallel substrates, a medium layer sandwiched between the plurality of substrates, and a pair of polarizing plates arranged so that absorption axes are substantially orthogonal to each other across the medium layer A plurality of electrode groups comprising a plurality of comb-like transparent electrodes provided on at least two surfaces of the plurality of substrates and arranged substantially parallel to each other, and transmitting and blocking light by an electric field applied to the electrode groups In the electro-optic element that controls the medium, the medium layer is made of a medium that has substantially optical isotropy when no electric field is applied and exhibits optical anisotropy when an electric field is applied. An electro-optic element that applies an electric field to the entire region including the region on the substrate normal line of the transparent electrode of the medium layer to provide optical anisotropy.

(2)前記(1)の電気光学素子において、前記複数の電極群は、前記媒質層に少なくとも基板と平行方向の電界を付与する電気光学素子。   (2) In the electro-optical element according to (1), the plurality of electrode groups apply an electric field at least in a direction parallel to the substrate to the medium layer.

(3)前記(2)の電気光学素子において、前記複数の電極群の一つの電極群による前記媒質層への電界印加領域が、他の電極群の基板法線方向領域を含む電気光学素子。   (3) The electro-optical element according to (2), wherein an electric field application region to the medium layer by one electrode group of the plurality of electrode groups includes a substrate normal direction region of another electrode group.

(4)前記(1)の電気光学素子において、前記偏光板の吸収軸が、基板法線方向から見た前記媒質層への電界印加方向に対し45度±10度の角度をなして配置されており、前記光学異方性付与手段により前記透明電極上の基板法線方向領域に付与する光学異方性の方向が、前記媒質層に印加する電界方向と略平行もしくは略直交である電気光学素子。   (4) In the electro-optical element of (1), the absorption axis of the polarizing plate is disposed at an angle of 45 ° ± 10 ° with respect to the direction of electric field application to the medium layer as viewed from the normal direction of the substrate. The optical anisotropy direction imparted to the substrate normal direction region on the transparent electrode by the optical anisotropy imparting means is substantially parallel or substantially orthogonal to the electric field direction applied to the medium layer. element.

(5)前記(1)の電気光学素子において、前記複数の電極群の櫛歯部分が、基板法線方向から見て互いに重畳しないように配置されている電気光学素子。   (5) The electro-optical element according to (1), wherein the comb-tooth portions of the plurality of electrode groups are arranged so as not to overlap each other when viewed from the substrate normal direction.

(6)前記(1)の電気光学素子において、前記複数の電極群によって前記媒質層に印加される各電界の基板法線方向から見た電界成分が各々略平行であり、ほぼ同時に前記媒質層に電界が印加される電気光学素子。   (6) In the electro-optic element of (1), the electric field components viewed from the substrate normal direction of each electric field applied to the medium layer by the plurality of electrode groups are substantially parallel to each other, and at the same time, the medium layer An electro-optic element to which an electric field is applied.

(7)前記(1)の電気光学素子において、対向する第一の基板および第二の基板と、当該一対の基板間に狭持された第一の媒質層と、前記第二の基板に対向した前記第三の基板と、前記第二の基板と前記第三の基板との間に狭持された第二の媒質層と、前記第一の基板の前記第二の基板との対向面側に設けられた、前記第一の媒質層に電界を印加する第一の電極群と、前記第二の基板の前記第三の基板との対向面側に設けられた、前記第二の媒質層に電界を印加する第二の電極群とを備えた電気光学素子。   (7) In the electro-optic element of (1), the first substrate and the second substrate facing each other, the first medium layer sandwiched between the pair of substrates, and the second substrate facing each other The third substrate, the second medium layer sandwiched between the second substrate and the third substrate, and the opposing surface side of the first substrate to the second substrate The second medium layer provided on the side of the first electrode group that applies an electric field to the first medium layer and the second substrate facing the third substrate. And a second electrode group for applying an electric field to the electro-optic element.

(8)前記(1)の電気光学素子において、対向する第一の基板および第二の基板と、当該一対の基板間に狭持された第一の媒質層と、前記第二の基板に対向した第三の基板と、前記第二の基板と前記第三の基板との間に狭持された第二の媒質層と、前記第一の基板の前記第二の基板との対向面側に設けられた、前記第一の媒質層に電界を印加する第一の電極群と、前記第三の基板の前記第二の基板との対向面側に設けられた、前記第二の媒質層に電界を印加する第二の電極群とを備えた電気光学素子。   (8) In the electro-optic element of (1), the first substrate and the second substrate facing each other, the first medium layer sandwiched between the pair of substrates, and the second substrate facing each other A third substrate, a second medium layer sandwiched between the second substrate and the third substrate, and a surface of the first substrate facing the second substrate. A first electrode group for applying an electric field to the first medium layer, and a second medium layer provided on a side of the third substrate facing the second substrate; An electro-optic element comprising a second electrode group for applying an electric field.

(9)前記(1)の電気光学素子において、対向する第一の基板および第二の基板と、当該一対の基板間に狭持された第一の媒質層と、前記第二の基板に対向した第三の基板と、前記第二の基板と前記第三の基板との間に狭持された第二の媒質層と、前記第二の基板の前記第一の基板との対向面側に設けられた、前記第一の媒質層に電界を印加する第一の電極群と、前記第二の基板の前記第三の基板との対向面側に設けられた、前記第二の媒質層に電界を印加する第二の電極群とを備えた電気光学素子。   (9) In the electro-optical element of (1), the first substrate and the second substrate facing each other, the first medium layer sandwiched between the pair of substrates, and the second substrate facing each other A third substrate, a second medium layer sandwiched between the second substrate and the third substrate, and a surface of the second substrate facing the first substrate. A first electrode group for applying an electric field to the first medium layer, and a second medium layer provided on a side of the second substrate facing the third substrate. An electro-optic element comprising a second electrode group for applying an electric field.

(10)前記(1)の電気光学素子において、対向する第一の基板および第二の基板と、当該一対の基板間に狭持された媒質層と、前記第一の基板の前記第二の基板との対向面側に設けられた、前記媒質層に電界を印加する第一の電極群と、前記第二の基板の前記第一の基板との対向面側に設けられた、前記媒質層に電界を印加する第二の電極群とを備えた電気光学素子。   (10) In the electro-optical element of (1), the first substrate and the second substrate facing each other, the medium layer sandwiched between the pair of substrates, and the second substrate of the first substrate A first electrode group for applying an electric field to the medium layer provided on a surface facing the substrate; and the medium layer provided on a surface facing the first substrate of the second substrate. And a second electrode group for applying an electric field to the electro-optic element.

(11)前記(10)の電気光学素子において、前記第1の基板および前記第2の基板のうちの少なくとも一方の基板に設けられた一つの電極群は、電気的に独立したコモン電極とソース電極とを有し、かつ、前記コモン電極と前記ソース電極を左右対称に配置した電気光学素子。   (11) In the electro-optic element according to (10), one electrode group provided on at least one of the first substrate and the second substrate includes an electrically independent common electrode and source. An electro-optic element having an electrode and the common electrode and the source electrode arranged symmetrically.

(12)前記(1)の電気光学素子において、対向する第一の基板および第二の基板と、当該一対の基板間に狭持された媒質層と、前記第一の基板の前記第二の基板との対向面側に設けられたコモン電極からなる電極群と、前記第二の基板の前記第一の基板との対向面側に設けられたソース電極からなる電極群とを有し、前記両電極群により前記媒質層に傾斜電界を与える電気光学素子。   (12) In the electro-optic element of (1), the first substrate and the second substrate facing each other, the medium layer sandwiched between the pair of substrates, and the second substrate of the first substrate An electrode group consisting of a common electrode provided on the surface facing the substrate, and an electrode group consisting of a source electrode provided on the surface facing the first substrate of the second substrate, An electro-optic element that applies a gradient electric field to the medium layer by both electrode groups.

(13)前記(12)の電気光学素子において、前記偏光板の吸収軸が、基板法線方向から見た前記媒質層への電界印加方向に対し45度±10度の角度をなして配置されており、前記光学異方性付与手段により前記透明電極上の基板法線方向領域に付与する光学異方性の方向が、前記媒質層に印加する電界方向と略平行もしくは略直交である電気光学素子。   (13) In the electro-optic element of (12), the absorption axis of the polarizing plate is disposed at an angle of 45 ° ± 10 ° with respect to the direction of electric field application to the medium layer as viewed from the normal direction of the substrate. The optical anisotropy direction imparted to the substrate normal direction region on the transparent electrode by the optical anisotropy imparting means is substantially parallel or substantially orthogonal to the electric field direction applied to the medium layer. element.

(14)一対の基板間に、電圧無印加時は光学的に等方性であり、かつ電圧印加時は光学的な異方性を生じる媒体を挟持し、前記一対の基板のうちの少なくとも一方の基板上の他方の基板と相対する面上に、画素電極と共通電極のいずれか一方が櫛歯状に形成される表示装置において、前記他方の基板上の相対する面上に面状の電極を形成し、当該面状の電極は前記画素電極もしくは前記共通電極のいずれかと同電位の電圧を印加し、前記媒体の厚さdと前記櫛歯状に形成される電極の電極間隔lとの関係がd≧lである表示装置。   (14) A medium that is optically isotropic when no voltage is applied between the pair of substrates and that generates optical anisotropy when the voltage is applied is sandwiched between at least one of the pair of substrates. In the display device in which either one of the pixel electrode and the common electrode is formed in a comb-tooth shape on the surface of the other substrate facing the other substrate, the surface electrode on the surface facing the other substrate The planar electrode applies a voltage having the same potential as either the pixel electrode or the common electrode, and the thickness d of the medium and the electrode interval l between the electrodes formed in the comb shape A display device in which the relationship is d ≧ l.

(15)前記(14)の表示装置において、前記他方の基板上に形成される前記面状の電極は、スリットが形成され部分的に電界が生じない領域がある表示装置。   (15) The display device according to (14), wherein the planar electrode formed on the other substrate has a region where a slit is formed and an electric field is not partially generated.

本発明によれば、光学異方性を有する媒質に透明電極群からなる複数の電極群により電界を印加し、光の透過遮断を制御する電気光学素子において、電極上の媒質領域に光学異方性を付与する手段を設けることにより、高速応答可能で、しかも高輝度および高コントラストを有する、高い表示品質を備えた電気光学素子が得られる。   According to the present invention, in an electro-optic element that applies an electric field to a medium having optical anisotropy by a plurality of electrode groups composed of transparent electrode groups to control light transmission and blocking, the medium region on the electrode is optically anisotropic. By providing the means for imparting the property, it is possible to obtain an electro-optical element that can respond at high speed and has high luminance and high contrast and high display quality.

また、本発明によれば、櫛歯状に形成した電極間だけでなく、電極上も透過に寄与するため、表示装置の透過率を向上させることができる。   In addition, according to the present invention, not only between the electrodes formed in a comb shape but also on the electrodes contributes to the transmission, so that the transmittance of the display device can be improved.

本発明による実施例1の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。FIG. 3 is a schematic longitudinal sectional view illustrating an example of a cross-sectional configuration of a main part of the electro-optic element of Example 1 according to the present invention. 基板101に形成された櫛歯状電極105,106の平面構成の一例を示す模式平面図である。2 is a schematic plan view showing an example of a planar configuration of comb-like electrodes 105 and 106 formed on a substrate 101. FIG. 基板102に形成された櫛歯状電極201,202の平面構成の一例を示す模式平面図である。3 is a schematic plan view showing an example of a planar configuration of comb-like electrodes 201 and 202 formed on a substrate 102. FIG. 図1の電気光学素子を矢印Aの方向から見たときの平面構成の一例を示す模式平面図である。FIG. 2 is a schematic plan view illustrating an example of a planar configuration when the electro-optic element of FIG. 1 is viewed from the direction of an arrow A. 櫛歯状電極105,106,201,202の好ましい配置方法の一例を示す模式縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the preferable arrangement | positioning method of the comb-tooth electrode 105,106,201,202. 図5の電気光学素子を矢印Aの方向から見たときの平面構成の一例を示す模式平面図である。FIG. 6 is a schematic plan view illustrating an example of a planar configuration when the electro-optic element of FIG. 5 is viewed from the direction of an arrow A. 本発明による実施例2の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the cross-sectional structure of the principal part of the electro-optic element of Example 2 by this invention. 本発明による実施例3の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the cross-sectional structure of the principal part of the electro-optic element of Example 3 by this invention. 本発明による実施例4の電気光学素子の主要部の概略構成の一例を示す模式縦断面図である。FIG. 6 is a schematic longitudinal sectional view illustrating an example of a schematic configuration of a main part of an electro-optic element according to a fourth embodiment of the present invention. 実施例4の電気光学素子の構成における電界シミュレーションの結果を示す模式図である。FIG. 10 is a schematic diagram showing a result of electric field simulation in the configuration of the electro-optic element of Example 4. 本発明による実施例5の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。FIG. 10 is a schematic longitudinal sectional view illustrating an example of a cross-sectional configuration of a main part of an electro-optic element according to Example 5 of the present invention. 基板101に設ける櫛歯状電極105,106の平面構成の一例を示す模式平面図である。2 is a schematic plan view showing an example of a planar configuration of comb-like electrodes 105 and 106 provided on a substrate 101. FIG. 実施例5の電気光学素子の構成における電界シミュレーションの結果を示す模式図である。10 is a schematic diagram illustrating a result of electric field simulation in the configuration of the electro-optic element of Example 5. FIG. 本発明による実施例6の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the cross-sectional structure of the principal part of the electro-optic element of Example 6 by this invention. 基板101に設ける電極106の平面構成の一例を示す模式平面図である。2 is a schematic plan view illustrating an example of a planar configuration of an electrode provided on a substrate. FIG. 基板102に設ける電極201の平面構成の一例を示す模式平面図である。3 is a schematic plan view illustrating an example of a planar configuration of an electrode 201 provided on a substrate 102. FIG. 実施例6の電気光学素子の構成における電界シミュレーションの結果を示す模式図である。10 is a schematic diagram illustrating a result of electric field simulation in the configuration of the electro-optic element of Example 6. FIG. 従来の電気光学素子の断面構成の一例を示す模式縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the cross-sectional structure of the conventional electro-optical element. 図18に示した電気光学素子を矢印Aの方向から見たときの平面構成の一例を示す模式平面図である。FIG. 19 is a schematic plan view illustrating an example of a planar configuration when the electro-optic element illustrated in FIG. 18 is viewed from the direction of arrow A. 本発明の電気光学素子における印加電圧と透過率の相関関係の一例および従来の電気光学素子における印加電圧と透過率の相関関係の一例を示す模式グラフ図である。FIG. 6 is a schematic graph illustrating an example of a correlation between applied voltage and transmittance in an electro-optic element of the present invention and an example of a correlation between applied voltage and transmittance in a conventional electro-optic element. 本発明による実施例7の液晶表示装置における1つの画素の平面構成の一例を示す模式平面図である。It is a schematic plan view which shows an example of the plane structure of one pixel in the liquid crystal display device of Example 7 by this invention. 図21のA−A’線における液晶表示パネルの断面構成の一例を示す模式断面図である。FIG. 22 is a schematic cross-sectional view showing an example of a cross-sectional configuration of the liquid crystal display panel taken along line A-A ′ of FIG. 21. 実施例7の液晶表示装置の画素構成における電界シミュレーションの結果を示す模式図である。FIG. 16 is a schematic diagram illustrating a result of electric field simulation in the pixel configuration of the liquid crystal display device of Example 7. 比較例2の液晶表示装置の断面構成の一例を示す模式縦断面図である。6 is a schematic longitudinal sectional view showing an example of a cross-sectional configuration of a liquid crystal display device of Comparative Example 2. FIG. 比較例2の液晶表示装置の構成における電界シミュレーションの結果を示す模式図である。10 is a schematic diagram showing a result of electric field simulation in the configuration of the liquid crystal display device of Comparative Example 2. FIG. 本発明による実施例8の液晶表示パネルにおける1つの画素の断面構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of the cross-sectional structure of one pixel in the liquid crystal display panel of Example 8 by this invention.

