TR2022014362A2 - A LOW-E COATED GLASS WITH ANGLE DISCOLORATION REDUCED - Google Patents

A LOW-E COATED GLASS WITH ANGLE DISCOLORATION REDUCED

Info

Publication number
TR2022014362A2
TR2022014362A2 TR2022/014362A TR2022014362A TR2022014362A2 TR 2022014362 A2 TR2022014362 A2 TR 2022014362A2 TR 2022/014362 A TR2022/014362 A TR 2022/014362A TR 2022014362 A TR2022014362 A TR 2022014362A TR 2022014362 A2 TR2022014362 A2 TR 2022014362A2
Authority
TR
Turkey
Prior art keywords
glass
low
dielectric layer
layer
coated
Prior art date
Application number
TR2022/014362A
Other languages
Turkish (tr)
Inventor
Eraslan Avcioğlu Si̇nem
Turutoğlu Tuncay
Sezgi̇n Nagi̇han
Tuna Öcal
Er Utku
Çakar Elçi̇n
Original Assignee
Tuerkiye Sise Ve Cam Fabrikalari Anonim Sirketi
Türki̇ye Şi̇şe Ve Cam Fabri̇kalari Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tuerkiye Sise Ve Cam Fabrikalari Anonim Sirketi, Türki̇ye Şi̇şe Ve Cam Fabri̇kalari Anoni̇m Şi̇rketi̇ filed Critical Tuerkiye Sise Ve Cam Fabrikalari Anonim Sirketi
Priority to TR2022/014362A priority Critical patent/TR2022014362A2/en
Publication of TR2022014362A2 publication Critical patent/TR2022014362A2/en
Priority to PCT/TR2023/050586 priority patent/WO2024058746A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens

Abstract

Buluş mimari ve otomotiv camlarında kullanılmak üzere, tek cam gün ışığı geçirgenlik değeri %45 ? 55 arasında olan, dışa yansıması yüksek ve bununla birlikte nötral renk değerlerine sahip en az bir kızılötesi yansıtıcı katman (23) içeren bir low-e kaplamalı (20) cam (10) olup özelliği; dış yansımada açısal renk değişiminin 60??ye kadar sabit kalmasını sağlamak üzere cam (10) ile bahsedilen kızılötesi yansıtıcı katman (23) arasında konumlanan bir birinci dielektrik yapı (21) toplam kalınlığının, kızılötesi yansıtıcı katman (23) üzerinde konumlanan bir ikinci dielektrik yapı (25) toplam kalınlığına oranının 1,5 ? 1,6 arasında olmasıdır. Şekil 1For use in architectural and automotive glass, the single glass daylight transmittance value is 45% ? It is a low-e coated (20) glass (10) that contains at least one infrared reflective layer (23) with a high outward reflection and neutral color values between 55 and 55; A second dielectric structure positioned on the infrared reflective layer (23) of the total thickness of a first dielectric structure (21) positioned between the glass (10) and said infrared reflective layer (23), to ensure that the angular color change in external reflection remains constant up to 60? (25) the ratio of its total thickness to 1.5 ? That's between 1.6. Figure 1

