TW200304307A - Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (mimo) system - Google Patents
Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (mimo) system Download PDFInfo
- Publication number
- TW200304307A TW200304307A TW092104229A TW92104229A TW200304307A TW 200304307 A TW200304307 A TW 200304307A TW 092104229 A TW092104229 A TW 092104229A TW 92104229 A TW92104229 A TW 92104229A TW 200304307 A TW200304307 A TW 200304307A
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- snr
- stream
- data transmission
- data stream
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 241
- 238000009828 non-uniform distribution Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 86
- 238000012545 processing Methods 0.000 claims abstract description 67
- 238000004891 communication Methods 0.000 claims abstract description 42
- 230000003595 spectral effect Effects 0.000 claims description 38
- 238000005516 engineering process Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 32
- 238000012546 transfer Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 4
- 206010011878 Deafness Diseases 0.000 claims 1
- 239000011365 complex material Substances 0.000 claims 1
- 231100000895 deafness Toxicity 0.000 claims 1
- 238000011156 evaluation Methods 0.000 claims 1
- 208000016354 hearing loss disease Diseases 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 claims 1
- 230000004044 response Effects 0.000 description 22
- 238000013507 mapping Methods 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 11
- 125000004122 cyclic group Chemical group 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011257 shell material Substances 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- KLDZYURQCUYZBL-UHFFFAOYSA-N 2-[3-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCN=CC1=CC=CC=C1O KLDZYURQCUYZBL-UHFFFAOYSA-N 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 201000001098 delayed sleep phase syndrome Diseases 0.000 description 1
- 208000033921 delayed sleep phase type circadian rhythm sleep disease Diseases 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
- H04L1/0017—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
- H04L1/0631—Receiver arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
Description
200304307 ⑴ 玖、發明說明 、 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 技術領域 本發明係大致有關資料通訊’尤係有關用來決定將經由 諸如一多重輸入多重輸出(MulHpldnput Multiple-Output ;簡 稱ΜΙΜΟ)系統等的一多通道通訊系統的多個傳輸通道而 傳輸的多個資料流所使用的資料傳輸速率之一非均勻分 佈。 先前技術 在一無線通訊系統中,來自一發射機的一射頻調變信號 可經由若干個傳播路徑而到達一接收機。該等傳播路徑的 特性通常會由於諸如信號衰減及多路徑效應等的若干因 素而隨著時間有所變化。為了提供可抗拒不利的路徑效應 之分集性,並改善特性,可使用多個傳輸及接收天線。如 果傳輸與接收天線間之傳播路徑是線性獨立的(亦即,一 路fe上的傳輸並未形成為其他路徑上的傳輸之線性組合) ’此種情形通常至少在某種程度上是真確的,則當天線的 數目增加時,正確地接收一資料傳輸的可能性也將增加。 叙而g ’當傳輸及接收天線增加時,分集將增加,且性 能將改善。 夕重輸入多重輸出(ΜΙΜΟ)通訊系統採用供資料傳輸 、夕個(Ντ個)傳輸天線及多個(Nr個)接收天線。可將由% 個傳輸% 八、·泉及NR個接收天線構成的一 ΜΙΜΟ通道分解為Ns 個獨立# 1 勺通遒,其中Ns S min{NT,Nr}。亦可將每一該等Ns 同身蜀 二的通遒稱為該ΜΙΜΟ通道的一空間次通道,且該獨立 200304307 (2) I發明說明續ΐ 的通道對應於一個維度。如果使用多個傳輸及接收天線產 生了額外的廣延性,則該ΜΙΜ〇系統可提供較佳的性能(例 如,更大的傳輸容量)。 對於一滿秩(full-rank) ΜΙΜΟ通道(其中Ns==NtsNr)而言,可 自每一該等Ντ個傳輸天線傳輸一獨立的資料流。該等傳輸 的資料流可能或碰到不同的通道狀沉(例如,不同的信號 衰減及多路徑效應),且可能在一特定的傳輸功率位準下 得到不同的信號與雜訊及干擾比 interference Rati0 ;簡稱SNR)。此外,如果在接收機上使用 接續的干擾抵消處理,以便回復所傳輸的資料流(將於後 又中說明之),則各資料流可根據資料流回復的特定順序 而有不同的SNR。因此,不同的資料流可根據其呈現的snr 而支援不同的資料傳輸速率。因為通道狀況通常隨著時間 而變,所以每一資料流所支援的資料傳輸速率也隨著時間 而變。 如果在發射機上知道ΜΙΜΟ通道的特性(例如,資料流所 呈現的SNR),則該發射機可針對每一資料流而決定一特定 的貝料傳輸速率以及編碼及調變架構,以便可讓該資料流 ,致-可接受的性能水準H對於某些ΜΙΜ0系統而 D,在發射機上並無法取得該資訊。卻可替代性地取得與 諸如該MIM〇通道的工作SNR (可將該工作SNR定義為該接 收機上的所有資料流之預期SNR)有關的極有限量的資訊 。在此種情形中’該發射機將需要根據該有限的資訊而為 每一資料流決定適當的資料傳輸速率及編碼及調變架構。 200304307 發明說明續頁 (3) 因此’本門技術中需要用來在MIm〇通道的發射機只能 取得有限的資訊時為多個資料流決定一組資料傳輸速率 以便獲致向性能之技術。 發明内容 本發月}疋供了一些技術,用以在發射機上無法取得用來 指π目前通道狀況的通道狀態資訊時將較佳的性能提供 ΜΙΜ〇系統。在一個面向中,係將資料傳輸速率的一 卜勻勻刀佈用於所傳輸的資料流。可為了達到下列的票 而選擇資料傳輸速率:⑴在一較低的最小“接收” snr (將 於下又中說明之)下,有一指定的整體頻譜效率;或⑺在 一指足的接收SNR下,有一較高的整體頻譜效率。本發明 才疋供了一種用來達到每一該等上述目標之特定架構。 在可用來達到上述第一目標的一特定實施例中,提供了 =種用來決定將經由一多通道通訊系統的若干傳輸通道 而傳輸的若干資料流所使用的資料傳輸速率之方法(例如 ,可經由一 ΜΙΜΟ系統中的每一傳輸天線而傳輸一資料流) 。根據該方法,開始時決定將用於該等資料流的若干資料 2輸速率的每—資料傳輸速率之必須snr。至少兩個該等 資料傳輸速率是不同的。也根據該接收SNR及該接收機上 為了回復該等資料流而執行的接續干擾抵消處理(將於下 又中說明之),而決定每一資料流的“有效,,snr (也將於下 又中說明之)。然後將每一資料流的必須snr與該資料流的 2效SNR比較。如果每一資料流的必須snr小於或等於該 資料流的有效SNR,則視為將支援該等資料傳輸速率。可 200304307 ’ 發明說明續頁 評估若干組的資料傳輪逯皐 吁W迷丰,且可選擇與最小接收MR相 關聯的速率組,以便用於該等資料流。 在可用來達到上述第二目標的一特定實施例中,提供了 種用來決足將經由一多通道(例如MlM〇)通訊系統的若 干傳輸通道(例如傳輸天線)而傳輸的若干資料流的資料 傳輻速率之方法。根據该方法,開始時決定接收。可 針對該系統而指定該接收SNR,或者可根據在接收機上的 量測值而估計該接收SNR,並將該接收SNR提供給發射^ 。亦根據該接收SNR及接收機上的接續干擾抵消處理,而 決定每一資料流的有效SNR。然後根據每一資料流的有效 SNR而決定該資料流的資料傳輸速率,其中至少兩個資料 傳輸速率是不同的。 下文中將進一步說明本發明的各種面向及實施例。如將 於下文中進一步說明的,本發明進一步提供了可實施本發 明的各種面向、貫施例、及特徵的一些方法、處理器、發 射機單元、接收機單元、基地台、終端機、以及其他的裝 置及元件。 實施方式 可在各種多通道通訊系統中實施用來根據有限的通道 狀態資訊而決定多個資料流的一組資料傳輸速率的本發 明所述之技術。此種多通道通訊系統包括多重輸入多重輸 出(ΜΙΜΟ)通訊系統、正义为頻多工(Orthogonal Frequency Division Multiplexing »簡稱OFDM)通訊系統、以及採用 OFDM的ΜΙΜΟ系統(亦即,MIM〇-〇FDM系統)等通訊系統。 200304307 (5) 發明說明續頁 為了顧及說明的清晰’將針對mim〇系統而特別說明各種 面向及實施例。 一 ΜΙΜΟ系統採用多個(Ντ個)傳輸天線及多個(知個)接收 天線’以供資料傳輸。可將由^個傳輸天線及^個接收天 線構成的一 ΜΙΜΟ通道分解為Ns個獨立的通道,其中 NsSmm{NT,NR}。亦可將每—該等Ns個獨立的通道稱為該 ΜΙΜΟ通迢的一空間次通道。該mim〇通道的特徵模態 (eigenmode)之數目決定了空間次通道之數目,而該μιμώΒ 迢的特徵杈怨 < 數目又取決於用來描述該等化個傳輸天 線與NR個接收天線間之響應的一通道響應矩陣係由若 干獨立的高斯隨機變數{hi j}構成該通道響應矩陣氐的各 兀素,其中丨=1,2,...NR,jn ···&,且、是第』個傳輸天 線與第i個接收天線間之輕合(亦即,複增益)。為了顧及說 明的清晰,假設該通道響應矩陣狀滿秩的(亦即,200304307 发明 玖, description of the invention, (the description of the invention should state: the technical field to which the invention belongs, prior art, content, embodiments, and a simple description of the drawings) Technical Field The present invention is generally related to data communications, and is particularly used to determine One of the data transmission rates used by the plurality of data streams transmitted through a plurality of transmission channels of a multi-channel communication system, such as a multiple-input multiple-output (MulHpldnput Multiple-Output; MILM) system, is unevenly distributed. Prior art In a wireless communication system, a radio frequency modulated signal from a transmitter can reach a receiver via several propagation paths. The characteristics of these propagation paths often change over time due to several factors such as signal attenuation and multipath effects. In order to provide diversity that resists adverse path effects and improves characteristics, multiple transmit and receive antennas can be used. If the propagation path between the transmitting and receiving antennas is linearly independent (that is, the transmission on one path is not formed as a linear combination of the transmission on the other path) 'This situation is usually true at least to some extent, As the number of antennas increases, the probability of correctly receiving a data transmission will also increase. As the transmission and reception antennas increase, diversity will increase and performance will improve. Xizhong input multiple output (ΜΙΜΟ) communication system uses for data transmission, Xi (Nτ) transmission antennas and multiple (Nr) receiving antennas. A MIMO channel composed of% transmission% 、, 泉, and NR receiving antennas can be decomposed into Ns independent # 1 communication channels, where Ns S min {NT, Nr}. Each of these Ns siblings can also be referred to as a spatial subchannel of the MIMO channel, and the independent 200304307 (2) I description of the invention continues the channel corresponding to a dimension. If the use of multiple transmit and receive antennas results in additional scalability, the MIMO system can provide better performance (for example, greater transmission capacity). For a full-rank MIMO channel (where Ns == NtsNr), an independent data stream can be transmitted from each of these Nτ transmission antennas. The transmitted data streams may or may encounter different channel sinks (for example, different signal attenuation and multipath effects), and may obtain different signal to noise and interference ratios at a specific transmission power level Rati0; SNR for short). In addition, if a continuous interference cancellation process is used at the receiver in order to reply to the transmitted data stream (which will be explained later), each data stream can have a different SNR according to the specific order of the data stream reply. Therefore, different data streams can support different data transmission rates according to the snr they present. Because channel conditions usually change over time, the data transfer rates supported by each stream also change over time. If the characteristics of the MIMO channel are known on the transmitter (for example, the SNR presented by the data stream), the transmitter can determine a specific shell material transmission rate and coding and modulation architecture for each data stream, so that the The data stream, resulting in an acceptable performance level H, is not available on the transmitter for some MIMO systems. However, it is alternatively possible to obtain a very limited amount of information such as the working SNR of the MIM0 channel (which can be defined as the expected SNR of all data streams on the receiver). In this case, the transmitter will need to determine the appropriate data transmission rate and coding and modulation architecture for each data stream based on the limited information. 200304307 Description of Invention Continued (3) Therefore, ‘this technology needs a technology to determine a set of data transmission rates for multiple data streams when the MIm0 channel transmitter can only obtain limited information in order to achieve performance. SUMMARY OF THE INVENTION The present invention provides some techniques for providing better performance when the channel state information used to indicate the current channel condition cannot be obtained on the transmitter. In one aspect, a uniform cloth of data transmission rate is used for the transmitted data stream. The data transmission rate can be selected in order to achieve: a low overall "receive" snr (explained below) with a specified overall spectral efficiency; or a good reception SNR There is a higher overall spectral efficiency. The present invention provides a specific architecture for achieving each of these goals. In a specific embodiment that can be used to achieve the above-mentioned first objective, a method is provided for determining a data transmission rate for a plurality of data streams to be transmitted through a plurality of transmission channels of a multi-channel communication system (for example, A data stream can be transmitted via each transmission antenna in a MIMO system). According to this method, it is determined at the beginning that each data transmission rate to be used for these data streams must be snr per data transmission rate. At least two of these data transmission rates are different. Also based on the received SNR and the successive interference cancellation processing performed on the receiver in order to reply to these data streams (to be described below), the "effectiveness" of each data stream is determined, and snr (also It also explains). Then the required snr of each data stream is compared with the 2-effect SNR of the data stream. If the required snr of each data stream is less than or equal to the effective SNR of the data stream, it is deemed to support such data streams Data transmission rate. May 200304307 'Description of the invention The continuation page evaluates several groups of data transmission rounds and calls on W Fanfeng, and selects the rate group associated with the minimum receiving MR for use in such data streams. In a specific embodiment of the above-mentioned second objective, a data transmission rate for determining a number of data streams to be transmitted through a plurality of transmission channels (such as transmission antennas) of a multi-channel (such as M1M0) communication system is provided. Method. According to this method, the reception is decided at the beginning. The reception SNR can be specified for the system, or the reception SNR can be estimated based on the measured value on the receiver, and the reception SNR can be improved. To transmit ^. Also determine the effective SNR of each data stream based on the received SNR and the continuous interference cancellation processing on the receiver. Then determine the data transmission rate of the data stream based on the effective SNR of each data stream, at least The two data transmission rates are different. The various aspects and embodiments of the present invention will be further described below. As will be further described below, the present invention further provides various aspects, embodiments, and embodiments for implementing the present invention, and Some methods, processors, transmitter units, receiver units, base stations, terminals, and other devices and components. Embodiments can be implemented in various multi-channel communication systems to determine based on limited channel state information The technology of the present invention for a set of data transmission rates of multiple data streams. This multi-channel communication system includes a multiple-input multiple-output (MIMO) communication system, and Orthogonal Frequency Division Multiplexing (OFDM for short) communication. System, and MIMO system using OFDM (ie, MIM0-〇FDM system) Communication system. 200304307 (5) Continued description of the invention In order to take account of the clarity of the description, various aspects and embodiments will be specifically described for the mim〇 system. A MIMO system uses multiple (Nτ) transmission antennas and multiple (known) Receiving antenna 'for data transmission. A MIMO channel composed of ^ transmitting antennas and ^ receiving antennas can be broken down into Ns independent channels, of which NsSmm {NT, NR}. Each—the Ns independent The channel is called a spatial subchannel of the MIMOM pass. The number of characteristic modes of the mim0 channel determines the number of spatial subchannels, and the number of characteristic channels of the μm A channel response matrix to describe the response between the equalized transmission antennas and the NR receiving antennas is composed of several independent Gaussian random variables {hi j}, each element of the channel response matrix 氐, where 丨 = 1, 2 , ... NR, jn ·· &, and is the light coupling (ie, the complex gain) between the 传输 th transmitting antenna and the ith receiving antenna. For the sake of clarity, suppose that the channel response matrix is full-ranked (that is,
Ns=NTSNR),且可自每一讀鍫加,土 曰母居寺Ντ個傳輸天線傳輸一獨立的 資料流。 圖1是一 ΜΙΜΟ系統(100)中的一恭 、 ;τ ηΊ 發射機系統(110)及 收機系統(150)的一實施例之一方塊圖。 在發射機系統(110)中,係將若千次 、 ^ 骄右干資料流的通訊資料自一 資料來源(112)提供給一傳輸(ΤΧ、资 — 入)貧枓處理器(114)。在一實 施例中,係經由一各別的傳輪 ^ 寻翰天線而傳輸每一資料流。T) >料處理器(114)根據針對每一 貧料流而選擇的一特定編 碼架構而對該資料流的通訊資料 竹進仃格式化、編碼、及交 插’以便提供編碼後的資料。 200304307 發明說明續頁 ⑹ 可利用諸如分時多工(Time Division Multiplexing ;簡稱 TDM)或劃碼多工(Code Division Multiplexing ;簡稱 CDM)將每 一資料流的編碼後資料與導頻資料多工化。該導頻資料通 常是係以一習知的方式(如果有此種方式)處理的一已知 資料型樣,且可在接收機上利用該導頻資料來來估計通道 響應。然後根據針對每一資料流而選擇的一特定調變架構 _ (例如 BPSK、QPSK、M-PSK、或M-QAM)而調變(亦即進行符 Μ 號對映)該資料流的多工化後之導頻資料及編碼後資料_ φ 以便提供調變符號。可由控制器(130)提供的各控制單元來 決定每一資料流的資料傳輸速率、編碼、及調變。 然後將所有資料流的調變符號提供給一傳輸(ΤΧ) ΜΙΜΟ 處理器(120),該ΜΙΜΟ處理器(120)可進一步處理(諸如OFDM 的)該等調變符號。ΤΧ ΜΙΜΟ處理器(120)然後將Ντ個調變符 號提供給Ντ個發射機(TMTR)(122a - 122t)。每一發射機(122) 接收並處理一各別的符號流,以便提供一個或多個類比符 號,並進一步調整(例如進行放大、濾波、及向上變頻)該 0 等類比符號,以便提供一適於經由該ΜΙΜΟ通道而傳輸的 調變後信號。然後分別自Ντ個天線(124a - 124t)發射來自發 射機(122a - 122t)的Ντ個調變後信號。 在接收機系統(150)中,NR個天線(152a - 152r)接收所發射 ’ 的調變後信號,並將所接收的信號自每一天線(152)提供給 一各別的接收機(RCVR)(154)。每一接收機(154)調整(例如 進行濾波、放大、及向下變頻)所接收的一各別信號,將 調整後的信號數位化,以便提供樣本,並進一步處理該等 -10- 200304307 發明說明續頁 ⑺ 樣本,以便提供一對應的“接收”符號流。 一接收(RX) ΜΙΜΟ/資料處理器(160)然後自NR個接收機 (154)接收NR個接收符號流,並根據一特定的接收機處理技 術而處理該等NR個接收符號流,以便提供Ντ個“所偵測的,, 符號流。下文中將進一步詳細說明RX ΜΙΜΟ/資料處理器 (160)所作的處理。每一偵測的符號流包括係為針對該對應 的資料流而傳輸的調變符號的估計值之符號。RX ΜΙΜΟ/ 資料處理器(160)然後對所偵測的每一符號流進行解調二^ 交插、及解碼,以便回復該資料流的通訊資料。RX ΜΙΜΟ/ 資料處理器(160)所執行的處理係與發射機系統(110)上的 ΤΧ ΜΙΜΟ處理器(120)及ΤΧ資料處理器(114)所執行的處理 互補。 RX ΜΙΜΟ處理器(160)可諸如根據與通訊資料多工化的 導頻資料而推導出該等Ντ個傳輸天線與NR個接收天線間 之通道響應的一估計值。在接收機上可利用該通道響應估 計值來執行空間或空間/時間處理。RX ΜΙΜΟ處理器(160) 可進一步估計所偵測符號流的信號與雜訊及干擾比(SNR) 、及或有的其他通道特性值,並將這些量化資料提供給一 控制器(170)。RX ΜΙΜΟ/資料處理器(160)或控制器(170)可進 一步用來指示通訊鏈路狀況的該系統之一“工作” SNR估 計值。控制器(170)然後提供通道狀態資訊(Channel State Information ;簡稱CSI),該通道狀態資訊可包含與通訊鏈路 及(或)所接收的資料流有關之各種資訊。例如,該CSI可以 只包含工作SNR。該CSI然後被一傳輸(TX)資料處理器(178) 200304307 (8) 發明說明續頁 處理,被一調變器(180)調變,被接收機(154a - 154r)調整, 且被傳輪回發射機系統(110)。 在發射機系統(110)上,來自接收機系統(15〇)的調變後信 號被各天線(124)接收,被各發射機(122)調整,被一解調器 (140)解調,且被一接收(RX)資料處理器(142)處理,以便回 復接收機系統所回報的CSp然後將該回報的CSI提供給控 制器(130),鏡將該回報的CSI用來:(1)決定將用於該等資 料流的資料傳輸速率以及編碼及調變架構;以及(2)產^ 對TX資料處理器(114)及τχ ΜΙΜΟ處理器(120)的各種控制。 控制器(130)及(170)分別指示發射機及接收機系統上的 作業° ?己憶體(132)及(172)分別提供控制器(130)及(170)所用 的程式碼及資料之儲存空間。 可將ΜΙΜΟ系統的模型表示為: (方程式1) 其中3L是接收向量,亦即,y^[yi y2_yNR]T,其中是在 第1個接收天線上接收到的資料項,且i e i,...,; x是傳輸向量,亦即,2L=[Xi χ2 •••ΧΝτ]1',其中{Xj}是自第 j個傳輸天線上傳輸到的資料項,且j e {丨,...,; ϋ是ΜΙΜΟ通道的通道響應矩陣; IL是具有一平均向量L及一協方差(covariance)矩陣 L-σ 的加成性白色南斯雜訊(Additive White Gaussian Noise ;簡稱AWGN),其中込是一個零向量,[是對角線 元素為一且其他元素為零的一單位矩陣(identity matrix) ,且σ2是雜訊的變易數;以及 -12- (9) (9)200304307 發明說明續頁 [·]Τ表示[·]的轉置。 由於傳播環境中的散射,所以自Ντ個傳輸天線所傳輸的 Ν丁個符號流在接收機上會相互千擾。所有NR個接收天線尤 具可能在不同的振幅及相位下接收自一傳輸天線傳輸的 某一符號流。所接收的每一信號然後可能包含每一該等 Ντ個傳輸的符號流之一分量。Nr個接收的信號將合而包含 所有化個傳輸的符號流。然而,這些Ντ個符號流係散佈在 該等NR個接收的信號中。 〜 在接收機上,可利用各種處理技術來處理NR個接收的信 號’以便偵測Ντ個傳輸的符號流。