以下、本発明について、図面を参照して実施の形態(実施例)とともに詳細に説明する。
なお、実施例を説明するための全図において、同一機能を有するものは、同一符号を付け、その繰り返しの説明は省略する。
Hereinafter, the present invention will be described in detail together with embodiments (examples) with reference to the drawings.
In all the drawings for explaining the embodiments, parts having the same function are given the same reference numerals and their repeated explanation is omitted.

図1乃至図6は、本発明による実施例1の電気光学素子の主要部の概略構成および動作を説明するための模式図である。
図1は、本発明による実施例1の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。図2は、基板101に形成された櫛歯状電極105,106の平面構成の一例を示す模式平面図である。図3は、基板102に形成された櫛歯状電極201,202の平面構成の一例を示す模式平面図である。図4は、図1の電気光学素子を矢印Aの方向から見たときの平面構成の一例を示す模式平面図である。図5は、櫛歯状電極105,106,201,202の好ましい配置方法の一例を示す模式縦断面図である。図6は、図5の電気光学素子を矢印Aの方向から見たときの平面構成の一例を示す模式平面図である。
1 to 6 are schematic diagrams for explaining the schematic configuration and operation of the main part of the electro-optic element according to the first embodiment of the present invention.
FIG. 1 is a schematic longitudinal sectional view showing an example of a cross-sectional configuration of a main part of the electro-optic element of Example 1 according to the present invention. FIG. 2 is a schematic plan view illustrating an example of a planar configuration of the comb-like electrodes 105 and 106 formed on the substrate 101. FIG. 3 is a schematic plan view illustrating an example of a planar configuration of the comb-like electrodes 201 and 202 formed on the substrate 102. FIG. 4 is a schematic plan view showing an example of a planar configuration when the electro-optic element of FIG. 1 is viewed from the direction of arrow A. FIG. 5 is a schematic longitudinal sectional view showing an example of a preferable arrangement method of the comb-like electrodes 105, 106, 201, 202. FIG. 6 is a schematic plan view illustrating an example of a planar configuration when the electro-optic element of FIG. 5 is viewed from the direction of the arrow A.

(電気光学素子の構造)
実施例1の電気光学素子は、たとえば、図1に示すように、所定の間隔をあけて配置された3枚の基板101,102,103と、これらの基板の間隙に配置された媒質層203,204とを備えている。基板101は電極105,106からなる一群の電極群が設けられ、媒質層203に光学異方性108を付与する。同じく基板102は電極201,202からなる一群の電極群が設けられ、媒質層204に光学異方性206を付与する。
(Structure of electro-optic element)
For example, as shown in FIG. 1, the electro-optical element of the first embodiment includes three substrates 101, 102, and 103 arranged at a predetermined interval, and a medium layer 203 arranged in a gap between these substrates. , 204. The substrate 101 is provided with a group of electrodes including electrodes 105 and 106, and imparts an optical anisotropy 108 to the medium layer 203. Similarly, the substrate 102 is provided with a group of electrodes including electrodes 201 and 202, and imparts an optical anisotropy 206 to the medium layer 204.

このとき、基板101上に設ける電極105と電極106は、たとえば、図2に示すように、櫛歯状であり、櫛歯部分が略平行になるように配置されている。また、基板102上に設ける電極201と電極202も同様に、たとえば、櫛歯状であり、櫛歯部分が略平行になるように配置されている。また、実施例1の電気光学素子では、電極105,106,201,202の材料として、透明性と導電性に優れた、ITO(インジウム錫酸化物)やZnO(亜鉛酸化物)、IZO(インジウム亜鉛酸化物)などを用いる。   At this time, the electrode 105 and the electrode 106 provided on the substrate 101 have, for example, a comb shape as shown in FIG. 2 and are arranged so that the comb portions are substantially parallel. Similarly, the electrode 201 and the electrode 202 provided on the substrate 102 have, for example, a comb shape, and are arranged so that the comb portions are substantially parallel. In the electro-optic element of Example 1, as materials for the electrodes 105, 106, 201, and 202, ITO (indium tin oxide), ZnO (zinc oxide), and IZO (indium) having excellent transparency and conductivity are used. Zinc oxide).

またこのとき、基板101と基板102は、たとえば、図4に示したように、それぞれの基板上に形成した櫛歯状電極105,106,201,202の櫛歯部分が、基板法線方向から見たときに重なり合わないように組み合わされる。なお、実施例1の電気光学素子において、基板101上の電極105,106と基板102上の電極201,202との櫛歯部分の電極間隙L1、もしくは櫛歯部分の電極幅L2は、極力小さいほうが良い。電極間隔L1が極力小さい場合、電極105,106,201,202は、たとえば、図5および図6に示すような配置となる。   At this time, as shown in FIG. 4, for example, as shown in FIG. 4, the comb-tooth portions of the comb-like electrodes 105, 106, 201, and 202 formed on the respective substrates are Combined so that they do not overlap when viewed. In the electro-optic element of Example 1, the electrode gap L1 at the comb-tooth portion between the electrodes 105 and 106 on the substrate 101 and the electrodes 201 and 202 on the substrate 102 or the electrode width L2 at the comb-tooth portion is as small as possible. Better. When the electrode interval L1 is as small as possible, the electrodes 105, 106, 201, and 202 are arranged as shown in FIGS. 5 and 6, for example.

電極間隙L1の部分では、図1に示したように、媒質層203に付与される光学異方性108と、媒質層204に付与される光学異方性206が重なるため、電極上の光学異方性よりも光学異方性の程度が大きくなり、媒質層の透過性が不均一になって画質低下を招く。反対に電極の櫛歯部分が重畳してしまうと、重畳部分には光学異方性が付与されないため光が透過しない。そのため、実施例1の電気光学素子では、電極間隙L1を極力小さくするか、もしくは電極幅L2を極力小さくすることが望ましい。電極幅L2を極力小さく加工し、電極間の面積が大きくなれば、電極上の光学異方性と電極間の光学異方性の違いが画質に与える影響が小さくなり、かつ電極間では2つの媒質層203,204で付与される光学異方性が重畳するため、見かけ上低電圧駆動が可能となる。   In the portion of the electrode gap L1, as shown in FIG. 1, the optical anisotropy 108 imparted to the medium layer 203 and the optical anisotropy 206 imparted to the medium layer 204 overlap. The degree of optical anisotropy becomes greater than the directionality, and the permeability of the medium layer becomes non-uniform, leading to a reduction in image quality. On the other hand, if the comb-tooth portion of the electrode overlaps, no optical anisotropy is imparted to the overlap portion, so that no light is transmitted. Therefore, in the electro-optic element of Example 1, it is desirable to make the electrode gap L1 as small as possible, or make the electrode width L2 as small as possible. If the electrode width L2 is processed as small as possible and the area between the electrodes is increased, the effect on the image quality of the difference between the optical anisotropy on the electrodes and the optical anisotropy between the electrodes is reduced. Since the optical anisotropy imparted by the medium layers 203 and 204 overlaps, apparently low voltage driving is possible.

また、実施例1の電気光学素子では、媒質層203,204として、電界無印加時にほぼ光学等方性を有し、電界印加に伴い光学異方性を発現する媒質を用いる。これには、たとえば、青色相液晶材料や、キュービック対称性を有する媒質が挙げられる。   Further, in the electro-optic element of Example 1, as the medium layers 203 and 204, a medium that has substantially optical isotropy when no electric field is applied and develops optical anisotropy with the application of the electric field is used. Examples thereof include a blue phase liquid crystal material and a medium having cubic symmetry.

青色相液晶材料は、カイラル剤を含むネマティック液晶組成物を、その青色相において液晶組成物中に含有させたモノマを重合させることにより、青色相の温度領域を拡大した材料である。ネマティック液晶には、一般に液晶ディスプレイに用いられている極性基を置換した環構造と長鎖構造を有する有機化合物が用いられる。またカイラル剤には、分子内に不斉炭素を有する有機化合物が用いられる。また代表的な重合性のモノマとしては、アクリル系モノマなどが挙げられ、光重合の場合には、アセトフェノン誘導体などの重合開始剤が併用される。実施例1のような構成の電気光学素子は、媒質層203,204として、上記のような青色相液晶材料を用いることにより、印加電圧に対する高速応答性が得られる。   The blue phase liquid crystal material is a material in which the temperature range of the blue phase is expanded by polymerizing a monomer containing a nematic liquid crystal composition containing a chiral agent in the blue phase. For nematic liquid crystals, organic compounds having a ring structure and a long chain structure substituted with polar groups, which are generally used in liquid crystal displays, are used. As the chiral agent, an organic compound having an asymmetric carbon in the molecule is used. Typical polymerizable monomers include acrylic monomers, and in the case of photopolymerization, a polymerization initiator such as an acetophenone derivative is used in combination. In the electro-optical element having the configuration as in the first embodiment, high-speed response to an applied voltage can be obtained by using the blue phase liquid crystal material as described above as the medium layers 203 and 204.

このように構成した電気光学素子の電極105と電極106に、図示しない外部電源からそれぞれ異なる電位を与えると、媒質層203には、主として、図2の矢印107の方向に電界が印加される。これにより電極105と電極106の間の媒質層203に、電界方向107とほぼ同じ方向の光学異方性108が付与される。さらに電極201と電極202間に異なる電位を与えると、媒質層204には、主として、図3の矢印205の方向に電界が印加される。これにより電極201と電極202の間の媒質層204に、電界方向205とほぼ同じ方向の光学異方性206が付与される。すなわち、実施例1の構成では、媒質層203,204に印加される電界の電界方向107,205が略平行となり、電界印加に伴い媒質層203,204に発生する光学異方性108,206も略平行となる。   When different potentials are applied to the electrodes 105 and 106 of the electro-optic element configured in this manner from an external power source (not shown), an electric field is applied to the medium layer 203 mainly in the direction of the arrow 107 in FIG. As a result, the optical anisotropy 108 in the same direction as the electric field direction 107 is imparted to the medium layer 203 between the electrodes 105 and 106. Furthermore, when different potentials are applied between the electrode 201 and the electrode 202, an electric field is applied to the medium layer 204 mainly in the direction of the arrow 205 in FIG. As a result, an optical anisotropy 206 in substantially the same direction as the electric field direction 205 is imparted to the medium layer 204 between the electrodes 201 and 202. That is, in the configuration of the first embodiment, the electric field directions 107 and 205 of the electric field applied to the medium layers 203 and 204 are substantially parallel, and the optical anisotropy 108 and 206 generated in the medium layers 203 and 204 when the electric field is applied are also included. It becomes almost parallel.

なお、光学異方性とは、屈折率異方性のことであり、電界によって付与される基板面内方向の屈折率の違い、すなわち異方性のことを示す。図1に示した光学異方性108,206の矢印は、その直交方向よりも大きな屈折率が付与されている方向を示している。   The optical anisotropy is refractive index anisotropy, and indicates a difference in refractive index in the in-plane direction of the substrate applied by an electric field, that is, anisotropy. The arrows of the optical anisotropy 108 and 206 shown in FIG. 1 indicate directions in which a refractive index greater than the orthogonal direction is given.

またさらに、媒質層203に付与される光学異方性108と、媒質層204に付与される光学異方性206は、ほぼ同時に付与されることが望ましく、そのため電極105と電極106に電位差を与えるタイミングと、電極201と電極202に電位差を与えるタイミングは、ほぼ同じであることがより望ましい。したがって、実施例1の電気光学素子では、たとえば、電極105と電極201、電極106と電極202を接続しても良い。   Furthermore, it is desirable that the optical anisotropy 108 imparted to the medium layer 203 and the optical anisotropy 206 imparted to the medium layer 204 are imparted substantially simultaneously, so that a potential difference is applied to the electrodes 105 and 106. It is more desirable that the timing and the timing at which the potential difference is applied to the electrode 201 and the electrode 202 are substantially the same. Therefore, in the electro-optical element of Example 1, for example, the electrode 105 and the electrode 201 and the electrode 106 and the electrode 202 may be connected.