Description

TARIFNAME AÇISAL RENK DEGISIMI AZALTILMIS BIR LOW-E KAPLAMALI CAM TEKNIK ALAN Bulus; görünür isigi etkin bir sekilde geçirirken ayni zamanda isi kontrolü saglayan bir düsük yayinimli (low-e) kaplamali cam ile ilgilidir. ÖNCEKI TEKNIK Camlarin optik özelliklerini farklilastiran etmenlerden biri cam yüzeyine yapilan kaplama uygulamalaridir. Kaplama uygulamalarindan biri de vakum ortaminda manyetik alan destekli siçratma yöntemidir. Bu yöntem low-e özelligine sahip mimari ve otomotiv kaplamalarin üretiminde sik basvurulan bir yöntemdir. Bahsedilen yöntemle kaplanan camlarin görünür, yakin kizilötesi ve kizilötesi bölgedeki geçirgenlik ve yansitma degerleri hedeflenen seviyelerde elde edilebilmektedir. Görünür bölge geçirgenlik ve yansitma degerleri disinda, mimari ve otomotiv sektörlerinde kullanilabilecek kaplamali camlarda toplam günes enerjisi geçirgenligi (g) degeri de önemli bir parametredir. Kaplamalarin toplam günes enerjisi geçirgenligi (g) degerinin yüksek olmasi, soguk iklim cografyalarinda isinma yüklerinin azaltilmasi amaciyla tercih edilebilir. Kaplamalarin toplam günes enerjisi geçirgenligi (g) degerleri içerdigi Ag katmani sayisi, kullanilan çekirdeklestirici katman türü ve katmanlarin parametrik optimizasyonlari ile hedeflenen seviyelerde tutulabilmektedir. Sonuç olarak, yukarida bahsedilen tüm sorunlar, ilgili teknik alanda bir yenilik yapmayi zorunlu hale getirmistir. BULUSUN KISA AÇIKLAMASI Mevcut bulus yukarida bahsedilen dezavantajlari ortadan kaldirmak ve ilgili teknik alana yeni avantajlar getirmek üzere, orta geçirgenlikli bir low-e kaplamali cam yapilanmasi ile ilgilidir. Bulusun ana amaci, orta geçirgenlik degerinde bir low-e kaplamali cam ortaya koymaktir. Bulusun bir diger amaci, açisal renk degisimi azaltilmis bir low-e kaplamali cam ortaya koymaktir. Bulusun bir diger amaci, emissivite degeri azaltilmis bir low-e kaplamali cam ortaya koymaktir. Bulusun bir diger amaci, isil islenebilir bir low-e kaplamali cam ortaya koymaktir. Yukarida bahsedilen ve asagidaki detayli anlatimdan ortaya çikacak tüm amaçlari gerçeklestirmek üzere mevcut bulus, mimari ve otomotiv camlarinda kullanilmak üzere, tek cam gün isigi geçirgenlik degeri %45 - 55 arasinda olan, dis yansimasi yüksek ve bununla birlikte nötral renk degerlerine sahip en az bir kizilötesi yansitici katman içeren bir low-e kaplamali camdir. Buna göre söz konusu bulusun özelligi; bahsedilen kizilötesi yansitici katman altinda konumlanan bir birinci dielektrik yapi ve kizilötesi yansitici katman üzerinde konumlanan ikinci dielektrik yapi içermesi; ve dis yansimada açisal renk degisiminin 60°'ye kadar sabit kalmasini saglamak üzere, birinci dielektrik yapi toplam kalinligi / ikinci dielektrik yapi toplam kalinligi oraninin 1,5 - 1,6 arasinda olmasidir. Bulusun tercih edilen bir yapilanmasi, emissivite degerlerinin isil islem öncesi 0,043 - 0,047 araliginda olmasini saglamak üzere, kizilötesi yansitici katman üzerinde konumlanan bir ikinci bariyer katman kalinliginin, kizilötesi yansitici katman altinda konumlanan bir birinci bariyer katman kalinligina oraninin 1,8 - 2,2 arasinda olmasidir. Bulusun tercih edilen bir diger yapilanmasi, bahsedilen birinci dielektrik yapinin en az bir dielektrik katman içeriyor olmasidir. Bulusun tercih edilen bir diger yapilanmasi, birinci dielektrik yapinin SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx malzemelerinden en az birini içermesidir. Bulusun tercih edilen bir yapilanmasi, birinci dielektrik yapinin bir birinci dielektrik katman ve üzerinde konumlanan bir ikinci dielektrik katman içermesidir. Bulusun tercih edilen bir diger yapilanmasi, bahsedilen ikinci dielektrik yapinin en az bir dielektrik katman içermesidir. Bulusun tercih edilen bir diger yapilanmasi, bahsedilen ikinci dielektrik yapinin SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx malzemelerinden en az birini içermesidir. Bulusun tercih edilen bir yapilanmasi, bahsedilen ikinci dielektrik yapinin sirasiyla bir üçüncü dielektrik katman; bir dördüncü dielektrik katman ve bir koruyucu katman içermesidir. Bulusun tercih edilen bir diger yapilanmasi, birinci dielektrik katman ve ikinci dielektrik katmanin SixNy,SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx'den en az birini içeriyor olmasidir. Bulusun tercih edilen bir diger yapilanmasi, birinci dielektrik katmanin SixNy içeriyor olmasi ve ikinci dielektrik katmanin ZnAlOxiçeriyor olmasidir. Bulusun tercih edilen bir diger yapilanmasi, bahsedilen üçüncü dielektrik katman; dördüncü dielektrik katman ve koruyucu katmanin SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx'den en az birini içeriyor olmasidir. Bulusun tercih edilen bir diger yapilanmasi, bahsedilen üçüncü dielektrik katmanin ZnAlOx içermesi; dördüncü dielektrik katmanin SixNy içermesi ve koruyucu katmanin SiOxNy, içermesidir SEKLIN KISA AÇIKLAMASI Sekil 1' de low-e kaplamali camin temsili bir yapilanmasi verilmistir. SEKILDE VERILEN REFERANS NUMARALARI Cam Low-e kaplama 21 Birinci dielektrik yapi 211 Birinci dielektrik katman 212 Ikinci dielektrik katman 22 Birinci bariyer katman 24 Ikinci bariyer katman Ikinci dielektrik yapi 251 Üçüncü dielektrik katman 253 Koruyucu katman BU LUSUN DETAYLI AÇIKLAMASI Bu detayli açiklamada bulus konusu low-e kaplamali (20) cam (10) sadece konunun daha iyi anlasilmasina yönelik hiçbir sinirlayici etki olusturmayacak örneklerle açiklanmaktadir. Mimari ve otomotive yönelik low-e kaplamali (20) camlarin (10) üretimi siçratma (teknikte sputter olarak da bilinmektedir) yöntemi ile gerçeklestirilmektedir. Bu bulus genel olarak; gün isigi geçirgen ve isi yalitim cami (10) olarak kullanilan, isil islem dayanimi yüksek olan tek gümüslü low-e kaplamali (20) camlar (10), bahsedilen low- e kaplamanin (20) içerigi ve uygulamasi ile ilgilidir. Bulus konusu low-e kaplamali (20) cam (10), mimari ve otomotiv sektörleri için isi cam ünitesi ve laminasyonlu yapilarda kullanilabilmektedir. Bu bulusta; bir camin (10) yüzeyine uygulanmak üzere orta seviyede görünür isik geçirgenligine sahip, isil islenebilir ve açisal renk degisimi en az degisim gösterecek seviyede olacak sekilde tasarlanmis olan bir low-e kaplamali (20) cam (10) elde edebilmek amaci ile siçratma yöntemi kullanilarak, cam (10) yüzeyinde konumlanan çoklu sayida metal, metal oksit ve metal nitrür/oksinitrür katmanlarindan olusan bir low-e kaplama (20) gelistirilmistir. Söz konusu katmanlar sirasi ile birbiri üzerine vakum ortaminda biriktirilmektedir. lsil islem olarak temperleme, kismi temperleme, tavlama, laminasyon ve bükme islemlerinden en az biri ve/veya birkaçi birlikte kullanilabilmektedir. Bulus konusu low-e kaplamali (20) cam (10) mimari ve otomotiv cami (10) olarak kullanilabilmektedir. Bulusta bahsedilen optik performans terimi; low-e kaplamali (20) camin (10), günes enerjisi geçirgenligini, görünür bölge isik geçirgenligini, iç ve dis yansima degerlerini, L-a-b renk degerlerini ifade etmektedir. Bulus konusu low-e kaplamali (20) camda (10) tüm katmanlarin kirma indisleri alinan tek katman ölçümlerinden elde edilen optik sabitler üzerinden hesaplamali yöntemler kullanilarak belirlenmistir. Söz konusu kirma indisleri 550 nm'deki kirma indisi verileridir. Gerek üretim kolayligi, gerekse optik özellikler açisindan tercih edilen bir low-e kaplama (20) dizilimini gelistirmek üzere deneysel çalismalar sonucunda asagidaki veriler tespit edilmistir. Bulus konusu low-e kaplama (20); günes enerjisi spektrumu