可將這些接收機的處理 技術歸類為兩種主要的類型: • 空間及空間-時間接收機處理技術(亦將該等技術稱 為等化技術);以及 • “接續沖銷/等化及干擾抵消,,接收機處理技術(亦將 該技術稱為“接續干擾抵消,,或“接續抵消,,接收機處 理技術)。 一般而T,空間及空間-時間接收機處理技術嘗試分離 接收機上所傳輸的符號流。可⑴根據通道響應的一估計 值而結合~個接收的信號中包含的傳輸之符號流之各種 刀量,以及(2)去除(或抵消)因其他符號流所造成的干擾, 而偵測每一傳輸的符號流。這些接收機處理技術嘗試⑴ 解除個別傳輸的符號流間之關聯性,以便不會有來自其他 符號流的干擾,或(2)在出現有來自其他符號流的雜訊及 干擾時,將所偵測的每一符號流之SNR最大化。然後進一 •13- 200304307 (ίο) 發明說明續頁 步處理(例如解調、解交插、及解碼)所偵測的每一符號流 ,以便回復該符號流的通訊資料。 接續抵消接收機處理技術嘗試利用空間或空間-時間接 收機處理技術而以一次一個的方式回復傳輸的符號流,並 抵消因“所回復的’’每一符號流而產生之干擾,因而使後來 回復的符號流有較小的干擾,且可獲致較高的SNR。如果 可精確地估計並抵消因所回復的每一符號流而產生的干 擾(需要無錯誤地或低錯誤地回復符號流),則可使用該4 續抵消接收機處理技術。該接續抵消接收機處理技術(將 於後文中進一步詳細說明此種技術)大致勝過該等空間及 空間-時間接收機處理技術。 對於接續抵消接收機處理技術而言,係由Ντ個級處理Nr 個接收的符號流,以便在每一級上接續地回復一個傳輸的 符號流。當回復每一傳輸的符號流時’即估計出該符號流 對其餘尚未回復的符號流所造成之干擾,並自所接收的符 號流抵消該干擾,且由該次一級進一步處理該等“經過修 改的,,符號流,以便回復次/傳輸的符號流。如果可在沒 有錯誤(或最少錯誤)的情形下回復該等傳輸的符號流,而 且如果合理地估計出通道響應估計值,則對因所回復的符 號流而產生的干擾之抵消是有效的’且改善了後續回復的 每一符號流之SNR。在此種方式了’所有傳輸的符號流可 獲致較高的性能(可能除了所要回復的第一個傳輸的符號 流之外)。 本發明使用了下列的術語: 200304307 (11) I發明說明、& • “傳輸的”符號流-自傳輸天線傳輸的符號流; • “接收的,,符號流-一接續干擾抵消(Successive Interference Cancellation ;簡稱 SIC)接收機(請參閱圖 6) 的第一級中之一空間或空間·時間處理器之輸入; • “經過修改的”符號流-SIC接收機的每一後續級中之 空間或空間-時間處理器之輸入; • ‘‘偵測的”符號流-來自空間處理器的輸出(在第k級上 最多可偵測到NT-k+i個符號流;以及 • “回復的”符號流-已左接妝嬙Uα G在接收機上解碼的一符號流(每 一級上只回復一個偵測的符號流)。 圖2是接績抵消接收機康掷社 瑪處理技%處理知個接收的符號流 以便迴路Ντ個傳輸的符號、、六士 、 唬/瓦疋—流程圖。為了簡化說明, 下文中對圖2之說明假設· η、办郎[ 、, ⑴二間次通迢的數目等於億輪 天線的數目(亦即,Ns:=n <1SJ 、’ WKNr),以及⑺係自每一 傳輸一個獨立的資料流。 $ ^ Μ 對於第一級(k=l)而言,Α止 ^ 步騾(212)中,該接收機開护時 對NR個接收的符號流執扞办 嗎開如時 八仃窆間或空間_時間處理, 離出Ντ個傳輸的符號流。斟 Α使刀 對於該第一級而言,該办pEj + 間-時間處理可提供係為N 二間或丄 為Ντ個(尚未回復的)傳輸 的估計值之Ντ個偵測的辂%、、 m /瓦 付琥况。然後(諸如根據—牿含的 選擇架構)選擇該等偵測的、 特疋的 並進一步處理該符號流。钆里★ 付a 傳輸的符號流之身分,則 、 要回復的 則可執行該2間或空間-時 ,以便只提供該傳輸的符躲、、 ^ τ ]處里 守唬現之一個偵測的符號流。不論 -15 - (12) 200304307 發明說明續頁 步處理(例如解調、 流,以便得到係為 之一估計值的一解 是哪一種情形,在 ”二 7铢(214)中都進一 ~父插、及解碼)所選裡 ^ 選擇的偵測之符號 该級中回復的傳輸之舞 柯 < 付唬况的資料流 碼之資料流。 然後在步驟(216)中決定b τ ^ ^ 策.、 夂疋否已回復了所傳輸的所有符 遽流。如果艾者县告令ΑΑ β付 " 、,則該接收機的處理終止。否則 步驟(218)中對NR個接收的符號流的每一接收的(Ns = NTSNR), and can be added from each reading, and the Nτ transmission antennas in Muju Temple transmit an independent data stream. FIG. 1 is a block diagram of an embodiment of a transmitter system (110) and receiver system (150) in a MIMO system (100). In the transmitter system (110), the communication data of the thousands of data streams is provided from a data source (112) to a transmission (TX, data) processor (114). In one embodiment, each data stream is transmitted via a separate transmitting wheel antenna. T) > The material processor (114) formats, encodes, and interleaves the communication data of the data stream according to a specific encoding architecture selected for each lean stream to provide the encoded data . 200304307 Description of the Invention Continued 多 Multiplexed coded data and pilot data of each data stream can be multiplexed using, for example, Time Division Multiplexing (TDM) or Code Division Multiplexing (CDM) . The pilot data is usually a known data pattern that is processed in a conventional manner (if this is the case), and the pilot data can be used at the receiver to estimate the channel response. Then tune (that is, perform symbol M mapping) the multiplexing of the data stream according to a specific modulation architecture_ (such as BPSK, QPSK, M-PSK, or M-QAM) selected for each data stream The pilot data and coded data φ φ to provide modulation symbols. Each control unit provided by the controller (130) can determine the data transmission rate, coding, and modulation of each data stream. The modulation symbols of all data streams are then provided to a transmission (TX) MIMO processor (120), which can further process the modulation symbols (such as those of OFDM). The TX MIMO processor (120) then provides Nτ modulation symbols to Nτ transmitters (TMTR) (122a-122t). Each transmitter (122) receives and processes a separate symbol stream to provide one or more analog symbols, and further adjusts (e.g., amplifies, filters, and upconverts) the 0 analog symbol to provide a suitable The modulated signal transmitted via the MIMO channel. The Nτ modulated signals from the transmitters (122a-122t) are then transmitted from the Nτ antennas (124a-124t), respectively. In the receiver system (150), NR antennas (152a-152r) receive the modulated signals transmitted and provide the received signals from each antenna (152) to a separate receiver (RCVR ) (154). Each receiver (154) adjusts (eg, filters, amplifies, and downconverts) a respective signal received, digitizes the adjusted signal to provide samples, and further processes the -10- 200304307 invention Description Continued ⑺ Sample to provide a corresponding "receive" symbol stream. A receive (RX) MIMO / data processor (160) then receives NR received symbol streams from NR receivers (154), and processes the NR received symbol streams according to a specific receiver processing technique to provide Ντ "detected, symbol streams. The processing performed by the RX MIMO / data processor (160) will be described in further detail below. Each detected symbol stream includes data transmitted for the corresponding data stream. The symbol of the estimated value of the modulation symbol. The RX ΜΜΜΟ / data processor (160) then demodulates each detected symbol stream, interleaves, and decodes it in order to restore the communication data of the data stream. RX ΜΙΜΟ / The processing performed by the data processor (160) is complementary to the processing performed by the TX MIMO processor (120) and the TX data processor (114) on the transmitter system (110). The RX MIMO processor (160) may For example, an estimated value of the channel response between the Nτ transmission antennas and the NR receiving antennas is derived based on the pilot data multiplexed with the communication data. The estimated value of the channel response can be used on the receiver to perform emptying. Or space / time processing. The RX MIMO processor (160) can further estimate the signal-to-noise and interference ratio (SNR) of the detected symbol stream, and possibly other channel characteristic values, and provide these quantized data to a Controller (170). The RX MIMO / data processor (160) or controller (170) may further be used to indicate the status of the communication link "working" SNR estimate. The controller (170) then provides the channel Channel state information (CSI for short), the channel state information may include various information related to the communication link and / or the received data stream. For example, the CSI may only include the working SNR. The CSI is then Transmission (TX) data processor (178) 200304307 (8) Description of the invention Continuation page processing, which is modulated by a modulator (180), adjusted by a receiver (154a-154r), and transmitted by a cycle transmitter system (110 On the transmitter system (110), the modulated signal from the receiver system (15) is received by each antenna (124), adjusted by each transmitter (122), and decoded by a demodulator (140). Tuned and received by a receiver (RX) The processor (142) processes in order to reply the CSp reported by the receiver system and then provides the reported CSI to the controller (130), and the mirror uses the reported CSI to: (1) decide to be used for such data streams Data transmission rate, encoding and modulation architecture; and (2) production of various controls on the TX data processor (114) and τχ ΜΜΟ processor (120). The controllers (130) and (170) instruct the transmitter respectively And the operation on the receiver system. The memory (132) and (172) provide storage space for the codes and data used by the controllers (130) and (170), respectively. The model of the MIMO system can be expressed as: (Equation 1) where 3L is the receiving vector, that is, y ^ [yi y2_yNR] T, where is the data item received on the first receiving antenna, and iei ... .,; X is a transmission vector, that is, 2L = [Xi χ2 ••• XΝτ] 1 ', where {Xj} is a data item transmitted from the jth transmission antenna, and je {丨, ... , Ϋ is the channel response matrix of the MIMO channel; IL is the additive white Gaussian Noise (AWGN) with an average vector L and a covariance matrix L-σ, where 込Is a zero vector, [is an identity matrix with diagonal elements being one and the other elements being zero, and σ2 is the variable of the noise; and -12- (9) (9) 200304307 Description of the invention continued The page [·] T indicates the transpose of [·]. Due to the scattering in the propagation environment, the N symbol streams transmitted from Nτ transmission antennas will interfere with each other at the receiver. All NR receiving antennas are particularly likely to receive a symbol stream transmitted from a transmitting antenna at different amplitudes and phases. Each signal received may then contain a component of each of these Nτ transmitted symbol streams. The Nr received signals will collectively contain all the transmitted symbol streams. However, these Nτ symbol streams are interspersed among the NR received signals. ~ On the receiver, various processing techniques can be used to process NR received signals' in order to detect Nτ transmitted symbol streams. The processing technologies of these receivers can be categorized into two main types: • space and space-time receiver processing technologies (also known as equalization technologies); and • "continuous write-off / equalization and interference Cancellation, receiver processing technology (also called this technology "continuous interference cancellation," or "continuation cancellation, receiver processing technology". Generally, T, space and space-time receiver processing techniques try to separate the receiver The transmitted symbol stream. It can be combined according to an estimated value of the channel response. Various cutters of the transmitted symbol stream included in the received signal, and (2) remove (or cancel) the other symbol streams. Interference, and detect each transmitted symbol stream. These receiver processing techniques try to de-associate the individual transmitted symbol streams so that there is no interference from other symbol streams, or (2) when there is interference from other When the noise and interference of the symbol stream are maximized, the SNR of each detected symbol stream is maximized. Then proceed to • 13- 200304307 (ίο) Invention Description , Deinterleaving, and decoding) to detect each symbol stream in order to restore the communication data of the symbol stream. The successive cancellation receiver processing technology attempts to use space or space-time receiver processing technology to reply one at a time. The transmitted symbol stream cancels the interference caused by each "recovered" symbol stream, so that the later recovered symbol stream has less interference and can obtain a higher SNR. This 4-continuous cancellation receiver processing technique can be used if the interference due to each symbol stream returned can be accurately estimated and canceled (requiring the symbol stream to be returned without error or low error). This successive cancellation receiver processing technology, which will be described in further detail below, generally outperforms these space and space-time receiver processing technologies. For the successive cancellation receiver processing technology, Nr stages are processed by Nr received symbol streams in order to successively reply to a transmitted symbol stream at each stage. When replying to each transmitted symbol stream, 'the interference caused by the symbol stream to the remaining unrecovered symbol streams is estimated, and the interference is canceled from the received symbol stream, and the "passing" is further processed by the next stage. Modified, symbol stream in order to reply to the secondary / transmitted symbol stream. If such transmitted symbol streams can be recovered without errors (or at least errors), and if the channel response estimates are reasonably estimated, then The cancellation of the interference due to the returned symbol stream is effective 'and improves the SNR of each symbol stream in the subsequent reply. In this way,' all transmitted symbol streams can achieve higher performance (possibly except for the required In addition to the first transmitted symbol stream), the following terms are used in the present invention: 200304307 (11) I Description of the invention & • "Transmitted" symbol stream-a symbol stream transmitted from a transmitting antenna; "Receive , A symbol stream-a successive interference cancellation (SIC) receiver (refer to Figure 6) in one of the first levels of space or space · Inputs to the time processor; • "Modified" symbol streams-input to the space or space-time processor in each subsequent stage of the SIC receiver; • "detected" symbol streams-to the space processor Output (up to NT-k + i symbol streams can be detected on the kth stage; and • "Reply" symbol stream-a symbol stream that has been decoded on the receiver by Uα G (on each stage Only one detected symbol stream is replied.) Figure 2 shows the performance of the offset cancellation receiver's processing technology to process the received symbol streams so as to loop Nτ transmitted symbols, six digits, and fools / watts—flow. In order to simplify the explanation, the following explanation of FIG. 2 assumes that η, Ban Lang [,, the number of two interpasses is equal to the number of billion round antennas (that is, Ns: = n < 1SJ, 'WKNr ), And it is a separate data stream from each transmission. $ ^ Μ For the first stage (k = l), A stops ^ In step (212), the receiver receives NR receivers when the receiver is opened. Is the symbol stream to be handled as openly as the time interval or space_time processing, leaving NR transmission symbols For the first stage, the pEj + time-time processing can provide Nτ detected 侦测, which is the estimated value of N 2 or Ν (neither reply) transmission. % ,, m / watts. Then (such as according to the selected architecture)-select these detected, special and further process the symbol stream. 钆 ★ the identity of the symbol stream transmitted by a, Then, if you want to reply, you can execute the 2 or space-hours, so as to provide only the transmitted symbol hiding, ^ τ] to keep a detected symbol stream. Regardless of -15-(12) 200304307 Description of the Invention Steps for continued page processing (such as demodulation, streaming, in order to obtain a solution which is one of the estimated values, which is the case, in "2 7 Baht (214), all 1 ~ parent interpolation, and decoding) selected ^ The selected detection symbol is the data stream of the data stream code of the reply transmission in this level. Then, in step (216), it is determined whether the b τ ^ ^ policy., Whether or not all the transmitted symbol streams have been replied. If Ai Zhe County orders ΑΑ β to pay ", the processing of the receiver is terminated. Otherwise in step (218) for each received NR received symbol stream
估計因剛才回復的符號流而產生的干擾。可以下列方^ 計干擾:先將解碼的資料流重新編碼,然後交插該重新編 碼的資料,然後對該交插的資料執行符號對映(使用發射 機單元上針對β ’貝料流所用的相同之編碼、交插、及調變 架構),以便得到一 “重新調變的,,符號流,該重新調變的 符號流即是剛才回復的所傳輸的符號流之一估計值。然後 計算一通道響應向量kj中的NR個元素之每一元素與該重 新調變的符號流間之旋積,以便推導出因剛才回復的符號Estimate the interference due to the symbol stream just returned. The interference can be calculated as follows: first re-encode the decoded data stream, then interleave the re-encoded data, and then perform symbol mapping on the interleaved data (using the transmitter unit for the β 'shell stream) The same encoding, interleaving, and modulation architecture) in order to obtain a "remodulated, symbol stream, which is an estimate of one of the transmitted symbol streams just returned. Then calculate The spin product between each element of the NR elements in a channel response vector kj and the re-modulated symbol stream, so as to derive the symbol
流而產生的Nr個干擾分量。該向量匕是(Nr X NT)通道響應 矩陣1中對應於用於剛才回復的符號流的第j個傳輸天線 之一行。該向量kj包含Nr個元素,用以界定該第j個傳輸天 線與NR個接收天線間之通道響應。 然後在步驟(220)中以NR個接收的符號流減掉NR個干擾 分量,以便推導出NR個經過修改的符號流。這些接收的符 號流代表在先前並未傳輸剛才回復的符號流之情形下(亦 即假設已有效地執行了干擾抵消)已經接收的符號流。 然後對Nr個經過修改的符號流(並不是Nr個接收的符號 •16- 200304307 (13) 發明說明續頁 流)重複步騾(212)及(214)的處理,以便回德x 你土人 设另一傳輸的符 號流。因此,係針對所要回復的每一傳輸乏# 、 〜付唬流重複步Nr interference components generated by the stream. This vector dagger is a row in the (Nr X NT) channel response matrix 1 corresponding to the j-th transmission antenna used for the symbol stream just returned. The vector kj contains Nr elements to define the channel response between the j-th transmission antenna and the NR receiving antennas. Then, in step (220), NR interference components are subtracted from NR received symbol streams, so as to derive NR modified symbol streams. These received symbol streams represent the symbol streams that have been received without previously transmitting the symbol stream that was just returned (that is, assuming that interference cancellation has been effectively performed). Then repeat the process of steps (212) and (214) for Nr modified symbol streams (not Nr received symbols • 16-200304307 (13) Invention Description Continued Page Stream) in order to return to Germany x Your native Let another transmitted symbol stream. Therefore, the steps are repeated for each transmission lacking to be answered.