実施例1の構成では、媒質層204に付与される光学異方性206が、基板101上の電極105,106の櫛歯部分の基板法線方向直上領域に付与されるため、図1の矢印Aの方向から観察すると、基板101上の電極105,106の櫛歯部分に光学異方性が付与されることになる。   In the configuration of the first embodiment, the optical anisotropy 206 imparted to the medium layer 204 is imparted to the region directly above the comb-tooth portion of the electrodes 105 and 106 on the substrate 101 in the substrate normal direction. When observed from the direction A, optical anisotropy is imparted to the comb-tooth portions of the electrodes 105 and 106 on the substrate 101.

さらに、実施例1の電気光学素子は、基板101および基板103の外側に第一の偏光板104と第二の偏光板207を配置している。この第一の偏光板104と第二の偏光板207はヨウ素系色素を含み、ヨウ素は偏光板内で多量体を形成して配向している。その2色性により、偏光板は入射した自然光を偏光度が十分に高い直線偏光に変換する。ヨウ素系色素の多量体の配向方向が吸収軸であり、この偏光板の吸収軸301,302は、媒質層に印加される電界方向107,205と45度±10度の角度をなして配置されている。   Furthermore, in the electro-optical element of Example 1, the first polarizing plate 104 and the second polarizing plate 207 are disposed outside the substrate 101 and the substrate 103. The first polarizing plate 104 and the second polarizing plate 207 contain an iodine dye, and iodine is oriented by forming a multimer in the polarizing plate. Due to the dichroism, the polarizing plate converts incident natural light into linearly polarized light having a sufficiently high degree of polarization. The orientation direction of the iodine dye multimer is the absorption axis, and the absorption axes 301 and 302 of this polarizing plate are arranged at an angle of 45 ° ± 10 ° with the electric field directions 107 and 205 applied to the medium layer. ing.

すなわち、偏光板の吸収軸301,302は、図4に示すとおり、電極105,106,201,202の櫛歯部分の長手方向に対して、時計回り、反時計回りにそれぞれ45度±10度の角度をなして配置されている。この±10度の角度は、電極の製造誤差等を吸収する範囲として設定される。また、偏光板104,207は基板の内側、すなわち媒質層側に配置してもよく、また水溶性のリオトロピック液晶染料材料や二色染料を含有する高分子液晶材料などで構成することもできる。また、偏光板104,207を基板の内側に配置する場合は、上記の構成に限らず、たとえば、内蔵偏光層として細い導体線を光の波長よりも短い間隔で配列させたワイヤグリッド偏光子を採用することもできる。   That is, as shown in FIG. 4, the absorption axes 301 and 302 of the polarizing plate are 45 ° ± 10 ° clockwise and counterclockwise with respect to the longitudinal direction of the comb teeth of the electrodes 105, 106, 201, and 202, respectively. It is arranged at an angle of. The angle of ± 10 degrees is set as a range that absorbs electrode manufacturing errors and the like. Further, the polarizing plates 104 and 207 may be disposed on the inner side of the substrate, that is, on the medium layer side, or may be formed of a water-soluble lyotropic liquid crystal dye material or a polymer liquid crystal material containing a dichroic dye. In addition, when the polarizing plates 104 and 207 are arranged on the inner side of the substrate, the configuration is not limited to the above configuration. For example, a wire grid polarizer in which thin conductor wires are arranged at intervals shorter than the wavelength of light as a built-in polarizing layer. It can also be adopted.

このように偏光板104,207を配置すると、基板101方向から電気光学素子に入射した光は、第一の偏光板104によって直線偏光に変換され、電圧無印加時には、媒質層203,204は光学的に等方性を示すため、基板103から出射する際に、第二の偏光板207によって遮断される。すなわち、電圧無印加時には黒表示となる。また、電界印加時に基板101方向から入射し電極105と電極106の間を通過した偏光は、媒質層203に付与された光学異方性108によりその光軸を90度回転させられた楕円偏光となり、基板102、電極201、媒質層204、基板103、および第二の偏光板207を通過し、出射される。このとき、電極201上には複屈折(光学異方性)が付与されないため、電極201の直上の領域で偏光の光軸が回転することはない。   When the polarizing plates 104 and 207 are arranged in this way, the light incident on the electro-optic element from the direction of the substrate 101 is converted into linearly polarized light by the first polarizing plate 104, and the medium layers 203 and 204 are optical when no voltage is applied. In order to show isotropic properties, the light is blocked by the second polarizing plate 207 when the light is emitted from the substrate 103. That is, black is displayed when no voltage is applied. In addition, the polarized light incident from the direction of the substrate 101 and passing between the electrodes 105 and 106 when an electric field is applied becomes elliptically polarized light whose optical axis is rotated 90 degrees by the optical anisotropy 108 imparted to the medium layer 203. , And passes through the substrate 102, the electrode 201, the medium layer 204, the substrate 103, and the second polarizing plate 207. At this time, since birefringence (optical anisotropy) is not imparted on the electrode 201, the optical axis of polarized light does not rotate in the region immediately above the electrode 201.

また、電界印加時に基板101方向から入射し電極105または電極106の櫛歯電極部分を通過した偏光は、電極105または電極106上の媒質層203に光学異方性が付与されていないため、媒質層203中ではその光軸を回転させられることはないが、媒質層204に付与された光学異方性206によって光軸を90度回転させられ、基板103および第二の偏光板207を通過し、出射される。すなわち、電圧印加時には白表示となり、かつ透明な電極105,106,201,202の櫛歯部分も光が透過する。したがって、電極105,106上に光学異方性が付与されない場合、すなわち、媒質層204や基板102が存在しない場合と比較し、電極部分でも光が透過するため、より高い透過率を得ることができる。   In addition, polarized light that is incident from the direction of the substrate 101 and passes through the comb-shaped electrode portion of the electrode 105 or the electrode 106 when an electric field is applied has no optical anisotropy applied to the medium layer 203 on the electrode 105 or the electrode 106. Although the optical axis is not rotated in the layer 203, the optical axis is rotated 90 degrees by the optical anisotropy 206 imparted to the medium layer 204, and passes through the substrate 103 and the second polarizing plate 207. Is emitted. That is, when a voltage is applied, white display is performed, and light is transmitted through the comb teeth of the transparent electrodes 105, 106, 201, 202. Therefore, compared to the case where no optical anisotropy is imparted on the electrodes 105 and 106, that is, the case where the medium layer 204 and the substrate 102 are not present, light is transmitted through the electrode portion, so that a higher transmittance can be obtained. it can.

(電気光学素子の製造方法)
実施例1の電気光学素子は、概略以下のプロセスにしたがって作製した。まず、ガラス基板上にITOをスパッタ法により蒸着し、フォトレジストを塗布し、露光、エッチング工程などを経て、図2に示したような櫛歯状電極105,106をもつ基板101と、図3に示したような櫛歯状電極201,202を持つ基板102を形成した。ITOの膜厚は100nmで、櫛歯部分の電極幅L2を10ミクロンとし、電極間隔を15ミクロンとした。次に、櫛歯状電極を形成した基板101と基板102とを、基板101の電極形成面と、基板102の電極を形成した面の裏面とを対向させ、図示しないスペーサと基板周辺のシール剤により基板間隔が15ミクロンになるように貼りあわせた。さらにガラス基板(基板103)を、基板102との間隔が15ミクロンになるように同様に貼りあわせた。次に、基板101と基板102との間、および基板102と基板103との間に、媒質層203,204として、青色相液晶混合物を注入した。
(Method for manufacturing electro-optical element)
The electro-optic element of Example 1 was manufactured according to the following outline process. First, ITO is vapor-deposited on a glass substrate by a sputtering method, a photoresist is applied, an exposure process, an etching process, and the like are performed. Then, a substrate 101 having comb-like electrodes 105 and 106 as shown in FIG. A substrate 102 having comb-like electrodes 201 and 202 as shown in FIG. The film thickness of ITO was 100 nm, the electrode width L2 of the comb tooth portion was 10 microns, and the electrode interval was 15 microns. Next, the substrate 101 and the substrate 102 on which the comb-like electrodes are formed are made such that the electrode forming surface of the substrate 101 and the back surface of the surface on which the electrode of the substrate 102 is formed are opposed to each other, and a spacer (not shown) Were attached so that the substrate interval was 15 microns. Further, a glass substrate (substrate 103) was bonded in the same manner so that the distance from the substrate 102 was 15 microns. Next, a blue phase liquid crystal mixture was injected as medium layers 203 and 204 between the substrate 101 and the substrate 102 and between the substrate 102 and the substrate 103.

青色相液晶混合物には、非特許文献1に記載の、アクリルモノマ、液晶材料、カイラル剤、光重合開始剤の混合物を用い、当該混合物を注入した後、青色相を示す温度範囲で高圧水銀灯により紫外光を照射し、アクリルモノマを重合して青色相を安定化した。   For the blue phase liquid crystal mixture, a mixture of an acrylic monomer, a liquid crystal material, a chiral agent, and a photopolymerization initiator described in Non-Patent Document 1 is used. The blue phase was stabilized by irradiating ultraviolet light and polymerizing the acrylic monomer.

次に、基板101の電極105と基板102の電極201とを基板端部で接続し、基板101の電極106と基板102の電極202とを基板端部で接続した。さらに偏光板104,207を、図4に示したように、それぞれの吸収軸301,302が、電極105,106,201,202の櫛歯部分の長手方向と約45度になるように、基板101および基板103の外側に貼り付けた。   Next, the electrode 105 of the substrate 101 and the electrode 201 of the substrate 102 were connected at the end of the substrate, and the electrode 106 of the substrate 101 and the electrode 202 of the substrate 102 were connected at the end of the substrate. Further, as shown in FIG. 4, the polarizing plates 104 and 207 are formed on the substrate so that the respective absorption axes 301 and 302 are about 45 degrees with the longitudinal direction of the comb teeth of the electrodes 105, 106, 201, and 202. 101 and the substrate 103 were attached to the outside.

上記の手順で作製した実施例1の電気光学素子において、接続した電極105および電極201と接続した電極106および電極202に、外部電源より交流電圧を印加したところ、印加電圧と透過率との相関関係は、図20に示した(a)の曲線のような関係になった。作製した電気光学素子は、後述する比較例1に示す従来型の素子よりも高い透過率が得られた。顕微鏡で観察した結果、実施例1の電気光学素子では、櫛歯状の電極105,106,201,202の上も光が透過しており、本発明の効果が確認された。   In the electro-optic element of Example 1 manufactured by the above procedure, when an AC voltage is applied from the external power source to the electrode 106 and the electrode 202 connected to the connected electrode 105 and the electrode 201, the correlation between the applied voltage and the transmittance is obtained. The relationship is like the curve of (a) shown in FIG. The produced electro-optic element had a higher transmittance than the conventional element shown in Comparative Example 1 described later. As a result of observation with a microscope, in the electro-optic element of Example 1, light was transmitted also on the comb-like electrodes 105, 106, 201, 202, and the effect of the present invention was confirmed.

図7は、本発明による実施例2の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。   FIG. 7 is a schematic longitudinal sectional view illustrating an example of a cross-sectional configuration of a main part of the electro-optic element according to the second embodiment of the present invention.

実施例2の電気光学素子において、実施例1と異なる点は、たとえば、図7に示すように、媒質層204に電界を印加する電極201,202が、基板103上に形成されている点である。なお、電極105,106,201,202の平面構成や、各電極の櫛歯部分の長手方向と偏光板104,207の吸収軸301,302との関係は、それぞれ、図2および図4に示した構成と同じである。そのため、実施例2の電気光学素子の構成に関する詳細な説明は、省略する。このとき、実施例2の電気光学素子では、実施例1と同様に、電極201と電極202に異なる電位を与えると、媒質層204に電界が印加され、光学異方性が付与される。その結果、実施例2の電気光学素子は、実施例1と同様に電圧印加時に透明な電極105,106上も光が透過するようになり、高い透過率が得られた。   The electro-optic element of Example 2 is different from Example 1 in that, for example, electrodes 201 and 202 for applying an electric field to the medium layer 204 are formed on the substrate 103 as shown in FIG. is there. The planar configuration of the electrodes 105, 106, 201, and 202, and the relationship between the longitudinal direction of the comb teeth of each electrode and the absorption axes 301 and 302 of the polarizing plates 104 and 207 are shown in FIGS. 2 and 4, respectively. The configuration is the same. Therefore, a detailed description of the configuration of the electro-optical element of Example 2 is omitted. At this time, in the electro-optical element of Example 2, when different potentials are applied to the electrode 201 and the electrode 202 as in Example 1, an electric field is applied to the medium layer 204 to impart optical anisotropy. As a result, in the electro-optical element of Example 2, light was transmitted through the transparent electrodes 105 and 106 when a voltage was applied as in Example 1, and high transmittance was obtained.

実施例2の電気光学素子は、概略以下のプロセスにしたがって作製した。まず、実施例1と同様に、櫛歯状電極105,106をもつ基板101と、櫛歯状電極201,202をもつ基板103を形成した。次に、電極105,106を形成した基板101と、電極を形成していない基板102とを貼り合せ、さらに電極201,202を形成した基板103を、電極形成面が基板102と対向するように貼り合せた。次に、実施例1と同様に、各基板の間に媒質層203,204として、青色相液晶混合物を注入し、光照射によりモノマを重合させた。   The electro-optical element of Example 2 was manufactured according to the following outline process. First, as in Example 1, the substrate 101 having the comb-like electrodes 105 and 106 and the substrate 103 having the comb-like electrodes 201 and 202 were formed. Next, the substrate 101 on which the electrodes 105 and 106 are formed and the substrate 102 on which no electrode is formed are bonded together, and the substrate 103 on which the electrodes 201 and 202 are further formed is placed so that the electrode formation surface faces the substrate 102. Pasted together. Next, as in Example 1, a blue phase liquid crystal mixture was injected between the substrates as the medium layers 203 and 204, and the monomer was polymerized by light irradiation.