görünür bölgeyi (bundan sonra % Tvis olarak adlandirilacaktir) hedeflenen düzeyde geçirmeyi ve kizilötesi bölgede olan isil radyasyonu yansitmayi (daha az geçirerek) saglayan bir kizilötesi yansitici katman (23) içermektedir. Kizilötesi yansitici katman (23) olarak Ag katmani kullanilmaktadir ve isi yayinimi düsüktür. Bulus konusu low-e kaplamada (20); cama (10) temas edecek sekilde birinci dielektrik yapi (21) kullanilmaktadir. Bahsedilen birinci dielektrik yapi (21) SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx malzemelerinden en az birini veya birkaçini birlikte içermektedir. Tercih edilen uygulamada birinci dieIektrik yapi (21), bir birinci dieIektrik katman (211) ve bir ikinci dieIektrik katman (212) içermektedir. Bahsedilen birinci dieIektrik katman (211) SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx maIzemeIerinden en az birini içermektedir. Tercih edilen uygulamada birinci dieIektrik katman (211) SixNy içermektedir. SixNy içeren birinci dieIektrik katman (211), difüzyon bariyeri olarak davranarak, yüksek sicaklikta kolaylasan alkali iyon göçünü engelleme amacina hizmet etmektedir. Böylece SixNy içeren birinci dieIektrik katman (211), low-e kaplamanin (20) isil islem süreçlerine dayanimina destek vermektedir. SixNy içeren birinci dieIektrik katmaninin (211) kirma indisi için degisim araligi 2,00 ile 2,15 arasindadir. Tercih edilen yapida SixNy içeren birinci dieIektrik katmaninin (211) kirma indisi için degisim araligi 2,02 ile 2,12' dir. Bahsedilen ikinci dieIektrik katman (212) SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx maIzemeIerinden en az birini içermektedir. Tercih edilen uygulamada ikinci dieIektrik katman (212) ZnAlOx içermektedir. ZnAlOx içeren ikinci dieIektrik katmaninin (212) kirma indisi için degisim araligi 2,0 ile 2,15 arasindadir. Tercih edilen yapida ZnAlOx içeren ikinci dieIektrik katmaninin (212) kirma indisi için degisim araligi 2,0 ile 2,12' dir. SixNy içeren birinci dieIektrik katman (211) kalinligi 12 nm - 30 nm arasindadir. Tercih edilen uygulamada SixNy içeren birinci dieIektrik katman (211) kalinligi 15 nm - 27 nm arasindadir. Daha da tercih edilen uygulamada SixNy içeren birinci dieIektrik katman (211) kalinligi 18 nm - 24 nm arasindadir. SixNy içeren birinci dieIektrik katmanin (211) belirtilen kalinliklarda olmasi, low-e kaplamali (20) camin (10) tempere daha dayanikli olmasina olanak saglamaktadir. Cama (10) temas halinde olan SixNy içeren birinci dieIektrik katmanin (211) belirtilen kalinlik degerlerinden daha ince olmasi durumunda temperleme esnasinda low-e kaplamada (20) bozulmalar olabilmektedir. ZnAlOx içeren ikinci dieIektrik katman (212) birinci dieIektrik katman (211) üzerinde konumlanmaktadir. ZnAlOx içeren ikinci dieIektrik katman (212) kalinligi 8 nm - 24 nm arasindadir. Tercih edilen uygulamada ZnAlOx içeren ikinci dieIektrik katman (212) kalinligi 11 nm - 21 nm arasindadir. Daha da tercih edilen uygulamada ZnAlOx içeren ikinci dielektrik katman (212) kalinligi 14 nm - 18 nm arasindadir. ZnAlOx içeren ikinci dielektrik katman (212) üzerinde birinci bariyer katman (22) konumlanmaktadir. Bahsedilen birinci bariyer katman olarak NiCr, NiCrOx, Ti, TiOx, ZnAlOx, ZnOx' den en az biri kullanilmaktadir. Tercih edilen uygulamada NiCr veya NiCrOx' den biri kullanilmistir. Birinci bariyer katman (22) kalinligi 1 nm - 10 nm arasindadir. Tercih edilen uygulamada birinci bariyer katman (22) kalinligi 1 nm - 7 nm arasindadir. Daha da tercih edilen uygulamada birinci bariyer katman (22) kalinligi 1 nm - 4 nm arasindadir. Birinci bariyer katman (22) üzerinde kizilötesi yansitici katman (23) konumlanmaktadir. Kizilötesi yansitici katman (23) olarak Ag katmani kullanilmaktadir. Bahsedilen kizilötesi yansitici katman (23) kalinligi 10 nm - 22 nm araligindadir. Tercih edilen uygulamada kizilötesi yansitici katman (23) kalinligi 12 nm - 20 nm araligindadir. En tercihen, kizilötesi yansitici katman (23) kalinligi 14 nm - 18 nm araligindadir. Kizilötesi yansitici katman (23) üzerinde bir ikinci bariyer katman (24) konumlanmaktadir. Bariyer katman (24) olarak NiCr, NiCrOx, TiOx, ZnSnOx, ZnAlOx, ZnOx' den en az biri kullanilmaktadir. Tercih edilen uygulamada bariyer katman (24) NiCr veya NiCrOx' den birini içermektedir. Bulusun bir uygulamasinda bariyer katman (24) olarak NiCr kullanilmaktadir. Bulusun alternatif diger uygulamasinda bariyer katman (24) olarak NiCrOx kullanilmaktadir. Ikinci bariyer katman (24) kalinligi 1 nm - 9 nm araligindadir. Tercih edilen uygulamada ikinci bariyer katman (24) kalinligi 1,5 nm - 7 nm araligindadir. En tercihen, ikinci bariyer katman (24) kalinligi 2 nm - 5 nm araligindadir. Ikinci bariyer katman (24) üzerinde bir ikinci dielektrik yapi (25) bulunmaktadir. Ikinci dielektrik yapi (25) SixNy, SiOxNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx malzemelerinden en az üçünü içermektedir. Ikinci dielektirik yapi (25); sirasiyla bir üçüncü dielektrik katman (251); dördüncü dielektrik katman (252) ve bir koruyucu katman (253) içermektedir. Üçüncü dielektrik katman (251) SixNy, SiOXNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx malzemelerinden en az biri içermektedir. Tercih edilen uygulamada üçüncü dielektrik katman (251) olarak ZnAlOx kullanilmaktadir. Üçüncü dielektrik katman (251) kalinligi 10 nm - 27 nm araligindadir. Tercih edilen uygulamada üçüncü dielektrik katman (251) kalinligi 13 nm - 24 nm araligindadir. En tercihen, üçüncü dielektrik katman (251) kalinligi 15 nm - 21 nm araligindadir. Dördüncü dielektrik katman (252) SixNy, SiOXNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx malzemelerinden en az birini içermektedir. Tercih edilen uygulamada dördüncü dielektrik katman (252) olarak SiXNy kullanilmaktadir. Dördüncü dielektrik katman (252) kalinligi 8 nm - 25 nm araligindadir. Tercih edilen uygulamada dördüncü dielektrik katman (252) kalinligi 11 nm - 22 nm araligindadir. En tercihen, dördüncü dielektrik katman (252) kalinligi 13 nm - 19 nm araligindadir. Besinci dielektrik katman (253) SixNy, SiOXNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx malzemelerinden en az birini içermektedir. Tercih edilen uygulamada besinci dielektrik katman (253) olarak SiOXNy kullanilmaktadir. Besinci dielektrik katman (253) kalinligi 14 nm - 32 nm araligindadir. Tercih edilen uygulamada besinci dielektrik katman (253) kalinligi 17 nm - 29 nm araligindadir. En tercihen, besinci dielektrik katman (253) kalinligi 20 nm - 26 nm araligindadir. Bulus konusu low-e kaplamada (20) bulunan kizilötesi yansitici katman (23) altindaki birinci dielektrik yapinin (21) toplam kalinligi, kizilötesi yansitici katman (23) üstündeki ikinci dielektrik yapinin (25) toplam kalinligindan daha düsüktür. Böylece nihai ürün low-e kaplamali (20) camin (10) optik performans degerlerinden renk degerleri istenilen seviyelerde elde edilebilmektedir. Birinci dielektrik yapinin (21) toplam kalinligi 20 nm ve 54 nm arasindadir. Tercih edilen uygulamada birinci dielektrik yapinin (21) toplam kalinligi 23 nm ve 51 nm arasindadir. En tercihen, birinci dielektrik yapinin (21) toplam kalinligi 26 nm ve 48 nm arasindadir. Ikinci dielektrik yapinin (25) toplam kalinligi 32 nm ve 84 nm arasindadir. Tercih edilen uygulamada ikinci dielektrik yapinin (25) toplam kalinligi 35 nm ve 81 nm arasindadir. En tercihen ikinci dielektrik yapinin (25) toplam kalinligi 38 nm ve 78 nm arasindadir. Kizilötesi yansitici katmanin (23) üstündeki ikinci dielektrik yapinin (25) toplam kalinliginin, kizilötesi yansitici katmanin (23) altindaki birinci dielektrik yapinin (21) toplam kalinligina oranini 1,5 - 1,6 arasindaki bir seviyede tutulmaktadir. Bunun sayesinde low-e kaplamali (20) camin (10), dis yansimada açisal renk degisiminin 60°'ye kadar sabit kalmasi saglanmistir. Bulus konusu low-e kaplamali (20) camlarin (10), lGU'da dis yansima renk degerlerinin nötral olmasi tercih edilmektedir. Bunu saglamak üzere tek cam uygulamalarindaki isil islem sonrasi cam tarafi yansima a* degeri (0,0) - (3,0) arasinda, b* degeri (0,5) - (3,2) arasinda elde edilecek sekilde low-e kaplamadaki (20) katman dizilim ve kalinliklari optimize edilmistir. Tercih edilen uygulamada tek cam uygulamalarindaki isil islem sonrasi cam tarafi yansima a* degeri (0,3) - (2,5) arasinda, b* degeri (1,2) - (2,8) arasindadir. En tercihen tek cam uygulamalarindaki isil islem sonrasi cam tarafi yansima a* degeri (1,0) - (2,0) arasinda, b* degeri (1,5) - (2,5) arasindadir. lGU uygulamalari sonrasinda elde edilen a* degeri (-1,0) - (1,9) arasinda, b* degeri (1,0) - (3,0) arasindadir. Tercih edilen uygulamada lGU uygulamalari sonrasinda a* degeri (-0,5) - (1,3) arasinda, b* degeri (1,3) - (2,5) arasindadir. En tercihen lGU uygulamalari sonrasinda elde edilen a* degeri (0,0) - (1,0) arasinda, b* degeri (1,6) - (2,1) arasindadir. Birinci bariyer katman (22) ve ikinci bariyer katman (24) kalinliklari yansima degerleri üzerinde etkilidir. Ikinci bariyer katmanin (24), birinci bariyer katmana (22) göre daha kalin yapida olmasi ile isil islem sonrasinda iç yansimanin, dis yansimaya göre daha düsük olmasi saglanmaktadir. Tek cam isil islem sonrasi iç yansima degeri %20 ile arasindadir. lGU uygulamalarinda ise isil islem sonrasi iç yansima degeri %23 ile Low-e kaplamadaki (20) ikinci bariyer katmanin (24) kalinliginin, birinci bariyer katman (22) kalinligina orani 1,8 - 2,2 arasindadir. Bu sayede isil islem öncesi emissivite degerinin 0,043 - 0,047 araliginda, isil islem sonrasi emissivite degeri 0,030 - 0,035 araliginda kalmasi saglanmaktadir. Bulus konusu low-e kaplamali (20) camin (10) isil islem sonrasi tek cam gün isigi geçirgenlik degeri %45 - 55 arasindadir. lGU uygulamalarinda ise isil islem sonrasi gün isigi geçirgenlik degeri %40 -50 arasidir. Tercihen, lGU uygulamalarinda low-e kaplamali (20) camin (10) isil islem sonrasi gün isigi geçirgenlik degeri %43'tür. Bulusun tercih edilen bir diger uygulamasinda yapi Cam/SiXNy/ZnAIOX/NiCrOX/Ag/ NiCrOX/ZnAlOX/SiXNy/SIOXNy seklindedir. Bulusun tercih edilen bir diger uygulamasinda yapi Cam/SiXNy/ZnAIOX/NiCr/Ag/ NiCr/ZnAIOX/SixNy/SIOXNy seklindedir. Bulusun tercih edilen bir diger uygulamasinda yapi Cam/SiXNy/ZnAIOX/ NiCr/Ag/ NiCrOX/ZnAlOX/SiXNy/SIOXNy seklindedir. Bulusun tercih edilen bir diger uygulamasinda yapi Cam/SiXNy/ZnAIOX/ NiCrOX/Ag/ NiCr/ZnAIOX/SixNy/SIOXNy seklindedir. Bulusun koruma kapsami ekte verilen istemlerde belirtilmis olup kesinlikle bu detayli anlatimda örnekleme amaciyla anlatilanlarla sinirli tutulamaz. Zira teknikte uzman bir kisinin, bulusun ana temasindan ayrilmadan yukarida anlatilanlar isiginda benzer yapilanmalar ortaya koyabilecegi açiktir. TR TR DESCRIPTION A LOW-E COATED GLASS WITH REDUCED ANGULAR COLOR CHANGE TECHNICAL FIELD Invention; It refers to glass with a low emissivity (low-e) coating that effectively transmits visible light while providing temperature control. BACKGROUND ART One of the factors that differentiate the optical properties of glasses is the coating applications applied to the glass surface. One of the coating applications is the magnetic field-assisted sputtering method in a vacuum environment. This method is a frequently used method in the production of architectural and automotive coatings with low-e properties. The transmittance and reflection values of the glasses coated with the mentioned method in the visible, near infrared and infrared regions can be achieved at targeted levels. Apart from the visible zone transmittance and reflection values, the total solar energy transmittance (g) value is also an important parameter in coated glasses that can be used in the architectural and automotive sectors. The high total solar energy permeability (g) value of coatings may be preferred in order to reduce heating loads in cold climate geographies. The total solar energy transmittance (g) values of the coatings can be kept at targeted levels by the number of Network layers they contain, the type of nucleating layer used, and parametric optimizations of the layers. As a result, all the problems mentioned above have made it necessary to make an innovation in the relevant technical field. BRIEF DESCRIPTION OF THE INVENTION The present invention relates to a medium permeability low-e coated glass structure in order to eliminate the above-mentioned disadvantages and bring new advantages to the relevant technical field. The main purpose of the invention is to produce a low-e coated glass with medium transmittance. Another aim of the invention is to produce a low-e coated glass with reduced angular color change. Another aim of the invention is to produce a low-e coated glass with reduced emissivity value. Another aim of the invention is to produce a heat treatable low-e coated glass. In order to achieve all the purposes mentioned above and that will emerge from the detailed explanation below, the present invention uses at least one infrared reflector with a single glass daylight transmittance value between 45 - 55%, high external reflection and neutral color values, to be used in architectural and automotive glasses. It is a low-e coated glass containing layers. Accordingly, the feature of the invention in question is; comprising a first dielectric structure positioned under said infrared reflective layer and a second dielectric structure positioned above the infrared reflective layer; and in order to ensure that the angular color change in external reflection remains constant up to 60°, the ratio of the total thickness of the first dielectric structure / the total thickness of the second dielectric structure is between 1.5 - 1.6. A preferred embodiment of the invention is that the ratio of the thickness of a second barrier layer located on the infrared reflective layer to the thickness of a first barrier layer located under the infrared reflective layer is between 1.8 and 2.2, in order to ensure that the emissivity values are in the range of 0.043 - 0.047 before the heat treatment. . Another preferred embodiment of the invention is that said first dielectric structure contains at least one dielectric layer. Another preferred embodiment of the invention is that the first dielectric structure contains at least one of the materials SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx. A preferred embodiment of the invention is that the first dielectric structure includes a first dielectric layer and a second dielectric layer positioned above it. Another preferred embodiment of the invention is that said second dielectric structure contains at least one dielectric layer. Another preferred embodiment of the invention is that said second dielectric structure contains at least one of the materials SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx. In a preferred embodiment of the invention, said second dielectric structure is respectively composed of a third dielectric layer; It contains a fourth dielectric layer and a protective