驟(212)及(214),而且如果有要回復的另—傳輸之符號、、 則執行步驟(218)及(220)。 ,L 對於該第一級而言,輸入符號流是來自N柄ηSteps (212) and (214), and if there is another symbol to be transmitted, steps (218) and (220) are performed. , L For this first stage, the input symbol stream is from N handle η
Nr個接收天線的 仏個接收的符號流。且對於每一後續的級而‘ ό ,%入符號 流則是來自前一級的Nr個經過修改的符號户。/ I。係以類似的 方式繼續執行每一級的處理。在第一級之德Μ >接收 received symbol streams of Nr receiving antennas. And for each subsequent level, the '%' symbol stream is Nr modified symbol households from the previous level. / I. The processing at each level is continued in a similar manner. De M in the first level >
1交的母—級史^, 假設抵消了在先前各級中回復的符號流,因^ U而琢通遒響扃 矩陣ϋ的維度在每一後續級中都接續地減少一〜 " j '一 行。 該接續抵消接收機處理因而包含若干級,在一 * 嗲一要回復的 傳輸的符號流有一級。每一級回復一個傳輪的路%、、 v付現 >瓦,而 且(除了最後一級之外)抵消因該回復的符號流而遂 座生的 干擾,以便得到用於次一級的經過修改的符號流。在 可一後The mother-level history of 1 cross ^, suppose that the symbol flow returned in the previous levels is canceled, and the dimension of the 遒 ringing matrix 因 is reduced by one in each subsequent level due to ^ U ~ " j 'One line. The continuation cancellation receiver processing thus includes several stages, one stage at a time of transmission of the symbol stream to be returned. Each level returns a pass of the pass% ,, v cash > watts, and (except for the last level) cancels the interference caused by the symbol flow of the reply, in order to get a modified symbol flow for the next level . After
續回復的符號流因而碰到較小的干擾,並可獲致比沒有干 擾抵消時較高的一 SNR。回復的符號流之SNR係取決於符 號流回復的特定順序。 對於接續抵消接收機處理而言,可將第k級的輸入符號 流(假設已有效地抵消了在先前k-Ι個級中回復的符號流所 產生之干擾)表示為:Continued recovery of the symbol stream thus encounters less interference and can achieve a higher SNR than when there is no interference cancellation. The SNR of the returned symbol stream depends on the specific order of the symbol stream reply. For successive cancellation receiver processing, the input symbol stream of the k-th stage (assuming that the interference generated by the symbol stream returned in the previous k-1 stages has been effectively canceled) is expressed as:
Zk=HkXk+n ^ (方程式 2) 其中ilk是第k級的NR X 1個輸入向量,亦即Zk =[yik y2k · ykNR]T,其中yik是在第k級的第丨個接收天線的資料項; 2Lk是第k級的(Ντ - k + 1) X 1個傳輸向量,亦即,= [Xk -17- 200304307 發明說明續頁 (14)Zk = HkXk + n ^ (Equation 2) where ilk is an input vector of NR X of the k-th stage, that is, Zk = [yik y2k · ykNR] T, where yik is the first receiving antenna of the k-th stage Data item; 2Lk is the kth order (Nτ-k + 1) X 1 transmission vector, that is, = [Xk -17- 200304307 Description of the invention continued (14)
Xk+i…Xnr]T,其中{&}是自第」個傳輸天線上傳輸到的 資料項; ilk是ΜΙΜΟ通道的NR X (NT - k + 1)通道響應矩陣,其中 已去除了先前回復的符號流之k-Ι個行’亦即ilk iLk+ 1 .. . h_Nx],以及 IL是加成性白色高斯雜訊。 為了簡化說明,方程式(2)假設係按照傳輸天線的順序來 回復傳輸的符號流(亦即,先回復自傳輸天線1傳輸的符 流,然後回復自傳輸天線2傳輸的符號流,其他依此類推 ,且最後回復自傳輸天線Ντ傳輸的符號流)。可將方程式 (2)改寫為: L · w 方程式(3) 可將要在第k級中回復的傳輸之符號流視為自一干擾次 空間(或平面)f投影在一特定的角度。傳輸的符號流係與 通道響應向量kk相依(且被通道響應向量kk所界定)。可將 通道響應向量Lk投影到與干擾次空間正交的一無干擾次 空間,而得到該傳輸的符號流的一無干擾成。將iLk乘以具 有一 W響應的一濾波器,即可得到該投影。在投影之後達 到最大能量的該濾波器即是位於由iLk及干擾次空間f構 成的一次空間之一濾波器,其中f^span (ii i 2··· iNT-k)、 imHin=Sm,n、及{^}(其中n=i,2,...NT-k)是跨越干擾次空間么1 的標準化正交基底(orthonormal basis): -18 - 200304307 (15) 印 siU】=钊Ml IV 却S'、I2] 發明說明續頁 方程式(4) 爭-Σ 以[16^1% ΜXk + i ... Xnr] T, where {&} is the data item transmitted from the "transmission antenna"; ilk is the NR X (NT-k + 1) channel response matrix of the MIMO channel, where the previous one has been removed The k-1 rows of the returned symbol stream are 'ilk iLk + 1 ... H_Nx], and IL is additive white Gaussian noise. To simplify the explanation, equation (2) assumes that the transmitted symbol stream is returned in the order of the transmission antennas (that is, the symbol stream transmitted from transmission antenna 1 is first returned, and then the symbol stream transmitted from transmission antenna 2 is returned. By analogy, and finally reply to the symbol stream transmitted from the transmission antenna Nτ). Equation (2) can be rewritten as: L · w Equation (3) The transmitted symbol stream to be recovered in the kth stage can be regarded as projected from a disturbing subspace (or plane) f at a specific angle. The transmitted symbol stream is dependent on the channel response vector kk (and is defined by the channel response vector kk). The channel response vector Lk can be projected onto an interference-free subspace orthogonal to the interference subspace to obtain an interference-free result of the transmitted symbol stream. This projection can be obtained by multiplying iLk by a filter with a W response. The filter that reaches the maximum energy after projection is one of the filters located in the primary space composed of iLk and the interference subspace f, where f ^ span (ii i 2 ··· iNT-k), imHin = Sm, n , And {^} (where n = i, 2, ... NT-k) is a normalized orthogonal basis that spans the interference subspace 1: -18-200304307 (15) Yin si] = Zhao Ml IV, but S ', I2] Invention description Continued equation (4) contention-Σ with [16 ^ 1% Μ
Nr -+k 其中[Hkk代表lik在無千擾次空間上的投影(亦即所耑的分 量);以及 ilHkk代表kk在干擾次空間上的投影(亦即干擾分量)。 方程式(4)假設係將相同的傳輸功率用於該等傳輸天線。 可將在第k級中回復的符號流之有效SNReff(k)表示為Nr-+ k where [Hkk represents the projection of lik on the perturbation-free subspace (that is, the component that is 耑); and ilHkk represents the projection of kk on the interference subspace (that is, the interference component). Equation (4) assumes that the same transmission power is used for these transmission antennas. The effective SNReff (k) of the symbol stream recovered in the k-th stage can be expressed as
Kk、:, 方程式5 其中Ptot是資料傳輸可用的總傳輸功率,且該總傳輸功率 是均勻地分佈在Ντ個傳輸天線,因而每一傳輸天線使 用了 pt〇t/NT的傳輸功率;以及 σ2是雜訊變易數。 戶斤 / 、 百NR個接收的符號流之接收SNRrx定義為: 結合方& ^ 方程式(6) 有效SNR表厂式、(5)及(6)時,可將在第k級中回復的符號消 7』、為· 方程式(7)中 已有效地抵 干擾並不备 Ε» \ iVriV/? 、 万程Λ (7) 不又有效SNR係基於幾個假設。第_, 〉了因每-接收的符號流而產生之干擾, 入後續回復的符號流可監測到的雜訊 -19- (16) (16)200304307 發明說明續頁 優。第二’假設不會有(或有很低的)錯誤自一級傳播到另 級第一 ’假5又係將一可將SNR最大化的最佳濾波器用 來仔到每一偵測的符號流。方程式⑺亦提供了以線性單 位表不的(亦即並非以對數或分貝單位表示的)有效snr。 如則文所述’傳輸的符號流可能碰到不同的通道狀況, 且可把在不同的傳輸功率位準下有不同的§皿。如果在發 射機上已知每一符號流的獲致之SNR,則可為對應的資料 流選擇資料傳輸速率以及編碼及調變架構,以便將頻謙i 率最大化,同時可獲致一目標封包錯誤率(Packet Error Rate ,簡稱PER)。然而,對於某些MIM〇系統而言,在發射機 上無法得到用來指示目前通道狀況的通道狀態資訊。在此 種情形中,無法執行對資料流的適應性速率控制。 傳統上在某些ΜΙΜΟ系統中,當發射機無法得到通道狀 態資訊時,係以相同的資料傳輸速率經由%個傳輸天線傳 輸資料(亦即,資料傳輸速率的均勻分佈)。在接收機上, 可利用接續抵消接收機處理技術來處理化個接收的符號 流在傳統的架構中’係決定每一級k上所偵測的 (NT-k+l)的符號流之SNR,且在該級中回復具有最高snr的 偵測之符號流。此種具有資料傳輸速率的均勻分佈之傳輪 架構提供了次佳的性能。 本各明所#疋供的技術在發射機上無法取得用來指示目 前通道狀況的通道狀態資訊時將較佳的性能提供給— MIM0系、统。在—個面向中,係將資料傳輸速率的非均句 分佈用於傳輸的資料流。可選擇資料傳輸速率,以便獲致 -20- (17) (17)200304307 發明說明續頁 下列結果:(1)在一較低的最小“接收” SNR下,有一特定白、 或指定的整體頻譜效率;或(2)在—特定的或指定的 SNR下,有一較高的整體頻譜效率。下文中將提供用來達 到每一上述目標的一特定架構。我們可證明··在許多情、、尸 中,货料傳輸速率之非均句分佈通常勝過傳統的資料傳 速率之均勻分佈。 Μ 如方程式⑺所示,所回復的每—符號流之有效咖係與 回復該符號流所在的特定級(如方程式(7)中分子的既^ “k”所7)相依。第一個回復的符號流得到最低的有效咖 ,而最後一個回復的符號流得到最高的有效SNR。 為了獲致較佳的性能,可根據在不同的天線上傳輸的資 料流之有效SNR,而將資料傳輸速率的均勻分佈用於該^ 資料流(亦即,可將不同的頻譜效率指定給不同的傳輸= 線)。在接收機上,可按照資料傳輸速率的遞升順序2 〇 復該等傳輸的資料流。亦即’最先回復具有最低資料傳= 速率的資料流’'然後回復具有下-個較高資料傳輸速率: 資料流,其他依此類推,最後回復具有最高資料傳輸 的資料流。 μ '率 可考慮各項需要考慮的因素,而決定將用於該等資料流 的資料傳輸速率。第一,如方程式⑺所示,較早回復白、 符號流將獲致較低的有效SNR ,且進而會有較低的八集、 數(diversity order)。事實上,可將第k級上的分集重數表一、 為(NR-NT+k)。此外,來自較早接收的符號流之編碼錯氕丁 傳播到較晚回復的符號流,且可能影響到這此 、 〜二傻續回復的 •21 - 200304307 (18) 發明說明續頁 符號流之有效SNR。因而可選擇較早回復的符號流之資料 傳輸速率,以便在回復這些符號流時可獲致較高的信任度 ,並減少或限制對較晚回復的符號流之錯誤傳播(Error Propagation ;簡稱EP)效應。第二,如果指定較晚回復的符 號流支援較大的頻譜效率’則該等較晚回復的符號流可能 更易產生錯誤,而且縱使該等較晚回復的符號流可能獲致 較高的有效SNR也是如此。 可實施各種架構,以便進行下列事項:(1)決定用來1 援資料傳輸速率(或頻譜效率)的一特定分佈所需的最小 接收SNR ;或(2)針對一特定的接收SNR而決定可達到最佳 性能的頻譜效率之分佈。下文中將說明用於每一這些目的 之一特定架構。 圖3是決定用來支援一特定組的資料傳輸速率所需的最 小接收SNR的一程序(300)之一流程圖。係將該組資料傳輸 速率表示為{rk} ’其中卜1,2,...Ντ,且該等資料傳輸速率 之順序為rg ο ..^γντ。在{rk}組中之該等資料傳輸速率將 被用於將要自Ντ個傳輸天線傳輸的Ντ個資料流。 開始時,係在步驟(312)中決定在接收機中用來支援丨^ 組中4每一資料傳輸速率(或頻譜效率)必須的snr。使用 必須SNR與㈣效率間之_查詢纟,即可完成上述的步驟 。可根據經由一{1,Nr}的單一輸入多重輸出⑻啦一 Multiple-Output ’·簡稱SIM0)通道傳輸一單一資料流的一假 設,而(諸如利用電腦模擬)決定—特定頻譜效:的必二 ,且進-步針對一特定的目標per (例如i% per)而決 -22- 200304307 (19) 發明說明續頁 定该必須SNR。係將具有資料傳輸速率以的一資料流之必 須SNR表示為SNRreq(rk)。在步驟(312)中得到Ντ個資料流的 Ντ個的一組必須SNR。 使{rk}組中之該等Ντ個資料傳輸速率與接收機上的^個 必須SNR相關聯,以便獲致該目標PER (例如,利用該查詢 表決定該目標PER)。亦可使這些Ντ個資料傳輸速率與κ 個有效SNR相關聯的,且可如方程式⑺所示,在接收機上 利用接收機上的接續干擾抵消處理而根據一特定的接j SNR獲致上述的關聯性。如果該等Ντ個必須SNR等於或低 於對應的有效SNR,則視為支援{rk}組中之該等資料傳輸 速率。以圖形表示時,可繪出以Ντ個必須SNR及對應的資 料傳輸速率為座標的Ντ個點,並以一第一條線將這Ντ個點 連接在一起,且可繪出以Ντ個有效SNR及對應的資料傳輸 速率為座標的Ντ個點,並以一第二條線將這Ντ個點連接在 一起。如果該第一條線的任何一部分都不在該第二條線之 上’則視為支援{rk}組中之該等資料傳輸速率。 可將一特定資料傳輸速率的餘裕(margin)定義為該資料 傳輸速率的有效SNR與必須SNR間之差,亦即, margin(k)=SNReff(rk)-SNRreq(rk)。如果每一資料傳輸速率的餘 裕等於或大於零,則亦可視為支援{rk}組中之該等資料傳 輸速率。 該等資料流的有效SNR係取決於接收SNR,且如方程式 ⑺所示,可自接收SNR推導出有效SNR。支援{〜}組中之& 個資料傳輸速率所需的最小接收SNR是使得最後一個資 -23- (20) (20)200304307 發明說明續頁 料傳輸速率的有效SNR等於必須SNR (亦即餘裕為 收臟。師k}組中包含的特定資料傳輪速率而〇 對該組…τ個資料傳輸速率之任—資料傳輸速率而獲 致(零的)最小餘裕。 在第一次反覆中,假設係藉由最後—個回復的資料流獲 致該最小餘裕,且在步驟Π 1 由戚# 4» Ρ 艾驟(314)中將指標變數λ設定為Ντ (亦 即λ=Ντ)。、然後S步驟(316)中’將帛λ個回復的資料流之有 效SNR設足成等於其必須SNR (亦即SNReff(^=sNR^^^ 後在步驟(318)中,利用方程式⑺,根據第入個回復的資料 流之有效SNR (亦即SNReff(M)來決定接收snr。在第—次反 覆中,當λ = Ντ#,即可利用方程式⑺而以㈣碲決定該 接收SNR,然後可將該接收SNR表示為: SNRrx=NT · SNReff(NT) 方程式(8) 然後在步驟(320)中,根據步驟(318)中計算出的接收snr, 並利用方程式⑺(其中k=1,2,…如-丨),而決定每一其餘的 資料流之有效SNR。在步驟(320)中針對^個資料流而得到 了 Ντ個的一組有效SNR。 然後在步驟(322)中,將{rk}組中之每一資料傳輸速率的 必須SNR與該資料傳輸速率的有效SNR比較。然後在步驟 (324)中’決定步驟(3 18)中所決定的接收SNR是否支援{rk} 組中之該等資料傳輸速率。尤其如果每一該等Ντ個資料傳 輸速率的必須SNR小於或等於該資料傳輸速率的有效SNR ’則视為該接收SNR支援{rk}組中之該等資料傳輸速率, 並在步驟(326)中宣告成功。否則,如果Ντ個資料傳輸速率 -24- (21) (21)200304307 發明說明績頁 中之任一資料傳輸速率超過了該資料傳輸速率的有效 說,則視為該接收SNR不支援⑹组中之該等資料傳輸速 率。在此種情形中’在步驟(328)中遞減該變數λ(亦即,使 λ = λ_1 ’因而在第二次反覆中使λ = Ντ-1)。本程序然後回到 步驟(3丨6)’以便決定在-係針對第二個至最後一個回復的資 料流獲致該最小餘裕的假設下的{r“組中之該等資料傳 輸速率的這組有效SNR。可視需要而執行多次的反覆,直 到在步驟(326)中宣告成功為止。然後,在造成宣告成的j 覆中於步驟(318)中決定的接收SNR即是用來支援{rk}組中 之該等資料傳輸速率所需的最小接收SNR。 亦可將圖3所示之程序用來決定一特定的接收SNR是否 支援一特足組的資料傳輸速率。該接收SNR可對應於工作 SNR (SNRop),SNRop可以是接收機上的平均或預期(但不必 然是瞬間的)接收SNR。可根據接收機上的量測值而決定該 工作SNR,且可定期地將該工作SNR提供給發射機。在替 代實施例中,該工作SNR可以是該發射機預期作業所在的 ΜΙΜΟ通道的一估計值。在任何一種情形中,係針對mim〇 系統而提供或指定該接收SNR。 請參閱圖3,為了決定該特定的接收SNR是否支援該特定 組的資料傳輸速率,開始時可在步驟(3 12)中決定每一資料 傳輸逯率的必須SNR。在步驟(312)中,係針對nt個資料流 而知到Ντ個的一組必須SNR。可略過步驟(314)、(316)、及 〇18) ’這是因為業已提供了該接收snr。然後在步驟(32〇) 中’根據該特定的接收SNR,並使用方程式(7)(其中k=1,2 •25- (22) 200304307 發明說明續頁 ...NT)’而決定每-資料流的有效SNR。在步驟⑽)中,係 針對NT個資料流而得到Ντ個的一組有效snr。 然後在步驟㈣中,將⑹組中之每_資料傳輸速率的 必須·與該資料傳輸速率的有效撕比肖。然後在步驟 (324)中诀定該接收SNR是否支援⑹組中之該等資料傳輸 速率。如果每—該等Ντ個資料傳輸速率的必須讀小於或 等於該資料傳輸速率的有效SNR,則視為該接收騰支援 {rk}組中之該等資料傳輪诘皇,* 士 a 种得翰逮羊並在步驟(326)中宣告成^ 。否則’如果該等〜個資料傳輸速率中之任—資料傳輸速 率的必須SNR超過該資料值銓砝、玄‘ 、、X貝竹傳輸逮率的有效SNR,則視為該 接收SNR不支援{rk}組中之該等資料傳輸速率,並宣告失 為了顧及說明的清晰,下文中將針對一(2,4}mim〇系統 而說明一個例子,其中該ΜΤΜΠ $ β EI丄 八τ ^ ΜΙΜΟ系統具有兩個傳輸天線(亦 即Ντ=2)及四個接收天線(亦# Nr=4),且指定該議〇系統 支援3bpS/Hz (每秒3個位元/赫茲)的_整體頻譜效率。在該 例子中,要評估兩組資料傳輸速率。第一組包括對庫於工 bpS/Hz及2bPs/Hz的資料傳輸速率,以二组包括對應於^ bps/Hz及5/3 bps/Hz的資料傳輸速率。然後(諸如根據圖3所 示之程序)決定每一速率组的性^,並將該等性能相互比 較0 1 bps/Hz、4/3 bps/Hz、 的PER與SNR間之關係 或其他的方式產生這 圖4示出在一 {1,4} ΜΙΜΟ系統中於 5/3 bps/Hz、及2 5卩3/;^的頻譜效率下 圖。可以此項技術中習知的電腦模擬 -26 - 200304307 (23) 發明說明續頁 些圖。通常係將一 ΜΙΜΟ系統指定成在一特定的目標PER 下作業。在此種情形中,可決定為了在每一頻譜效率下達 到該目標PER所需之SNR,並將該SNR儲存在一查詢表中。 例如,如果目標PER為1%,則可分別針對1、4/3、5/3、及2 bps/Hz的頻譜效率而將-2.0分貝、0.4分貝、3. 1分貝、及3.2 分貝的值儲存在該查詢表中。 對於第一速率組而言,可利用圖4中之圖形412及418,而 分別將具有1及2 bps/Hz的頻譜效率的資料流1及2之必 SNR決定(圖3中之步騾(312))如下: SNRreq(l)=-2.0分貝,係針對具有1 bps/Hz的頻譜效率之資 料流1 ;以及 SNRreq(2)=3.2分貝,係針對具有2 bps/Hz的頻譜效率之資 料流2 〇 然後將資料流2 (係在已有效地抵消了因資料流1而產生的 干擾之假設下最後回復了該資料流2)的有效SNR設定為其 必須SNR (圖3之步驟(316)),如下式所示: SNReff(2)=SNRreq(2)=3.2分貝。 然後根據方程式(8)而決定接收SNR (圖3之步騾(318)),如了 式所示: SNRrx=2 · SNRreq(2), 用於線性單位,或 SNRrx=SNRreq(2)+3.0分貝=6.2分貝, 用於對數單位。 然後根據方程式(7)而決定每一其餘的資料流(亦即資料 流 1)之有效SNR (圖3之步驟(32〇)),如下式所示: SNReff(l)=3/8 · SNRrx, 用於線性單位,或 -27- 200304307 (24) 發明說明續頁 SNReff(l)=SNRrx-4.3分貝=ι·9分貝, 用於對數單位。 表1的第2及3行中提供了第一速率組中的每一資料傳輸 速率之有效及必須SNR。亦決定了每一資料傳輸速率的餘 裕,並在表1的最後一列中提供了該餘裕。 表1 第一 ϋ 1率組 第二速率組 單位 資料流 1 2 1 2 頻譜效率 1 2 4/3 5/3 bps/Hz SNReff 1.9 3.2 1.8 3.1 分貝 SNRreq -2.0 3.2 0.4 3.1 分貝 餘裕 3.9 0.0 1.4 0.0 分貝 然後將資料流1及2的必須SNR與這些資料流的有效SNR 比較(圖 3之步驟(322))。因為 SNRreq(2)=SNReff(2),且 SNRreq(l) <SNReff(l),所以6·2分貝的一最小接收SNR支援該組資料傳 輸速率。 因為利用圖3所示程序的第一次反覆被認為支援該第一 速率組,所以無須執行任何額外的反覆。然而,如果6· 2 分貝的一接收SNR不支援該第一速率組(例如,如果資料流 1的必須SNR結果是大於1.9分貝),則將執行另一次反覆, 因而係根據SNRreq(l)而決定接收SNR,JL該接收SNR將大於 6.2分貝。 對於第二速率組而言,可利用圖4中之圖形414及416 ’而 分別將具有4/3及5/3 bps/Hz的頻譜效率的資料流1及2之必 須SNR決定如下: -28- 200304307 (25) 發明說明續頁 SNRreq(l)=〇.4分貝,係針對具有4/3 bps/Hz的頻譜效率之 資料流1 ;以及 SNRreq(2)=3.1分貝’係針對具有5/3 bps/Hz的頻譜效率之 資料流2。 然後將資料流2的有效SNR設定為其必須SNR。然後根據方 程式(8)而決定接收SNR,如下式所示: SNRrx—SNRreq(2)+3 · 0分貝=:6. 1分貝,用於對數單位。 然後根據方程式(7)而決定每一其餘的資料流(亦即資^ 流1)之有效SNR,如下式所示: SNReff(l)=SNRrx-4.3分貝=18分貝,用於對數單位。 表1的第4及5仃中提供了第二速率組中之每一資料傳輸 速率的有效及必須SNR。 然後將資料流1及2的有效SNR與這些資料流的必須SNR 比較。如前又所述’因為SNU2)=SNReff(2),且SNRreq⑴ <SNReff(l)’所以6.1分貝的—最小接收SNR支援該組資料傳 輸速率。 前文的說明係針對一 “垂直,,接續干擾抵消架構,因而係 自每一傳輸天線傳輸一資料流,且在接收機上,藉由處理 來自一傳輸天線的資料流,而在接續干擾抵消接收機的每 一級上回復一資料流。係針對該垂直架構而推導出圖4中 之該等圖形、及該查詢表。 可將本發明所述之技術用於一“對角線,,接續干擾抵消 架構,其中係自多個(例如,所有化個)傳輸天線(且可能跨 越多個頻率區間)傳輸每—資料流。在接收機上,可在該 -29- (26) 200304307 發明說明續頁 接續千擾抵消接收機的每-級上”到來自—傳輸天線 號回復每一資料流。 使用另一組圖形及另 用於其他的排序架構 之符號’然後可自由多個級偵測的符 對於該對角線架構而言,可推導出並 一查詢表。亦可將本發明所述之技術 ,且此種應用也是在本發明的範圍内。 對於上述的例子而言,可看出:對於對角線接續干擾抵 消架構而言,用來支援資料傳輸速率的均勾分佈(亦即, 這兩個資料流中之每一資料流上有L5 bps/Hz的頻譜效連) 所需的最小接收SNR比第二速率组(亦即’ 4/3及5/3 bps/Hz 的頻譜效率)所需的最小接收SNR高了約〇·6分貝1係在未 使系統设計嚴重複雜的情形下獲致該增益。 為了減少在一特定的整體頻譜效率下為了獲致目標 所需的最小接收SNR,可將不會達反任何先前回復的資料 流的無錯誤傳播狀況之可能達到的最小頻譜效率指定給 最後回復的資料流。如果減少了最後回復的資料流之頻譜 效率’則必須對應地增加一個或多個先前回復的資料流之 頻謂效率’以便獲致該特定的整體頻譜效率。先前回復的 資料流的該增加之頻譜效率然後將造成較高的必須SNR 。如果將任何一個先前回復的資料流之頻譜效率增加得太 局’則係由該資料流的必須SNR決定該最小接收SNR,而非 由最後回復的資料流之必須SNR決定該最小接收SNr (這 就是資料傳輸速率的均句分佈之情形)。 在上述的例子中,第二速率組需要一較小的接收SNR, 14疋因為係將不會達反任何第一個回復的資料流1的無錯 -30 - 200304307 發明說明續頁 (27) 誤傳播狀況之一較小頻譜效率指定給較晚回復的資料流2 。對於第一速率組而言,指定給資料流1的頻譜效率是過 於保+,因而雖然此種方式保證不會有任何錯誤傳播,但 是此種方式因強制將一較高的頻譜效率指定給資料流2而 抽及整體的性能。相較之下,第二速率組將一仍然可保證 不會有任何錯誤傳播(但是具有比第一速率組較低的信任 度)的一較實際可行之頻譜效率指定給資料流1。如表1所 示,第一速率組的資料流丨之餘裕是3.9分貝,而第二速^ 組的資料流1之餘裕是1 · 4分貝。 可將本發明所述之技術用來決定在一特定的接收snr (該SNR可以是ΜΙΜΟ系統的工作SNr)下可將整體頻譜效率 最大化之一組資料傳輸速率。在此種情形中,開始時可根 據該特定的接收SNR,並利用方程式(7),而決定Ντ個資料 流的一組有效SNR。然後針對該組中的每一有效snr決定 在該目標PER下可由該有效SNR支援的最高頻譜效率。使 用儲存了頻譜效率與相關聯的有效SNR之各值的另一查 詢表,即可完成上述的決定。針對該組的Ντ個有效snr而 取得一組的Ντ個頻譜效率。然後決定對應於該組的Ντ個頻 譜效率之一組資料傳輸速率,並可將該組資料傳輸速率用 於該等Ντ個資料流。該速率組將該特定接收SNR下的整體 頻譜效率最大化° 在前文的說明中,係根據接收SNR,並利用方程式(7), 而決定該等資料流的有效SNR。如前文所述,該方程式包 括數項假設,且在典型的MIM0系統中,該等假設(有相當 -31 - (28) (28)200304307 發明說明續頁 大的程度)是大致真確的。&外,也係根據在接收機上的 接續干擾抵消處理之使用,而推導出方程式(7)。亦可利 用不同的方私式或一查詢表來決定在不同的工作狀況 下及(或)不问的接收機處理技術下的資料流之有效, 且此種決定方式係在本發明的範圍内。 為了說明的簡化,已針對一 MIM〇系統而明確地說明了 一絮料傳輸速率決定技術。亦可將這些技術用於其他的多 通道通訊系統。 一丨丨 丨_- 一 一寬頻ΜΙΜΟ系統可能碰到頻率的選擇性衰減,此種選 擇性衰減的特徵在於在整個系統頻寬中有不同的衰減量 。薇頻率的選擇性衰減造成符號間干擾 Interference ;簡稱ISI),ISI是一接收信號中的每一符號成為 了該接收信號中的各後績符號的干擾之一種現象。此種干 擾因影響到正確偵測接收的信號之能力而降低性能。 OFDM可被用來減輕ISI,且(或)可將OFDM用於其他的考 慮因素。一 OFDM系統有效地將整體系統頻寬分成若干(nf 個)頻率次通道,亦可將頻率次通道稱為次頻帶或頻率區 間(frequency bin)。每一頻率次通道係與可在其上調變資料 的一各別的副載波相關聯。0FDM系統的頻率次通道也可 能碰到頻率的選擇性衰減,此種情形係取決於傳輸天線與 接收天線間之傳播路徑之特丨生(例如多路徑輪廓(rQUltipath profile))。使用OFDM時,如此項技術中所習知的,可藉由 重複每一 OFDM符號的一部分(亦即’將一循環前置碼附加 到每一 OFDM符號),而減輕因頻率的選擇性衰減而產生之 -32- (29) 200304307 發明說明續頁 ISI。 在採用OFDM的一 ΜΙΜΟ系絲 T、无(亦即一 MIMO-OFDM系統)中 ’ Ns個艾間次通道的每一空間士補 1 /人通遏上可將NF個頻率次通 道用於資料傳輸。可將每1間次通道的每—頻率次通道 稱為一傳輸通道,且NT個傳輸天線與Nr個接收天線之間可 以有Np-Ns個傳輸通道用於資料傳輸 可以前文中參照 ΜΙΜΟ系統所述之方式,而針對該組的^個傳輸天線執行 前文所述的資料傳輸速率決定。在替代實施例中,可_ 每一該等nf個頻率次通道,而以與該組的Ντ個傳輸天線無 關之方式執行該資料傳輸速率決定。 登_射機系絲. 圖5是一發射機單元(500)的一方塊圖,該發射機單元 (500)是圖1所示發射機系統(11〇)的發射機部分之一實施例 。在泫貫施例中’可將一獨JL的資料傳輸速率以及編碼及 调變架構用於將在Ντ個傳輸天線上傳輸的每一該等知個 資料流(亦即’係採用每一天線有獨立的編碼及調變之方 式)。可根據控制器(130)所提供的控制而決定將用於每一 傳輸天線之獨立的資料傳輸速率以及編碼及調變架構,且 可以前文所述之方式決定該等資料傳輸速率。 