次に、実施例1と同様に、基板101の電極105と基板102の電極201とを基板端部で接続し、基板101の電極106と基板102の電極202とを基板端部で接続した。さらに偏光板104,207を、図4に示したように、それぞれの吸収軸301,302が、電極105,106,201,202の櫛歯部分の長手方向と約45度になるように、基板101および基板103の外側に貼り付けた。   Next, as in Example 1, the electrode 105 of the substrate 101 and the electrode 201 of the substrate 102 were connected at the substrate end, and the electrode 106 of the substrate 101 and the electrode 202 of the substrate 102 were connected at the substrate end. Further, as shown in FIG. 4, the polarizing plates 104 and 207 are formed on the substrate so that the respective absorption axes 301 and 302 are about 45 degrees with the longitudinal direction of the comb teeth of the electrodes 105, 106, 201, and 202. 101 and the substrate 103 were attached to the outside.

上記の手順で作製した実施例2の電気光学素子において、接続した電極105および電極201と接続した電極106および電極202に、外部電源より交流電圧を印加したところ、印加電圧と透過率との相関関係は、図20に示した(a)の曲線とほぼ同様の関係になり、図20に示した(b)の曲線のような関係である従来例と比較して高い透過率が得られた。   In the electro-optic element of Example 2 manufactured by the above procedure, when an AC voltage is applied from the external power source to the electrode 106 and the electrode 202 connected to the connected electrode 105 and the electrode 201, the correlation between the applied voltage and the transmittance is obtained. The relationship is almost the same as the curve (a) shown in FIG. 20, and a higher transmittance was obtained compared to the conventional example having the relationship like the curve (b) shown in FIG. .

図8は、本発明による実施例3の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。   FIG. 8 is a schematic longitudinal sectional view illustrating an example of a cross-sectional configuration of a main part of the electro-optic element according to the third embodiment of the present invention.

実施例3の電気光学素子において、実施例1と異なる点は、たとえば、図8に示すように、媒質層203に電界を印加する電極105,106が、基板102上に形成されている点である。なお、電極105,106,201,202の平面構成や、各電極の櫛歯部分の長手方向と偏光板104,207の吸収軸301,302との関係は、それぞれ、図2および図4に示した構成と同じである。そのため、実施例3の電気光学素子の構成に関する詳細な説明は、省略する。このとき、実施例3の電気光学素子では、実施例1と同様に、電極105と電極106に異なる電位を与えると、媒質層203に電界が印加され、光学異方性が付与される。その結果、実施例3の電気光学素子は、実施例1と同様に電圧印加時に透明な電極105,106上も光が透過するようになり、高い透過率が得られた。   The electro-optic element of Example 3 is different from Example 1 in that, for example, electrodes 105 and 106 for applying an electric field to the medium layer 203 are formed on the substrate 102 as shown in FIG. is there. The planar configuration of the electrodes 105, 106, 201, and 202, and the relationship between the longitudinal direction of the comb teeth of each electrode and the absorption axes 301 and 302 of the polarizing plates 104 and 207 are shown in FIGS. 2 and 4, respectively. The configuration is the same. Therefore, a detailed description of the configuration of the electro-optical element of Example 3 is omitted. At this time, in the electro-optical element of Example 3, when different potentials are applied to the electrode 105 and the electrode 106 as in Example 1, an electric field is applied to the medium layer 203 to impart optical anisotropy. As a result, in the electro-optical element of Example 3, light was transmitted through the transparent electrodes 105 and 106 when a voltage was applied, as in Example 1, and high transmittance was obtained.

図9は、本発明による実施例4の電気光学素子の主要部の概略構成の一例を示す模式縦断面図である。   FIG. 9 is a schematic longitudinal sectional view illustrating an example of a schematic configuration of a main part of the electro-optic element according to the fourth embodiment of the present invention.

実施例4の電気光学素子は、実施例1乃至実施例3とは異なり、たとえば、図9に示すように、単一の媒質層(媒質層203のみ)をもつ。このとき、透明な電極201,202は、基板102の、基板101との対向面側に設けられている。なお、電極105,106,201,202の平面構成や、各電極の櫛歯部分の長手方向と偏光板104,207の吸収軸301,302との関係は、それぞれ、図2および図4に示した構成と同じである。そのため、実施例4の電気光学素子の構成に関する詳細な説明は、省略する。   Unlike the first to third embodiments, the electro-optical element of the fourth embodiment has a single medium layer (only the medium layer 203) as shown in FIG. 9, for example. At this time, the transparent electrodes 201 and 202 are provided on the side of the substrate 102 facing the substrate 101. The planar configuration of the electrodes 105, 106, 201, and 202, and the relationship between the longitudinal direction of the comb teeth of each electrode and the absorption axes 301 and 302 of the polarizing plates 104 and 207 are shown in FIGS. 2 and 4, respectively. The configuration is the same. Therefore, a detailed description of the configuration of the electro-optical element of Example 4 is omitted.

実施例4の電気光学素子は、電極105と電極106に異なる電位を与えると、電極105と電極106との間の媒質層203に光学異方性108が付与される。また、電極201と電極202に異なる電位を与えると、電極201と電極202との間の媒質層203に光学異方性206が付与される。またこのとき、電極105と電極202に異なる電位を与え、電極106と電極201に異なる電位を与えることで、電極105と電極202との間、および電極106と電極201との間の媒質層203にも光学異方性206を付与することができる。基板102上の電極201および電極202によって付与される光学異方性206は、基板101上の電極105および電極106の基板法線方向からみて直上に付与される。その結果、実施例4の電気光学素子は、実施例1の電気光学素子と同様に、電圧印加時に透明な電極105,106上も光が透過するようになり、高い透過率が得られる。   In the electro-optic element of Example 4, when different potentials are applied to the electrode 105 and the electrode 106, the optical anisotropy 108 is imparted to the medium layer 203 between the electrode 105 and the electrode 106. Further, when different potentials are applied to the electrode 201 and the electrode 202, an optical anisotropy 206 is imparted to the medium layer 203 between the electrode 201 and the electrode 202. At this time, different potentials are applied to the electrode 105 and the electrode 202, and different potentials are applied to the electrode 106 and the electrode 201, whereby the medium layer 203 between the electrode 105 and the electrode 202 and between the electrode 106 and the electrode 201 is provided. Also, the optical anisotropy 206 can be imparted. The optical anisotropy 206 imparted by the electrode 201 and the electrode 202 on the substrate 102 is imparted immediately above the electrode 105 and the electrode 106 on the substrate 101 as viewed from the substrate normal direction. As a result, similarly to the electro-optic element of Example 1, the electro-optic element of Example 4 allows light to pass through the transparent electrodes 105 and 106 when a voltage is applied, and high transmittance is obtained.

図10は、実施例4の電気光学素子の構成における電界シミュレーションの結果を示す模式図である。   FIG. 10 is a schematic diagram illustrating a result of electric field simulation in the configuration of the electro-optical element of Example 4.

実施例4の電気光学素子において、電極106と電極202を同電位にし、電極105と電極201を同電位にしたときに、媒質層203に印加される電界の等電位線(等電位面)は、たとえば、図10に示すような分布になり、電極105と電極106との間、電極105と電極202との間、電極201と電極202との間、および電極106と電極201との間に電界が印加されていることが判る。すなわち、実施例4の電気光学素子は、図9に示したとおり、これらの電界によって、電極105と電極106との間、電極105と電極202との間、電極106と電極201との間、および電極201と電極202との間の媒質層203に光学異方性108,206が付与される。その結果、実施例4の電気光学素子は、実施例1と同様に電圧印加時に透明な電極105,106上も光が透過するようになり、高い透過率が得られた。   In the electro-optic element of Example 4, when the electrode 106 and the electrode 202 are set to the same potential and the electrode 105 and the electrode 201 are set to the same potential, the equipotential line (equipotential surface) of the electric field applied to the medium layer 203 is For example, the distribution is as shown in FIG. 10, between the electrode 105 and the electrode 106, between the electrode 105 and the electrode 202, between the electrode 201 and the electrode 202, and between the electrode 106 and the electrode 201. It can be seen that an electric field is applied. That is, as shown in FIG. 9, the electro-optic element of Example 4 is between these electrodes 105, 106, between electrode 105 and electrode 202, between electrode 106 and electrode 201, by these electric fields, In addition, optical anisotropy 108 and 206 is imparted to the medium layer 203 between the electrode 201 and the electrode 202. As a result, in the electro-optical element of Example 4, light was transmitted through the transparent electrodes 105 and 106 when a voltage was applied as in Example 1, and high transmittance was obtained.

図11および図12は、本発明による実施例5の電気光学素子の主要部の概略構成を説明するための模式図である。
図11は、本発明による実施例5の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。図12は、基板101に設ける櫛歯状電極105,106の平面構成の一例を示す模式平面図である。
FIGS. 11 and 12 are schematic diagrams for explaining a schematic configuration of a main part of the electro-optic element according to the fifth embodiment of the present invention.
FIG. 11 is a schematic longitudinal sectional view showing an example of a cross-sectional configuration of the main part of the electro-optic element according to the fifth embodiment of the present invention. FIG. 12 is a schematic plan view illustrating an example of a planar configuration of the comb-like electrodes 105 and 106 provided on the substrate 101.

実施例5の電気光学素子は、実施例4と同様に、単一の媒質層(媒質層203のみ)をもつ。実施例5の電気光学素子において、実施例4と異なる点は、たとえば、図11および図12に示すように、基板101に設ける電極105,106の平面形状が異なるという点である。なお、そのほかの点、たとえば、各電極の櫛歯部分の長手方向と偏光板104,207の吸収軸301,302との関係などは、実施例4の電気光学素子と同じ構成である。そのため、実施例5の電気光学素子の構成に関する詳細な説明は、省略する。   The electro-optic element of the fifth embodiment has a single medium layer (only the medium layer 203) as in the fourth embodiment. The electro-optic element of Example 5 differs from Example 4 in that, for example, as shown in FIGS. 11 and 12, the planar shapes of the electrodes 105 and 106 provided on the substrate 101 are different. Other points, for example, the relationship between the longitudinal direction of the comb-tooth portion of each electrode and the absorption axes 301 and 302 of the polarizing plates 104 and 207 are the same as those of the electro-optic element of the fourth embodiment. Therefore, a detailed description of the configuration of the electro-optic element of Example 5 is omitted.

実施例5の電気光学素子は、電極105と電極106に異なる電位を与えると、電極105と電極106との間の媒質層203に光学異方性108が付与される。また、電極201と電極202に異なる電位を与えると、電極201と電極202との間の媒質層203に光学異方性206が付与される。またこのとき、電極105と電極202に異なる電位を与え、電極106と電極201に異なる電位を与えることで、電極105と電極202との間、および電極106と電極201との間の媒質層203にも光学異方性206を付与することができる。基板102上の電極201および電極202によって付与される光学異方性206は、基板101上の電極105および電極106の基板法線方向からみて直上に付与される。その結果、実施例5の電気光学素子は、実施例1の電気光学素子と同様に、電圧印加時に透明な電極105,106上も光が透過するようになり、高い透過率が得られる。   In the electro-optic element of Example 5, when different potentials are applied to the electrode 105 and the electrode 106, the optical anisotropy 108 is imparted to the medium layer 203 between the electrode 105 and the electrode 106. Further, when different potentials are applied to the electrode 201 and the electrode 202, an optical anisotropy 206 is imparted to the medium layer 203 between the electrode 201 and the electrode 202. At this time, different potentials are applied to the electrode 105 and the electrode 202, and different potentials are applied to the electrode 106 and the electrode 201, whereby the medium layer 203 between the electrode 105 and the electrode 202 and between the electrode 106 and the electrode 201 is provided. Also, the optical anisotropy 206 can be imparted. The optical anisotropy 206 imparted by the electrode 201 and the electrode 202 on the substrate 102 is imparted immediately above the electrode 105 and the electrode 106 on the substrate 101 as viewed from the substrate normal direction. As a result, similarly to the electro-optic element of Example 1, the electro-optic element of Example 5 allows light to pass through the transparent electrodes 105 and 106 when a voltage is applied, and high transmittance is obtained.

図13は、実施例5の電気光学素子の構成における電界シミュレーションの結果を示す模式図である。   FIG. 13 is a schematic diagram illustrating a result of electric field simulation in the configuration of the electro-optic element of Example 5.

実施例5の電気光学素子において、電極106と電極202を同電位にし、電極105と電極201を同電位にしたときに、媒質層203に印加される電界の等電位線(等電位面)は、たとえば、図13に示すような分布になり、電極105と電極106との間、電極105と電極202との間、電極201と電極202との間、および電極106と電極201との間に電界が印加されていることが判る。すなわち、実施例5の電気光学素子は、図11に示したとおり、これらの電界によって、電極105と電極106との間、電極105と電極202との間、電極106と電極201との間、および電極201と電極202との間の媒質層203に光学異方性108,206が付与される。その結果、実施例5の電気光学素子は、実施例1と同様に電圧印加時に透明な電極105,106上も光が透過するようになり、高い透過率が得られた。   In the electro-optic element of Example 5, when the electrode 106 and the electrode 202 are set to the same potential and the electrode 105 and the electrode 201 are set to the same potential, the equipotential line (equipotential surface) of the electric field applied to the medium layer 203 is For example, the distribution is as shown in FIG. 13, between the electrode 105 and the electrode 106, between the electrode 105 and the electrode 202, between the electrode 201 and the electrode 202, and between the electrode 106 and the electrode 201. It can be seen that an electric field is applied. That is, as shown in FIG. 11, the electro-optic element of Example 5 is between these electrodes 105 and 106, between electrode 105 and electrode 202, between electrode 106 and electrode 201, by these electric fields, In addition, optical anisotropy 108 and 206 is imparted to the medium layer 203 between the electrode 201 and the electrode 202. As a result, in the electro-optic element of Example 5, light was transmitted through the transparent electrodes 105 and 106 when a voltage was applied, as in Example 1, and high transmittance was obtained.