layer. Another preferred embodiment of the invention is that the first dielectric layer and the second dielectric layer contain at least one of SixNy, SiOxNy, ZnAl, ZnAlOx, ZnSnOx, TiOx, TiNx, ZrNx. Another preferred embodiment of the invention is that the first dielectric layer contains SixNy and the second dielectric layer contains ZnAlOx. Another preferred embodiment of the invention is the said third dielectric layer; The fourth dielectric layer and the protective layer contain at least one of SixNy, SiOxNy, ZnAl, ZnAlOx, ZnSnOx, TiOx, TiNx, ZrNx. Another preferred embodiment of the invention is that said third dielectric layer contains ZnAlOx; The fourth dielectric layer contains SixNy and the protective layer contains SiOxNy. BRIEF DESCRIPTION OF THE FIGURE A representative structure of low-e coated glass is given in Figure 1. REFERENCE NUMBERS GIVEN IN THE FIGURE Glass Low-e coating 21 First dielectric structure 211 First dielectric layer 212 Second dielectric layer 22 First barrier layer 24 Second barrier layer Second dielectric structure 251 Third dielectric layer 253 Protective layer DETAILED DESCRIPTION OF THE INVENTION In this detailed description, the subject of the invention is low-e. e-coated (20) glass (10) is explained only with examples that will not create any limiting effect for a better understanding of the subject. The production of low-e coated (20) glasses (10) for architectural and automotive purposes is carried out by sputtering (also known as sputtering in technology). This invention generally; Single silver low-e coated (20) glasses (10), which are used as daylight permeable and heat insulating glass (10) and have high heat treatment resistance, are related to the content and application of the said low-e coating (20). The low-e coated (20) glass (10) that is the subject of the invention can be used in double glass units and laminated structures for the architectural and automotive sectors. In this invention; By using the sputtering method in order to obtain a low-e coated (20) glass (10) that has a medium level of visible light transmittance, is heat treatable and is designed to show minimal angular color change, to be applied to the surface of a glass (10), A low-e coating (20) consisting of multiple metal, metal oxide and metal nitride/oxynitride layers positioned on the glass (10) surface has been developed. The layers in question are deposited sequentially on top of each other in a vacuum environment. As a heat treatment, at least one and/or more than one of tempering, partial tempering, annealing, lamination and bending processes can be used. The low-e coated (20) glass (10) that is the subject of the invention can be used as architectural and automotive glass (10). The optical performance term mentioned in the invention; It refers to the solar energy transmittance, visible light transmittance, internal and external reflection values, L-a-b color values of the low-e coated (20) glass (10). The refractive indices of all layers in the low-e coated (20) glass (10), which is the subject of the invention, were determined using computational methods based on the optical constants obtained from single layer measurements. The refractive indices in question are the refractive index data at 550 nm. The following data were determined as a result of experimental studies to develop a preferred low-e coating (20) sequence in terms of both ease of production and optical properties. The low-e coating (20) which is the subject of the invention; The solar energy spectrum contains an infrared reflective layer (23) that allows transmitting the visible region (hereinafter referred to as % Tvis) at a targeted level and reflecting (less transmitting) thermal radiation in the infrared region. The Ag layer is used as the infrared reflective layer (23) and its heat dissipation is low. In the low-e coating (20) that is the subject of the invention; The first dielectric structure (21) is used in contact with the glass (10). Said first dielectric structure (21) contains at least one or more of the materials SixNy, SiOxNy, ZnAl, ZnAlOx, ZnSnOx, TiOx, TiNx, ZrNx. In the preferred embodiment, the first dielectric structure (21) includes a first dielectric layer (211) and a second dielectric layer (212). Said first dielectric layer (211) contains at least one of the materials SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx. In the preferred embodiment, the first dielectric layer (211) contains SixNy. The first dielectric layer (211), containing SixNy, serves the purpose of preventing alkali ion migration, which becomes easier at high temperatures, by acting as a diffusion barrier. Thus, the first dielectric layer (211) containing SixNy supports the resistance of the low-e coating (20) to heat treatment processes. The variation range for the refractive index of the first dielectric layer (211) containing SixNy is between 2.00 and 2.15. In the preferred structure, the variation range for the refractive index of the first dielectric layer (211) containing SixNy is 2.02 to 2.12. Said second dielectric layer (212) contains at least one of the materials SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx. In the preferred embodiment, the second dielectric layer (212) contains ZnAlOx. The variation range for the refractive index of the second dielectric layer (212) containing ZnAlOx is between 2.0 and 2.15. The variation range for the refractive index of the second dielectric layer (212) containing ZnAlOx in the preferred structure is 2.0 to 2.12. The thickness of the first dielectric layer (211) containing SixNy is between 12 nm - 30 nm. In the preferred embodiment, the thickness of the first dielectric layer (211) containing SixNy is between 15 nm - 27 nm. In a more preferred embodiment, the thickness of the first dielectric layer (211) containing SixNy is between 18 nm - 24 nm. Having the first dielectric layer (211) containing SixNy at the specified thickness allows the low-e coated (20) glass (10) to be more resistant to tempering. If the first dielectric layer (211) containing SixNy in contact with the glass (10) is thinner than the specified thickness values, deteriorations may occur in the low-e coating (20) during tempering. The second dielectric layer (212) containing ZnAlOx is positioned on the first dielectric layer (211). The thickness of the second dielectric layer (212) containing ZnAlOx is between 8 nm - 24 nm. In the preferred embodiment, the thickness of the second dielectric layer (212) containing ZnAlOx is between 11 nm - 21 nm. In a more preferred embodiment, the thickness of the second dielectric layer (212) containing ZnAlOx is between 14 nm - 18 nm. The first barrier layer (22) is positioned on the second dielectric layer (212) containing ZnAlOx. At least one of NiCr, NiCrOx, Ti, TiOx, ZnAlOx, ZnOx is used as the first barrier layer. In the preferred application, one of NiCr or NiCrOx is used. The thickness of the first barrier layer (22) is between 1 nm - 10 nm. In the preferred application, the thickness of the first barrier layer (22) is between 1 nm and 7 nm. In a more preferred embodiment, the thickness of the first barrier layer (22) is between 1 nm and 4 nm. The infrared reflective layer (23) is positioned on the first barrier layer (22). The Ag layer is used as the infrared reflective layer (23). The thickness of the said infrared reflective layer (23) is in the range of 10 nm - 