發射機單元(500)包含··⑴一 τχ資料處理器(n4a),該τχ 資料處理器(114a)根據一獨立的編碼及調變架構而接收、 編碼、及調變每一資料流,以便提供調變符號;以及(2)Kk,:, Equation 5 where Ptot is the total transmission power available for data transmission, and the total transmission power is evenly distributed across Nτ transmission antennas, so each transmission antenna uses a transmission power of pt〇t / NT; and σ2 Noise is easy to change. The received SNRrx of each received symbol stream of one hundred and one hundred NR is defined as: Combined equation & ^ Equation (6) When the effective SNR table type, (5) and (6), the The symbol “7”, is that the interference (Eq. (7)) has been effectively canceled and is not ready for E »\ iVriV / ?, Wan Cheng Λ (7) and the effective SNR is based on several assumptions. Number _,> The interference caused by the per-received symbol stream, and the noise that can be detected in the symbol stream of subsequent replies -19- (16) (16) 200304307 Invention Description Continued page Excellent. The second 'assumes that there will be no (or very low) errors propagating from one level to the other. The first 5' will use an optimal filter that maximizes the SNR to each detected symbol stream. . Equation ⑺ also provides valid snr expressed in linear units (ie not expressed in log or decibel units). As described in the article, the transmitted symbol stream may encounter different channel conditions, and may have different § dishes at different transmission power levels. If the obtained SNR of each symbol stream is known on the transmitter, the data transmission rate and coding and modulation architecture can be selected for the corresponding data stream, in order to maximize the frequency and the target packet error. Rate (Packet Error Rate, PER for short). However, for some MIM0 systems, channel status information indicating the current channel status is not available on the transmitter. In this case, adaptive rate control of the data stream cannot be performed. Traditionally, in some MIMO systems, when the transmitter cannot obtain the channel state information, the data is transmitted at the same data transmission rate via% transmission antennas (that is, the data transmission rate is evenly distributed). On the receiver, the successive cancellation receiver processing technology can be used to process the received symbol stream. In the traditional architecture, it determines the SNR of the (NT-k + 1) symbol stream detected at each level of k. And in this level, the detected symbol stream with the highest snr is returned. This uniformly distributed wheel architecture with data transmission rates provides sub-optimal performance. The technologies provided by Ben Mingming # provide better performance to the MIM0 system and system when the transmitter cannot obtain the channel status information used to indicate the current channel status. In one aspect, the uneven sentence distribution of data transmission rate is used for the transmitted data stream. The data transmission rate can be selected to achieve -20- (17) (17) 200304307 Description of the invention continued on the following pages: (1) at a lower minimum "receive" SNR, there is a specific white, or specified overall spectral efficiency ; Or (2) at a specific or specified SNR, there is a higher overall spectral efficiency. A specific framework for achieving each of these goals is provided below. We can prove that ... In many cases, the uneven distribution of the data transmission rate is usually better than the uniform distribution of the traditional data transmission rate. Μ As shown in Equation ⑺, the effective system of each symbol stream returned is dependent on the specific level at which the symbol stream is restored (such as in the equation (7) for the molecule ^ "k" 7). The first replying symbol stream gets the lowest effective coffee, and the last replying symbol stream gets the highest effective SNR. In order to obtain better performance, the uniform distribution of the data transmission rate can be used for the data stream according to the effective SNR of the data stream transmitted on different antennas (that is, different spectral efficiency can be assigned to different Transmission = line). On the receiver, the transmitted data stream may be repeated in ascending order of the data transmission rate. That is, 'the data stream with the lowest data transmission rate is returned first', and then the next higher data transmission rate is returned: the data stream, and so on, and the data stream with the highest data transmission is finally returned. The μ 'rate takes into account various factors that need to be considered and determines the data transfer rate that will be used for these data streams. First, as shown in Equation ⑺, an earlier reply to white and symbol streams will result in a lower effective SNR, and further, a lower eight-order diversity order. In fact, the diversity multiplier on the k-th stage can be expressed as (NR-NT + k). In addition, the encoding error from the symbol stream received earlier is propagated to the symbol stream that is returned later, and this may affect this. ~ 21-200304307 (18) Description of the Invention Effective SNR. Therefore, the data transmission rate of the symbol streams returned earlier can be selected, so that a higher degree of trust can be obtained when replying to these symbol streams, and the error propagation (Error Propagation; EP for short) of the symbol streams returned later can be reduced or restricted. effect. Second, if the later-returned symbol streams are specified to support greater spectral efficiency, then these later-recovered symbol streams may be more prone to errors, and even if the later-recovered symbol streams may achieve higher effective SNR in this way. Various architectures can be implemented in order to: (1) determine the minimum received SNR required for a particular distribution of data transmission rate (or spectral efficiency); or (2) decide on a specific received SNR Distribution of spectral efficiency for best performance. A specific architecture for each of these purposes is described below. Figure 3 is a flowchart of a procedure (300) for determining the minimum received SNR required to support a particular set of data transmission rates. The data transmission rate of the group is represented as {rk} ′, where 1,2, ... Nτ, and the order of the data transmission rates is rg ο .. ^ γντ. These data transmission rates in the {rk} group will be used for Nτ data streams to be transmitted from Nτ transmission antennas. At the beginning, it is determined in step (312) that the required snr is used in the receiver to support each data transmission rate (or spectral efficiency) in the ^^ group. The above steps can be completed by using the _query} between SNR and efficiency. Based on the assumption that a single data stream is transmitted via a single input multiple output Dora-Multiple-Output '(SIM0) channel of {1, Nr}, and (such as using computer simulation) is determined—specific spectrum efficiency: necessary Second, and further-it is determined for a specific target per (for example, i% per)-22-200304307 (19) Description of the invention The continuation page determines that the required SNR is required. The required SNR of a data stream with a data transmission rate is expressed as SNRreq (rk). In step (312), a set of Nτ data streams of Nτ data streams must be SNR. Associate the Nτ data transmission rates in the {rk} group with ^ necessary SNRs on the receiver in order to obtain the target PER (for example, use the lookup table to determine the target PER). It is also possible to correlate these Nτ data transmission rates with κ effective SNR and, as shown in Equation ⑺, use the receiver's continuous interference cancellation processing on the receiver to obtain the above-mentioned Relevance. If the Nτ must have an SNR equal to or lower than the corresponding effective SNR, it is considered to support the data transmission rates in the {rk} group. When represented graphically, Nτ points can be drawn with Nτ required SNR and corresponding data transmission rate as the coordinates, and these Nτ points can be connected together by a first line, and Nτ effective points can be drawn The SNR and the corresponding data transmission rate are Nτ points of the coordinates, and these Nτ points are connected together by a second line. If any part of the first line is not above the second line ', it is deemed to support the data transmission rates in the {rk} group. The margin of a specific data transmission rate can be defined as the difference between the effective SNR and the required SNR of the data transmission rate, that is, margin (k) = SNReff (rk) -SNRreq (rk). If the margin of each data transfer rate is equal to or greater than zero, it can also be considered as supporting those data transfer rates in the {rk} group. The effective SNR of these data streams depends on the received SNR, and as shown in Equation ⑺, the effective SNR can be derived from the received SNR. The minimum received SNR required to support & data transmission rates in the {~} group is to make the last -23- (20) (20) 200304307 invention description the effective SNR of the continued page transmission rate is equal to the required SNR (i.e. The margin is the dirty. The specific data transfer rate included in the group k} is obtained, and the (zero) minimum margin is obtained for any one of the group τ data transmission rates—the data transmission rate. In the first iteration, Assume that the minimum margin is obtained by the last-responded data stream, and the index variable λ is set to Nτ (that is, λ = Nτ) in step Π 1 by Qi # 4 »Ρ 艾 骤 (314). Then, In step (316), 'the effective SNR of the 帛 λ recovered data streams is set to be equal to its required SNR (i.e., SNReff (^ = sNR ^^^). In step (318), using equation 方程, according to The effective SNR (ie, SNReff (M)) of the received data stream is used to determine the receiving snr. In the first iteration, when λ = Ντ #, the equation ⑺ can be used to determine the receiving SNR with osmium telluride. The received SNR is expressed as: SNRrx = NT · SNReff (NT) Equation (8) and then in step (320) According to the received snr calculated in step (318), and using equation ⑺ (where k = 1, 2, ... such as-丨), the effective SNR of each remaining data stream is determined. In step (320), ^ Data streams to obtain a set of effective SNRs of Nτ. Then in step (322), the required SNR of each data transmission rate in the {rk} group is compared with the effective SNR of the data transmission rate. Then in step (324) 'determines whether the received SNR determined in step (18) supports the data transmission rates in the {rk} group. Especially if the required SNR for each of these Nτ data transmission rates is less than or equal to the data The effective SNR of the transmission rate is regarded as that the received SNR supports these data transmission rates in the {rk} group and is declared successful in step (326). Otherwise, if Nτ data transmission rates -24- (21) ( 21) 200304307 The invention states that any data transmission rate in the performance page exceeds the validity rate of the data transmission rate, it is deemed that the received SNR does not support these data transmission rates in the group. In this case, in the step Decrement the variable λ in (328) (that is, λ = λ_1 'thereby making λ = Ντ-1 in the second iteration. The procedure then returns to step (3 丨 6)' in order to determine that the minimum-to-the-second response to the data stream achieves this minimum This set of effective SNRs for the data transmission rates in the {r "group under Yu's assumption. Repeat as many times as necessary until success is declared in step (326). Then, the received SNR determined in step (318) in the j response that caused the announcement is the minimum received SNR required to support these data transmission rates in the {rk} group. The procedure shown in Figure 3 can also be used to determine whether a particular received SNR supports a data transmission rate of a special group. This received SNR may correspond to the operating SNR (SNRop), which may be the average or expected (but not necessarily instantaneous) received SNR at the receiver. The working SNR can be determined based on measurements on the receiver, and the working SNR can be provided to the transmitter periodically. In an alternative embodiment, the working SNR may be an estimate of the MIMO channel where the transmitter is expected to operate. In either case, the received SNR is provided or specified for the mim0 system. Referring to FIG. 3, in order to determine whether the specific receiving SNR supports the data transmission rate of the specific group, the necessary SNR of each data transmission rate can be determined in step (3 12) at the beginning. In step (312), a set of Nτ required SNRs is known for nt data streams. Steps (314), (316), and (18)) can be skipped because the receiving snr has been provided. Then in step (32), 'every-based on this particular received SNR and using equation (7) (where k = 1, 2 • 25- (22) 200304307 invention description continuation page ... NT)' is determined. The effective SNR of the data stream. In step ii), a set of Nr valid snr is obtained for NT data streams. Then in step ㈣, each data transmission rate in the group must be compared with the effective data transmission rate. It is then determined in step (324) whether the received SNR supports the data transmission rates in the group. If each of these Nτ data transmission rates must be read less than or equal to the effective SNR of the data transmission rate, it shall be deemed that the receiving Teng supports such data transmission in the {rk} group. John catches the sheep and declares ^ in step (326). Otherwise, 'If any of these ~ data transmission rates-the SNR of the data transmission rate must exceed the data value, weight, Xuan', X, and the effective SNR of the transmission rate, it is deemed that the received SNR does not support { The rk} group of these data transmission rates, and declared that in order to take into account the clarity of the description, an example will be described below for a (2,4} mim〇 system, where the ΜΤΜΠ $ β EI 丄 八 τ ^ ΜΙΜΟ system With two transmitting antennas (ie, τ = 2) and four receiving antennas (also # Nr = 4), and specifying that the system supports 3bpS / Hz (3 bits / Hz) _ the overall spectral efficiency In this example, two groups of data transmission rates are to be evaluated. The first group includes data transmission rates for bpS / Hz and 2bPs / Hz, and the two groups include ^ bps / Hz and 5/3 bps / Hz data transmission rate. Then (such as according to the procedure shown in Figure 3) determine the performance of each rate group ^, and compare these performances with each other 0 1 bps / Hz, 4/3 bps / Hz, PER and SNR Relationship or other ways to generate this. Figure 4 shows a 5/3 bps / Hz, and 2 in a {1,4} ΜΙΜΟ system. The following figure shows the spectral efficiency of 5 卩 3 /; ^. You can use the computer simulation conventionally known in this technology-26-200304307 (23) Description of the continuation of the figure. Usually a MIMO system is designated as a specific target PER In this case, you can determine the SNR required to achieve the target PER at each spectral efficiency and store the SNR in a lookup table. For example, if the target PER is 1%, you can separately For the spectral efficiency of 1, 4/3, 5/3, and 2 bps / Hz, the values of -2.0 dB, 0.4 dB, 3.1 dB, and 3.2 dB are stored in the lookup table. For the first rate group For example, the graphs 412 and 418 in FIG. 4 can be used to determine the necessary SNRs of the data streams 1 and 2 with spectral efficiency of 1 and 2 bps / Hz (step (312) in FIG. 3) as follows: SNRreq (l) =-2.0dB, for data stream 1 with spectral efficiency of 1 bps / Hz; and SNRreq (2) = 3.2dB, for data stream 2 with spectral efficiency of 2 bps / Hz, and then Effective SNR of data stream 2 (the data stream 2 was finally restored under the assumption that the interference caused by data stream 1 has been effectively cancelled) Set it to the required SNR (step (316) in Figure 3), as shown in the following formula: SNReff (2) = SNRreq (2) = 3.2 dB. Then determine the receiving SNR according to equation (8) (step 3 in Figure 3 ( 318)), as shown in the formula: SNRrx = 2 · SNRreq (2), for linear units, or SNRrx = SNRreq (2) + 3.0dB = 6.2dB, for logarithmic units. Then, according to equation (7), the effective SNR of each remaining data stream (ie, data stream 1) is determined (step (32) in FIG. 3), as shown in the following formula: SNReff (l) = 3/8 · SNRrx , For linear units, or -27-200304307 (24) Description of the invention Continued page SNReff (l) = SNRrx-4.3dB = ι · 9dB, used for logarithmic units. The effective and required SNRs for each data rate in the first rate group are provided in rows 2 and 3 of Table 1. The margin for each data transfer rate is also determined and is provided in the last column of Table 1. Table 1 Unit data stream for the first rate group and the second rate group 1 2 1 2 Spectral efficiency 1 2 4/3 5/3 bps / Hz SNReff 1.9 3.2 1.8 3.1 dB SNRreq -2.0 3.2 0.4 3.1 dB decibel margin 3.9 0.0 1.4 0.0 The decibels then compare the necessary SNRs of data streams 1 and 2 with the effective SNR of these data streams (step (322) of FIG. 3). Because SNRreq (2) = SNReff (2), and SNRreq (l) < SNReff (l), a minimum receiving SNR of 6.2 dB supports the data transmission rate of the group. Because the first iteration using the procedure shown in Figure 3 is considered to support the first rate group, no additional iterations need to be performed. However, if a received SNR of 6.2 dB does not support the first rate group (for example, if the required SNR result for data stream 1 is greater than 1.9 dB), another iteration will be performed, and therefore based on SNRreq (l), Decide the receiving SNR. The receiving SNR of JL will be greater than 6.2 dB. For the second rate group, the necessary SNRs of the data streams 1 and 2 with the spectral efficiency of 4/3 and 5/3 bps / Hz can be determined using the graphs 414 and 416 'in FIG. 4, respectively: -28 -200304307 (25) Description of the invention Continuation page SNRreq (l) = 0.4 dB for data stream 1 with a spectral efficiency of 4/3 bps / Hz; and SNRreq (2) = 3.1 dB for 5 / 3 bps / Hz spectral efficiency data stream 2. Then set the effective SNR of data stream 2 to its required SNR. Then, the receiving SNR is determined according to the equation (8), as shown in the following formula: SNRrx—SNRreq (2) +3 · 0dB = 6. 