図14乃至図16は、本発明による実施例6の電気光学素子の主要部の概略構成を説明するための模式図である。
図14は、本発明による実施例6の電気光学素子の主要部の断面構成の一例を示す模式縦断面図である。図15は、基板101に設ける電極106の平面構成の一例を示す模式平面図である。図16は、基板102に設ける電極201の平面構成の一例を示す模式平面図である。
14 to 16 are schematic views for explaining a schematic configuration of a main part of the electro-optic element of Example 6 according to the present invention.
FIG. 14 is a schematic longitudinal sectional view showing an example of a cross-sectional configuration of the main part of the electro-optic element of Example 6 according to the present invention. FIG. 15 is a schematic plan view illustrating an example of a planar configuration of the electrode 106 provided on the substrate 101. FIG. 16 is a schematic plan view illustrating an example of a planar configuration of the electrode 201 provided on the substrate 102.

実施例6の電気光学素子は、実施例4と同様に、単一の媒質層(媒質層203のみ)をもつ。実施例6の電気光学素子において、実施例4と異なる点は、たとえば、図14乃至図16に示すように、基板101には電極106のみを設け、基板102には電極201のみを設けるという点である。なお、そのほかの点、たとえば、各電極の櫛歯部分の長手方向と偏光板104,207の吸収軸301,302との関係などは、実施例4の電気光学素子と同じ構成である。そのため、実施例6の電気光学素子の構成に関する詳細な説明は、省略する。   The electro-optic element of Example 6 has a single medium layer (medium layer 203 only), as in Example 4. The electro-optic element of Example 6 differs from Example 4 in that, for example, as shown in FIGS. 14 to 16, only the electrode 106 is provided on the substrate 101 and only the electrode 201 is provided on the substrate 102. It is. Other points, for example, the relationship between the longitudinal direction of the comb-tooth portion of each electrode and the absorption axes 301 and 302 of the polarizing plates 104 and 207 are the same as those of the electro-optic element of the fourth embodiment. Therefore, the detailed description regarding the configuration of the electro-optic element of Example 6 is omitted.

実施例6の電気光学素子は、電極106と電極201に異なる電位を与えると、電極106と電極201との間の媒質層203に光学異方性206が付与される。この光学異方性206は、基板法線方向に対して斜め方向に付与されるため、基板101上の電極106および基板102上の電極201の基板法線方向からみて直上にも光学異方性が付与される。その結果、実施例6の電気光学素子は、電圧印加時に透明な電極106,201上も光が透過するようになり、高い透過率が得られる。   In the electro-optical element of Example 6, when different potentials are applied to the electrode 106 and the electrode 201, the optical anisotropy 206 is imparted to the medium layer 203 between the electrode 106 and the electrode 201. Since the optical anisotropy 206 is given in an oblique direction with respect to the substrate normal direction, the optical anisotropy is also directly above the electrode 106 on the substrate 101 and the electrode 201 on the substrate 102 as viewed from the substrate normal direction. Is granted. As a result, the electro-optic element of Example 6 allows light to pass through the transparent electrodes 106 and 201 when a voltage is applied, and high transmittance can be obtained.

図17は、実施例6の電気光学素子の構成における電界シミュレーションの結果を示す模式図である。   FIG. 17 is a schematic diagram illustrating a result of electric field simulation in the configuration of the electro-optic element of Example 6.

実施例6の電気光学素子において、電極106と電極201に異なる電位を与えたときに、媒質層203に印加される電界の等電位線(等電位面)は、たとえば、図17に示すような分布になり、電極106と電極201との間に電界が印加されていることが判る。さらに、電極106と電極201との間の電界は、それぞれの電極106,201の上にも発生していることが判る。すなわち、実施例6の電気光学素子は、図14に示したとおり、この電界によって、電極106と電極201との間の媒質層203に光学異方性206が付与される。その結果、実施例6の電気光学素子は、実施例1と同様に電圧印加時に透明な電極106,201上も光が透過するようになり、高い透過率が得られた。   In the electro-optic element of Example 6, when different potentials are applied to the electrode 106 and the electrode 201, the equipotential lines (equipotential surface) of the electric field applied to the medium layer 203 are, for example, as shown in FIG. It can be seen that an electric field is applied between the electrode 106 and the electrode 201. Further, it can be seen that the electric field between the electrode 106 and the electrode 201 is also generated on the respective electrodes 106 and 201. That is, in the electro-optic element of Example 6, as shown in FIG. 14, the optical anisotropy 206 is imparted to the medium layer 203 between the electrode 106 and the electrode 201 by this electric field. As a result, in the electro-optical element of Example 6, light was transmitted through the transparent electrodes 106 and 201 when a voltage was applied as in Example 1, and high transmittance was obtained.

ところで、本発明の電気光学素子は、図1、図5、図7、図8、図9、図11、および図14に示した基本構成のいずれかを1つの画素としてマトリクス状に配置し、それぞれの電極を接続し、さらにバックライトを備えることで、液晶表示装置として用いることができる。   By the way, the electro-optic element of the present invention has one of the basic configurations shown in FIGS. 1, 5, 7, 8, 9, 11, and 14 arranged in a matrix as one pixel, By connecting each electrode and further including a backlight, it can be used as a liquid crystal display device.

この場合、互いに交差する複数のデータ信号線および複数の走査信号線と、共通信号線を備え、第一の電極群および第二の電極群の櫛歯状電極の一方を前記走査信号線に供給される信号によってオン・オフを制御される能動素子と、能動素子を介して前記データ信号線に接続される画素電極とし、他方を前記共通信号線に接続された共通電極として、アクティブマトリクス型の液晶表示装置とすることもできる。前記能動素子は、第一の電極群と第二の電極群に別々に設けてもよいし、どちらか一方のみに設け、第一の電極群の画素電極と第二の電極群の画素電極とを電気的に接続しても良い。また、第一の電極群と第二の電極群の共通電極に相当する櫛歯状電極には、別々の電位を与えても良いし、両者を電気的に接続しても良い。また、このような液晶表示装置は、いずれかの基板上にカラーフィルタを設け、カラー液晶表示装置とすることも可能である。   In this case, a plurality of data signal lines and a plurality of scanning signal lines intersecting each other and a common signal line are provided, and one of the comb-like electrodes of the first electrode group and the second electrode group is supplied to the scanning signal line. An active element that is controlled to be turned on and off by the active signal, a pixel electrode connected to the data signal line through the active element, and the other as a common electrode connected to the common signal line. It can also be set as a liquid crystal display device. The active element may be provided separately for the first electrode group and the second electrode group, or may be provided only for one of the pixel electrodes of the first electrode group and the pixel electrode of the second electrode group. May be electrically connected. In addition, the comb-like electrodes corresponding to the common electrode of the first electrode group and the second electrode group may be given different potentials, or both may be electrically connected. In addition, such a liquid crystal display device can be a color liquid crystal display device by providing a color filter on any substrate.

またさらに、この液晶表示装置の場合、表示特性の視野角依存性を改善するために、光学異方性が発生する方向を、一画素内に複数設けても良い。この場合、光学異方性の方向が面内で直交するように櫛歯電極を配置すればよい。この液晶表示装置では、本発明の効果として高い透過率が得られるため、バックライトからの光を効率よく出射することができ、消費電力が少なく、高い白輝度の液晶表示装置を得ることができる。   Furthermore, in the case of this liquid crystal display device, in order to improve the viewing angle dependency of display characteristics, a plurality of directions in which optical anisotropy occurs may be provided in one pixel. In this case, the comb electrodes may be arranged so that the direction of optical anisotropy is orthogonal in the plane. In this liquid crystal display device, high transmittance can be obtained as an effect of the present invention, so that light from the backlight can be emitted efficiently, and a liquid crystal display device with low power consumption and high white luminance can be obtained. .

なお、本発明の電気光学素子は、実施例1乃至実施例6の説明で参照した図に示した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、変更を加えたり、組み合わせたりすることが可能である。たとえば、一つの素子内に光学異方性の方向が異なる複数の領域を形成しても良い。   Note that the electro-optical element of the present invention is not limited to the configuration shown in the drawings referred to in the description of the first to sixth embodiments, and may be modified without departing from the spirit of the present invention. Can be combined. For example, a plurality of regions having different optical anisotropy directions may be formed in one element.

図21および図22は、本発明による実施例7の液晶表示装置の主要部の概略構成の一例を説明するための模式図である。
図21は、本発明による実施例7の液晶表示装置における1つの画素の平面構成の一例を示す模式平面図である。図22は、図21のA−A’線における液晶表示パネルの断面構成の一例を示す模式断面図である。
21 and 22 are schematic diagrams for explaining an example of a schematic configuration of the main part of the liquid crystal display device according to the seventh embodiment of the present invention.
FIG. 21 is a schematic plan view illustrating an example of a planar configuration of one pixel in the liquid crystal display device according to the seventh embodiment of the present invention. FIG. 22 is a schematic cross-sectional view showing an example of a cross-sectional configuration of the liquid crystal display panel taken along line AA ′ of FIG.

本発明の電気光学素子の構成は、たとえば、等方性液晶を挟持する基板に配置された画素電極,共通電極間に電界を発生させ、この電界強度を変化させることにより等方性液晶層の光学特性を制御する液晶表示パネル(液晶表示装置)に適用できる。等方性液晶は、電圧無印加時に光学的に等方であり、電圧印加により電圧印加方向に複屈折性(光学異方性)を誘起する。このような等方性液晶を用いたデバイスに関する先行技術文献としては、たとえば、特許文献3や特許文献4などがある。このような等方性液晶の性質から、等方性液晶の透過率を制御するためには、偏光板104,207をクロスニコルに配置し、液晶表示パネルの面内方向(横方向)の電界を印加することが必要となる。したがって、等方性液晶を用いた液晶表示パネルは、基本的にはIPS方式の電極構造が適しているといえる。しかしながら、従来のIPS方式の電極構造では、電極上にパネル面内方向の電界が生じないため、電極上は透過に寄与しない。そのため、等方性液晶を用いて良好な表示を行うためには、通常、IPS方式の電極構造を改良し、パネル面に対して平行な電界をより発生する素子の構成としなければならない。   The configuration of the electro-optic element of the present invention is such that, for example, an isotropic liquid crystal layer is formed by generating an electric field between a pixel electrode and a common electrode disposed on a substrate sandwiching an isotropic liquid crystal and changing the electric field strength. The present invention can be applied to a liquid crystal display panel (liquid crystal display device) that controls optical characteristics. An isotropic liquid crystal is optically isotropic when no voltage is applied, and induces birefringence (optical anisotropy) in the direction of voltage application when a voltage is applied. As prior art documents concerning such a device using an isotropic liquid crystal, there are, for example, Patent Document 3 and Patent Document 4. In order to control the transmittance of the isotropic liquid crystal due to the properties of the isotropic liquid crystal, the polarizing plates 104 and 207 are arranged in crossed Nicols, and the electric field in the in-plane direction (lateral direction) of the liquid crystal display panel. Must be applied. Therefore, it can be said that an IPS electrode structure is basically suitable for a liquid crystal display panel using an isotropic liquid crystal. However, in the conventional IPS electrode structure, an electric field in the in-panel direction is not generated on the electrode, and thus does not contribute to transmission on the electrode. For this reason, in order to perform good display using isotropic liquid crystals, it is usually necessary to improve the IPS electrode structure to form an element that generates more electric field parallel to the panel surface.

このような観点から、実施例7では、等方性液晶を用いたIPS方式の液晶表示パネルに適した電極構造の一例について説明する。   From this point of view, Example 7 describes an example of an electrode structure suitable for an IPS liquid crystal display panel using an isotropic liquid crystal.

実施例7の液晶表示装置では、液晶表示パネルにおける1つの画素の構成を、たとえば、図21および図22に示したような構成にする。映像信号線DLの映像信号は、走査信号線GLにより制御された薄膜トランジスタTFTを介して、当該薄膜トランジスタTFTのソース電極と接続している画素電極PXに供給される。このとき、実施例7の液晶表示装置では、画素電極PXと共通電極CT(コモン電極と呼ぶこともある)との間、および画素電極PXと後述の電極CT2の間に電界を形成し、等方性液晶層LCを駆動することで表示を行う。なお、画素電極PXおよび共通電極CTは、それぞれ、実施例1乃至実施例5における電極105および電極106に相当する。また、等方性液晶層LCは、実施例4乃至実施例6における媒質層203に相当し、たとえば、前述の青色相液晶混合物でなる。また、薄膜トランジスタTFTのドレイン電極とソース電極は、バイアスの関係、すなわち薄膜トランジスタTFTがオンになったときの映像信号線DLの電位と画素電極PXの電位の高低の関係によって変わるが、本明細書では、画素電極PXと接続しているほうをソース電極という。   In the liquid crystal display device of Example 7, the configuration of one pixel in the liquid crystal display panel is configured as shown in FIGS. 21 and 22, for example. The video signal of the video signal line DL is supplied to the pixel electrode PX connected to the source electrode of the thin film transistor TFT via the thin film transistor TFT controlled by the scanning signal line GL. At this time, in the liquid crystal display device of Example 7, an electric field is formed between the pixel electrode PX and the common electrode CT (sometimes referred to as a common electrode), and between the pixel electrode PX and an electrode CT2 described later, etc. Display is performed by driving the isotropic liquid crystal layer LC. The pixel electrode PX and the common electrode CT correspond to the electrode 105 and the electrode 106 in the first to fifth embodiments, respectively. The isotropic liquid crystal layer LC corresponds to the medium layer 203 in the fourth to sixth embodiments, and is made of, for example, the aforementioned blue phase liquid crystal mixture. Further, the drain electrode and the source electrode of the thin film transistor TFT vary depending on the bias relationship, that is, the relationship between the potential of the video signal line DL and the potential of the pixel electrode PX when the thin film transistor TFT is turned on. The one connected to the pixel electrode PX is called a source electrode.

カラーフィルタCFを有する上側の基板SUB2には、ブラックマトリクスBMが配置され不要な光漏れを遮断している。なお、基板SUB2は、実施例4および実施例5における基板102に相当する。また、カラーフィルタCFG,CFR,CFBは横方向で隣接する画素同士では色の異なるものとなるため、それぞれ別の色となっている。また、カラーフィルタCFG,CFR,CFBおよびブラックマトリクスBMの上には、平坦化のためのオーバーコート膜OCが塗布され、さらにその上には、電極CT2が形成されている。   A black matrix BM is disposed on the upper substrate SUB2 having the color filter CF to block unnecessary light leakage. The substrate SUB2 corresponds to the substrate 102 in the fourth and fifth embodiments. In addition, the color filters CFG, CFR, and CFB have different colors between adjacent pixels in the horizontal direction, and therefore have different colors. Further, an overcoat film OC for planarization is applied on the color filters CFG, CFR, CFB and the black matrix BM, and an electrode CT2 is further formed thereon.

一方、下側の基板SUB1は、各画素に、櫛歯状に形成された共通電極CTおよび画素電極PXを有する。なお、基板SUB1は、実施例4および実施例5における基板101に相当する。共通電極CT上には、絶縁膜GIが設けられ、画素ごとの共通電極CTの間に対応するように映像信号線DLが設けられる。さらにこの映像信号線DL上には保護膜PASが設けられ、その上に画素電極PXが配置される。共通電極CTおよび画素電極PXは、たとえば、ITOのような透明な導電膜で形成されている。また、一対の基板SUB1,SUB2のそれぞれは、偏光板PL1,PL2を有し、かつ偏光板PL1の吸収軸PT1と偏光板PL2の吸収軸PT2がクロスニコル(直交ニコルと呼ぶこともある)となるように配置されている。   On the other hand, the lower substrate SUB1 includes a common electrode CT and a pixel electrode PX formed in a comb shape in each pixel. The substrate SUB1 corresponds to the substrate 101 in the fourth and fifth embodiments. An insulating film GI is provided on the common electrode CT, and a video signal line DL is provided so as to correspond to the common electrode CT for each pixel. Further, a protective film PAS is provided on the video signal line DL, and the pixel electrode PX is disposed thereon. The common electrode CT and the pixel electrode PX are formed of a transparent conductive film such as ITO, for example. Each of the pair of substrates SUB1 and SUB2 includes polarizing plates PL1 and PL2, and the absorption axis PT1 of the polarizing plate PL1 and the absorption axis PT2 of the polarizing plate PL2 are crossed Nicols (sometimes referred to as crossed Nicols). It is arranged to be.

このような構成の画素において、電極CT2は、共通電極CTまたは画素電極PXのいずれかと同じ電位となるように駆動する。以降は、特に断りの無い限り電極CT2は共通電極CTと同電位であるとして説明をするが、回路構成やプロセスの制約のない限り、画素電極PXと同電位として駆動しても良い。   In the pixel having such a configuration, the electrode CT2 is driven to have the same potential as either the common electrode CT or the pixel electrode PX. Hereinafter, the electrode CT2 will be described as being at the same potential as the common electrode CT unless otherwise specified. However, the electrode CT2 may be driven at the same potential as the pixel electrode PX unless there is a restriction on the circuit configuration or process.

この構成により電圧無印加時においては、等方性液晶層LCが等方的であるために黒表示となる。また電圧印加時においては、共通電極CTと画素電極PXとの間および共通電極CT上にパネル面平行に電圧印加方向の複屈折性が誘起されるので、白表示となる。また電極CT2と同電位にした共通電極CTもしくは画素電極PXのいずれかの電極上には、パネル面に平行な電気力線が形成されて複屈折性が生じるため、これらいずれかの電極上も白表示の際に透過に寄与することとなる。このように、実施例7の液晶表示装置の画素では、電極間だけでなく、電極上も透過に寄与するため、表示装置の透過率が向上できる。   With this configuration, when no voltage is applied, the isotropic liquid crystal layer LC is isotropic, so black display is obtained. Further, at the time of voltage application, birefringence in the voltage application direction is induced between the common electrode CT and the pixel electrode PX and on the common electrode CT in parallel with the panel surface, so that white display is performed. In addition, since electric lines of force parallel to the panel surface are formed on either the common electrode CT or the pixel electrode PX having the same potential as the electrode CT2, birefringence is generated. This contributes to transmission during white display. Thus, in the pixel of the liquid crystal display device of Example 7, the transmittance of the display device can be improved because it contributes to transmission not only between the electrodes but also on the electrodes.

なお、実施例7の液晶表示装置において、基板SUB1上に形成される電極の構造は、画素電極PXおよび共通電極CTのいずれか一方が、櫛歯状であることを特徴としており、等方性液晶層LCから遠いほうの電極が平板状に形成された構成であっても良い。   In the liquid crystal display device of Example 7, the structure of the electrode formed on the substrate SUB1 is characterized in that either one of the pixel electrode PX and the common electrode CT is comb-like, and isotropic. The electrode far from the liquid crystal layer LC may be formed in a flat plate shape.

実施例7の液晶表示装置は、たとえば、以下のプロセスにしたがって製造した。なお、使用する材料や形成方法については、従来の製造方法で適用されているもののいずれかを選択すればよい。そのため、実施例7の液晶表示装置の製造方法に関する具体的な説明は省略する。   The liquid crystal display device of Example 7 was manufactured, for example, according to the following process. In addition, what is necessary is just to select what was applied with the conventional manufacturing method about the material and formation method to be used. Therefore, the specific description regarding the manufacturing method of the liquid crystal display device of Example 7 is omitted.

まず、一方の基板SUB1上に、たとえば、薄膜トランジスタTFTおよび走査信号線GLを形成する。次に、基板SUB1の上層に共通電極CTを、ITOからなる透明導電層として櫛歯状に形成し、さらにその上層に窒化シリコンもしくは有機物からなる絶縁膜GIを形成した。実施例7では、ITOからなる櫛歯状の共通電極CTおよび絶縁膜GIの膜厚を、それぞれ77nmおよび500nmとした。   First, for example, a thin film transistor TFT and a scanning signal line GL are formed on one substrate SUB1. Next, a common electrode CT was formed in a comb-like shape as a transparent conductive layer made of ITO on the upper layer of the substrate SUB1, and an insulating film GI made of silicon nitride or organic matter was further formed on the upper layer. In Example 7, the thicknesses of the comb-like common electrode CT and the insulating film GI made of ITO were 77 nm and 500 nm, respectively.

次に、絶縁膜GIの上に、映像信号線DLおよび保護膜PASを形成した後、画素電極PXを膜厚77nmのITOからなる透明導電層として櫛歯状に形成した。このとき、画素電極PXは、共通電極CTとの距離が10.0μmとなるように形成した。   Next, after forming the video signal line DL and the protective film PAS on the insulating film GI, the pixel electrode PX was formed in a comb shape as a transparent conductive layer made of ITO having a film thickness of 77 nm. At this time, the pixel electrode PX was formed so that the distance from the common electrode CT was 10.0 μm.

また、他方の基板SUB2には、ブラックマトリクスBM、カラーフィルタCFGなどを形成した後、オーバーコート膜OCを塗布、焼成したのちに、電極CT2を膜厚77nmのITOからなる透明電極層として形成した。   On the other substrate SUB2, after forming a black matrix BM, a color filter CFG, and the like, an overcoat film OC was applied and baked, and then an electrode CT2 was formed as a transparent electrode layer made of ITO having a film thickness of 77 nm. .

次に、画素電極PXおよび共通電極CTが形成された基板SUB1と、電極CT2が形成された基板SUB2とを、スペーサーおよび周辺部のシール剤を介在させて貼り合わせ、セルを組み立てた。   Next, the substrate SUB1 on which the pixel electrode PX and the common electrode CT were formed and the substrate SUB2 on which the electrode CT2 was formed were bonded together with a spacer and a peripheral sealant interposed therebetween to assemble a cell.

さらにこのセルに、後述の光学的に等方性を示す媒体を真空で封入して等方性液晶層LCを設けた後、紫外線硬化型樹脂からなる封止剤で封止してパネルを製作した。   In addition, an optically isotropic medium, which will be described later, is sealed in this cell in a vacuum to provide an isotropic liquid crystal layer LC, which is then sealed with a sealant made of an ultraviolet curable resin to produce a panel. did.

このとき、光学的に等方な媒体でなる等方性液晶層LCの厚み(ギャップ)は、ギャップdと、画素電極PXと共通電極CTの距離lとの関係がd≧lとなるように、上記のスペーサーにより、封入状態で13.0μmとなるように調節した。   At this time, the thickness (gap) of the isotropic liquid crystal layer LC made of an optically isotropic medium is such that the relationship between the gap d and the distance l between the pixel electrode PX and the common electrode CT satisfies d ≧ l. The spacer was adjusted so as to be 13.0 μm in an enclosed state.

次に、このパネルを2枚の偏光板PL1,PL2(たとえば、日東電工社製のSEG1224DUなど)で挟み、一方の偏光板PL1の偏光透過軸を他方の偏光板PL2の偏光透過軸と直交させるように配置した。またこのとき、偏光板PL1,PL2は、吸収軸PT1、PT2の方向が、電気力線EFLの面内方向の角度に対して45度をなすように配置した。   Next, this panel is sandwiched between two polarizing plates PL1 and PL2 (for example, SEG1224DU manufactured by Nitto Denko Corporation), and the polarizing transmission axis of one polarizing plate PL1 is orthogonal to the polarizing transmission axis of the other polarizing plate PL2. Arranged. At this time, the polarizing plates PL1 and PL2 are arranged so that the directions of the absorption axes PT1 and PT2 form 45 degrees with respect to the angle in the in-plane direction of the electric force lines EFL.

次に、櫛歯状の共通電極CT、画素電極PXおよび電極CT2に交流駆動電圧が加わるように駆動回路を接続し、その後、バックライトなどを接続してモジュール化することで、液晶表示装置を得た。   Next, a drive circuit is connected so that an AC drive voltage is applied to the comb-shaped common electrode CT, pixel electrode PX, and electrode CT2, and then a backlight is connected to form a module so that the liquid crystal display device is Obtained.

基板SUB1と基板SUB2との間に挟持される等方性液晶層LC(光学等方性を示す媒体)としては、たとえば、非特許文献2に記載された、チッソ社製液晶材料JC1041XX,アルドリッチ社製液晶材料4−cyano−4’−pentylbiphenyl(5CB)とメルク社製カイラル剤ZLI−4572からなる液晶組成物のように、光学等方的なブルー相を発現する液晶材料を用いたが、この材料以外にも電圧無印加時には光学等方的な特性であって、電圧印加時に光学的に異方性を示す媒体であれば、同様に用いても良い。すなわち、等方性液晶層LCは、たとえば、非特許文献3に記載された、ベントコア形状の分子を垂直配向膜で配向させたものでも良い。この場合には、等方性液晶層LCと基板SUB1,SUB2の間に配向膜を形成する必要があるが、本発明においては、配向膜の種類や配向処理の方法はなんら規定されるものではない。   As the isotropic liquid crystal layer LC (medium exhibiting optical isotropy) sandwiched between the substrate SUB1 and the substrate SUB2, for example, liquid crystal material JC1041XX manufactured by Chisso Corporation described in Non-Patent Document 2, Aldrich Corporation A liquid crystal material that exhibits an optically isotropic blue phase was used, such as a liquid crystal composition comprising 4-cyano-4'-pentylbiphenyl (5CB) manufactured by Merck and a chiral agent ZLI-4572 manufactured by Merck. In addition to the material, any medium that has optical isotropic characteristics when no voltage is applied and exhibits optical anisotropy when a voltage is applied may be used in the same manner. That is, the isotropic liquid crystal layer LC may be, for example, a layer in which bent-core shaped molecules described in Non-Patent Document 3 are aligned by a vertical alignment film. In this case, it is necessary to form an alignment film between the isotropic liquid crystal layer LC and the substrates SUB1 and SUB2. However, in the present invention, the type of alignment film and the method of alignment treatment are not specified at all. Absent.

上記の手順で製造して得られた液晶表示装置を駆動した結果、高透過率を得ることができた。また、駆動している液晶表示装置の画素を観察した結果、画素電極PXと共通電極CTとの間、および共通電極CT上の一部も光が透過しており、高透過率である理由が、共通電極CT上も表示に寄与しているためであることが確認された。   As a result of driving the liquid crystal display device obtained by the above procedure, high transmittance could be obtained. Further, as a result of observing the pixels of the liquid crystal display device being driven, light is transmitted between the pixel electrode PX and the common electrode CT, and part of the common electrode CT, which is why the transmittance is high. It has been confirmed that this is because the common electrode CT also contributes to the display.

図23は、実施例7の液晶表示装置の画素構成における電界シミュレーションの結果を示す模式図である。   FIG. 23 is a schematic diagram illustrating a result of electric field simulation in the pixel configuration of the liquid crystal display device of Example 7.