22 nm. In the preferred application, the thickness of the infrared reflective layer (23) is in the range of 12 nm - 20 nm. Most preferably, the thickness of the infrared reflective layer (23) is in the range of 14 nm - 18 nm. A second barrier layer (24) is positioned on the infrared reflective layer (23). At least one of NiCr, NiCrOx, TiOx, ZnSnOx, ZnAlOx, ZnOx is used as the barrier layer (24). In the preferred embodiment, the barrier layer (24) contains either NiCr or NiCrOx. In one embodiment of the invention, NiCr is used as the barrier layer (24). In another alternative embodiment of the invention, NiCrOx is used as the barrier layer (24). The thickness of the second barrier layer (24) is in the range of 1 nm - 9 nm. In the preferred application, the thickness of the second barrier layer (24) is in the range of 1.5 nm - 7 nm. Most preferably, the thickness of the second barrier layer (24) is in the range of 2 nm - 5 nm. There is a second dielectric structure (25) on the second barrier layer (24). The second dielectric structure (25) contains at least three of the materials SixNy, SiOxNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx. Second dielectric structure (25); a third dielectric layer (251); It includes a fourth dielectric layer (252) and a protective layer (253). The third dielectric layer (251) contains at least one of the materials SixNy, SiOXNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx. In the preferred application, ZnAlOx is used as the third dielectric layer (251). The thickness of the third dielectric layer (251) is in the range of 10 nm - 27 nm. In the preferred application, the thickness of the third dielectric layer (251) is in the range of 13 nm - 24 nm. Most preferably, the thickness of the third dielectric layer (251) is in the range of 15 nm - 21 nm. The fourth dielectric layer (252) contains at least one of the materials SixNy, SiOXNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx. In the preferred application, SiXNy is used as the fourth dielectric layer (252). The thickness of the fourth dielectric layer (252) is between 8 nm - 25 nm. In the preferred application, the thickness of the fourth dielectric layer (252) is in the range of 11 nm - 22 nm. Most preferably, the thickness of the fourth dielectric layer (252) is in the range of 13 nm - 19 nm. The fifth dielectric layer (253) contains at least one of the materials SixNy, SiOXNy, ZnSnOx, ZnAIOX, TinOx, TiOx, TiNx, ZrNx. In the preferred application, SiOXNy is used as the fifth dielectric layer (253). The thickness of the fifth dielectric layer (253) is between 14 nm - 32 nm. In the preferred application, the thickness of the fifth dielectric layer (253) is between 17 nm - 29 nm. Most preferably, the thickness of the fifth dielectric layer (253) is in the range of 20 nm - 26 nm. The total thickness of the first dielectric structure (21) under the infrared reflective layer (23) in the low-e coating (20) of the invention is lower than the total thickness of the second dielectric structure (25) above the infrared reflective layer (23). Thus, the color values of the final product low-e coated (20) glass (10) optical performance values can be obtained at the desired levels. The total thickness of the first dielectric structure (21) is between 20 nm and 54 nm. In the preferred embodiment, the total thickness of the first dielectric structure (21) is between 23 nm and 51 nm. Most preferably, the total thickness of the first dielectric structure (21) is between 26 nm and 48 nm. The total thickness of the second dielectric structure (25) is between 32 nm and 84 nm. In the preferred embodiment, the total thickness of the second dielectric structure (25) is between 35 nm and 81 nm. Most preferably, the total thickness of the second dielectric structure (25) is between 38 nm and 78 nm. The ratio of the total thickness of the second dielectric structure (25) above the infrared reflective layer (23) to the total thickness of the first dielectric structure (21) below the infrared reflective layer (23) is kept at a level between 1.5 and 1.6. Thanks to this, the angular color change of the low-e coated (20) glass (10) in external reflection is ensured to remain constant up to 60°. It is preferred that the external reflection color values of the low-e coated (20) glasses (10), which are the subject of the invention, be neutral in the IGU. To achieve this, after the heat treatment in single glass applications, the glass side reflection a* value is between (0.0) - (3.0) and the b* value is between (0.5) - (3.2) in the low-e coating. (20) layer alignment and thickness have been optimized. In the preferred application, the glass side reflection a* value after heat treatment in single glass applications is between (0.3) - (2.5), and the b* value is between (1.2) - (2.8). Most preferably, after heat treatment in single glass applications, the glass side reflection a* value is between (1.0) - (2.0) and the b* value is between (1.5) - (2.5). The a* value obtained after IGU applications is between (-1.0) - (1.9), and the b* value is between (1.0) - (3.0). In the preferred application, after IGU applications, the a* value is between (-0.5) - (1.3) and the b* value is between (1.3) - (2.5). Most preferably, the a* value obtained after IGU applications is between (0,0) - (1,0) and the b* value is between (1,6) - (2,1). The thickness of the first barrier layer (22) and the second barrier layer (24) are effective on the reflection values. The second barrier layer (24) has a thicker structure than the first barrier layer (22), ensuring that the internal reflection after heat treatment is lower than the external reflection. The internal reflection value of single glass after heat treatment is between 20%. In IGU applications, the internal reflection value after heat treatment is 23%, and the ratio of the thickness of the second barrier layer (24) in the Low-e coating (20) to the thickness of the first barrier layer (22) is between 1.8 - 2.2. In this way, it is ensured that the emissivity value before the heat treatment remains in the range of 0.043 - 0.047, and the emissivity value after the heat treatment remains in the range of 0.030 - 0.035. The single glass daylight transmittance value of the low-e coated (20) glass (10) subject to the invention after heat treatment is between 45 - 55%. In IGU applications, the daylight transmittance value after heat treatment is between 40-50%. Preferably, in IGU applications, the daylight transmittance value of the low-e coated (20) glass (10) after heat treatment is 43%. In another preferred embodiment of the invention, the structure is Glass/SiXNy/ZnAlOX/NiCrOX/Ag/NiCrOX/ZnAlOX/SiXNy/SIOXNy. In another preferred embodiment of the invention, the structure is Glass/SiXNy/ZnAIOX/NiCr/Ag/NiCr/ZnAIOX/SixNy/SIOXNy. In another preferred embodiment of the invention, the structure is Glass/SiXNy/ZnAlOX/NiCr/Ag/NiCrOX/ZnAlOX/SiXNy/SIOXNy. In another preferred embodiment of the invention, the structure is Glass/SiXNy/ZnAIOX/NiCrOX/Ag/NiCr/ZnAIOX/SixNy/SIOXNy. The scope of protection of the invention is specified in the attached claims and cannot be limited to what is explained in this detailed description for exemplary purposes. Because it is clear that a person skilled in the art can produce similar structures in the light of what is explained above, without deviating from the main theme of the invention.TR TR