1dB, used for logarithmic units. Then, according to equation (7), the effective SNR of each of the remaining data streams (ie, data stream 1) is determined as follows: SNReff (l) = SNRrx-4.3dB = 18dB, which is used for logarithmic units. The effective and required SNRs for each data transmission rate in the second rate group are provided in Tables 4 and 5). The effective SNRs of data streams 1 and 2 are then compared with the necessary SNR of these data streams. As mentioned before, 'because SNU2) = SNReff (2), and SNRreq⑴ < SNReff (l)', so 6.1dB—the minimum received SNR supports the data transmission rate of this group. The previous description is directed to a “vertical, continuous interference cancellation architecture, so a data stream is transmitted from each transmission antenna, and at the receiver, by processing the data stream from a transmission antenna, A data stream is returned at each level of the machine. The graphics in Figure 4 and the look-up table are derived for the vertical structure. The technology described in the present invention can be applied to a "diagonal line," which continues to interfere Offset architecture, where each-data stream is transmitted from multiple (eg, all) transmission antennas (and possibly across multiple frequency intervals). On the receiver, you can reply to each data stream from the -29- (26) 200304307 Invention Description Continued page on each level of the interference cancellation receiver to the from-transmission antenna number. Use another set of graphics and Symbols that are also used for other sorting architectures, and then symbols that can be detected by multiple levels are free. For this diagonal architecture, a lookup table can be derived and a technology described in the present invention can also be used, and such The application is also within the scope of the present invention. For the above example, it can be seen that: for the diagonal continuous interference cancellation architecture, the uniform distribution used to support the data transmission rate (that is, the two data streams Each data stream has a spectrum effect of L5 bps / Hz) The minimum required SNR is smaller than the minimum required SNR for the second rate group (ie, the spectral efficiency of '4/3 and 5/3 bps / Hz) The receiving SNR is about 0.6 dB higher. 1 This gain is achieved without seriously complicating the system design. In order to reduce the minimum receiving SNR required to achieve the target under a specific overall spectral efficiency, it may not be Reverses the error-free data stream of any previous reply The minimum possible spectral efficiency of the broadcast condition is assigned to the last reply data stream. If the spectral efficiency of the last reply data stream is reduced, 'the frequency efficiency of one or more previously reply data streams must be correspondingly increased' in order to obtain The specific overall spectral efficiency. The increased spectral efficiency of the previously returned data stream will then result in a higher required SNR. If the spectral efficiency of any previously returned data stream is increased too much, it is the data stream The required SNR determines the minimum received SNR, not the required SNR of the data stream that is finally replied to determine the minimum received SNr (this is the case of the average sentence distribution of the data transmission rate). In the above example, the second rate group requires A smaller received SNR, 14 疋 because it will not reverse the error of any of the first reply data stream 1 -30-200304307 Description of the invention continued page (27) One of the mispropagation conditions is assigned a smaller spectral efficiency Data stream 2 that was later responded to. For the first rate group, the spectral efficiency assigned to data stream 1 is too high +, so although this way guarantees There will be any error propagation, but this method reduces overall performance by forcing a higher spectral efficiency to be assigned to data stream 2. In contrast, the second rate group will still guarantee that there will be no errors A more practical spectral efficiency of propagation (but with lower trust than the first rate group) is assigned to data stream 1. As shown in Table 1, the margin of the data stream of the first rate group is 3.9 dB, and The margin of the data stream 1 of the second speed group is 1.4 dB. The technique described in the present invention can be used to determine the overall spectrum under a specific receiving snr (the SNR can be the working SNr of the MIMO system). A group of data transmission rates that maximizes efficiency. In this case, according to the specific received SNR, and using equation (7), a set of effective SNRs for Nτ data streams is determined. Then for each effective snr in the group, the highest spectral efficiency that can be supported by the effective SNR at the target PER is determined. This can be done using another lookup table that stores the values of the spectral efficiency and the associated effective SNR. A set of Nτ spectral efficiencies is obtained for the set of Nτ effective snr. Then, a group of data transmission rates corresponding to the Nτ spectral efficiency of the group is determined, and the group of data transmission rates can be used for the Nτ data streams. This rate group maximizes the overall spectral efficiency at this particular received SNR. In the previous description, the effective SNR of these data streams is determined based on the received SNR and using equation (7). As mentioned earlier, this equation includes several assumptions, and in a typical MIM0 system, these assumptions (to a considerable extent -31-(28) (28) 200304307 Continued Description of the Invention) are roughly true. In addition, the equation (7) is derived based on the use of the continuous interference cancellation processing at the receiver. It is also possible to use different parties or a look-up table to determine the validity of the data stream under different working conditions and / or receiver processing technologies, and such a decision method is within the scope of the present invention. . For simplicity of explanation, a floc transfer rate determination technique has been explicitly described for a MIM0 system. These technologies can also be used in other multi-channel communication systems. One 丨 丨 丨 _- One A broadband MIMO system may encounter selective attenuation of the frequency. Such selective attenuation is characterized by different attenuation amounts in the entire system bandwidth. The selective attenuation of the Wei frequency causes Intersymbol Interference (referred to as ISI). ISI is a phenomenon in which each symbol in a received signal becomes the interference of each subsequent symbol in the received signal. This interference degrades performance by affecting the ability to correctly detect the received signal. OFDM can be used to mitigate ISI, and / or OFDM can be used for other considerations. An OFDM system effectively divides the overall system bandwidth into several (nf) frequency sub-channels. The frequency sub-channels can also be referred to as sub-bands or frequency bins. Each frequency sub-channel is associated with a separate subcarrier on which data can be modulated. The frequency secondary channel of the 0FDM system may also encounter selective frequency attenuation. This situation depends on the special nature of the propagation path between the transmitting antenna and the receiving antenna (such as rQUltipath profile). When using OFDM, as is known in this technology, it is possible to reduce the frequency due to selective attenuation by repeating a portion of each OFDM symbol (that is, 'append a cyclic preamble to each OFDM symbol). Produced -32- (29) 200304307 Description of Invention Continued ISI. NF frequency sub-channels can be used for data in each space of 1 N / A sub-channels in the 1 MIM series T and none (that is, a MIMO-OFDM system) using OFDM. transmission. Each frequency channel of each sub-channel can be called a transmission channel, and there can be Np-Ns transmission channels between NT transmission antennas and Nr receiving antennas for data transmission. The method described above is performed, and the data transmission rate determination described above is performed for the ^ transmission antennas of the group. In an alternative embodiment, the data transmission rate determination may be performed for each of the nf frequency sub-channels in a manner independent of the group's Nτ transmission antennas. Figure 5 is a block diagram of a transmitter unit (500), which is an embodiment of the transmitter part of the transmitter system (110) shown in FIG. In a consistent embodiment, 'a single JL data transmission rate and coding and modulation architecture can be used for each such known data stream to be transmitted on Nτ transmission antennas (ie,' each antenna is used There are independent coding and modulation methods). The independent data transmission rate and coding and modulation architecture to be used for each transmission antenna can be determined according to the control provided by the controller (130), and these data transmission rates can be determined in the manner described above. The transmitter unit (500) includes ... a τχ data processor (n4a) that receives, encodes, and modulates each data stream according to an independent encoding and modulation architecture, so that Providing modulation symbols; and (2)
一 ΤΧ ΜΙΜΟ處理器(120a),而如果採用了 〇fdm,則該TX ΜΙΜΟ處理器(120a)可進一步處理該等調變符號,以便提供 -33- 200304307 發明說明續頁 (30) 傳輸符號。TX資料處理器(114a)及ΤΧ ΜΙΜΟ處理器(120a)分 別是圖1所示TX資料處理器(114)及ΤΧ ΜΙΜΟ處理器(120)的 一實施例。 在圖5所示之特定實施例中,ΤΧ資料處理器(114a)包含一 解多工器(510)、Ντ個編碼器(512a-512t)、Ντ個通道交插器 (514a-514t)、以及Ντ個符號對映元件(516a-516t)(亦即,每一 傳輸天線有編碼器、通道交插器、及符號對映元件的一組 裝置。解多工器(510)將通訊資料(亦即資訊位元)解多工^ 將用於資料傳輸的Ντ個傳輸天線之Ντ個資料流。可使該等 Ντ個資料流與由速率控制所決定的若干不同的資料傳輸 速率相關聯。將每一資料流提供給一各別的編碼器(5 12)。 每一編碼器(512)接收一各別的資料流,並根據為該資料 流選擇的特定之編碼架構而對該資料流進行編碼,以便提 供編碼後的位元。該編碼增加了資料傳輸的可靠性。該編 碼架構可包括循環冗餘核對(Cyciic Re(jun(janCy check ;簡稱 CRC)、旋積編碼(conv〇iuti〇nai coding)、丨尚輪編碼(Turb〇 c〇ding) 、及區塊編碼(block coding)等編碼架構之任何組合。然後 將來自每一編碼器(512)的編碼後的位元提供給一各別的 通道交插器(514),而該通道交插器(514)係根據一特定的交 插I構而將X插該等編碼後的位元。該交插將時間的分集 性提供給該等編碼後的位元,因而可根據用於該資料流的 傳輸通道之一平均SNR而傳輸資料,降低信號衰減,並進 一步去除用來形成每一調變符號的各編碼後的位元間之 關聯性。 -34- 200304307 _ (31) 發明說明續頁 將來自每一通道交插器(5 14)的編碼後且交插後的位元 提供給一各別的符號對映元件(516),該符號對映元件(516) 對映這些位元,而形成調變符號。控制器(130)提供的調變 控制決定了每一符號對映元件(5 16)所要實施的特定調變 架構。每一符號對映元件(5 16)聚集若干組的qi個編碼後且 交插後的位元,以便形成非二進位的符號,且該符號對映 元件(516)將每一非二進位的符號進一步對映到與所選的 調變架構(例如,QPSK、M-PSK、M-QAM、或某一其他謂H 架構)對應的一信號集(signal constellation)中之一特定點。 每一被對映的信號點都對應於一 Mj陣(Mrary)調變符號,其 中Mj對應於為第j個傳輸天線所選擇的特定調變架構,且 Mj = 2qj。符號對映元件(516a-516t)然後提供Ντ個資料流的調 變符號。 在圖5所示之特定實施例中,ΤΧ ΜΙΜΟ處理器(120a)包含 Ντ個OFDM調變器,而每一 OFDM調變器包含一快速傅立葉 逆變換(Inverse Fast Fourier Transform ;簡稱 IFFT)單元(522) 及一循環前置碼產生器(524)。每一 IFFT單元(522)自一對應 的符號對映元件(516)接收一各別的調變符號流。每一 IFFT 單元(522)聚集若干組的NF個調變符號,而形成對應的調變 符號向量,並利用快速傅立葉逆變換將每一調變符號向量 轉換為其時域表示法(將該時域表示法稱為一 OFDM符號) 。可將IFFT單元(522)設計成對任何數目的頻率次通道(例如 8、16、32、…、NF個頻率次通道)執行該逆變換。對於每一 OFDM符號而言,循環前置碼產生器(524)重複該OFDM符號 -35· 200304307 _ (32) 發明說明續頁 的一部分,以便形成一對應的傳輸符號。該循環前置碼確 保在出現多路徑延遲分散時各傳輸符號可保有其正交特 性,因而提昇了抗拒諸如由頻率的選擇性衰減而產生的通 道分散(channel dispersion)等的不良路徑效應。循環前置碼 產生為(524)然後將一傳輸符號流提供給一相關聯的發射 機(122)。如果並未採用OFDM,則ΤΧ ΜΙΜΟ處理器(120a)只 須將來自每一符號對映元件(5 16)的調變符號流提供給相 關聯的發射機(122)。 一 每一發射機(122)接收並處理一各別的調變符號流(針對 並未採用OFDM的ΜΙΜΟ),或接收並處理一各別的傳輸符號 流(針對採用OFDM的ΜΙΜΟ),以便產生一調變後的信號, 然後自該相關聯的天線(124)傳輸該調變後的信號。 亦可實施用於發射機單元的其他設計,且該等其他設計 也是在本發明的範圍内。 下列的美國專利申請案中進一步詳細說明了採用及不 採用OFDM的ΜΙΜΟ系統之編碼及調變: • 於2001年11月6曰提出申請的美國專利申請案 09/993,087 “Multiple-Access Multiple-Input Multiple-Output (ΜΙΜΟ) Communication System” ; • 於2001年5月11曰提出申請的美國專利申請案 09/854,235 "Method and Apparatus for Processing Data in a Multiple-Input Multiple-Output (ΜΙΜΟ) Communication System Utilizing Channel State Information” ; • 分別於2001年3月23日及2001年9月18日提出申請的兩 -36- 200304307 _ (33) 發明說明續頁 個發明名稱相同的美國專利申請案 09/826,481及 09/956,449 "Method and Apparatus for Utilizing Channel State Information in a Wireless Communication System” ; • 於2001年2月1日提出申請的美國專利申請案09/776,075 “Coding Scheme for a Wireless Communication System” ; 以及 • 於2000年3月30日提出申請的美國專利申請案09/532,492 “High Efficiency,High Performance Communication Sy&lam Employing Multi-Carrier Modulation” o 這些專利申請案全都讓渡給本專利申請案之受讓人,且本 專利申請案特此引用該等專利申請案以供參照。專利申請 案09/776,075說明了 一種編碼架構,其中可以相同的基本 碼(例如旋積碼或滿輪碼)將資料編碼,並調整位元的刪除 (puncturing),以便獲致所需的資料傳輸速率,因而可獲致 不同的資料傳輸速率。亦可使用其他的編碼及調變架構, 且此種使用方式也是在本發明的範圍内。 接收機系統 圖6是可實施接續抵消接收機處理技術的一 RX ΜΙΜΟ/資 料處理器(160a)之方塊圖。RX ΜΙΜΟ/資料處理器(160a)是圖 1所示RX ΜΙΜΟ/資料處理器(160)的一實施例。NR個天線 (152a-152r)的每一天線接收自Ντ個傳輸天線傳輸的信號, 且該等信號被繞送到一各別的接收機(154)。每一接收機 (154)調整(例如,濾波、放大、及向下變頻)所接收的一各 別信號,並將調整後的信號數位化,以便提供一對應的資 -37- 200304307 (34) 發明說明續頁 料樣本流。 對於並未採用OFDM的ΜΙΜΟ而言,該等資料樣本代表了 所接收的符號。每一接收機(154)然後將所接收的一各別符 號流提供給RX ΜΙΜΟ/資料處理器(160a),而該接收的各別 符號流包含在每一符號期間所接收的一符號。 對於採用OFDM的ΜΙΜΟ而言,每一接收機(154)進一步包 含一循環前置碼去除元件及一 FFT處理器(為了圖式的簡 化,圖6中並未示出這兩個裝置)。該循環前置碼去除元 去除發射機系統先前針對所傳輸的每一符號而插入的循 環前置碼,以便提供一對應的接收OFDM符號。該FFT處理 器然後變換每一接收OFDM符號,以便將在該符號期間中 由NF個接收的符號構成之一向量提供給NF個頻率次通道 。NR個接收機(154)然後將NR個接收的符號向量流提供給 RX ΜΙΜΟ/資料處理器(160a)。 對於採用OFDM的ΜΙΜΟ而言,RX ΜΙΜΟ/資料處理器(160a) 可將該等>^個接收的符號向量流解多工為NF組的NR個接 收符號流,其中每一頻率次通道有一組接收符號流,且每 一組接收符號流包含一頻率次通道的>^個接收符號流。 RX ΜΙΜΟ/資料處理器(160a)然後可以與前文中針對並未採 用OFDM的ΜΙΜΟ而處理1^^個接收符號流類似之方式處理 每一組的NR個接收符號流。如本門技術中所習知的,RX ΜΙΜΟ/資料處理器(160a)然後亦可根據某一其他的排序架 構而針對採用OFDM的ΜΙΜΟ處理所接收的信號。在任何一 種情形中,RX ΜΙΜΟ/資料處理器(160a)處理NR個接收符號 -38- 200304307 (35) I發明說明續頁 流(針對並未採用OFDM的ΜΙΜΟ)、或每一組的Nr個接收符 號’况(針對採用OFDM的ΜΙΜΟ)。 在圖6所示之實施例中,RX ΜΙΜΟ/資料處理器(160a)包含 右干接續的(亦即串接的)接收機處理級(61〇a-61〇n),其中所 要回復的每一傳輸之資料流有一級。每一接收機處理級 (61〇)(除了最後一級(61 On)之外)包含一空間處理器(620)、一 RX資料處理器(630)、及一干擾抵消器(640)。該最後一級 (610η)只包含空間處理器(62〇11)及rx資料處理器(63〇n)。_A TX MIMO processor (120a), and if 〇fdm is used, the TX MIMO processor (120a) can further process the modulation symbols in order to provide -33- 200304307 Invention Description Continued (30) transmission symbols. The TX data processor (114a) and the TX MIMO processor (120a) are an embodiment of the TX data processor (114) and the TX MIMO processor (120) shown in FIG. 1, respectively. In the specific embodiment shown in FIG. 5, the TX data processor (114a) includes a demultiplexer (510), Nτ encoders (512a-512t), Nτ channel interleavers (514a-514t), And Nτ symbol mapping elements (516a-516t) (that is, a set of devices in which each transmission antenna has an encoder, a channel interpolator, and a symbol mapping element. The demultiplexer (510) sends the communication data ( That is, information bits) demultiplexing ^ Nτ data streams of Nτ transmission antennas used for data transmission. These Nτ data streams can be associated with a number of different data transmission rates determined by rate control. Each data stream is provided to a separate encoder (512). Each encoder (512) receives a separate data stream and assigns the data stream to the data stream according to the specific encoding architecture selected for the data stream. Encoding to provide the encoded bits. The encoding increases the reliability of data transmission. The encoding architecture can include cyclic redundancy check (Cyciic Re (jun (janCy check; CRC), convolution code) 〇nai coding), 丨 Turbo coding, Any combination of coding architectures such as block coding. The encoded bits from each encoder (512) are then provided to a separate channel interleaver (514), and the channel interleaver (514) is to insert X into the encoded bits according to a specific interleaving I structure. The interleaving provides the diversity of time to the encoded bits, so it can be used according to the data stream. One of the transmission channels averages the SNR to transmit data, reducing signal attenuation, and further removing the correlation between the encoded bits used to form each modulation symbol. -34- 200304307 _ (31) Description of the invention continued page The encoded and interleaved bits from each channel interleaver (5 14) are provided to a respective symbol mapping element (516), which symbol mapping element (516) maps these bits, Modulation symbols are formed. The modulation control provided by the controller (130) determines the specific modulation architecture to be implemented by each symbol mapping element (5 16). Each symbol mapping element (5 16) gathers several groups of qi encoded and interleaved bits to form a non-binary symbol And the symbol mapping element (516) further maps each non-binary symbol to the selected modulation architecture (for example, QPSK, M-PSK, M-QAM, or some other so-called H architecture) Corresponding to a specific point in a signal constellation. Each mapped signal point corresponds to a Mj array (Mrary) modulation symbol, where Mj corresponds to the specific selected for the j-th transmission antenna. Modulation architecture, and Mj = 2qj. The symbol mapping elements (516a-516t) then provide modulation symbols for Nτ data streams. In the specific embodiment shown in FIG. 5, the TX MIMO processor (120a) includes Nτ OFDM modulators, and each OFDM modulator includes