実施例7の液晶表示装置における電極構成を模式的に表現して電界シミュレーションを行ったところ、画素電極PXと、共通電極CTおよび電極CT2との間に生じる等電位線(等電位面)は、たとえば、図23に示すような分布になった。このとき、等方性液晶層LCには、等電位線を垂直に横切る電気力線EFLが形成される。これによると、画素電極PXと共通電極CTとの間には、基板SUB1に対してほぼ平行な電気力線EFLが生じることが判った。実施例7で用いる光学的に等方性の媒体は、電気力線が生じた方向に複屈折が生じることから、この電気力線にそって生じた複屈折性が生じた箇所のみ、光が透過することになる。したがって、画素電極PXと共通電極CTの間は、生じる複屈折性の大きさに応じて透過光強度が変化するので、表示装置として利用することが出来る。また、図23に示したシミュレーションの結果では、画素電極PX上に、基板SUB1の面に対してほぼ平行な電気力線がほとんど生じていないが、共通電極CT上には平行な電気力線が生じている。このことから、実施例7の構成のように共通電極CTにITOからなる透明な電極を用いることにより、各画素の透過率の向上を図ることができる。   When the electric field simulation was performed by schematically expressing the electrode configuration in the liquid crystal display device of Example 7, the equipotential lines (equipotential surface) generated between the pixel electrode PX and the common electrode CT and the electrode CT2 are For example, the distribution is as shown in FIG. At this time, electric lines of force EFL that perpendicularly cross the equipotential lines are formed in the isotropic liquid crystal layer LC. According to this, it was found that an electric force line EFL substantially parallel to the substrate SUB1 is generated between the pixel electrode PX and the common electrode CT. Since the optically isotropic medium used in Example 7 generates birefringence in the direction in which the electric lines of force are generated, light is transmitted only at the locations where the birefringence generated along the electric lines of force is generated. It will be transparent. Accordingly, the transmitted light intensity varies between the pixel electrode PX and the common electrode CT in accordance with the magnitude of the birefringence generated, and thus can be used as a display device. In the simulation results shown in FIG. 23, almost no electric lines of force are generated on the pixel electrode PX substantially parallel to the surface of the substrate SUB1, but no parallel electric lines of force are generated on the common electrode CT. Has occurred. From this, the transmittance of each pixel can be improved by using a transparent electrode made of ITO for the common electrode CT as in the configuration of the seventh embodiment.

(比較例1)
本願発明者らは、実施例7の液晶表示装置の効果を調べるために、比較例1として、図21および図22に示した構成において、画素電極PXと共通電極CTの間の距離lと、セルギャップdとの関係がd<lとなる関係として、l=10.0μm、d=4μmとなるような液晶表示装置を製造した。
(Comparative Example 1)
In order to investigate the effect of the liquid crystal display device of Example 7, the inventors of the present application have compared the distance l between the pixel electrode PX and the common electrode CT in the configuration shown in FIG. 21 and FIG. A liquid crystal display device in which l = 10.0 μm and d = 4 μm was manufactured as a relationship in which d <l with respect to the cell gap d.

この比較例1の液晶表示装置を駆動した結果、実施例7の液晶表示装置と比べて透過率が低下した。   As a result of driving the liquid crystal display device of Comparative Example 1, the transmittance was lower than that of the liquid crystal display device of Example 7.

(比較例2)
図24は、比較例2の液晶表示装置の断面構成の一例を示す模式縦断面図である。
(Comparative Example 2)
FIG. 24 is a schematic longitudinal cross-sectional view showing an example of a cross-sectional configuration of the liquid crystal display device of Comparative Example 2.

また、本願発明者らは、実施例7の液晶表示装置の効果を調べるために、比較例2として、たとえば、図24に示すように、基板SUB2上に電極CT2を形成しない液晶表示装置を製造した。   In addition, in order to investigate the effect of the liquid crystal display device of Example 7, the inventors of the present application manufactured a liquid crystal display device in which the electrode CT2 is not formed on the substrate SUB2 as shown in FIG. did.

この比較例2の液晶表示装置を駆動した結果、実施例7の液晶表示装置と比べて透過率が低下した。   As a result of driving the liquid crystal display device of Comparative Example 2, the transmittance was lower than that of the liquid crystal display device of Example 7.

図25は、比較例2の液晶表示装置の構成における電界シミュレーションの結果を示す模式図である。   FIG. 25 is a schematic diagram showing a result of electric field simulation in the configuration of the liquid crystal display device of Comparative Example 2.

比較例2の液晶表示装置における電極構成を模式的に表現して電界シミュレーションを行ったところ、画素電極PXと共通電極CTとの間における等電位線(等電位面)は、たとえば、図25に示すような分布になった。すなわち、比較例2の液晶表示装置では、画素電極PXと共通電極CTの間には基板SUB1に対してほぼ平行な電気力線EFLが生じるものの、画素電極PXおよび共通電極CT上においては、基板SUB1の面に対してほぼ平行な電気力線がほとんど生じていないことが明らかとなった。   When the electric field simulation was performed by schematically expressing the electrode configuration in the liquid crystal display device of Comparative Example 2, an equipotential line (equipotential surface) between the pixel electrode PX and the common electrode CT is shown in FIG. The distribution was as shown. That is, in the liquid crystal display device of Comparative Example 2, although electric lines of force EFL substantially parallel to the substrate SUB1 are generated between the pixel electrode PX and the common electrode CT, the substrate is formed on the pixel electrode PX and the common electrode CT. It became clear that almost no electric lines of force were generated substantially parallel to the surface of SUB1.

図26は、本発明による実施例8の液晶表示パネルにおける1つの画素の断面構成の一例を示す模式断面図である。
なお、図26は、図21のA−A’線に相当する位置での液晶表示パネルの断面構成の一例を示している。
FIG. 26 is a schematic cross-sectional view showing an example of a cross-sectional configuration of one pixel in the liquid crystal display panel of Example 8 according to the present invention.
FIG. 26 shows an example of a cross-sectional configuration of the liquid crystal display panel at a position corresponding to the line AA ′ in FIG.

実施例8の液晶表示パネルにおける画素の基本的な構成は、実施例7と同様である。実施例8の画素の構成において、実施例7と異なる点は、たとえば、図26に示すように、ITOからなる電極CT2を形成するときに、画素電極PXの直上に位置する部分をドライエッチングにより除去して、スリットを設けた点である。このとき、電極CT2のスリットの幅は、画素電極PXと同じ幅とした。また、画素電極PXは、図21に示したように、屈曲した構造であるので、電極CT2のスリットの構造も同様に屈曲するように形成した。また、電極CT2にこのスリットを形成した以外は、実施例7と同様の製造条件、画素構成で液晶表示装置を製造した。   The basic configuration of the pixels in the liquid crystal display panel of the eighth embodiment is the same as that of the seventh embodiment. The configuration of the pixel of the eighth embodiment differs from that of the seventh embodiment in that, for example, as shown in FIG. 26, when the electrode CT2 made of ITO is formed, a portion located immediately above the pixel electrode PX is dry-etched. It is the point which removed and provided the slit. At this time, the width of the slit of the electrode CT2 was the same as that of the pixel electrode PX. Since the pixel electrode PX has a bent structure as shown in FIG. 21, the slit structure of the electrode CT2 is formed to be bent similarly. In addition, a liquid crystal display device was manufactured under the same manufacturing conditions and pixel configuration as in Example 7 except that this slit was formed in the electrode CT2.

実施例8のような構成の液晶表示パネルを有する液晶表示装置を駆動した結果、良好な表示を示した。また、駆動している液晶表示装置の画素を観察した結果、画素電極PXと共通電極CTとの間、および共通電極CT上の一部も光が透過しており、高透過率である理由が、共通電極CT上も表示に寄与しているためであることが確認された。   As a result of driving a liquid crystal display device having a liquid crystal display panel configured as in Example 8, a good display was shown. Further, as a result of observing the pixels of the liquid crystal display device being driven, light is transmitted between the pixel electrode PX and the common electrode CT, and part of the common electrode CT, which is why the transmittance is high. It has been confirmed that this is because the common electrode CT also contributes to the display.

以上、本発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において、種々変更可能であることはもちろんである。   The present invention has been specifically described above based on the above-described embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. is there.

たとえば、実施例7および実施例8では、画素電極PXおよび共通電極CTの櫛歯部分の長手方向が映像信号線DLの延在方向(y方向)であり、かつ、屈曲している画素を例に挙げた。しかしながら、画素電極PXおよび共通電極CTの櫛歯部分は、たとえば、長手方向が映像信号線DLの延在方向(y方向)にまっすぐに伸びていてもよいことはもちろんである。また、画素電極PXおよび共通電極CTは、たとえば、所定の方向に延びる複数のスリットを有する画素電極PXと平板状の共通電極CTとを積層した構成であってもよいことはもちろんである。またさらに、画素電極PXおよび共通電極CTは、絶縁層GIの同一面に形成してもよいことはもちろんである。   For example, in the seventh and eighth embodiments, a pixel in which the longitudinal direction of the comb-tooth portions of the pixel electrode PX and the common electrode CT is the extending direction (y direction) of the video signal line DL and the pixel is bent is taken as an example. Listed. However, it goes without saying that the comb-tooth portions of the pixel electrode PX and the common electrode CT may have, for example, the longitudinal direction extending straight in the extending direction (y direction) of the video signal line DL. Of course, the pixel electrode PX and the common electrode CT may have a structure in which, for example, a pixel electrode PX having a plurality of slits extending in a predetermined direction and a plate-like common electrode CT are stacked. Furthermore, it goes without saying that the pixel electrode PX and the common electrode CT may be formed on the same surface of the insulating layer GI.

101,102,103,SUB1,SUB2 基板
104,207,PL1,PL2 偏光板
105,106,201,202 電極
107,205 電界方向
108,206 光学異方性(の方向)
203,204 媒質層
301,302,PT1,PT2 (偏光板の)吸収軸
DL 映像信号線
GL 走査信号線
TFT 薄膜トランジスタ
PX 画素電極
CT 共通電極
LC 等方性液晶層
BM ブラックマトリクス
CFG,CFR,CFB カラーフィルタ
OC オーバーコート膜
CT2 電極
GI 絶縁膜
PAS 保護膜
EFL 電気力線
101, 102, 103, SUB1, SUB2 Substrate 104, 207, PL1, PL2 Polarizing plate 105, 106, 201, 202 Electrode 107, 205 Electric field direction 108, 206 Optical anisotropy (direction)
203, 204 Medium layer 301, 302, PT1, PT2 (Polarizing plate) Absorption axis DL Video signal line GL Scanning signal line TFT Thin film transistor PX Pixel electrode CT Common electrode LC Isotropic liquid crystal layer BM Black matrix CFG, CFR, CFB Color Filter OC Overcoat film CT2 Electrode GI Insulating film PAS Protective film EFL Electric field lines

Claims (9)