Claims (12)

ISTEMLER 1. Bulus mimari ve otomotiv camlarinda kullanilmak üzere, tek cam gün isigi geçirgenlik degeri %45 - 55 arasinda olan, dis yansimasi yüksek ve bununla birlikte nötral renk degerlerine sahip en az bir kizilötesi yansitici katman (23) içeren bir low-e kaplamali (20) cam (10) olup özelligi; bahsedilen kizilötesi yansitici katman (23) altinda konumlanan bir birinci dielektrik yapi (21) ve kizilötesi yansitici katman (23) üzerinde konumlanan ikinci dielektrik yapi (25) içermesi; ve dis yansimada açisal renk degisiminin 60°'ye kadar sabit kalmasini saglamak üzere, birinci dielektrik yapi (23) toplam kalinligi / ikinci dielektrik yapi (25) toplam kalinligi oraninin 1,5 - 1,6 arasinda olmasidir.1. The invention is designed to be used in architectural and automotive glasses, with a single glass with a low-e coating (20) containing at least one infrared reflective layer (23) with a daylight transmittance value between 45 - 55%, high external reflection and neutral color values. ) is glass (10) and its feature is; comprising a first dielectric structure (21) positioned under the said infrared reflective layer (23) and a second dielectric structure (25) positioned on the infrared reflective layer (23); and in order to ensure that the angular color change in external reflection remains constant up to 60°, the ratio of the total thickness of the first dielectric structure (23) / the total thickness of the second dielectric structure (25) is between 1.5 - 1.6. .Istem 1'e göre bir low-e kaplamali (20) cam (10) olup özelligi; emissivite degerlerinin isil islem öncesi 0,043 - 0,047 araliginda olmasini saglamak üzere, kizilötesi yansitici katman (23) üzerinde konumlanan bir ikinci bariyer katman (24) kalinliginin, kizilötesi yansitici katman (23) altinda konumlanan bir birinci bariyer katman (22) kalinligina oraninin 1,8 - 2,2 arasinda olmasidir.It is a low-e coated (20) glass (10) according to claim 1 and its feature is; In order to ensure that the emissivity values are in the range of 0.043 - 0.047 before the heat treatment, the ratio of the thickness of a second barrier layer (24) located on the infrared reflective layer (23) to the thickness of a first barrier layer (22) located under the infrared reflective layer (23) is 1.8. It is between - 2.2. . Istem 1'e göre bir low-e kaplamali (20) cam (10) olup özelligi; bahsedilen birinci dielektrik yapinin (21) en az bir dielektrik katman içeriyor olmasidir.. It is a low-e coated (20) glass (10) according to claim 1 and its feature is; The said first dielectric structure (21) contains at least one dielectric layer. . Istem 1'e göre bir low-e kaplamali (20) cam (10) olup özelligi; birinci dielektrik yapinin (21) SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx malzemelerinden en az birini içermesidir.. It is a low-e coated (20) glass (10) according to claim 1 and its feature is; The first dielectric structure (21) contains at least one of the materials SixNy, SiOxNy, ZnAl, ZnAlOx, ZnSnOx, TiOx, TiNx, ZrNx. . Istem 1'e göre bir low-e kaplamali (20) cam (10) olup özelligi; birinci dielektrik yapinin (21) bir birinci dielektrik katman (211) ve üzerinde konumlanan bir ikinci dielektrik katman (212) içermesidir.. It is a low-e coated (20) glass (10) according to claim 1 and its feature is; The first dielectric structure (21) contains a first dielectric layer (211) and a second dielectric layer (212) positioned above it. . Istem 1'e göre bir low-e kaplamali (20) cam (10) olup özelligi; bahsedilen ikinci dielektrik yapinin (25) en az bir dielektrik katman içermesidir. It is a low-e coated (20) glass (10) according to claim 1 and its feature is; said second dielectric structure (25) contains at least one dielectric layer 7. Istem 1'e göre bir low-e kaplamali (20) cam (10) olup özelligi; bahsedilen ikinci dielektrik yapinin (25) SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx malzemelerinden en az birini içermesidir.7. It is a low-e coated (20) glass (10) according to claim 1 and its feature is; said second dielectric structure (25) contains at least one of the materials SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx. 8. Istem 1'e göre bir low-e kaplamali (20) cam (10) olup özelligi; bahsedilen ikinci dielektrik yapinin (25) sirasiyla bir üçüncü dielektrik katman (251); bir dördüncü dielektrik katman (252) ve bir koruyucu katman (253) içermesidir.8. It is a low-e coated (20) glass (10) according to claim 1 and its feature is; a third dielectric layer (251) respectively of said second dielectric structure (25); It contains a fourth dielectric layer (252) and a protective layer (253). 9. Istem 5'e göre bir low-e kaplamali (20) cam (10) olup özelligi; birinci dielektrik katman (211) ve ikinci dielektrik katmanin (212) SixNy,SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx'den en az birini içeriyor olmasidir.9. It is a low-e coated (20) glass (10) according to claim 5 and its feature is; The first dielectric layer (211) and the second dielectric layer (212) contain at least one of SixNy, SiOxNy, ZnAl, ZnAlOx, ZnSnOx, TiOx, TiNx, ZrNx. 10. Istem 9'a göre bir low-e kaplamali (20) cam (10) olup özelligi; birinci dielektrik katmanin (211) SixNy içeriyor olmasi ve ikinci dielektrik katmanin (212) ZnAlOx içeriyor olmasidir.10. It is a low-e coated (20) glass (10) according to claim 9 and its feature is; The first dielectric layer (211) contains SixNy and the second dielectric layer (212) contains ZnAlOx. 11. Istem 8'e göre bir low-e kaplamali (20) cam (10) olup özelligi; bahsedilen üçüncü dielektrik katman (251); dördüncü dielektrik katman (252) ve koruyucu katmanin (253) SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx'den en az birini içeriyor olmasidir.11. It is a low-e coated (20) glass (10) according to claim 8 and its feature is; said third dielectric layer (251); The fourth dielectric layer (252) and the protective layer (253) contain at least one of SixNy, SiOxNy, ZnAl, ZnAlOx ZnSnOx, TiOx, TiNx, ZrNx. 12. Istem 11'e göre bir low-e kaplamali (20) cam (10) olup özelligi; bahsedilen üçüncü dielektrik katmanin (251) ZnAlOx içermesi; dördüncü dielektrik katmanin (252) SixNyiçermesi ve koruyucu katmanin (253) SiOxNy, içermesidir12. It is a low-e coated (20) glass (10) according to claim 11 and its feature is; said third dielectric layer (251) contains ZnAlOx; The fourth dielectric layer (252) contains SixNy and the protective layer (253) contains SiOxNy.
TR2022/014362A 2022-09-16 2022-09-16 A LOW-E COATED GLASS WITH ANGLE DISCOLORATION REDUCED TR2022014362A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2022/014362A TR2022014362A2 (en) 2022-09-16 2022-09-16 A LOW-E COATED GLASS WITH ANGLE DISCOLORATION REDUCED
PCT/TR2023/050586 WO2024058746A1 (en) 2022-09-16 2023-06-19 A low-e coated glass with reduced angular color change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2022/014362A TR2022014362A2 (en) 2022-09-16 2022-09-16 A LOW-E COATED GLASS WITH ANGLE DISCOLORATION REDUCED