an Inverse Fast Fourier Transform (IFFT) unit ( 522) and a cyclic preamble generator (524). Each IFFT unit (522) receives a respective modulated symbol stream from a corresponding symbol mapping element (516). Each IFFT unit (522) aggregates several sets of NF modulation symbols to form a corresponding modulation symbol vector, and uses inverse fast Fourier transform to convert each modulation symbol vector to its time domain representation (the time The domain representation is called an OFDM symbol). The IFFT unit (522) may be designed to perform the inverse transform on any number of frequency sub-channels (eg, 8, 16, 32, ..., NF frequency sub-channels). For each OFDM symbol, the cyclic preamble generator (524) repeats a part of the OFDM symbol -35 · 200304307_ (32) Description of the continuation page to form a corresponding transmission symbol. The cyclic preamble ensures that each transmission symbol can maintain its orthogonality when multi-path delay dispersion occurs, thereby improving resistance to adverse path effects such as channel dispersion caused by selective attenuation of frequencies. A cyclic preamble is generated (524) and a transport symbol stream is provided to an associated transmitter (122). If OFDM is not used, the TX MIMO processor (120a) need only provide the modulation symbol stream from each symbol mapping element (516) to the associated transmitter (122). Each transmitter (122) receives and processes a separate modulation symbol stream (for MIMO without OFDM), or receives and processes a separate transmission symbol stream (for MIMO with OFDM) in order to generate A modulated signal is then transmitted from the associated antenna (124). Other designs for the transmitter unit may also be implemented, and such other designs are also within the scope of the present invention. The following U.S. patent applications further describe the encoding and modulation of the MIMO system with and without OFDM: • U.S. patent application 09 / 993,087, Multiple-Access Multiple-Input, filed on November 6, 2001 Multiple-Output (ΜΙΜΟ) Communication System "; • US Patent Application 09 / 854,235 filed on May 11, 2001 " Method and Apparatus for Processing Data in a Multiple-Input Multiple-Output (ΜΙΜΟ) Communication System Utilizing Channel State Information ”; • Two-36-200304307 filed on March 23, 2001 and September 18, 2001 _ (33) Description of the invention continued on US Patent Application 09 / 826,481 with the same invention name and 09 / 956,449 " Method and Apparatus for Utilizing Channel State Information in a Wireless Communication System "; • US Patent Application 09 / 776,075" Coding Scheme for a Wireless Communication System "filed on February 1, 2001; and • U.S. Patent Application filed on March 30, 2000 2 “High Efficiency, High Performance Communication Sy & lam Employing Multi-Carrier Modulation” o All of these patent applications are assigned to the assignee of this patent application, and this patent application is hereby cited for reference . Patent application 09 / 776,075 describes an encoding architecture in which data can be encoded with the same basic code (such as a convolutional code or a full-round code), and bit deletion is adjusted to achieve the required data transmission rate , So you can get different data transmission rates. Other coding and modulation architectures can also be used, and such usage is also within the scope of the present invention. Receiver System Figure 6 is a block diagram of an RX MIMO / data processor (160a) that can implement a continuous cancellation receiver processing technique. The RX MIMO / data processor (160a) is an embodiment of the RX MIMO / data processor (160) shown in FIG. Each of the NR antennas (152a-152r) receives signals transmitted from Nτ transmission antennas, and these signals are routed to a respective receiver (154). Each receiver (154) adjusts (eg, filters, amplifies, and downconverts) a respective signal received, and digitizes the adjusted signal to provide a corresponding information-37- 200304307 (34) Description of the invention Continuing sample flow. For MIMO without OFDM, these data samples represent the received symbols. Each receiver (154) then provides a received individual symbol stream to the RX MIMO / data processor (160a), and the received individual symbol stream contains a symbol received during each symbol. For MIMO using OFDM, each receiver (154) further includes a cyclic preamble removal element and an FFT processor (for simplicity, these two devices are not shown in Figure 6). The cyclic preamble removal element removes the cyclic preamble previously inserted by the transmitter system for each symbol transmitted in order to provide a corresponding received OFDM symbol. The FFT processor then transforms each received OFDM symbol to provide a vector of NF received symbols during the symbol period to the NF frequency sub-channels. The NR receivers (154) then provide the NR received symbol vector streams to the RX MIMO / data processor (160a). For MIMO using OFDM, the RX MIMO / data processor (160a) can demultiplex these> ^ received symbol vector streams into NR received symbol streams of the NF group, one for each frequency channel The group of received symbol streams, and each group of received symbol streams includes> ^ received symbol streams of one frequency sub-channel. The RX MIMO / data processor (160a) may then process the NR received symbol streams of each group in a similar manner to the above processing of 1 ^ received symbol streams for MIMO without OFDM. As is known in the art, the RX MIMO / data processor (160a) can then also process the received signal for MIMO using OFDM according to some other sequencing architecture. In either case, the RX MIMO / data processor (160a) processes the NR received symbols -38- 200304307 (35) I Invention description Continuation page stream (for MIMO without OFDM), or Nr number of each group Receive symbols (for MIMO using OFDM). In the embodiment shown in FIG. 6, the RX MIMO / data processor (160a) includes a right-handed (ie, cascaded) receiver processing stage (61a-61n), where each of the A transmitted data stream has one level. Each receiver processing stage (61) (except the last stage (61 On)) includes a space processor (620), an RX data processor (630), and an interference canceller (640). This last stage (610η) includes only the space processor (62〇11) and the rx data processor (63〇n). _
對於第一級(610a)而言,空間處理器(62〇a)自接收機 (154a-154r)接收>^個符號流(表示為L1),並根據一特定的空 間或芝間-時間接收機處理技術而處理該等Nr個接收的符 號流’以便提供(最多可到)^個偵測的符號流(表示為又1) 。對於採用OFDM的ΜΙΜΟ而言,該等nr個接收的符號流包 含一頻率次通道的接收之符號。選擇對應於最低資料傳輸 速率的偵測之符號流S i,並將該偵測的符號流提供給RX ;貝料處理器(630a)β處理器(630a)進一步處理(亦即解調、解 又插、及解碼)針對第一級而選擇的該偵測的符號流幻, 以便提供一解碼的資料流。空間處理器(62〇a)進一步提供 頻道響應矩陣Η的一估計值,且係將該估計值用來執行所 有級的空間或空間-時間處理。 對於第一級(61〇a)而言,干擾抵消器(64〇a)亦自接收機 (154)接收NR個接收的符號流(亦即向量又1)。干擾抵消器 (640a)進一步自RX資料處理器(63〇a)接收解碼的資料流,並 執行處理(例如編碼、交插、調變、及頻道響應等),以便 -39- 200304307 (36) I發明說^胃 得到係為因剛才回復的資料流而產生的干擾分量的估計 值之nr個重新調變的符號流(表示為i1)。然後以第一級的 輸入符號流減掉重新調變的符號流,以便推導出nr個經過 修改的符號流(表示為向量X2),該經過修改的符號流包含 除了減掉的(亦即抵消的)干擾分量以外的所有干擾分量 。然後將該等NJ®經過修改的符號流提供給次一級。 對於第二至最後一級(610b-610n)的每一級而言,該級的 空間處理器接收並處理來自前一級中的干擾抵消器之j^R 個經過修改的符號流,以便推導出該級的偵測之符號流。 RX資料處理器選擇並處理對應於該級上的最低資料傳輸 速率之偵測的符號流,以便提供該級的解碼之資料流。對 於第二級至最後第二級中的每一級而言,該級中之干擾抵 消器自前一級中的干擾抵消器接收Nr個經過修改的符號 流,並自同一級内的RX資料處理器接收解碼的資料流, 然後推導出NR個重新調變的符號流,並將NR個經過修改的 符號流提供給次一級。 前文引述的美國專利申請案09/993,087及09/854,235中進 —步詳細說明了該接績抵消接收機處理技術。 每一級中之空間處理器(620)實施一特定的空間或空間-時間接收機處理技術^所要使用的特定接收機處理技術通 常取決於ΜΙΜΟ通道的特徵,而該ΜΙΜΟ通道的特徵在於為 可以是非分散的(non-dispersive)或分散的(dispersive)。非分 散的ΜΙΜΟ通道會有平坦的衰減(亦即,整個頻寬的各頻率 區間有大約相同的衰減量),且分散的ΜΙΜΟ通道會有頻率 -40- 200304307 ___ (37) 發明說明續頁 的選擇性衰減(例如,整個頻寬的各頻率區間有不同的衰 減量)。 對於一非分散的ΜΙΜΟ通道而言,可利用空間接收機處 理技術來處理所接收的信號,以便提供偵測的符號流。這 些空間接收機處理技術包括頻道相關性矩陣倒置(Channel Correlation Matrix Inversion ;簡稱 CCMI)技術(亦被稱為零強 制(zero-forcing)技術)及最小均方誤差(Minimum Mean Square Error ;簡稱MMSE)技術。亦可使用其他的空間接收機處j里 技術,且該等技術也是在本發明的範圍内。 對於一分散的ΜΙΜΟ通道而言,通道中之時間分散(time dispersion)導入了符號間干擾(ISI)。為了提昇性能,嘗試回 復所傳輸的一特定資料流之一接收機將需要改善來自所 傳輸的其他資料流之干擾(或“串擾”)、及來自所有資料流 的ISI。為了降低串擾及ISI,可利用空間-時間接收機處理 技術來處理所接收的信號,以便提供偵測的符號流。這些 空間-時間接收機處理技術包括MMSE線性等化器(MMSE Linear Equalizer ;簡稱 MMSE-LE)、決策回授等化器(Decision Feedback Equalizer ;簡稱DFE)、及最大可能性序列估計器 (Maximum-Likelihood Sequence Estimator » 簡稱 MLSE)等的技 術。 前文引述的美國專利申請案09/993,087、09/854,235、 09/826,481、及 09/956,449 中詳細說明 了該等 CCMI、MMSE、 MMSE-LE、及DFE技術。可以各種方式來實施本發明中述 及的資料傳輸速率決定及資料傳輸技術。例如,可以硬體 -41- 200304307 _ (38) 發明說明續頁 、軟體、或以上兩者的一組合來實施這些技術。對於一硬 體實施例而言,可在一個或多個特定應用積體電路 (Application Specific Integrated Circuit ;簡稱 ASIC)、數位信號 處理器(Digital Signal Processor ;簡稱DSP)、數位信號處理裝 置(Digital Signal Processing Device ;簡稱 DSPD)、可程式邏輯 裝置(Programmable Logic Device ;簡稱PLD)、客戶端可程式 閘陣列(Field-Programmable Gate Array ;簡稱 FPGA)、處理器 、控制器、微控制器、微處理器、被設計成執行本發明身 述的功能之其他電子單元、或上述各項的一組合内實施用 來決定發射機上的資料傳輸速率及發射機/接收機上的資 料傳輸之各元件。 對於一軟體實施例而言,可以用來執行本發明所述的功 能之模組(例如程序及函式等)來實施在發射機/接收機上 的資料傳輸速率決定及處理之某些面向。可將軟體碼儲存 在一記憶體單元(例如圖1所示之記憶體(132),並由一處理 器(例如控制器(130))執行該等軟體碼。可在處理器之内或 處理器之外實施該記憶體單元,在處理器之外實施的情形 中,係以本門技術中習知之方式將該記憶體單元經由各種 裝置而在通訊上耦合到該處理器。 本文中包含了 一些標題以供參照,且有助於找到某些段 落。這些標題之用意並非在限制在該等標題之下所說明的 觀念,且在整份說明書中,可將這些觀念應用於其他的段 落。 前文中提供了所揭示實施例之說明,使熟習此項技術者 -42- (39) \ (39) \200304307 得以製作或使用本發明。熟習此項技術者將易於作出這些 實施例的各種修改,且在不脫離本發明的精神及範圍下, 可將本發明所界定的一般性原理應用於其他的實施例。因 此’本發明將不受限於本文所示的該等實施例,而是將適 用於與本發明所揭示的原理及創新特徵一致的最廣義範 圍。 圖式簡單說明 若參照上文中之詳細說明,並配合各圖式,將可更易_於 了解本發明的該寺特徵、本質、及優點’而在這些圖式中, 相同的代號標示了所有圖式中之對應部分,這些圖式有: 圖1疋一 ΜΙΜΟ系統中的一發射機系統及一接收機系統 的一實施例之一方塊圖; 圖2是用來處理^個接收的符號流以便回復Ντ個傳輸的 符號流的一接續干擾抵消接收機處理技術之一流程圖; 圖3是決定用來支援一特定組的資料傳輸速率所需的最 小接收SNR的一程序的一實施例之一流程圖; 圖 4是在一 {1,4} ΜΙΜΟ系統中於 1、4/3、5/3、及 2 bps/Hz 的頻譜效率下的封包錯誤率與SNR間之關係圖; 圖5是一發射機單元的一實施例之一方塊圖;以及 圖6是可實施接續干擾抵消接收機處理技術的一接收機 單元的一實施例之一方塊圖。 圖式代表符號說明 100 ΜΙΜΟ系統 110 發射機系統 150 接收機系統 -43- 200304307 發明說明續頁 (40) 112 資料來源 114,114a 傳輸資料處理器 130,170 控制器 120J_20a 122, 122a-122t, 傳輸ΜΙΜΟ處理器 154a-154r 124a-124t,124,152, 發射機 152a-152r 天線 154 接收機 一 160, 160a 接收 ΜΙΜΟ/資料處理器 178 傳輸資料處理器 180 調變器 140 解調器 142 接收資料處理器 132, 172 記憶體 500 發射機單元 510 解多工器 512, 512a-512t 編碼器 514, 514a-514t 通道交插器 516, 516a - 516t 符號對映元件 522, 522a-522t 快速傅立葉逆變換單元 524, 524a-524t 循環前置碼產生器 610, 610a-610n 接收機處理級 640, 640a-640n 干擾抵消器 620, 620a-620n 空間處理器 630, 630a-630n 接收資料處理器 -44-For the first stage (610a), the space processor (62a) receives> ^ symbol streams (represented as L1) from the receivers (154a-154r), and according to a specific space or Shiba-time The receiver processing technology processes these Nr received symbol streams' in order to provide (up to) ^ detected symbol streams (denoted as another 1). For MIMO using OFDM, the nr received symbol streams contain the received symbols of a frequency sub-channel. Select the detected symbol stream S i corresponding to the lowest data transmission rate, and provide the detected symbol stream to RX; the shell processor (630a), β processor (630a) for further processing (ie, demodulation, decoding (Inserting and decoding) The detected symbol stream is selected for the first stage to provide a decoded data stream. The space processor (62a) further provides an estimate of the channel response matrix Η, and this estimate is used to perform all levels of space or space-time processing. For the first stage (61a), the interference canceller (64a) also receives NR received symbol streams from the receiver (154) (i.e., the vector is also 1). The interference canceller (640a) further receives the decoded data stream from the RX data processor (63〇a) and performs processing (such as encoding, interleaving, modulation, and channel response, etc.) to -39- 200304307 (36) According to the invention, the stomach is obtained as nr re-modulated symbol streams (represented as i1) of the interference component estimates generated by the data stream just returned. Then the sub-modulated symbol stream is subtracted from the input symbol stream of the first stage in order to derive nr modified symbol streams (represented as a vector X2). The modified symbol stream includes the All interference components except interference components. These NJ® modified symbol streams are then provided to the next level. For each of the second to last stages (610b-610n), the space processor of that stage receives and processes j ^ R modified symbol streams from the interference canceller in the previous stage in order to derive the stage Detected symbol stream. The RX data processor selects and processes the detected symbol stream corresponding to the lowest data transmission rate on the stage in order to provide a decoded data stream on that stage. For each of the second stage to the last second stage, the interference canceller in this stage receives Nr modified symbol streams from the interference canceller in the previous stage and from the RX data processor in the same stage The decoded data stream, and then derive NR re-modulated symbol streams, and provide NR modified symbol streams to the next stage. The U.S. patent applications 09 / 993,087 and 09 / 854,235, cited above, further describe the process of receiver processing in detail. The space processor (620) in each stage implements a specific space or space-time receiver processing technology. The specific receiver processing technology to be used usually depends on the characteristics of the MIMO channel, and the MIMO channel is characterized by whether it can be right or wrong Non-dispersive or dispersive. Non-dispersed MIMO channels will have flat attenuation (that is, approximately the same amount of attenuation across frequency bands of the entire bandwidth), and distributed MIMO channels will have frequencies of -40- 200304307 ___ (37) Selective attenuation (for example, each frequency section of the entire bandwidth has a different amount of attenuation). For a non-decentralized MIMO channel, the received signal can be processed using spatial receiver processing techniques to provide a detected symbol stream. These spatial receiver processing technologies include Channel Correlation Matrix Inversion (CCMI) technology (also known as zero-forcing technology) and Minimum Mean Square Error (MMSE) technology. Other space receiver processing technologies can also be used, and these technologies are also within the scope of the present invention. For a decentralized MIMO channel, time dispersion in the channel introduces inter-symbol interference (ISI). To improve performance, a receiver attempting to reply to a particular data stream being transmitted will need to improve interference (or "crosstalk") from other data streams being transmitted, and ISI from all data streams. To reduce crosstalk and ISI, space-time receiver processing techniques can be used to process the received signal to provide a detected symbol stream. These space-time receiver processing techniques include MMSE Linear Equalizer (MMSE-LE), Decision Feedback Equalizer (DFE), and Maximum-Probability Sequence Estimator (Maximum- Likelihood Sequence Estimator »(MLSE for short). These CCMI, MMSE, MMSE-LE, and DFE technologies are described in detail in the previously cited U.S. patent applications 09 / 993,087, 09 / 854,235, 09 / 826,481, and 09 / 956,449. The data transmission rate determination and data transmission techniques described in the present invention can be implemented in various ways. For example, these techniques can be implemented in hardware -41- 200304307 _ (38) Invention Description Continued, Software, or a combination of both. For a hardware embodiment, one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), and digital signal processing devices (Digital Signal Processors) Processing Device (DSPD for short), Programmable Logic Device (PLD for short), Client-Programmable Gate Array (FPGA), processor, controller, microcontroller, microprocessor , Other electronic units designed to perform the functions described in the present invention, or components implemented in a combination of the above to determine the data transmission rate on the transmitter and the data transmission on the transmitter / receiver. For a software embodiment, the modules (such as programs and functions) that can be used to perform the functions described in the present invention implement certain aspects of data transmission rate determination and processing on the transmitter / receiver. The software code may be stored in a memory unit (such as the memory (132) shown in FIG. 1) and executed by a processor (such as the controller (130)). The software code may be within the processor or processed The memory unit is implemented outside the processor, and in the case of being implemented outside the processor, the memory unit is communicatively coupled to the processor via various devices in a manner known in the art. This article contains Some headings are for reference and help to find certain paragraphs. These headings are not intended to limit the concepts described under those headings, and they can be applied to other paragraphs throughout the specification. The