対向する互いに平行な複数の基板と、前記複数の基板間に挟持された媒質層と、前記媒質層を挟んで吸収軸が互いにほぼ直交するように配置された一対の偏光板と、前記複数の基板の少なくとも二つの面に設けられ互いに略平行に配置された複数の櫛歯状の透明電極からなる電極群を複数備え、前記電極群に印加される電界により光の透過および遮断を制御する電気光学素子において、
前記媒質層が、電界無印加時にほぼ光学等方性を有し、電界印加に伴い光学異方性を発現する媒質からなり、前記少なくとも二つの電極群により電界を印加して、前記透明電極の基板法線上の領域を含んで前記媒質層に光学異方性を与え、
前記複数の電極群の櫛歯部分が、基板法線方向から見て互いに重畳しないように配置されてい
前記複数の電極群は、前記媒質層に少なくとも基板と平行方向の電界を付与する、
ことを特徴とする電気光学素子。
A plurality of opposing parallel substrates, a medium layer sandwiched between the plurality of substrates, a pair of polarizing plates disposed so that absorption axes are substantially orthogonal to each other across the medium layer, and the plurality of the plurality of substrates An electric group comprising a plurality of comb-shaped transparent electrodes provided on at least two surfaces of the substrate and arranged substantially parallel to each other, and controls transmission and blocking of light by an electric field applied to the electrode group In the optical element,
The medium layer is made of a medium having substantially optical isotropy when no electric field is applied, and exhibiting optical anisotropy when the electric field is applied, and applying an electric field by the at least two electrode groups, An optical anisotropy is imparted to the medium layer including a region on the substrate normal;
The tooth portions of the plurality of electrode group, be arranged so as not to overlap each other when viewed from the substrate normal direction,
The plurality of electrode groups apply an electric field at least in a direction parallel to the substrate to the medium layer.
An electro-optical element.
対向する互いに平行な複数の基板と、前記複数の基板間に挟持された媒質層と、前記媒質層を挟んで吸収軸が互いにほぼ直交するように配置された一対の偏光板と、前記複数の基板の少なくとも二つの面に設けられ互いに略平行に配置された複数の櫛歯状の透明電極からなる電極群を複数備え、前記電極群に印加される電界により光の透過および遮断を制御する電気光学素子において、
前記媒質層が、電界無印加時にほぼ光学等方性を有し、電界印加に伴い光学異方性を発現する媒質からなり、前記少なくとも二つの電極群により電界を印加して、前記透明電極の基板法線上の領域を含んで前記媒質層に光学異方性を与え、
前記複数の電極群の櫛歯部分が、基板法線方向から見て互いに重畳しないように配置されていて、
前記複数の電極群の一つの電極群により前記媒質層に印加される電界は、他の少なくとも一つの電極群の基板法線上の領域において、基板と平行方向の成分を有する、
ことを特徴とする電気光学素子。
A plurality of opposing parallel substrates, a medium layer sandwiched between the plurality of substrates, a pair of polarizing plates disposed so that absorption axes are substantially orthogonal to each other across the medium layer, and the plurality of the plurality of substrates An electric group comprising a plurality of comb-shaped transparent electrodes provided on at least two surfaces of the substrate and arranged substantially parallel to each other, and controls transmission and blocking of light by an electric field applied to the electrode group In the optical element,
The medium layer is made of a medium having substantially optical isotropy when no electric field is applied, and exhibiting optical anisotropy when the electric field is applied, and applying an electric field by the at least two electrode groups, An optical anisotropy is imparted to the medium layer including a region on the substrate normal;
The comb tooth portions of the plurality of electrode groups are arranged so as not to overlap each other when viewed from the substrate normal direction,
Electric field applied to said medium layer by one of the electrode groups of the plurality of electrode groups, in the region of the substrate normal line of the other of the at least one electrode group, that having a component parallel to the substrate,
You wherein electric optical element that.
前記偏光板の吸収軸が、基板法線方向から見た前記媒質層への電界印加方向に対し45度±10度の角度をなして配置されており、前記光学異方性付与手段により前記透明電極上の基板法線方向領域に付与する光学異方性の方向が、前記媒質層に印加する電界方向と略平行もしくは略直交であることを特徴とする請求項1又は請求項2に記載の電気光学素子。 The absorption axis of the polarizing plate is disposed at an angle of 45 ° ± 10 ° with respect to the direction of electric field application to the medium layer as viewed from the normal direction of the substrate, direction of the optical anisotropy to be imparted to the substrate normal direction area on the electrode, according to claim 1 or claim 2, characterized in that said a medium layer substantially parallel or substantially perpendicular to the direction of the electric field to be applied Electro-optic element. 前記複数の電極群によって前記媒質層に印加される各電界の基板法線方向から見た電界成分が各々略平行であり、ほぼ同時に前記媒質層に電界が印加されることを特徴とする請求項1又は請求項2に記載の電気光学素子。 The electric field components viewed from the substrate normal direction of each electric field applied to the medium layer by the plurality of electrode groups are substantially parallel to each other, and the electric field is applied to the medium layer substantially simultaneously. The electro-optical element according to claim 1 . 対向する互いに平行な複数の基板と、前記複数の基板間に挟持された媒質層と、前記媒質層を挟んで吸収軸が互いにほぼ直交するように配置された一対の偏光板と、前記複数の基板の少なくとも二つの面に設けられ互いに略平行に配置された複数の櫛歯状の透明電極からなる電極群を複数備え、前記電極群に印加される電界により光の透過および遮断を制御する電気光学素子において、
前記媒質層が、電界無印加時にほぼ光学等方性を有し、電界印加に伴い光学異方性を発現する媒質からなり、前記少なくとも二つの電極群により電界を印加して、前記透明電極の基板法線上の領域を含んで前記媒質層に光学異方性を与え、
対向する第一の基板および第二の基板と、当該一対の基板間に挟持された第一の媒質層と、前記第二の基板に対向した第三の基板と、前記第二の基板と前記第三の基板との間に挟持された第二の媒質層と、前記第一の基板の前記第二の基板との対向面側に設けられた、前記第一の媒質層に電界を印加する第一の電極群と、前記第二の基板の前記第三の基板との対向面側に設けられた、前記第二の媒質層に電界を印加する第二の電極群とを備えたことを特徴とする電気光学素子。
A plurality of opposing parallel substrates, a medium layer sandwiched between the plurality of substrates, a pair of polarizing plates disposed so that absorption axes are substantially orthogonal to each other across the medium layer, and the plurality of the plurality of substrates An electric group comprising a plurality of comb-shaped transparent electrodes provided on at least two surfaces of the substrate and arranged substantially parallel to each other, and controls transmission and blocking of light by an electric field applied to the electrode group In the optical element,
The medium layer is made of a medium having substantially optical isotropy when no electric field is applied, and exhibiting optical anisotropy when the electric field is applied, and applying an electric field by the at least two electrode groups, An optical anisotropy is imparted to the medium layer including a region on the substrate normal;
First and second substrates facing each other, a first medium layer sandwiched between the pair of substrates, a third substrate facing the second substrate, the second substrate, and the second substrate An electric field is applied to the first medium layer provided on the side of the second medium layer sandwiched between the third substrate and the second substrate facing the second substrate. A first electrode group, and a second electrode group that is provided on a surface of the second substrate facing the third substrate and applies an electric field to the second medium layer. An electro-optical element characterized.
対向する互いに平行な複数の基板と、前記複数の基板間に挟持された媒質層と、前記媒質層を挟んで吸収軸が互いにほぼ直交するように配置された一対の偏光板と、前記複数の基板の少なくとも二つの面に設けられ互いに略平行に配置された複数の櫛歯状の透明電極からなる電極群を複数備え、前記電極群に印加される電界により光の透過および遮断を制御する電気光学素子において、
前記媒質層が、電界無印加時にほぼ光学等方性を有し、電界印加に伴い光学異方性を発現する媒質からなり、前記少なくとも二つの電極群により電界を印加して、前記透明電極の基板法線上の領域を含んで前記媒質層に光学異方性を与え、
対向する第一の基板および第二の基板と、当該一対の基板間に挟持された第一の媒質層と、前記第二の基板に対向した第三の基板と、前記第二の基板と前記第三の基板との間に挟持された第二の媒質層と、前記第一の基板の前記第二の基板との対向面側に設けられた、前記第一の媒質層に電界を印加する第一の電極群と、前記第三の基板の前記第二の基板との対向面側に設けられた、前記第二の媒質層に電界を印加する第二の電極群とを備えたことを特徴とする電気光学素子。
A plurality of opposing parallel substrates, a medium layer sandwiched between the plurality of substrates, a pair of polarizing plates disposed so that absorption axes are substantially orthogonal to each other across the medium layer, and the plurality of the plurality of substrates An electric group comprising a plurality of comb-shaped transparent electrodes provided on at least two surfaces of the substrate and arranged substantially parallel to each other, and controls transmission and blocking of light by an electric field applied to the electrode group In the optical element,
The medium layer is made of a medium having substantially optical isotropy when no electric field is applied, and exhibiting optical anisotropy when the electric field is applied, and applying an electric field by the at least two electrode groups, An optical anisotropy is imparted to the medium layer including a region on the substrate normal;
First and second substrates facing each other, a first medium layer sandwiched between the pair of substrates, a third substrate facing the second substrate, the second substrate, and the second substrate An electric field is applied to the first medium layer provided on the side of the second medium layer sandwiched between the third substrate and the second substrate facing the second substrate. A first electrode group, and a second electrode group that is provided on the surface of the third substrate facing the second substrate and applies an electric field to the second medium layer. An electro-optical element characterized.
対向する互いに平行な複数の基板と、前記複数の基板間に挟持された媒質層と、前記媒質層を挟んで吸収軸が互いにほぼ直交するように配置された一対の偏光板と、前記複数の基板の少なくとも二つの面に設けられ互いに略平行に配置された複数の櫛歯状の透明電極からなる電極群を複数備え、前記電極群に印加される電界により光の透過および遮断を制御する電気光学素子において、
前記媒質層が、電界無印加時にほぼ光学等方性を有し、電界印加に伴い光学異方性を発現する媒質からなり、前記少なくとも二つの電極群により電界を印加して、前記透明電極の基板法線上の領域を含んで前記媒質層に光学異方性を与え、
対向する第一の基板および第二の基板と、当該一対の基板間に挟持された第一の媒質層と、前記第二の基板に対向した第三の基板と、前記第二の基板と前記第三の基板との間に挟持された第二の媒質層と、前記第二の基板の前記第一の基板との対向面側に設けられた、前記第一の媒質層に電界を印加する第一の電極群と、前記第二の基板の前記第三の基板との対向面側に設けられた、前記第二の媒質層に電界を印加する第二の電極群とを備えたことを特徴とする電気光学素子。
A plurality of opposing parallel substrates, a medium layer sandwiched between the plurality of substrates, a pair of polarizing plates disposed so that absorption axes are substantially orthogonal to each other across the medium layer, and the plurality of the plurality of substrates An electric group comprising a plurality of comb-shaped transparent electrodes provided on at least two surfaces of the substrate and arranged substantially parallel to each other, and controls transmission and blocking of light by an electric field applied to the electrode group In the optical element,
The medium layer is made of a medium having substantially optical isotropy when no electric field is applied, and exhibiting optical anisotropy when the electric field is applied, and applying an electric field by the at least two electrode groups, An optical anisotropy is imparted to the medium layer including a region on the substrate normal;
First and second substrates facing each other, a first medium layer sandwiched between the pair of substrates, a third substrate facing the second substrate, the second substrate, and the second substrate An electric field is applied to the first medium layer provided on the side of the second medium layer sandwiched between the third substrate and the second substrate facing the first substrate. A first electrode group, and a second electrode group that is provided on a surface of the second substrate facing the third substrate and applies an electric field to the second medium layer. An electro-optical element characterized.
対向する第一の基板および第二の基板と、当該一対の基板間に挟持された媒質層と、前記第一の基板の前記第二の基板との対向面側に設けられた、前記媒質層に電界を印加する第一の電極群と、前記第二の基板の前記第一の基板との対向面側に設けられた、前記媒質層に電界を印加する第二の電極群とを備えたことを特徴とする請求項1又は請求項2に記載の電気光学素子。 The first and second substrates facing each other, the medium layer sandwiched between the pair of substrates, and the medium layer provided on the surface of the first substrate facing the second substrate A first electrode group for applying an electric field to the first substrate, and a second electrode group for applying an electric field to the medium layer provided on the surface of the second substrate facing the first substrate. The electro-optic element according to claim 1 or 2 . 前記第一の基板および前記第二の基板のうちの少なくとも一方の基板に設けられた一つの電極群は、電気的に独立したコモン電極と画素電極とを有し、かつ、前記コモン電極と前記画素電極を前記櫛歯状の櫛歯部分が延伸する方向の対称軸に対して線対称となるように配置したことを特徴とする請求項に記載の電気光学素子。 One electrode group provided on at least one of the first substrate and the second substrate has an electrically independent common electrode and pixel electrode, and the common electrode and the 9. The electro-optical element according to claim 8 , wherein the pixel electrodes are arranged so as to be line-symmetric with respect to a symmetry axis in a direction in which the comb-shaped comb-tooth portion extends.
JP2009046036A 2008-03-03 2009-02-27 ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE Active JP5236529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046036A JP5236529B2 (en) 2008-03-03 2009-02-27 ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008052146 2008-03-03
JP2008052146 2008-03-03
JP2009046036A JP5236529B2 (en) 2008-03-03 2009-02-27 ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE

Publications (2)

Publication Number Publication Date
JP2009237554A JP2009237554A (en) 2009-10-15
JP5236529B2 true JP5236529B2 (en) 2013-07-17

Family

ID=41251492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046036A Active JP5236529B2 (en) 2008-03-03 2009-02-27 ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE

Country Status (1)

Country Link
JP (1) JP5236529B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242476B2 (en) * 2009-03-25 2013-07-24 株式会社東芝 Liquid crystal display
JP2011090278A (en) 2009-09-25 2011-05-06 Hitachi Displays Ltd Liquid crystal display
CN102656511A (en) * 2010-02-17 2012-09-05 株式会社东芝 Liquid crystal display device
JP5273399B2 (en) * 2010-03-23 2013-08-28 株式会社ジャパンディスプレイ Liquid crystal display
WO2012077376A1 (en) * 2010-12-10 2012-06-14 凸版印刷株式会社 Liquid crystal display substrate and liquid crystal display device
WO2013047597A1 (en) * 2011-09-29 2013-04-04 シャープ株式会社 Liquid crystal display device
US9612488B2 (en) * 2012-08-30 2017-04-04 Sharp Kabushiki Kaisha Liquid crystal display device
JP2014002402A (en) * 2013-08-14 2014-01-09 Toshiba Corp Liquid crystal display device
US10634960B2 (en) * 2016-07-06 2020-04-28 Sharp Kabushiki Kaisha Liquid crystal display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090708A (en) * 1996-09-17 1998-04-10 Toshiba Corp Liquid crystal display element
JP4364332B2 (en) * 1998-06-23 2009-11-18 シャープ株式会社 Liquid crystal display
DE10241301A1 (en) * 2002-09-04 2004-03-18 Merck Patent Gmbh Electrooptic light control element and display and medium for television and computer screens has temperature driven control mechanism
JP4142019B2 (en) * 2004-01-20 2008-08-27 シャープ株式会社 Display element and display device
TWI236559B (en) * 2004-07-19 2005-07-21 Quanta Display Inc Liquid crystal display
JP2007171938A (en) * 2005-11-24 2007-07-05 Seiko Epson Corp Liquid crystal device and electronic apparatus

Also Published As

Publication number Publication date
JP2009237554A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5236529B2 (en) ELECTRO-OPTICAL ELEMENT AND DISPLAY DEVICE
US8339556B2 (en) Electro-optical device and display device with interdigital electrode portions on at least first and second substrates which are non-overlapping in a direction normal to the substrates
KR100916893B1 (en) Optically isotropic liquid crystal materials, liquid crystal display panel and liquid crystal display device using the same
US7965364B2 (en) Liquid crystal display having common and floating electrodes on one of substrates thereof
JP4940034B2 (en) Optically isotropic liquid crystal material, liquid crystal display panel using the same, and liquid crystal display device
JP2006243036A (en) Liquid crystal device and electronic equipment
JPH086025A (en) Liquid crystal electro-optic device, projection type display system using the same and method for driving liquid crystal electro-optic device
KR102380640B1 (en) Liquid Crystal Display Device Including Liquid Crystal Capsule
WO2011016267A1 (en) Liquid crystal display device
JP2014215348A (en) Liquid crystal panel
KR20110083141A (en) Liquid crystal display apparatus
JP2011065090A (en) Liquid crystal display apparatus
KR20090125326A (en) In-plane switching liquid crystal device using cholesteric blue phase liquid crystal
JP6196385B2 (en) Liquid crystal display
KR100887497B1 (en) Fringe in-plane field switching liquid crystal display
KR100672656B1 (en) Liquid crystal display device
KR101555497B1 (en) Method of displaying image and display apparatus performing the method
US20110317092A1 (en) Liquid crystal display device
TWI455104B (en) Blue phase liquid crystal display apparatus and driving method thereof
JP2010128113A (en) Liquid crystal display
WO2012090839A1 (en) Liquid-crystal panel and liquid-crystal display
JP3776844B2 (en) Liquid crystal display
WO2012011443A1 (en) Liquid crystal panel and liquid crystal display device
JP4920617B2 (en) Display device
KR20110076370A (en) Blue phase mode lcd

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250