Publications (1)

Publication Number Publication Date
TR2022014362A2 true TR2022014362A2 (en) 2022-10-21

Family

ID=85162201

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2022/014362A TR2022014362A2 (en) 2022-09-16 2022-09-16 A LOW-E COATED GLASS WITH ANGLE DISCOLORATION REDUCED

Country Status (2)

Country Link
TR (1) TR2022014362A2 (en)
WO (1) WO2024058746A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201718310A2 (en) * 2017-11-20 2017-12-21 Tuerkiye Sise Ve Cam Fabrikalari Anonim Sirketi A HEAT TREATABLE LOW-E COATING AND PRODUCTION METHOD
WO2019209202A2 (en) * 2018-01-11 2019-10-31 Turkiye Sise Ve Cam Fabrikalari Anonim Sirketi Low-e coated glass with efficient thermal and solar control
TR201819739A2 (en) * 2018-12-18 2020-07-21 Tuerkiye Sise Ve Cam Fabrikalari Anonim Sirketi A LOW-E COATING THAT CAN BE APPLIED TO LAMINATED AUTOMOTIVE GLASSES
CN212559995U (en) * 2020-09-29 2021-02-19 咸宁南玻节能玻璃有限公司 Medium-transmittance LOW-reflection temperable double-silver LOW-E glass
TR202101223A2 (en) * 2021-01-27 2022-08-22 Tuerkiye Sise Ve Cam Fabrikalari Anonim Sirketi A LOW-E COATING WITH HIGH PERMEABILITY, MECHANICAL STRENGTH INCREASED DOUBLE SILVER

Also Published As

Publication number Publication date
WO2024058746A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
US7910229B2 (en) Substrate having thermal management coating for an insulating glass unit
CN110461790B (en) Heat-treatable coated article with IR reflecting layer based on titanium nitride and ITO
EP3511505B1 (en) Functional building material for windows and doors
KR20110128285A (en) Substrate provided with a stack with thermal properties and comprising high refractive index layers
US9284217B2 (en) Low-emissivity transparent laminated body and building material comprising same
US10138158B2 (en) Coated article having low-E coating with IR reflecting layer(s) and high index nitrided dielectric layers
US20190360088A1 (en) Heat treatable coated article having zirconium nitride and ito based ir reflecting layers
US20220041496A1 (en) A low-e coated architectural glass having high selectivity
KR102234341B1 (en) Blue tinted heat treatable coated article with low solar factor value
TR2022014362A2 (en) A LOW-E COATED GLASS WITH ANGLE DISCOLORATION REDUCED
TR201722929A2 (en) LOW-E COATED GLASS
TR201718310A2 (en) A HEAT TREATABLE LOW-E COATING AND PRODUCTION METHOD
TR2022002129A2 (en) MEDIUM PERMEABILITY LOWE COATED GLASS
TR2023011379A1 (en) LOW-E COATED GLASS SUITABLE FOR TEMPERED AND NON-TEMPERED USE
TR2022005047A2 (en) A LOW-E COATING FOR GLASS SURFACES AND A GLASS WITH LOW-E COATING
WO2023191738A1 (en) A low-e coating for glass surfaces and a glass with a low-e coating
EP4284763A1 (en) A low-e coating including double silver and with high transmittance and with increased thermal reflection
KR20180118945A (en) Low-emissivity glass