foregoing descriptions of the disclosed embodiments are provided to enable those skilled in the art to make or use the invention -42- (39) \ (39) \ 200304307. Those skilled in the art will readily make various modifications to these embodiments. And, without departing from the spirit and scope of the present invention, the general principles defined by the present invention can be applied to other embodiments. Therefore, the present invention will not be limited to the embodiments shown herein Rather, it will be applied to the broadest scope consistent with the principles and innovative features disclosed by the present invention. Brief description of the drawings If you refer to the detailed descriptions above and cooperate with the drawings, it will be easier to understand the temple of the present invention Features, essence, and advantages'. In these drawings, the same code marks the corresponding parts in all the drawings, these drawings are: Figure 1. A transmitter system and a receiver system in the MIMO system. A block diagram of an embodiment; FIG. 2 is a flowchart of a successive interference cancellation receiver processing technique for processing ^ received symbol streams in order to reply Nτ transmitted symbol streams; FIG. 3 is a decision to support a A flowchart of one embodiment of a procedure for minimum received SNR required for a particular group of data transmission rates; FIG. 4 is a diagram of a 1,4 / 3, 5/3, and 2 in a {1,4} ΜΙΜΟ system; Figure 5 is a diagram showing the relationship between the packet error rate and SNR under the spectral efficiency of bps / Hz; Figure 5 is a block diagram of an embodiment of a transmitter unit; and Figure 6 is a reception that can implement a continuous interference cancellation receiver processing technology Machine unit A block diagram of one of the embodiments. Symbol representation of the diagram 100 MIMO system 110 Transmitter system 150 Receiver system-43- 200304307 Description of the invention continued (40) 112 Source 114, 114a Transmission data processor 130, 170 Controller 120J_20a 122, 122a -122t, transmission MIMO processor 154a-154r 124a-124t, 124, 152, transmitter 152a-152r antenna 154 receiver-160, 160a reception MIMO / data processor 178 transmission data processor 180 modulator 140 demodulator 142 Receive data processor 132, 172 Memory 500 Transmitter unit 510 Demultiplexer 512, 512a-512t Encoder 514, 514a-514t Channel interleaver 516, 516a-516t Symbol mapping element 522, 522a-522t Fast Inverse Fourier transform unit 524, 524a-524t Cyclic preamble generator 610, 610a-610n Receiver processing stage 640, 640a-640n Interference canceller 620, 620a-620n Space processor 630, 630a-630n Receive data processor- 44-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/087,503 US6636568B2 (en) | 2002-03-01 | 2002-03-01 | Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200304307A true TW200304307A (en) | 2003-09-16 |
TWI337487B TWI337487B (en) | 2011-02-11 |
Family
ID=27787546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092104229A TWI337487B (en) | 2002-03-01 | 2003-02-27 | Method and apparatus of data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (mimo) system |
Country Status (18)
Country | Link |
---|---|
US (2) | US6636568B2 (en) |
EP (2) | EP1786134B8 (en) |
JP (2) | JP2005519520A (en) |
KR (1) | KR100945596B1 (en) |
CN (1) | CN1639996B (en) |
AR (1) | AR038710A1 (en) |
AT (2) | ATE394844T1 (en) |
AU (1) | AU2003216479C1 (en) |
BR (1) | BR0308087A (en) |
CA (1) | CA2476061C (en) |
DE (2) | DE60320767D1 (en) |
IL (1) | IL163252A (en) |
MX (1) | MXPA04008473A (en) |
MY (1) | MY140343A (en) |
TW (1) | TWI337487B (en) |
UA (1) | UA87807C2 (en) |
WO (1) | WO2003075479A1 (en) |
ZA (1) | ZA200406236B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI451710B (en) * | 2004-06-30 | 2014-09-01 | Qualcomm Inc | Efficient computation of spatial filter matrices for steering transmit diversity in a mimo communication system |
US10476560B2 (en) | 2003-12-17 | 2019-11-12 | Qualcomm Incorporated | Spatial spreading in a multi-antenna communication system |
Families Citing this family (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7952511B1 (en) | 1999-04-07 | 2011-05-31 | Geer James L | Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns |
US9130810B2 (en) | 2000-09-13 | 2015-09-08 | Qualcomm Incorporated | OFDM communications methods and apparatus |
US7295509B2 (en) | 2000-09-13 | 2007-11-13 | Qualcomm, Incorporated | Signaling method in an OFDM multiple access system |
US6980600B1 (en) * | 2000-12-26 | 2005-12-27 | Nortel Networks Limited | Receiver system for Multiple-Transmit, Multiple-Receive (MTMR) wireless communications systems |
US6636568B2 (en) * | 2002-03-01 | 2003-10-21 | Qualcomm | Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system |
US6687492B1 (en) | 2002-03-01 | 2004-02-03 | Cognio, Inc. | System and method for antenna diversity using joint maximal ratio combining |
US6862456B2 (en) | 2002-03-01 | 2005-03-01 | Cognio, Inc. | Systems and methods for improving range for multicast wireless communication |
US6785520B2 (en) | 2002-03-01 | 2004-08-31 | Cognio, Inc. | System and method for antenna diversity using equal power joint maximal ratio combining |
AU2003219882A1 (en) | 2002-03-01 | 2003-09-16 | Cognio, Inc. | System and method for joint maximal ratio combining |
US6871049B2 (en) | 2002-03-21 | 2005-03-22 | Cognio, Inc. | Improving the efficiency of power amplifiers in devices using transmit beamforming |
US7324436B2 (en) * | 2002-04-30 | 2008-01-29 | Lg Electronics Inc. | Determining useable combinations of variables for transmitting a subpacket of an encoder packet |
US7111226B1 (en) * | 2002-05-31 | 2006-09-19 | Broadcom Corporation | Communication decoder employing single trellis to support multiple code rates and/or multiple modulations |
US7027503B2 (en) * | 2002-06-04 | 2006-04-11 | Qualcomm Incorporated | Receiver with a decision feedback equalizer and a linear equalizer |
EP1983651B1 (en) | 2002-07-30 | 2014-11-05 | IPR Licensing, Inc. | Device for multiple-input multiple output (MIMO) radio communication |
EP1392004B1 (en) * | 2002-08-22 | 2009-01-21 | Interuniversitair Microelektronica Centrum Vzw | Method for multi-user MIMO transmission and apparatuses suited therefore |
US8194770B2 (en) | 2002-08-27 | 2012-06-05 | Qualcomm Incorporated | Coded MIMO systems with selective channel inversion applied per eigenmode |
US6940828B2 (en) * | 2002-09-30 | 2005-09-06 | Nokia Corporation | Apparatus, and associated method, for transforming data in an OFDM communication system |
US8218609B2 (en) | 2002-10-25 | 2012-07-10 | Qualcomm Incorporated | Closed-loop rate control for a multi-channel communication system |
US8208364B2 (en) | 2002-10-25 | 2012-06-26 | Qualcomm Incorporated | MIMO system with multiple spatial multiplexing modes |
US7324429B2 (en) | 2002-10-25 | 2008-01-29 | Qualcomm, Incorporated | Multi-mode terminal in a wireless MIMO system |
US7986742B2 (en) | 2002-10-25 | 2011-07-26 | Qualcomm Incorporated | Pilots for MIMO communication system |
US8570988B2 (en) | 2002-10-25 | 2013-10-29 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US7002900B2 (en) | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US8320301B2 (en) | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
US8134976B2 (en) | 2002-10-25 | 2012-03-13 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US20040081131A1 (en) | 2002-10-25 | 2004-04-29 | Walton Jay Rod | OFDM communication system with multiple OFDM symbol sizes |
US8170513B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Data detection and demodulation for wireless communication systems |
US8169944B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Random access for wireless multiple-access communication systems |
US7042857B2 (en) | 2002-10-29 | 2006-05-09 | Qualcom, Incorporated | Uplink pilot and signaling transmission in wireless communication systems |
US7039001B2 (en) * | 2002-10-29 | 2006-05-02 | Qualcomm, Incorporated | Channel estimation for OFDM communication systems |
WO2004049596A1 (en) * | 2002-11-26 | 2004-06-10 | Matsushita Electric Industrial Co., Ltd. | Communication method, transmitter apparatus and receiver apparatus |
US7099678B2 (en) | 2003-04-10 | 2006-08-29 | Ipr Licensing, Inc. | System and method for transmit weight computation for vector beamforming radio communication |
US7177297B2 (en) | 2003-05-12 | 2007-02-13 | Qualcomm Incorporated | Fast frequency hopping with a code division multiplexed pilot in an OFDMA system |
US7079870B2 (en) * | 2003-06-09 | 2006-07-18 | Ipr Licensing, Inc. | Compensation techniques for group delay effects in transmit beamforming radio communication |
US7623441B1 (en) | 2003-08-11 | 2009-11-24 | Marvell International Ltd. | Scalable space-frequency coding for MIMO systems |
US7724838B2 (en) * | 2003-09-25 | 2010-05-25 | Qualcomm Incorporated | Hierarchical coding with multiple antennas in a wireless communication system |
US7508748B2 (en) | 2003-10-24 | 2009-03-24 | Qualcomm Incorporated | Rate selection for a multi-carrier MIMO system |
US7616698B2 (en) | 2003-11-04 | 2009-11-10 | Atheros Communications, Inc. | Multiple-input multiple output system and method |
KR100520159B1 (en) * | 2003-11-12 | 2005-10-10 | 삼성전자주식회사 | Apparatus and method for interference cancellation of ofdm system using multiple antenna |
KR100981554B1 (en) * | 2003-11-13 | 2010-09-10 | 한국과학기술원 | APPARATUS AND METHOD FOR GROUPING ANTENNAS OF Tx IN MIMO SYSTEM WHICH CONSIDERS A SPATIAL MULTIPLEXING AND BEAMFORMING |
US7725084B2 (en) * | 2003-11-24 | 2010-05-25 | Nokia Corporation | Apparatus, and associated method, for communicating communication data in a multiple-input, multiple-output communication system |
US9473269B2 (en) | 2003-12-01 | 2016-10-18 | Qualcomm Incorporated | Method and apparatus for providing an efficient control channel structure in a wireless communication system |
US7453949B2 (en) * | 2003-12-09 | 2008-11-18 | Agere Systems Inc. | MIMO receivers having one or more additional receive paths |
US8611283B2 (en) | 2004-01-28 | 2013-12-17 | Qualcomm Incorporated | Method and apparatus of using a single channel to provide acknowledgement and assignment messages |
US8169889B2 (en) | 2004-02-18 | 2012-05-01 | Qualcomm Incorporated | Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system |
US20050201180A1 (en) * | 2004-03-05 | 2005-09-15 | Qualcomm Incorporated | System and methods for back-off and clipping control in wireless communication systems |
US8923785B2 (en) | 2004-05-07 | 2014-12-30 | Qualcomm Incorporated | Continuous beamforming for a MIMO-OFDM system |
WO2005112318A2 (en) * | 2004-05-11 | 2005-11-24 | Wionics Research | Mimo system and mode table |
WO2005122426A1 (en) * | 2004-06-14 | 2005-12-22 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling transmission mode in a mimo mobile communication system |
GB2415336B (en) * | 2004-06-18 | 2006-11-08 | Toshiba Res Europ Ltd | Bit interleaver for a mimo system |
JP2008505558A (en) | 2004-07-01 | 2008-02-21 | クアルコム インコーポレイテッド | Advanced MIMO interleaving |
US7978649B2 (en) * | 2004-07-15 | 2011-07-12 | Qualcomm, Incorporated | Unified MIMO transmission and reception |
US9148256B2 (en) * | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US9137822B2 (en) | 2004-07-21 | 2015-09-15 | Qualcomm Incorporated | Efficient signaling over access channel |
US7567621B2 (en) * | 2004-07-21 | 2009-07-28 | Qualcomm Incorporated | Capacity based rank prediction for MIMO design |
US8891349B2 (en) | 2004-07-23 | 2014-11-18 | Qualcomm Incorporated | Method of optimizing portions of a frame |
EP2518920A1 (en) | 2004-09-13 | 2012-10-31 | Panasonic Corporation | Automatic retransmission request control system and retransmission method in MIMO-OFDM system |
CA2588144C (en) * | 2004-11-16 | 2013-03-12 | Qualcomm Incorporated | Closed-loop rate control for a mimo communication system |
US7623490B2 (en) * | 2004-12-22 | 2009-11-24 | Qualcomm Incorporated | Systems and methods that utilize a capacity-based signal-to-noise ratio to predict and improve mobile communication |
US8238923B2 (en) | 2004-12-22 | 2012-08-07 | Qualcomm Incorporated | Method of using shared resources in a communication system |
US7543197B2 (en) * | 2004-12-22 | 2009-06-02 | Qualcomm Incorporated | Pruned bit-reversal interleaver |
US8831115B2 (en) | 2004-12-22 | 2014-09-09 | Qualcomm Incorporated | MC-CDMA multiplexing in an orthogonal uplink |
US9246560B2 (en) | 2005-03-10 | 2016-01-26 | Qualcomm Incorporated | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US9154211B2 (en) | 2005-03-11 | 2015-10-06 | Qualcomm Incorporated | Systems and methods for beamforming feedback in multi antenna communication systems |
US8446892B2 (en) | 2005-03-16 | 2013-05-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US9143305B2 (en) | 2005-03-17 | 2015-09-22 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9461859B2 (en) | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9520972B2 (en) | 2005-03-17 | 2016-12-13 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9184870B2 (en) | 2005-04-01 | 2015-11-10 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US9408220B2 (en) | 2005-04-19 | 2016-08-02 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US9036538B2 (en) | 2005-04-19 | 2015-05-19 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US7564775B2 (en) | 2005-04-29 | 2009-07-21 | Qualcomm, Incorporated | Timing control in orthogonal frequency division multiplex systems based on effective signal-to-noise ratio |
US8634432B2 (en) * | 2005-05-06 | 2014-01-21 | Samsung Electronics Co., Ltd. | System and method for subcarrier allocation in a multicarrier wireless network |
US7466749B2 (en) * | 2005-05-12 | 2008-12-16 | Qualcomm Incorporated | Rate selection with margin sharing |
US8611284B2 (en) | 2005-05-31 | 2013-12-17 | Qualcomm Incorporated | Use of supplemental assignments to decrement resources |
US8879511B2 (en) | 2005-10-27 | 2014-11-04 | Qualcomm Incorporated | Assignment acknowledgement for a wireless communication system |
US8565194B2 (en) | 2005-10-27 | 2013-10-22 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US8462859B2 (en) | 2005-06-01 | 2013-06-11 | Qualcomm Incorporated | Sphere decoding apparatus |
US7554948B2 (en) * | 2005-06-07 | 2009-06-30 | Qualcomm, Incorporated | Reception of H-ARQ transmissions with interference cancellation in a quasi-orthogonal communication system |
US8358714B2 (en) | 2005-06-16 | 2013-01-22 | Qualcomm Incorporated | Coding and modulation for multiple data streams in a communication system |
US8599945B2 (en) * | 2005-06-16 | 2013-12-03 | Qualcomm Incorporated | Robust rank prediction for a MIMO system |
US9179319B2 (en) | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US20060285531A1 (en) * | 2005-06-16 | 2006-12-21 | Howard Steven J | Efficient filter weight computation for a MIMO system |
US8885628B2 (en) | 2005-08-08 | 2014-11-11 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
US9209956B2 (en) | 2005-08-22 | 2015-12-08 | Qualcomm Incorporated | Segment sensitive scheduling |
US20070041457A1 (en) * | 2005-08-22 | 2007-02-22 | Tamer Kadous | Method and apparatus for providing antenna diversity in a wireless communication system |
US8644292B2 (en) | 2005-08-24 | 2014-02-04 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US9136974B2 (en) | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
JP4922680B2 (en) * | 2005-09-20 | 2012-04-25 | 三洋電機株式会社 | Wireless device and communication system using the same |
US8693405B2 (en) | 2005-10-27 | 2014-04-08 | Qualcomm Incorporated | SDMA resource management |
US8045512B2 (en) | 2005-10-27 | 2011-10-25 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9088384B2 (en) | 2005-10-27 | 2015-07-21 | Qualcomm Incorporated | Pilot symbol transmission in wireless communication systems |
US9225488B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Shared signaling channel |
US9225416B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US8477684B2 (en) | 2005-10-27 | 2013-07-02 | Qualcomm Incorporated | Acknowledgement of control messages in a wireless communication system |
US9144060B2 (en) | 2005-10-27 | 2015-09-22 | Qualcomm Incorporated | Resource allocation for shared signaling channels |
US9172453B2 (en) | 2005-10-27 | 2015-10-27 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US8582509B2 (en) | 2005-10-27 | 2013-11-12 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9210651B2 (en) | 2005-10-27 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US8582548B2 (en) | 2005-11-18 | 2013-11-12 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
US8831607B2 (en) * | 2006-01-05 | 2014-09-09 | Qualcomm Incorporated | Reverse link other sector communication |
TWI431990B (en) | 2006-01-11 | 2014-03-21 | Interdigital Tech Corp | Method and apparatus for implementing space time processing with unequal modulation and coding schemes |
JPWO2007102363A1 (en) * | 2006-03-01 | 2009-07-23 | パナソニック株式会社 | Radio transmission apparatus and radio transmission method |
KR100708454B1 (en) * | 2006-03-03 | 2007-04-18 | 영남대학교 산학협력단 | System of parallel interference cancellation using magnitude of snr and method thereof |
KR101241895B1 (en) * | 2006-04-10 | 2013-03-11 | 엘지전자 주식회사 | method for repetitive transmission using a plurality of carrier |
KR100842259B1 (en) | 2006-04-21 | 2008-06-30 | 한국전자통신연구원 | Human body communication method using multi-carrier modulation |
US8543070B2 (en) | 2006-04-24 | 2013-09-24 | Qualcomm Incorporated | Reduced complexity beam-steered MIMO OFDM system |
US9247515B2 (en) * | 2006-04-25 | 2016-01-26 | Qualcomm Incorporated | Enhanced mobility support for wireless communication |
JP4760557B2 (en) * | 2006-06-08 | 2011-08-31 | 株式会社日立製作所 | Wireless communication system and wireless communication apparatus |
SG141259A1 (en) * | 2006-09-12 | 2008-04-28 | Oki Techno Ct Singapore Pte | Apparatus and method for receiving digital video signals |
KR100826529B1 (en) * | 2006-09-29 | 2008-04-30 | 한국전자통신연구원 | Method and Apparatus for Receiving Signal in OFDM Communication System Using Multiple Transmit/receive antenna |
US8849197B2 (en) * | 2007-07-10 | 2014-09-30 | Qualcomm Incorporated | Methods and apparatus for active successive interference cancellation in peer-to-peer networks |
US8874040B2 (en) * | 2007-07-10 | 2014-10-28 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on rate capping in peer-to-peer networks |
US9521680B2 (en) * | 2007-07-10 | 2016-12-13 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on three rate reports from interfering device in peer-to-peer networks |
US8433349B2 (en) * | 2007-07-10 | 2013-04-30 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on transmit power control by interfering device with success probability adaptation in peer-to-peer wireless networks |
US8855567B2 (en) * | 2007-07-10 | 2014-10-07 | Qualcomm Incorporated | Methods and apparatus for successive interference cancellation based on two rate feedback in peer-to-peer networks |
US9668225B2 (en) * | 2007-07-10 | 2017-05-30 | Qualcomm Incorporated | Methods and apparatus for active successive interference cancellation based on one rate feedback and probability adaptation in peer-to-peer networks |
US20090022049A1 (en) * | 2007-07-16 | 2009-01-22 | Honeywell International Inc. | Novel security enhancement structure for mimo wireless network |
CN101132214B (en) * | 2007-09-25 | 2011-02-16 | 中国科学院计算技术研究所 | Resource transmitting equipment and method in MIMO system and distributing system and method thereof |
JP5111074B2 (en) * | 2007-11-28 | 2012-12-26 | キヤノン株式会社 | COMMUNICATION DEVICE AND ITS CONTROL METHOD |
US7855995B1 (en) | 2008-02-11 | 2010-12-21 | Urbain A. von der Embse | QLM maximum likelihood demodulation |
TWI357733B (en) * | 2008-03-25 | 2012-02-01 | Ralink Technology Corp | Method for error-correcting code selection for mim |
KR101603338B1 (en) * | 2008-08-11 | 2016-03-15 | 엘지전자 주식회사 | Method and apparatus of transmitting information in wireless communication system |
KR20100019947A (en) | 2008-08-11 | 2010-02-19 | 엘지전자 주식회사 | Method of transmitting information in wireless communication system |
CN101677478B (en) * | 2008-09-18 | 2012-02-22 | 王智 | System, transmitting device and receiving device for eliminating interference of adjacent base station, and method thereof |
CN102246446B (en) | 2008-11-14 | 2014-10-29 | Lg电子株式会社 | Method and apparatus for signal transmission in wireless communication system |
JP5389932B2 (en) * | 2008-11-14 | 2014-01-15 | エルジー エレクトロニクス インコーポレイティド | Data transmission method and apparatus using multiple resources in multiple antenna system |
US8743783B2 (en) | 2008-11-14 | 2014-06-03 | Lg Electronics Inc. | Method and apparatus for information transmission in wireless communication system |
US8217802B2 (en) * | 2009-02-03 | 2012-07-10 | Schlumberger Technology Corporation | Methods and systems for borehole telemetry |
US8362916B2 (en) * | 2009-02-05 | 2013-01-29 | Schlumberger Technology Corporation | Methods and systems for borehole telemetry |
KR20100091876A (en) | 2009-02-11 | 2010-08-19 | 엘지전자 주식회사 | Ue behavior for multi-antenna transmission |
US7907512B1 (en) | 2009-03-03 | 2011-03-15 | Urbain A. von der Embse | OFDM and SC-OFDM QLM |
US20100232384A1 (en) * | 2009-03-13 | 2010-09-16 | Qualcomm Incorporated | Channel estimation based upon user specific and common reference signals |
US8184566B2 (en) * | 2009-06-05 | 2012-05-22 | Mediatek Inc. | Systems for wireless local area network (WLAN) transmission and for coexistence of WLAN and another type of wireless transmission and methods thereof |
US8711823B2 (en) | 2009-06-05 | 2014-04-29 | Mediatek Inc. | System for wireless local area network (WLAN) transmission and for coexistence of WLAN and another type of wireless transmission and methods thereof |
US8526985B2 (en) * | 2009-11-30 | 2013-09-03 | Alcatel Lucent | System and method of geo-concentrated video detection |
US8885745B2 (en) * | 2009-12-23 | 2014-11-11 | Intel Corporation | Distortion-aware multiple input multiple output communications |
US8285298B2 (en) * | 2009-12-23 | 2012-10-09 | At&T Mobility Ii Llc | Chromatic scheduler for network traffic with disparate service requirements |
US8553796B2 (en) * | 2009-12-23 | 2013-10-08 | Intel Corporation | Distortion-aware multiple input multiple output precoding |
CN102447544B (en) * | 2010-10-09 | 2014-04-30 | 中兴智能交通(无锡)有限公司 | Vehicle-location communication method and device in passenger information system PIS |
US8630362B1 (en) | 2011-05-02 | 2014-01-14 | Urbain A. von der Embse | QLM co-state MAP trellis |
CN102497619B (en) * | 2011-12-01 | 2014-07-30 | 中兴智能交通(无锡)有限公司 | Wireless multicast transmission and rate adaptation method during train-ground communication and system thereof |
WO2013163629A1 (en) | 2012-04-26 | 2013-10-31 | Propagation Research Associates, Inc. | Method and system for using orthogonal space projections to mitigate interference |
US9401741B2 (en) | 2012-04-26 | 2016-07-26 | Propagation Research Associates, Inc. | Methods and systems for mitigating signal interference |
US9634795B2 (en) | 2013-03-04 | 2017-04-25 | Intel Corporation | Configurable constellation mapping to control spectral efficiency versus signal-to-noise ratio |
US8917786B1 (en) | 2013-05-09 | 2014-12-23 | Urbain Alfred von der Embse | QLM communications faster than Shannon rate |
US9197364B1 (en) | 2015-02-12 | 2015-11-24 | Urbain A. von der Embse | Scaling for QLM communications faster than shannon rate |
US10571224B2 (en) | 2015-05-04 | 2020-02-25 | Propagation Research Associates, Inc. | Systems, methods and computer-readable media for improving platform guidance or navigation using uniquely coded signals |
US9231813B1 (en) | 2015-05-07 | 2016-01-05 | Urbain A. von der Embse | Communications faster than Shannon rate |
KR20180021997A (en) * | 2016-08-23 | 2018-03-06 | 삼성전자주식회사 | Apparatus, system on chip and method for tranmitting video image |
US10374772B2 (en) | 2017-01-25 | 2019-08-06 | Georgia Tech Research Corporation | Method for slicing K-best detection in multiple-input multiple-output wireless communications system |
CN108092701B (en) * | 2017-11-21 | 2020-12-01 | 东南大学 | Beam selection method, device and storage medium for hybrid beam forming HBF system |
CN108847886A (en) * | 2018-05-25 | 2018-11-20 | 复旦大学 | A kind of method for transmitting signals of space division multiplexing mode |
US10756860B2 (en) | 2018-11-05 | 2020-08-25 | XCOM Labs, Inc. | Distributed multiple-input multiple-output downlink configuration |
US10812216B2 (en) | 2018-11-05 | 2020-10-20 | XCOM Labs, Inc. | Cooperative multiple-input multiple-output downlink scheduling |
US10432272B1 (en) | 2018-11-05 | 2019-10-01 | XCOM Labs, Inc. | Variable multiple-input multiple-output downlink user equipment |
US10659112B1 (en) | 2018-11-05 | 2020-05-19 | XCOM Labs, Inc. | User equipment assisted multiple-input multiple-output downlink configuration |
CN113169764A (en) | 2018-11-27 | 2021-07-23 | 艾斯康实验室公司 | Non-coherent cooperative multiple-input multiple-output communication |
US11063645B2 (en) | 2018-12-18 | 2021-07-13 | XCOM Labs, Inc. | Methods of wirelessly communicating with a group of devices |
US10756795B2 (en) | 2018-12-18 | 2020-08-25 | XCOM Labs, Inc. | User equipment with cellular link and peer-to-peer link |
US11330649B2 (en) | 2019-01-25 | 2022-05-10 | XCOM Labs, Inc. | Methods and systems of multi-link peer-to-peer communications |
US10756767B1 (en) | 2019-02-05 | 2020-08-25 | XCOM Labs, Inc. | User equipment for wirelessly communicating cellular signal with another user equipment |
US11032841B2 (en) | 2019-04-26 | 2021-06-08 | XCOM Labs, Inc. | Downlink active set management for multiple-input multiple-output communications |
US10756782B1 (en) | 2019-04-26 | 2020-08-25 | XCOM Labs, Inc. | Uplink active set management for multiple-input multiple-output communications |
US10735057B1 (en) | 2019-04-29 | 2020-08-04 | XCOM Labs, Inc. | Uplink user equipment selection |
US10686502B1 (en) | 2019-04-29 | 2020-06-16 | XCOM Labs, Inc. | Downlink user equipment selection |
US11411778B2 (en) | 2019-07-12 | 2022-08-09 | XCOM Labs, Inc. | Time-division duplex multiple input multiple output calibration |
US11411779B2 (en) | 2020-03-31 | 2022-08-09 | XCOM Labs, Inc. | Reference signal channel estimation |
US12088499B2 (en) | 2020-04-15 | 2024-09-10 | Virewirx, Inc. | System and method for reducing data packet processing false alarms |
CA3178604A1 (en) | 2020-05-26 | 2021-12-02 | XCOM Labs, Inc. | Interference-aware beamforming |
US11018705B1 (en) | 2020-07-17 | 2021-05-25 | Propagation Research Associates, Inc. | Interference mitigation, target detection, location and measurement using separable waveforms transmitted from spatially separated antennas |
CA3195885A1 (en) | 2020-10-19 | 2022-04-28 | XCOM Labs, Inc. | Reference signal for wireless communication systems |
WO2022093988A1 (en) | 2020-10-30 | 2022-05-05 | XCOM Labs, Inc. | Clustering and/or rate selection in multiple-input multiple-output communication systems |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5603096A (en) * | 1994-07-11 | 1997-02-11 | Qualcomm Incorporated | Reverse link, closed loop power control in a code division multiple access system |
JP3437291B2 (en) * | 1994-11-14 | 2003-08-18 | キヤノン株式会社 | Reproduction device and reproduction method |
US6154484A (en) * | 1995-09-06 | 2000-11-28 | Solana Technology Development Corporation | Method and apparatus for embedding auxiliary data in a primary data signal using frequency and time domain processing |
US5790537A (en) * | 1996-05-15 | 1998-08-04 | Mcgill University | Interference suppression in DS-CDMA systems |
US6141317A (en) * | 1996-08-22 | 2000-10-31 | Tellabs Operations, Inc. | Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system |
AU4238697A (en) * | 1996-08-29 | 1998-03-19 | Cisco Technology, Inc. | Spatio-temporal processing for communication |
US6175550B1 (en) * | 1997-04-01 | 2001-01-16 | Lucent Technologies, Inc. | Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof |
US6075797A (en) * | 1997-10-17 | 2000-06-13 | 3Com Corporation | Method and system for detecting mobility of a wireless-capable modem to minimize data transfer rate renegotiations |
US6067315A (en) * | 1997-12-04 | 2000-05-23 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for coherently-averaged power estimation |
US6654429B1 (en) * | 1998-12-31 | 2003-11-25 | At&T Corp. | Pilot-aided channel estimation for OFDM in wireless systems |
US6233075B1 (en) * | 1999-01-25 | 2001-05-15 | Telcordia Technologies, Inc. | Optical layer survivability and security system |
US6487243B1 (en) * | 1999-03-08 | 2002-11-26 | International Business Machines Corporation | Modems, methods, and computer program products for recovering from errors in a tone reversal sequence between two modems |
US6249683B1 (en) * | 1999-04-08 | 2001-06-19 | Qualcomm Incorporated | Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel |
US6539213B1 (en) * | 1999-06-14 | 2003-03-25 | Time Domain Corporation | System and method for impulse radio power control |
JP2001036315A (en) * | 1999-07-22 | 2001-02-09 | Nippon Antenna Co Ltd | Antenna for automobile |
US6654431B1 (en) * | 1999-09-15 | 2003-11-25 | Telcordia Technologies, Inc. | Multicarrier personal access communication system |
US6751199B1 (en) * | 2000-04-24 | 2004-06-15 | Qualcomm Incorporated | Method and apparatus for a rate control in a high data rate communication system |
US6829293B2 (en) * | 2001-01-16 | 2004-12-07 | Mindspeed Technologies, Inc. | Method and apparatus for line probe signal processing |
US20030112745A1 (en) * | 2001-12-17 | 2003-06-19 | Xiangyang Zhuang | Method and system of operating a coded OFDM communication system |
US6636568B2 (en) * | 2002-03-01 | 2003-10-21 | Qualcomm | Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system |
-
2002
- 2002-03-01 US US10/087,503 patent/US6636568B2/en not_active Expired - Lifetime
-
2003
- 2003-02-27 DE DE60320767T patent/DE60320767D1/en not_active Expired - Lifetime
- 2003-02-27 CN CN03805018.8A patent/CN1639996B/en not_active Expired - Lifetime
- 2003-02-27 EP EP07103165A patent/EP1786134B8/en not_active Expired - Lifetime
- 2003-02-27 AU AU2003216479A patent/AU2003216479C1/en not_active Ceased
- 2003-02-27 DE DE60326182T patent/DE60326182D1/en not_active Expired - Lifetime
- 2003-02-27 KR KR1020047013592A patent/KR100945596B1/en not_active IP Right Cessation
- 2003-02-27 AT AT03743732T patent/ATE394844T1/en not_active IP Right Cessation
- 2003-02-27 EP EP03743732A patent/EP1481489B1/en not_active Expired - Lifetime
- 2003-02-27 JP JP2003573799A patent/JP2005519520A/en not_active Withdrawn
- 2003-02-27 UA UA20040907951A patent/UA87807C2/en unknown
- 2003-02-27 TW TW092104229A patent/TWI337487B/en not_active IP Right Cessation
- 2003-02-27 CA CA2476061A patent/CA2476061C/en not_active Expired - Fee Related
- 2003-02-27 AT AT07103165T patent/ATE422748T1/en not_active IP Right Cessation
- 2003-02-27 MX MXPA04008473A patent/MXPA04008473A/en active IP Right Grant
- 2003-02-27 BR BR0308087-0A patent/BR0308087A/en not_active Application Discontinuation
- 2003-02-27 WO PCT/US2003/006326 patent/WO2003075479A1/en active Application Filing
- 2003-02-28 MY MYPI20030720A patent/MY140343A/en unknown
- 2003-03-03 AR ARP030100694A patent/AR038710A1/en active IP Right Grant
- 2003-07-21 US US10/624,241 patent/US7177351B2/en not_active Expired - Lifetime
-
2004
- 2004-07-28 IL IL163252A patent/IL163252A/en not_active IP Right Cessation
- 2004-08-04 ZA ZA200406236A patent/ZA200406236B/en unknown
-
2010
- 2010-02-01 JP JP2010020160A patent/JP4861485B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10476560B2 (en) | 2003-12-17 | 2019-11-12 | Qualcomm Incorporated | Spatial spreading in a multi-antenna communication system |
US11171693B2 (en) | 2003-12-17 | 2021-11-09 | Qualcomm Incorporated | Spatial spreading in a multi-antenna communication system |
TWI451710B (en) * | 2004-06-30 | 2014-09-01 | Qualcomm Inc | Efficient computation of spatial filter matrices for steering transmit diversity in a mimo communication system |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200304307A (en) | Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (mimo) system | |
KR101080660B1 (en) | Incremental redundancy transmission for multiple parallel channels in a mimo communication system | |
KR100997632B1 (en) | Rate control for multi-channel communication systems | |
US7194041B2 (en) | Ordered successive interference cancellation receiver processing for multipath channels | |
JP4125712B2 (en) | Apparatus and method for controlling adaptive modulation and coding in a communication system using orthogonal frequency division multiplexing | |
KR100890538B1 (en) | Rate selection for a multi-carrier mimo system | |
KR101280734B1 (en) | Incremental redundancy transmission in a mimo communication system | |
US20100104044A1 (en) | Radio transmission device and radio reception device | |
US20110320920A1 (en) | Coding apparatus, receiving apparatus, wireless communication system, puncturing pattern selecting method and program thereof | |
JP4130821B2 (en) | Apparatus and method for canceling interference signal in orthogonal frequency division multiplexing system using multiple antennas | |
i Manchon et al. | On the Design of a MIMO-SIC Receiver for LTE Downlink | |
Thomas et al. | Modulation and coding rate selection to improve successive cancellation reception in OFDM and spread OFDM MIMO systems | |
RU2369021C2 (en) | Transmission with incremental redundancy in mimo communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |