TR201613510T1 - Method of loading raw material into blast furnace. - Google Patents

Method of loading raw material into blast furnace. Download PDF

Info

Publication number
TR201613510T1
TR201613510T1 TR2016/13510T TR201613510T TR201613510T1 TR 201613510 T1 TR201613510 T1 TR 201613510T1 TR 2016/13510 T TR2016/13510 T TR 2016/13510T TR 201613510 T TR201613510 T TR 201613510T TR 201613510 T1 TR201613510 T1 TR 201613510T1
Authority
TR
Turkey
Prior art keywords
coke
layer
blast furnace
ore
thickness
Prior art date
Application number
TR2016/13510T
Other languages
Turkish (tr)
Inventor
Ichikawa Kazuhira
Hirosawa Toshiyuki
Watakabe Shiro
Original Assignee
Jfe Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corp filed Critical Jfe Steel Corp
Publication of TR201613510T1 publication Critical patent/TR201613510T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Bir döner oluk (26) kullanılarak bir yüksek fırına (22) cevher malzemesi ve kok içeren yüksek fırın ham maddesi yüklemek için bir yöntemde, yüksek fırın ham maddesi kok ile cevher malzemesi karıştırılmadan bir kok tabakası (4) ve bir cevher tabakası (5) olarak veya bir kok tabakası (4) ve bir kısım kok ile cevher malzemesi karıştırılarak oluşturulan kok ve cevher malzemesi karma tabakası olarak yüklenir. Şarj başına yüksek fırına (22) yüklenen kok tabakası (4) fırının göbeğine (22b) ulaştığında fırın göbeğindeki (22b) kok tabakasının (4) minimum kalınlığı ile kokun aritmetik ortalama partikül büyüklüğünün oranı uygun şekilde sınırlandırılır ve fırın göbeğindeki (22b) kok tabakasının (4) ortalama kalınlığı 190 mm veya daha azıyla sınırlandırılır. Böylece, daha ince bir cevher tabakasıyla (5) hem stabil bir yüksek fırın (22) işletimi, hem de artan indirgeme verimi sağlanır.In a method for loading blast furnace raw material containing ore material and coke into a blast furnace 22 using a rotary groove 26, the blast furnace raw material is provided as a coke layer 4 and an ore layer 5 without mixing the ore material with the coke. or a coke layer (4) and a mixture of coke and ore material formed by mixing a portion of coke with the ore material. When the coke layer 4 loaded into the blast furnace 22 per charge reaches the furnace core 22b, the ratio of the minimum thickness of the coke layer 4 in the furnace core 22b to the arithmetic mean particle size of the coke is suitably limited and the coke layer 22b in the furnace core 22b is suitably limited. 4) the average thickness is limited to 190 mm or less. This results in a stable blast furnace 22 operation as well as increased reduction efficiency with a thinner ore layer 5.

Description

TARIFNAME YUKSEK FIRINA HAM MADDE YUKLEME YÖNTEMI TEKNIK SAHA Bulus, bir yüksek firina ham madde yükleme yöntemiyle ilgilidir. DESCRIPTION METHOD OF LOADING RAW MATERIAL TO THE BLAST FURNACE TECHNICAL FIELD The invention relates to a blast furnace raw material loading method.

BULUS HAKKINDA ONBILGI Son yillarda, küresel isinmayi önlemek için COZ emisyonlarini azaltina taleplerinde bulunulmustur. Demir-çelik endüstrisinde, özellikle yüksek firinlar COZ emisyonlarinin yaklasik %70°inden sorumludur ve yüksek firinlarda COZ einisyonlarini azaltma taleplerinde bulunulmustur. INFORMATION ABOUT THE INVENTION In recent years, COZ emissions have been reduced to prevent global warming. reduction requests were made. In the iron and steel industry, especially blast furnaces account for approximately 70% of COZ emissions responsible for reducing COZ emissions in blast furnaces. requests have been made.

Tipik olarak, sinterli cevher, pelet, topak cevher, vb. gibi cevher malzemesi ile kok bir yüksek firina firinin üstünden tabakalar halinde dönüsümlü olarak yüklenir ve pik demir elde etmek için bir hava deliginden yanma gazi enjekte edilir. Yüksek firina yüklenen yüksek firin ham maddesini olusturan kok ve cevher malzemesi firinin üstünden firinin göbegine iner ve cevher iiidirgemeye tabi tutulur ve ham maddenin sicakligi artar. Sicaklik artisindan dolayi cevher malzemesi tabakasi kademeli olarak deforme olur ve yukaridan inen yük cevher malzemesindeki bosluklari doldururken ayni zamanda firin göbegi içinde geçirgenlik direncinin çok yüksek oldugu ve hemen hemen gaz akisinin olmadigi yapiskan bir tabaka olusturur. Typically, sintered ore, pellet, lump ore, etc. ore like material and coke in layers over the top of a blast furnace. it is loaded alternately and an air conditioner is used to obtain pig iron. Combustion gas is injected through the hole. high furnace loaded high The coke and ore material, which constitute the raw material of the kiln, from above it descends to the core of the kiln and the ore is subjected to tempering and the temperature of the raw material increases. ore due to temperature increase material layer gradually deforms and the furnace while filling the voids in the bulk ore material that the permeability resistance inside the core is very high and immediately forms a sticky layer where there is no gas flow.

Yüksek firinda kullanilan indirgeme ajani (örnegin, kok, pulvarize kömür veya dogal gaz) miktari düsürülerek yüksek firindaki COz emisyonlari azaltilabilir. Ancak, böyle bir durumda, cevher tabakasinin indirgeme veriminin artirilmasi önemlidir. Reducing agent used in blast furnace (e.g. coke, pulverized COz in the blast furnace by reducing the amount of gas (coal or natural gas) emissions can be reduced. However, in such a case, the ore It is important to increase the reduction efficiency of the layer.

Cevher tabakasinin indirgeme verimini artirmak için bilinen bir yöntein örnegin “Zairyo to purosesu” (Current advances in materials and processes), cilt 63, sayfa ”de tarif edildigi gibi indirgenmemis cevher miktarini azaltmak için cevher tabakasinin kalinligini azaltma yönteniidir. A known method to increase the reduction efficiency of the ore layer method e.g. “Zairyo to purosesu” (Current advances in materials and processes), as described in volume 63, page of the ore layer to reduce the amount of unreduced ore. It is a method of reducing the thickness.

Cevher tabakasinin kalinliginin azaltilmasi durumunda, kok tabakasinin kalinligi da azaltilir. Ancak, kok tabakasinin kalinligi azalirsa, cevherin yumusadigi ve eridigi yapiskan bölgenin geçirgenlik direnci artar. Yapiskan tabakanin geçirgenlik direnci, tüm yüksek firinin geçirgenligini önemli ölçüde etkiler ve yapiskan bölgenin gecirgenlik direiicindeki artisin stabil yüksek firinin isletimiiii engelledigi deneysel olarak bilinmektedir. If the thickness of the ore layer is reduced, the coke The thickness of the layer is also reduced. However, the thickness of the coke layer decreases, the permeability of the sticky region where the ore softens and melts resistance increases. The permeability resistance of the adhesive layer, all high significantly affects the permeability of the oven and Operation of stable blast furnace with increase in permeability resistance has been experimentally known to inhibit

Yüksek firinda ve özellikle de yapiskan bölgede geçirgenlik direncinin artmasini önlemek ve stabil bir yüksek firin isletimi saglamak için, kok tabakasi alt limit tabaka kalinligi üzerinde çesitli arastirmalar yürütülmüstür. Örnegin, “Tetsu to hagane (Iron and steel), cilt 87, no. 5, sayfalar 342- ”ye göre, firin göbegindeki kok tabakasinin alt limit tabaka kalinligi ortalama olarak yaklasik 190 mm°dir ve daha küçük bir tabaka kalinligi yapiskan bölgenin geçirgenlik direncinin artmasina sebep olur ve stabil bir yüksek firin isletiniini engeller. In the blast furnace, especially in the sticky zone, the permeability resistance To prevent the increase in temperature and to ensure a stable blast furnace operation, Various studies on the thickness of the lower limit layer of the root layer has been executed. For example, “Tetsu to hagane (Iron and steel), vol. 87, no. 5, pages 342- According to ”, the bottom of the coke layer in the furnace core the limit layer thickness is approximately 190 mm° on average and a small layer thickness is less than the permeability resistance of the adhesive zone. increases and prevents a stable blast furnace operation.

JP H7-l, kok tabakalarinin bölgesel olarak incelmesini önlemek için firin bogazindaki kok tabakasi basina ortalaina tabaka kalinligi 60 cm (600 mm) veya daha fazla olacak sekilde kok miktarini ayarlainak için yüklenen malzeme için dagitim kontrol yöntemine sahip bir yüksek firini açiklar. JP H7-1, regional thinning of coke layers middle layer per coke layer in the furnace throat to prevent coke with a thickness of 60 cm (600 mm) or more distribution control for the loaded material to adjust the amount of describes a blast furnace with the method

Ham maddenin yüklendigi firin bogazi ile yapiskan bölgenin olusturuldugu firin göbeginin iç çaplari farkli oldugundan, firin bogazindaki kok tabakasinin kalinligi tipik olarak firin göbegindeki kok tabakasinin kalinliginin yaklasik 2,2 katidir. between the kiln throat where the raw material is loaded and the adhesive zone Since the inner diameters of the kiln core in which it is formed are different, the kiln the thickness of the coke layer in the throat typically It is approximately 2.2 times the thickness of the coke layer.

JP H6-l, yapiskan bölgedeki geçirgenlik direncinin artmasini önlemek ainaciyla firin göbegindeki kok tabakasi kalinligini 250 mm veya daha fazlasina ayarlamak için bir yüksek firin isletim yöntemini açiklar. JP H6-1, permeation resistance in the adhesive region the thickness of the coke layer in the oven core in order to prevent it from increasing Operating a blast furnace to set to 250 mm or more explains the method.

Yukarida tarif edildigi gibi, stabil yüksek firin isletimi için firin göbegindeki ortalama kok tabakasi kalinliginin Önceden belirlenmis veya daha fazla kalinlikta olmasi gerektigi düsünülmüs ve gerçek yüksek firin isletimi, firin göbegindeki ortalama kok tabakasi kalinligi en az yaklasik 190 niin ve kosullara bagli olarak en az 250 mm olacak sekilde kok yüklenerek gerçeklestirilmistir. Oven for stable blast furnace operation as described above Predetermined average root layer thickness in the core or more thick and real blast furnace operation, average coke layer thickness in the furnace core at least approximately 190 ni and depending on the conditions at least 250 mm It was carried out by loading coke in this way.

Cevher malzemesi tabakasina kok karistirilmasinin yapiskan bölgenin geçirgenlik direncinin artirilmasinda etkin oldugu da bilininektedir ve uygun karisim durumunu tayin etmek için çesitli arastirmalar rapor edilmistir. Örnegin, JP H, göbeksiz bir yüksek firinda cevher hoperlerinden çikis tarafindaki cevher hoperine kok beslenmesini, bir konveyör üstündeki cevher üstüne kok istifleninesini ve bir döner oluktan yüksek firina cevher ve kok yüklemek için bunlarin bir firin üst silosuna yüklenmesini açiklar. Mixing coke into the ore material layer It is also known to be effective in increasing the permeability resistance and Various studies have been reported to determine the appropriate mixing state. has been made. For example, JP H is a coreless blast furnace ore. coke feeding to the ore hopper on the exit side from the hoppers, a Coke is stacked on the ore on the conveyor and a rotary a furnace of these for loading ore and coke into the blast furnace from the chute explains its loading into the upper silo.

JP , firin üst silolarina cevher ve kokun ayri olarak depolanmasini ve ayni zamanda üç parti: düzenli olarak yüklenen kok için bir parti, merkezi olarak yüklenen kok için bir parti ve karma yükleine için bir parti olusturmak için kok ve cevheri karistirirken ayni anda da bunlarin yüklenmesini açiklar. JP separates ore and coke into kiln top silos. and three batches at the same time: regularly one batch for loaded coke, one batch for centrally loaded coke and coke and ore to form a batch for mixed cargo explains how to load them at the same time as mixing.

JP SSS-, stabil olmayan bir yapiskan bölge sekli ve yüksek firinin isletiini sirasinda merkezi bölge yakininda daha düsük bir gaz kullanim orani elde etmek ve isletim emniyeti ile termal verimi artirmak için tüm cevherin ve tüin kokun yüksek firina yüklenmeden önce tainainen karistirildigi bir yüksek firina ham madde yükleme yöntemini açiklar. JP FAQ-, an unstable form of sticky region and lower near the central zone during the operation of the blast furnace to achieve a gas utilization rate and operational safety and thermal efficiency before all your ore and tobacco coke is loaded into the blast furnace to increase raw material loading into a blast furnace where the tainain is mixed first explains the method.

JP , karistirilan kokla reaktiviteyi gelistirme etkisi elde etme vasitasi olarak yüksek reaktif koku J IS M 8713›e göre ölçülen düsük dereceli indirgemeye, yani düsük JIS indirgenebilirligine sahip cevherle karistiran ve böylece düsük reaktif cevherin yüksek veriinle reaksiyon göstermesine izin veren yüksek firindaki reaktiviteyi artiran bir teknigi açiklar. JP Improving reactivity with mixed coke highly reactive odor according to J IS M 8713 as a means of achieving the effect measured low order reduction, ie low JIS mixing with ore with reducibility and thus low reactive high, which allows the ore to react with high data describes a technique that increases reactivity in the oven.

Cevher tabakasina kok karistirmak için pek çok teknik rapor edilmistir. Ancak, cevher tabakasina kok karistirma durumunda bile yapiskan bölgenin geçirgenligini saglamak için gereken kok tabakasi kalinligi henüz kesin olarak taniinlanmainistir. Many technical reports for mixing coke in the ore layer has been made. However, even in the case of coking into the ore layer the root layer required to ensure the permeability of the adhesive zone thickness has not yet been precisely defined.

REFERANS LISTESI Patent Literatürleri PTL 1: JP H7-18310 A PTL 2: JP H6-1364l4 A PTL 3: JP H3-211210 A PTL 5: JP SSS-079810 A PTL 8: JP H8-189926 A Patent Disi Literatürler NPL 1: “Zairyo to purosesu” (Current advances in materials and processes), cilt 63, sayfa 894 (2000) NPL 2: “Tetsu to hagane” (Iroii and steel), cilt 87, no. 5, sayfalar 342- 349 (2001) NPL 3: “Tetsu to hagane” (Iron and steel), cilt 79, no. 8, sayfalar 927- 933 (1993) (Teknik Sorun) Gerçek isletimde firin göbegindeki yapiskan bölgenin yukarida sözü edilen geçirgenlik direncini ölçmek son derece güçtûr. Geçirgenlik direncini degerlendirmek için, yüksek firindaki gaz akisi, yüksek firin yapiskan bölgesini simüle eden bir cihazda dogru olarak olusturulmalidir. REFERANCE LIST Patent Literatures PTL 1: JP H7-18310 A PTL 2: JP H6-1364l4 A PTL 3: JP H3-211210 A PTL 5: JP FAQ-079810 A PTL 8: JP H8-189926 A Non-Patent Literatures NPL 1: “Zairyo to purosesu” (Current advances in materials and processes), volume 63, page 894 (2000) NPL 2: “Tetsu to hagane” (Iroii and steel), vol. 87, no. 5, pages 342- 349 (2001) NPL 3: “Tetsu to hagane” (Iron and steel), vol. 79, no. 8, pages 927- 933 (1993) (Technical problem) The above mentioned sticky area in the oven core in real operation It is extremely difficult to measure the permeability resistance. Permeability To evaluate the resistance of the gas flow in the blast furnace, accurately on a device that simulates the adhesive zone. should be created.

Yuksek firin yapiskan bölgesi iki tabakadan olusur: yumusayarak büzülen ve bu yüzden çok yüksek bir geçirgenlik direncine sahip olan bir cevher yapiskan tabakasi ve yumusayarak büzülmeyen ve dolayisiyla da düsük bir geçirgenlik direncine sahip olan bir kok tabakasi. Bu nedenle, yapiskan bölgedeki gaz akisi yana] olarak kok tabakasinin içinden geçer. Dolayisiyla, yüksek firin yapiskan bölgesindeki gaz akisini simüle etmek için yana] gaz akisinin olusturulmasi gerekir. The blast oven adhesive zone consists of two layers: softening which shrinks and therefore has a very high permeation resistance a layer of ore sticky and non-softening and non-shrinking therefore a coke with a low permeation resistance layer. Therefore, since the gas flow in the sticky region], the coke passes through the layer. Therefore, the blast furnace is sticky. to simulate the gas flow in the must be created.

Bunu gerçeklestirmek için daha önce Japon Patent Basvuru No. 2013- ”de tarafimizdan “bir yüksek firin yapiskan bölgesini simüle eden, demir cevheri ve/veya sinterli cevher ve kokla doldurulabilecek bir numune dolgulu konteyner içeren bir numune isitma firini ile bir gaz isitma firininin paralel olarak yerlestirildigi bir yapiya sahip olan ve gaz isitma firininda isitilmis gazin numune dolgulu konteynerdeki numune dolgulu tabaka içinden yanal yönde yatay olarak dolastirildigi bir reaktör” açiklanmistir. To achieve this, previously published Japanese Patent Application No. 2013- ” by us ” a blast furnace sticky zone simulating iron ore and/or sintered ore and coke a sample containing a sample filled container that can be filled A furnace in which a heating oven and a gas heating oven are placed in parallel. sample of gas, which has a structure and is heated in a gas heating oven. The sample in the filled container in the lateral direction through the filled layer horizontally circulated reactor” is described.

Yüksek firin yapiskan bölgesini simüle eden bu reaktör, gazin numune dolgulu tabaka içinden yatay olarak aktigi ve ayni zainanda cevhere bir düsey yükün uygulandigi bir yapiya sahiptir. Böyle bir yapi, yüksek firin yapiskan bölgesindeki yanal gaz akisinin, yani yüksek firin yapiskan bölgesini simüle eden geleneksel cihazlarla olusturulamayan yapiskan bölge yakinindaki gaz akisinin dogru olarak olusturulmasini saglar (örnegin, JP H ve “Tetsu to 3)). Gerçek ekipmaninkine es yüksek firin yapiskan bölgesinin geçirgenlik direnci bu sekilde ölçülebilir. This reactor, simulating the sticky zone of the blast furnace, flowing horizontally through the filled layer and at the same time to the ore It has a structure in which a vertical load is applied. Such a build lateral gas flow in the blast furnace sticky zone, i.e. high with conventional appliances simulating the oven sticky zone correct gas flow near the sticky area that cannot be formed. (for example, JP H and “Tetsu to 3)). Blast furnace sticky zone matching that of real equipment The permeability resistance can be measured in this way.

Yukarida sözü edilen reaktörün kullanimiyla, firin göbegindeki yapiskan bölgenin gaz geçirgenligi için geleneksel olarak belirlenemeyen kontrol faktörü / faktörleri belirlenerek ve bir Optimum tabaka yapisi tasarlanarak, daha ince bir cevher tabakasiyla hem stabil yüksek firin isletimi, hem de artan indirgeine verimi elde etmek için bir yüksek firin içine ham madde yükleine yöntemi temin edilmesi yararli olabilir. With the use of the reactor mentioned above, the furnace core traditionally for the gas permeability of the adhesive zone by determining the control factor(s) that cannot be determined and By designing the optimum layer structure, with a thinner ore layer achieve both stable blast furnace operation and increased reduction efficiency. provide a method of loading raw materials into a blast furnace to may be useful.

(Sorunun Çözümü) PTL 7”de açiklanan yüksek firin yapiskan bölgesini simüle eden reaktörün kullanimiyla, yüksek firin ham maddesinin yüksek firina kok ile cevher malzemesi karistirilmadan yüklenmesi ve ayni zamanda kok tabakasi ile cevher tabakasinin film kalinliklarmin degistirilmesi durumunda yapiskan bölge yakinindaki gaz akisi ve yapiskan bölgenin geçirgenlik direnci üzerinde tarafimizdan yogun çalisma yürütülmüstür. (Problem Solution) Simulating the blast furnace sticky zone described in PTL 7 With the use of the reactor, the blast furnace raw material is transferred to the blast furnace. loading without mixing coke and ore material and at the same time Changing the film thickness of the coke layer and the ore layer gas flow near the sticky region and intensive work by us on permeability resistance has been executed.

Yüksek firin ham maddesinin yüksek firina bir kisiin kok ile cevher malzemesi karistirilarak yüklenmesi ve ayni zamanda kok tabakasinin ve kok ve cevher malzemesi karma tabakasinin (bu dokümanda buiidan böyle “karma tabaka” olarak anilacaktir) film kalinliklarinin degistirilmesi durumunda yapiskan bölge yakinindaki gaz akisi ve yapiskan bölgenin geçirgenlik direnci üzerinde de tarafimizdan yogun çalisma yürütülmüstür. The ore of the blast furnace raw material with coke for a person in the blast furnace mixing and loading the coke layer at the same time and coke and ore material mixed layer (in this document hereinafter referred to as the "mixed layer") gas flow near the adhesive area and On the permeability resistance of the adhesive zone, it is also heavily influenced by us. the study was carried out.

Sonuç olarak, ortalama k0k tabakasi kalinliginin geleneksel olarak kabul edilen alt liinitten daha az oldugu bir durumda bile mümkün olan minimum tabaka kalinligini saglamak için yapiskan bölgedeki gaz geçirgenliginin saglandigi ve minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü oraninin ayarlanmasi halinde stabil yüksek firin isletiminin mümkün oldugu tarafimizdan kesfedilmistir. Ayni zamanda, kok tabakasi kalinligi bu sekilde azaltilarak cevher tabakasinin veya karma tabakanin daha ince yapilabilecegi ve böylece indirgeme veriminin artmasina katkida bulunulabilecegi kesfedilmistir. As a result, the average root layer thickness traditionally possible even in a case where it is less than the accepted lower bound in the adhesive zone to ensure the minimum layer thickness gas permeability is ensured and with minimum coke layer thickness. setting the arithmetic mean coke particle size ratio in case of stable blast furnace operation is possible by us. has been discovered. At the same time, the coke layer thickness is thus thinner layer of ore layer or mixed layer can be done, thus contributing to the increase of reduction efficiency. found to be available.

Ayrica, cevher malzemesiyle karma tabaka olarak kokun bir kisminin yüklenmesi durumunda yapiskan bölgenin gaz geçirgenliginin karma tabakadaki kok karisim oranina ve kök tabakasi kalinligina göre degistiginden, bu iliskiler uygun sekilde kontrol edilerek daha stabil yüksek firin isletimiiiin ve kok miktarinda azalmanin her ikisinin de elde edilebildigi tarafimizdaii kesfedilmistir. In addition, a portion of coke as a mixed layer with ore material mixed gas permeability of the adhesive zone in case of According to the root mixture ratio in the layer and root layer thickness changes, these relationships are controlled appropriately and become more stable. both blast furnace operation and a reduction in coke It has been discovered by us that it can be obtained.

Bulus, yukarida sözü edilen kesiflere ve ilave çalismalara dayanir. The invention is based on the above-mentioned discoveries and further work.

Bu sebeple, tarafimizdan asagidakiler temin edilmektedir: 1. Bir yüksek firina ham madde yüklemek için, cevher malzemesi ile kok içeren yüksek firin ham maddesiniii bir döner oluk kullanilarak yüksek firina yüklenmesini içeren ve yüksek firin ham maddesinin yüksek firina kok ile cevher malzemesi karistirilinadan bir kok tabakasi ve bir cevher tabakasi olarak veya bir kok tabakasi ve bir kisim kok ile cevher malzemesi karistirilarak olusturulan kok ve cevher malzemesi karma tabakasi olarak yüklendigi, yüksek firin ham maddesinin yüksek firina kok ile cevher malzemesi karistirilinadan yüklenmesi halinde, sarj basina yüksek firina yüklenen kok tabakasi yüksek firinin göbegine ulastiginda firin göbegindeki kok tabakasinin minimum kalinligi ile kokun aritmetik ortalama partikül büyüklügünün oraninin, asagidaki Formül l°le tanimlanan aralikla sinirlandirilmis oldugu veya yüksek firin ham maddesinin yüksek firina bir kisim kok ile cevher malzemesi karistirilarak yüklenmesi halinde, asagidaki Formül 2°yle tanimlanan aralikla sinirlandirilmis oldugu, firin göbegindeki kok tabakasinin ortalama tabaka kalinliginin 190 mm veya daha aziyla sinirlandirilmis oldugu, Lcmini/Dc 22 (l) Lom/Dc 2-0,0063 Ckar. + 2 (2) bu forinüllerde Ckarfin, karma tabakada kg/t cinsinden kok karisiiii orani, Lcminün, firin göbeginde mm cinsinden sarj basina yüksek firina yüklenen minimum kok tabakasi ve Dc”nin, kokun mm cinsinden aritmetik ortalama partikül büyüklügü oldugu bir yöntem. 2. Yukaridaki 1. maddede tarif edilen bir yüksek firina ham madde yüklemek için, yüksek firin ham maddesinin yüksek firina kok tabakasi ve bir kisim kok ile cevher malzemesi karistirilarak olusturulan kok ve cevher malzemesi karma tabakasi olarak yüklenmesi halinde, firin göbeginde sarj basina yüksek firina yüklenen kok tabakasinin ortalama tabaka kalinliginin, karma tabakadaki kok karisim oranina bagli olarak asagidaki Formül 3°le tanimlanan bir aralikla sinirlandirilmis oldugu, bu formülde Ckarhn kg/t cinsinden kok karisim orani ve LCm_”nin firin göbeginde sarj basina yüksek firina yüklenen kok tabakasinin mm cinsinden ortalama tabaka kalinligi oldugu bir yöntem. 3. Yukaridaki 2. maddede tarif edilen bir yüksek firina ham madde yüklemek için, kok karisim oraninin (Ckar.) 80 kg/t veya daha fazla oldugu yöntem. For this reason, we provide the following: 1. To load raw material into a blast furnace, with ore material blast furnace feedstock containing coke using a rotary chute blast furnace loading and blast furnace raw material a coke made from mixing high-fired coke with ore material layer and an ore layer or as a coke layer and a coke formed by mixing part coke and ore material and The ore material is loaded as a mixed layer, the blast furnace raw from mixing high-fired coke and ore material coke layer loaded in the blast furnace per charge when it reaches the core of the blast furnace, the coke layer in the kiln core arithmetic mean particle of coke with minimum thickness the ratio of its magnitude with the interval defined by Formula 1 below limited or the blast furnace raw material is high loading the furnace by mixing a portion of coke with ore material limited to the range defined by Formula 2 below. is the average layer thickness of the coke layer in the furnace core. limited to 190 mm or less, Lcmini/Dc 22 (l) Lom/Dc 2-0.0063 Ckar. + 2 (2) Ckarfin in these formulas, coke mix in kg/t in mixed layer rate, Lcm, high per charge in mm in the oven core The minimum coke layer loaded in the furnace and the Dc”, coke mm A method in which the arithmetic mean particle size is in . 2. A blast furnace raw material described in point 1 above to load, the blast furnace raw material is blast furnace coke layer and a part of coke and ore material is mixed. The coke and ore material formed as a mixed layer blast furnace per charge in the oven core. average layer thickness of the loaded coke layer, mixed Depending on the coke mix ratio in the layer, the following Formula 3° is limited to a defined range, in this formula, the coke mix ratio in Ckarhn kg/t and LCm_” in the furnace mm of the coke layer loaded in the blast furnace per charge in the core A method in which the average layer thickness in terms of 3. A blast furnace raw material described in point 2 above For loading, the coke mix ratio (Ckar.) is 80 kg/t or more. the method it is.

(Avantajli Etki) Bulusta, stabil yüksek firin isletimi ile artan indirgeme veriminin her ikisi de elde edilebilir. Hattâ, yüksek firin ham maddesinin yüksek firina bir kisim kok ile cevher malzemesi karistirilarak yüklenmesi durumunda, kok miktari azaltilarak COZ emisyonlari azaltilabilir. ÇIZIMLERIN KISA TARIFI Ekteki çizimlerde: Sekil 1, bir yüksek firin yapiskan bölgesini simüle eden bir reaktörü gösteren bir seinatik diyagramdir. (Advantageous Effect) In the invention, each of the increased reduction efficiency with stable blast furnace operation both can be obtained. In fact, the blast furnace raw material has high loading the furnace by mixing a portion of coke with ore material COZ emissions can be reduced by reducing the amount of coke. BRIEF DESCRIPTION OF THE DRAWINGS In the attached drawings: Figure 1 shows a reactor simulating a blast furnace sticky zone. It is a seinatic diagram showing

Sekil 2, yüksek firin ham maddesinin yüksek firina kok ile cevher malzemesi karistirilmadan bir kok tabakasi ve bir cevher tabakasi halinde yüklenmesi durumunda, kok tabakasi kalinligi (Lc) ile aritmetik ortalama kok partikül büyüklügünün (Dc) oranina (Le/Dc) göre 1400°C”ta geçirgenlik direncinin bir grafigidir. Figure 2 shows the blast furnace raw material blast furnace coke and ore a coke layer and an ore layer without mixing the material with the coke layer thickness (Lc) arithmetic mean coke particle size (Dc) ratio (Le/Dc) It is a graph of the permeability resistance at 1400°C according to

Sekil 3A, kok tabakasinin kalin olmasi durumunda yapiskan bölgedeki kok tabakasina eritilmis cevherin giris seklini gösteren bir sematik diyagramdir. Figure 3A shows the sticky region in the case of a thick coke layer. A schematic showing the way smelted ore enters the coke layer is the diagram.

Sekil 38, kok tabakasinin ince olmasi durumunda yapiskan bölgedeki kok tabakasina eritilmis cevherin giris seklini gösteren bir sematik diyagramdir. Figure 38 shows that in the sticky region if the coke layer is thin. A schematic showing the way smelted ore enters the coke layer is the diagram.

Sekil 4, kok tabakasi kalinligi (LC) ile aritmetik ortalama kok partikül büyüklügünün (Dc) oranina (LC/Dc) göre, her bir kok karisim oraninda l400°C”ta geçirgenlik direncinin bir grafigidir. Figure 4, the arithmetic mean coke particle thickness (LC) of the coke layer According to the size (Dc) ratio (LC/Dc), each coke mix It is a graph of the permeation resistance at 1400°C.

Sekil 5, bir referans geçirgenlik direnci degerine ulasildiginda, kok karisim oranina (Cm) göre, kok tabakasi kalinligi (Lc) ile aritmetik ortalama kok partikül büyüklügünün (Dc) oraninin (LC/Dc) bir grafigidir. Figure 5 shows that when a reference permeation resistance value is reached, the coke arithmetic with root layer thickness (Lc) according to mixing ratio (Cm) the ratio (LC/Dc) of the average coke particle size (Dc) is the graph.

Sekil 6, gerçek bir yüksek firinda, firin göbegindeki minimum kok tabakasi kalinligi (Lcmin) ile aritmetik ortalama kok partikül büyüklügü (Dc) arasindaki oran (Lcmins/Dc) ile firin göbegindeki ortalama kok tabakasi kalinligi (Lcm) arasindaki iliskiyi gösteren bir diyagramdir. Figure 6 shows the minimum coke in the furnace core in a real blast furnace. layer thickness (Lcmin) and arithmetic mean coke particle size The ratio between (Dc) (Lcmins/Dc) and the average coke in the furnace core is a diagram showing the relationship between the layer thickness (Lcm).

Sekil 7, bir yüksek firina ham madde yükleme durumunu gösteren bir sematik diyagramdir. Figure 7 is a diagram showing the raw material loading situation in a blast furnace. sematic diagram.

AYRINTILI TARIF Asagida, bulusuii açiklanan yapilarindan biri ayriiitili olarak tarif edilmektedir. DETAILED RECIPE Below, one of the structures described in the invention is described in detail. is being done.

Ilk olarak, yüksek firin ham maddesinin yüksek firina kok ile cevher malzemesi karistirilmadan bir kok tabakasi ve bir cevher tabakasi halinde yüklenmesi durumunda, firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü oraninin uygun sekilde ayarlanmasi ihtiyacinin kesfine yol açan bir deney (Deney 1) tarif edilmektedir. First, the ore with blast furnace coke of the blast furnace raw material a coke layer and an ore layer without mixing the material minimum coke in the oven core arithmetic mean coke particle size with layer thickness a problem that leads to the discovery of the need to adjust the ratio appropriately. experiment (Experiment 1) is described.

Sekil 1, bu deneyde kullanilan bir cihazi gösteren bir seinatik diyagramdir. Sekil 13de, bir numune isitma firini (1) bir numune dolgulu konteyner (2) ve bir isitici (3) içerir. Numune dolgulu konteyner (2) lamine formda bir kok tabakasi (4) ile bir cevher tabakasindan (5) olusan bir numune dolgulu tabakayla (6) doldurulur. Figure 1 is a seinatic showing a device used in this experiment. is the diagram. In Figure 13, a sample heating oven (1) the filled container (2) and a heater (3). sample filled container (2) an ore with a coke layer (4) in laminated form A sample consisting of layer (5) is filled with the filled layer (6).

Numune dolgulu tabakanin (6) sicakligi isiticiyla (3) koiitrol edilebilir. The temperature of the sample filled layer (6) can be controlled by the heater (3).

Bir gaz isitma firini (7) ayni zamanda bir isitici (8) içerir. Cihaz, ayrica, bir gaz mikseri (9), bir gaz devridaiin borusu (10), bir basinç göstergesi (1 1), bir isi çifti (12), bir baski plakasi (13), bir taban (14), grafitten veya metalden yapilmis bir baglanti çubugu (15) ve bir yük araci (16) içerir. Burada, yük araci (16) olarak bir agirlik kullanilir. A gas heating oven (7) also includes a heater (8). Device, In addition, a gas mixer (9), a gas recirculation pipe (10), a pressure indicator (1 1), a heat pair (12), a pressure plate (13), a base (14), a tie rod (15) made of graphite or metal and a load includes means (16). Here, a weight is used as the load means (16).

Agirlik (16), numune dolgulu tabakaya (6) yüksek firindakini simüle eden bir yük uygular. The weight (16) is applied to the sample filled layer (6), simulating that in the blast furnace. applies a load.

Bu Ölçüm cihazinin ana özelligi, çizimde gösterildigi gibi numune isitma firini (1) ile gaz isitma firininin (7) paralel olarak yerlestirilmesidir. Paralel yerlesimle, gaz isitma firininda (7) isitilan gaz yanal olarak numune isitma firinina (l) girer ve numune dolgulu koiiteynerdeki (2) numune dolgulu tabaka (6) içinden yatay olarak akar. Böylece yüksek firin yapiskan bölgesinde yana] gaz akisi olusturulabilir. The main feature of this Meter is the sample as shown in the drawing. the heating oven (1) and the gas heating oven (7) in parallel. is the placement. With parallel arrangement, heated in gas heating oven (7) the gas enters the sample heating furnace (l) laterally and the sample filled horizontally through the sample-filled layer (6) in the container (2). mite. Thus, since the sticky zone of the blast furnace] gas flow can be created.

Hattâ, ölçüm cihazinda, agirlik (16), baglanti çubugu (15) ve baski plakasi (13) vasitasiyla numune dolgulu tabakaya isletim kosullarina göre önceden belirlenmis bir yük uygulanabilecek sekilde taban (14) üstüne yerlestirilir. Yukarida sözü edilen yatay gaz akisiyla birlikte bu, yüksek firin yapiskan bölgesindeki tabaka yapisini yansitan geçirgenlik direncinin degerlendirilmesini saglar. In fact, on the measuring device, the weight (16), tie rod (15) and pressure to the sample-filled layer through the plate (13), depending on the operating conditions. base (14) so that a predetermined load can be applied according to is placed on top of it. With the above-mentioned horizontal gas flow This reflects the layer structure in the sticky zone of the blast furnace. allows the evaluation of permeability resistance.

Deneyde, kok tabakasinin ve cevher tabakasinin tabaka kalinliklari degistirilirken yapiskan bölgenin geçirgenlik direnci bu cihaz kullanilarak ölçülmüstür. Tablo 1 deneysel kosullari gösterir. In the experiment, the layer thicknesses of the coke layer and the ore layer permeability resistance of the adhesive zone when changing this device measured using. Table 1 shows the experimental conditions.

Kok tabakasinin kalinliginin degistirilmesi durumunda, birim hacim basina baslangiç gaz devridaim hizini sabit tutinak için gaz akis hizi da degisir. Hattâ, her bir tabakanin kalinligi, konumdan bagimsiz olarak hemen hemen üniform olacak sekilde ayarlanmistir. If the thickness of the coke layer is changed, the unit volume gas flow rate to keep the initial gas circulation rate constant per head it also changes. In fact, the thickness of each layer is independent of location. adjusted to be almost uniform.

Gaz akis hizi Kok tabakasi Cevher tabakasi Kok tabakasi kalinligi ile (N L/dk) kalinligi (mm) kalinligi (mm) aritmetik ortalama kok partikül büyüklügü orani 100 40 60 4 50 20 30 2 10 15 1 Sekil 2, kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügünün oranina göre 1400°C,ta geçirgenlik direncinin ölçülmesinin sonucunu gösteren bir grafiktir. Lc”nin (mm) kok tabakasi kalinligi ve Dc°nin (mm) aritmetik ortalama kok partikül büyüklügü oldugunu kabul edelim. 1400°C, isletiin sirasinda yüksek firindaki yapiskan bölgenin tipik bir sicakligi olduguna dikkat edilmelidir. Gas flow rate Coke layer Ore layer Coke layer thickness (N L/min) thickness (mm) thickness (mm) arithmetic mean coke particle size ratio 100 40 60 4 50 20 30 2 10 15 1 Figure 2, arithmetic mean coke particle thickness with coke layer thickness permeability resistance at 1400°C, according to the ratio of its size A graph showing the result of the measurement. coke of Lc (mm) layer thickness and arithmetic mean coke particle of Dc (mm) Let's assume it's big. 1400°C, high during operation Note that the sticky zone in the oven has a typical temperature. should be done.

Sekil 2, kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügünün orani (LC/Dc) 2”den az oldugunda geçirgenlik direncinin keskin bir sekilde arttigini gösterir. Figure 2, arithmetic mean coke particle thickness with coke layer thickness permeability when ratio of magnitude (LC/Dc) is less than 2” indicates a sharp increase in resistance.

Kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügünün orani (LC/Dc) 2°den az oldugunda geçirgenlik direncinin keskin bir sekilde artmasiiiin sebebinin asagidaki gibi oldugu tarafimizdan düsünülmüstür. Arithmetic mean coke particle thickness with coke layer thickness permeability when the ratio of magnitude (LC/Dc) is less than 2° The reason for the sharp increase in resistance is as follows: It is considered by us to be.

Yapiskan bölgede, Sekil 3A ve 3B°de gösterildigi gibi, kok tabakasinin (4) kalin oldugu duruma kiyasla kok tabakasinin (4) ince oldugu durumda birim kalinlik basina, eritilmis cevher tabakasi (2la) ile kok tabakasinin (4) birbirine temas ettigi arayüz sayisi artar. In the sticky region, as shown in Figures 3A and 3B, the coke thinner coke layer (4) compared to the case where the coke layer (4) is thick. smelted ore layer (2la) per unit thickness, where The number of interfaces with which the coke layer (4) comes into contact with each other increases.

Eritilmis cevher her bir arayüzden kok tabakasina girdiginden, kok tabakasinin ince oldugu durumda eritilmis cevherin kok tabakasina nispi giris kalinligi artar. Bu, gazin kok tabakasi içinden kolayca aktigi kismi azaltarak geçirgenlik direncinde bir artisa yol açar. Sekil 3”te, referans isareti “Zlb”, kok tabakasina giren bir eritilmis cevher tabakasidir. Since the smelted ore enters the coke layer at each interface, the coke to the coke layer of the smelted ore when the layer is thin. the relative inlet thickness increases. This means that the gas flows easily through the coke layer. This leads to an increase in the permeability resistance by reducing the fraction. In Figure 3, the reference mark “Zlb” is a smelted ore entering the coke layer. layer.

Ozellikle, kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügünün oraninin 2°den az Oldugu durumda, kok tabakasinin kalinligi iki kok partikülünün kalinligindan azdir ve kok tabakasinin bir kisminda sadece bir kok partikülü bulunabilir. Böyle bir kok partikülü eritilmis cevherle yukaridan ve asagidan kaplanir ve bunun sonucu olarak da bu kisimdaki yana] gaz akisi bloke edilir. In particular, the arithmetic mean coke particle thickness with the coke layer thickness where the ratio of the size of the coke is less than 2° its thickness is less than the thickness of two coke particles and only one coke particle can be found in a part of it. Such a coke particle is covered with molten ore from above and below, and its As a result, the gas flow to this side is blocked.

Bunun, kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü orani 29den az oldugunda geçirgenligin keskin sekilde artmasinin sebebi oldugu düsünülmüstür. This is the arithmetic mean of the coke layer thickness and the coke particle size. When the size ratio is less than 29, the permeability will increase sharply. It is thought to be the reason for the increase.

Yukarida sözü edilen deneysel sonuç esasinda, bulus, yüksek firin ham maddesinin yüksek firina kok ile cevher malzemesi karistirilmadan bir kok tabakasi ve bir cevher tabakasi halinde yüklenmesi durumunda, sarj basina yüksek firina yüklenen kok tabakasi firin göbegine ulastiginda firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü orani asagidaki Forinül l°deki bagintiyi karsilayacak sekilde yüklemeyi gerçeklestirir: Lcmjn/ Dc 22 (1) Burada, Lcmin. firin göbeginde sarj basina yüksek firina yüklenen kok tabakasinin minimum tabaka kalinligi (mm) ve De kokuk aritmetik ortalama kok partikül büyüklügüdür (mm). On the basis of the above-mentioned experimental result, the invention is ore material with high furnace coke as raw material as a coke layer and an ore layer without mixing coke loaded in the blast furnace per charge When the layer reaches the oven core, the minimum coke in the oven core The ratio of layer thickness to arithmetic mean coke particle size load in a way that satisfies the relation in Formula 1 below. performs: Lcmjn/ DC 22 (1) Here, Lcm. coke loaded in the blast furnace per charge in the furnace core The minimum layer thickness of the layer (mm) and the coke arithmetic is the average coke particle size (mm).

Firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü oraninin üst limiti 'Özellikle sinirlandirilmis olmamasina ragmen, ortalama kok tabakasi kalinligini en aza indirmek için üst limit tercihen 4°tür. Arithmetic with minimum coke layer thickness in the furnace core upper limit of average coke particle size ratio 'Especially Although not limited, it measures the average root layer thickness. the upper limit is preferably 4° to minimize

Firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü orani yukaridaki Formül l”deki aralikla sinirlandirilarak, yüksek firin ham maddesinin kok ile cevher malzemesi karistirilmadan yüklenmesi durumunda geleneksel olarak kabul edilen alt limitten daha da asagi düsürmek mümkündür. Ayrinti olarak, ortalama kok tabakasi kalinligi 190 mm veya daha az olabilir. Arithmetic with minimum coke layer thickness in the furnace core average coke particle size ratio in Formula 1 above intermittently, the blast furnace raw material with coke and ore conventionally, if the material is loaded without mixing it is possible to lower it further below the accepted lower limit. Detail Typically, the average root layer thickness may be 190 mm or less.

Burada, firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü oraninin 2 veya daha fazla olmasi gerektiginden, firin göbegindeki ortalama kok tabakasi kalinligi için gerçekçi bir alt limit yaklasik 180 mm”dir. Here, with the minimum coke layer thickness in the furnace core 2 or more of the arithmetic mean coke particle size ratio The average coke layer in the oven core should be A realistic lower limit for thickness is approximately 180 mm.

Aritmetik ortalama kok partikül büyüklügü 'Özellikle sinirlandirilmis olmamasina ragmen, aritmetik ortalama kok partikül büyüklügü tercihen 20 mm ila 60 mm araligindadir. Arithmetic mean coke particle size 'Specially limited Although not the arithmetic mean coke particle size preferably in the range of 20 mm to 60 mm.

Burada sözü edilen aritmetik ortalama kok partikül büyüklügü, önceden belirlenmis miktarda rastgele ekstrakte edilmis kok azalan büyüklük sirasina sahip elek gözlerinden geçirilerek, her bir elekte kalan kok kütlesi ürünü ile elek gözü büyüklügü bulunarak ve hesaplanan t0plam ürün elemeye tabi tutulan t0plam kok kütlesine bölünerek hesaplanmistir. The arithmetic mean coke particle size mentioned here is predetermined amount of randomly extracted coke decreasing passed through sieve meshes of order of size, in each sieve. by finding the residual coke mass product and the sieve mesh size and the calculated total product to the total coke mass subjected to sieving calculated by dividing.

Ayrinti olarak, aritmetik ortalama kok partikül büyüklügü D (mm), elemeye tabi tutulan toplam kok kütlesi M (kg), i. elegin elek gözü büyüklügü (1, (m), 1. elekte kalan kok kütlesi mi (kg) ve elek sayisi n ile gösterildiginde, aritmetik ortalama kok partikül büyüklügü (D) asagidaki formülle ifade edilebilir: Asagida, yüksek firin ham maddesinin yüksek firina bir kisim kok ile cevher malzemesi karistirilarak yüklenmesi durumunda firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü oraninin uygun sekilde ayarlanmasi ihtiyacinin kesfine yol açan bir deney (Deney 2) tarif edilmektedir. In detail, the arithmetic mean coke particle size D (mm), total mass of coke subjected to sieving M (kg), i. sieve eye of the sieve size (1, (m), mass of coke remaining in the 1st sieve (kg) and number of sieves n The arithmetic mean coke particle size (D) is denoted by can be expressed by the following formula: Below is a portion of the blast furnace raw material with coke in the blast furnace. furnace in case of ore material mixed loading arithmetic mean with minimum root layer thickness in the core proper adjustment of the coke particle size ratio An experiment (Experiment 2) that leads to the discovery of the need is described.

Karma tabakadaki kok karisim orani ile kok tabakasi kalinligi arasindaki iliskinin, yani karma tabakadaki kok karisim orani ile firin göbeginde sarj basina yüksek firina yüklenen kok tabakasinin ortalama kalinligi arasindaki iliskinin yapiskan bölgenin gaz geçirgenligini kontrol ettiginin tarafimizdan nasil kesfedildigi tarif edilmektedir. The coke mix ratio in the mixed layer and the thickness of the coke layer the relationship between the coke mix ratio in the mixed layer and the furnace of the coke layer loaded in the blast furnace per charge in the core gas of the adhesive region of the relationship between the average thickness Description of how we discovered that you control the permeability is being done.

Cm› (kg/t)”u kok karisiin orani ve Lcm (mm)°yi firin göbeginde sarj basina yüksek firina yüklenen kok tabakasinin ortalama kalinligi olarak kabul edelim. Burada sözü edilen kok karisim orani (Ckar.) (kg/t), 1 t sicak metal üretildiginde karma tabakadaki kok miktaridir (kg). Bu deneyde Sekil 1”dekiyle ayni cihaz kullanilmistir. The coke mix ratio of cm (kg/t) and charge Lcm (mm) in the oven core average thickness of the coke layer loaded in the blast furnace per head Let's take it as. The coke mix ratio mentioned here (Ckar.) (kg/t) is the amount of coke in the mixed layer when 1 t of hot metal is produced (kg). The same device as in Figure 1 was used in this experiment.

Deneyde, kok tabakasi ve kok ile cevher malzemesi karistirilarak elde edilen karma tabaka olusturulmus ve yukarida sözü edilen cihaz kullanilarak yapiskan bölgenin geçirgenlik direnci ölçülmüstür. Kok karisim orani 0 kg/t (cevher malzemesi ve kök karisimi yok), 80 kg/t, 160 kg/t ve 230 kg/t°a ayarlanmis ve kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü orani her bir kok karisim oraniiida degistirilmistir. Lc (mm)”yi kok tabakasi kalinligi ve Dc (mm)”yi aritmetik ortalama kok partikül büyüklügü olarak kabul edelim. Her bir tabakanin kalinligi, konumdan bagimsiz sekilde hemen hemen ünifomi olarak ayarlanmistir. In the experiment, the coke layer and the ore material are mixed with the coke. The mixed layer was created and the above-mentioned device was The permeability resistance of the adhesive region was measured using Root mix rate 0 kg/t (no ore material and root mix), 80 kg/t, Adjusted to 160 kg/t and 230 kg/t° and with coke layer thickness arithmetic mean coke particle size ratio per coke mix rate has been changed. Lc (mm) is the root layer thickness and Dc (mm) is accepted as the arithmetic mean coke particle size. let's. The thickness of each layer, regardless of location set almost as a uniform.

Deneyde, 1 t sicak metal üretirken gereken kok miktari, yaiii kok oraiii sabit bir degere (320 kg/t) ayarlanmistir. Hattâ, her durumda, aritmetik ortalama kok partikül büyüklügü 10 mm olan kok kullanilmistir. Kok tabakasinin kalinligiiiin degistirilmesi durumunda, birim hacim basina baslangiç gaz devridaim hizini sabit tutmak için gaz akis hizi da degistirilmistir. In the experiment, the amount of coke required to produce 1 t of hot metal, oil coke oraiii it is set to a fixed value (320 kg/t). In any case, arithmetic Coke with an average coke particle size of 10 mm was used. Root If the thickness of the layer is changed, per unit volume To keep the initial gas circulation rate constant, the gas flow rate is also has been changed.

Sekil 4, kok tabakasi kalinligi (LC) ile aritmetik ortalama kok partikül büyüklügünün (Dc) oraiiina (LC/Dc) göre, her bir kok karisim oraninda 1400°Csta geçirgenlik direnci ölçümünün sonucunu gösteren bir grafiktir. Figure 4, the arithmetic mean coke particle thickness (LC) of the coke layer according to the ratio of size (Dc) (LC/Dc), each coke mix showing the result of permeability measurement at 1400°C is a graph.

Sekil 4, her bir kok karisim oraninda, kok tabakasi kalinligi (Lc) ile aritmetik ortalama kok partikül büyüklügünün (Dc) orani (LC/Dc) azaldiginda geçirgenlik direncinin arttigini gösterir. Figure 4 shows the root layer thickness (Lc) at each coke mix ratio. arithmetic mean coke particle size (Dc) ratio (LC/Dc) decreases, it indicates that the permeability resistance increases.

Ozellikle, cevher malzemesi ile kokun karistirilmadigi durumda (karisim orani 0 kg/t), Deney 1”de oldugu gibi kok tabakasi kalinligi (LC) ile aritmetik ortalama kok partikül büyüklügünün (Dc) oraiii (LC/Dc) Zaden az oldugunda geçirgeiilik direnci keskin sekilde artar. Especially in the case where the ore material is not mixed with the coke. (mixing ratio 0 kg/t), Root layer thickness as in Experiment 1 The ratio of (LC) to the arithmetic mean coke particle size (Dc) (LC/Dc) When already less, the permeability resistance increases sharply.

Dolayisiyla, cevher malzemesi ile kokun karistirilmadigi durumda kok tabakasi kalinligi (LC) ile aritmetik ortalama kok partikül büyüklügünün (Dc) orani (LC/Dc) 2 oldugunda, her bir kok karisim oraninda bu geçirgenlik direncine (yaklasik 22 kPa/m) ulasilirken Lc/Dc degeri tayin edilmistir. Sekil 5, kok karisim oranina (Cm.) göre tayin edilen Lc/Dc°nin bir grafigidir. Therefore, in the case where the ore material and coke are not mixed, the coke layer thickness (LC) and arithmetic mean coke particle When the size (Dc) ratio (LC/Dc) is 2, each coke mix While reaching this permeability resistance (approximately 22 kPa/m) Lc/Dc value has been determined. Figure 5, by coke mix ratio (Cm.) is a graph of the assigned Lc/Dc°.

Sekil 5, referans geçirgenlik direnci degerine ulasildiginda, kok karisim oranina (Ckar.) göre, kok tabakasi kalinligi (LC) ile aritinetik ortalama kok partikül büyüklügü (DC) oranina (LC/Dc) dogrusal olarak yaklasilabilecegini gösterir. Buradan hareketle, asagidaki Forinül 2a”yla gösterildigi gibi kok karisim oranina (Cm.) göre kok tabakasi kalinligi (LC) ile aritmetik ortalama kok partikül büyüklügü (Dc) oraiii (LC/Dc) sinirlandirilarak istenen geçirgenligin saglandigi anlasilabilir: Lc/Dc 2-0,0063 Ckar,+ 2 (2a) Bununla birlikte gerçek yüksek firinda, kok tabakasi ayni sarjla olusturuldugunda bile, tabaka kalinligi koiiuina bagli olarak degisir. Figure 5, when the reference permeation resistance value is reached, the coke Arithinetic with root layer thickness (LC) according to mixing ratio (Ckar.) linearly to the mean coke particle size (DC) ratio (LC/Dc) indicates that it can be approached. From this point of view, the following Formula The coke layer according to the coke mix ratio (Cm.) as indicated by “2a” arithmetic mean root particle size (Dc) ratio with thickness (LC) It can be understood that the desired permeability is achieved by limiting (LC/Dc): Lc/Dc 2-0.0063 Ckar,+ 2 (2a) However, in the real blast furnace, the coke layer is heated with the same charge. Even when created, the layer thickness varies depending on the column.

Buna göre, gerçek yüksek firinda yeterli geçirgenligi saglamak için firin göbegindeki miniinum kok tabakasi kalinligiiiin yukaridaki Formül 2a”daki bagintiyi karsilamasi önemlidir. Lomin_ (mm)'yi firin göbegindeki ininiinum kok tabakasi kalinligi olarak kabul edelim. Bu durumda bagiiiti asagidaki Formül 2”er ifade edilebilir: Yüksek firin ham maddesinin yüksek firina bir kisiin kok ile cevher malzemesi karistirilarak yüklenmesi halinde, kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü orani 2°den az oldugunda bile yukaridaki Formül 2 karsilandigi sürece geçirgenligin saglanma sebebi tarafimizdan asagidaki gibi düsünülmüstür. Karma kokun sertlestirici etkisi yumusamis cevher tabakasinin büzülmesini önler ve bu da eritilmis cürufun cevher tabakasina nüfuz etmesini azaltir ve böylece geçirgenlik artar. Accordingly, to ensure sufficient permeability in a real blast furnace, above the minimum thickness of the coke layer in the furnace core. It is important that it satisfies the relation in formula 2a. Oven Lomin_ (mm) Let's consider it as the thickness of the ininiinum root layer in the core. This In this case, the following formula 2 can be expressed: The ore of the blast furnace raw material with coke for a person in the blast furnace If the material is loaded with mixing, the thickness of the coke layer when the arithmetic mean coke particle size ratio is less than 2° permeability as long as Formula 2 above is met. The reason is considered by us as follows. Your mixed scent its hardening effect prevents the softened ore layer from shrinking and this reduces the penetration of molten slag into the ore layer and thus increasing the permeability.

Firin göbegindeki minimum kok tabakasi kalinligi (Lcmm) ile aritmetik ortalama kok partikül büyüklügü (Dc) arasindaki iliski açisindan gerçek yüksek firinda firin göbegindeki ortalama kok tabakasi kalinligi (Lcorts) ayarlanirken, Sekil 6”da gösterildigi gibi Lcort. ile Lcmin/Dc arasinda bir baginti söz konusudur. Bu baginti asagidaki Formül 3a°yla ifade edilebilir: Yukaridaki Foririül 2 ve 3a”dan, firin göbeginde sarj basina yüksek firina yüklenen kok tabakasinin kok karisim orani (Ckar.) ve ortalama kok tabakasi kalinligi (Leon.) için asagidaki baginti formülü (Formül 3) elde edilir: Yukarida sözü edilen deneysel sonuç esasinda, yüksek firin ham maddesinin yüksek firina bir kisim kok ile cevher malzemesi karistirilarak yüklenmesi halinde firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü orani için uygun baginti ve kok karisim orani ile firin göbegindeki ortalama kok tabakasi kalinligi arasindaki uygun baginti tarafimizdan kesfedilmistir. With the minimum coke layer thickness (Lcmm) in the furnace core The relationship between the arithmetic mean root particle size (Dc) average coke in the actual blast furnace core in terms of When adjusting the layer thickness (Lcorts), Lcort. There is a correlation between Lcmin/Dc and This link is below The formula can be expressed by 3a°: From Formulas 2 and 3a above, high per charge per charge in the oven core The coke mix ratio (Ckar.) of the coke layer loaded in the kiln and the average The following relation formula (Formula) for the root layer thickness (Leon.) 3) get: Based on the above-mentioned experimental result, the blast furnace raw ore material with a high furnace part coke minimum coke in the oven core if loaded with stirring The ratio of layer thickness to arithmetic mean coke particle size The average in the furnace core with the appropriate ratio and coke mix ratio for the appropriate relation between the thickness of the coke layer is determined by us. has been discovered.

Bu durumda da, kok miktarini azaltmak için, firin göbegindeki ortalama kok tabakasi kalinliginin (Lcm) üst limiti 190 mm”dir. In this case too, in order to reduce the amount of coke, the upper limit of the average root layer thickness (Lcm) is 190 mm.

Cevher malzemesiyle karistirmak için kok karisim orani tercihen 80 kg/t veya daha fazladir. Cevher inalzeinesiyle karistirmak içiii kok karisim oraninin üst limiti yaklasik 230 kg/t°dur. The coke mix ratio for mixing with the ore material is preferably 80 kg/t or more. Coke for mixing with ore inalzeine the upper limit of the mixing ratio is approximately 230 kg/t°.

Asagida, açiklanan ham madde yükleme yönteminin Sekil 7”ye göre gerçek bir döner oluklu yüksek firina uygulanmasina dair bir örnek tarif edilmektedir. Below is the raw material loading method described according to Figure 7 An example of the application of a real rotary flute blast furnace is described.

Sekil 7”de, referans isareti (22) bir yüksek firin, (22a) bir firin bogazi, (22b) bir firin göbegi, (23a) ila (23c) firin üst silolari, (23d) bir merkezi kok tabakasi, (23e) bir çevresel kok tabakasi, (23f) bir sinir bölgesi, (24) bir toplama hoperi, (25) bir göbeksiz yükleme cihazi, (26) bir döner oluk ve (27) bir yüksek basinç borusu hava deligidir. In Figure 7, the reference mark (22) is a blast furnace, (22a) a furnace neck, (22b) a kiln core, (23a) to (23c) kiln top bins, (23d) a central root layer, (23e) a peripheral root layer, (23f) a nerve area, (24) a collection hopper, (25) a hubless loading device, (26) is a rotary chute and (27) is a high-pressure tube vent.

Bu örnekte, firin üst silosunda (23a) sadece kok depolanir ve firin üst silosunda (230) sadece cevher malzemesi depolanir. In this example, only coke is stored in the kiln top bin 23a and in silo 230 only ore material is stored.

Kok ile cevher malzemesinin karistirilmadigi durumda döner oluklu yüksek firina ham madde yüklemesi, cevher malzemesi ile kok döner oluktan (26) dönüsümlü olarak yüklenerek gerçeklestirilir. Firinda, kok tabakasi (4) ve cevher tabakasi (5) lamine formda dönüsümlü olarak olusturulur. Rotary groove in the case where coke and ore material are not mixed high furnace raw material loading, coke returns with ore material It is carried out by loading the trough (26) alternately. In the oven, coke layer (4) and ore layer (5) alternating in laminated form is created as

Kok tabakasi yükleme prosedürünün spesifik bir örnegi olarak, sirali egine tekniginin kullanildigi asagidaki yöntem kullanilabilir. Ilk olarak, döner olugun (26) ham madde yükleme varis noktasi yüksek firinin (22) firin duvari iç çevresel bölgesine ayarlanarak, firin iç duvari çevresel bölgesinde çevresel kok tabakasi (23e) olusturmak için sadece kok depolayan firin üst silosundan (23a) kok yüklenir. Daha sonra, döner olugun (26) ham madde yükleme varis noktasi yüksek firinin merkezi bölgesine ayarlanarak, firin merkezi bölgesinde merkezi kok tabakasi (23d) olusturmak için firin üst silosundan (23a) kok yüklenir. As a specific example of the coke layer loading procedure, the sequential The following method using the eine technique can be used. First As a result, the rotary chute (26) has a high raw material loading destination. the oven wall (22) is adjusted to the inner circumferential region, the oven interior to form the peripheral root layer 23e in the peripheral region of the wall. coke is loaded only from the furnace top silo (23a), which stores coke. More Then, the rotary chute (26) has a high raw material loading destination. in the center zone of the oven, adjusted to the central zone of the oven. from the furnace top silo (23a) to form the central coke layer (23d). coke is loaded.

Kok tabakasinin (4) bu sekilde merkezi kok tabakasi (23d) ile çevresel kok tabakasindan (23e) olusturulmasi durumunda, tipik olarak kok tabakasi (4) Sekil 7°de gösterildigi gibi merkezi kok tabakasi (23d) ile çevresel kok tabakasi (23e) arasindaki sinir bölgesinde (23f) minimum tabaka kalinligina (tmm.) sahiptir. Thus, the central coke layer 23d and the peripheral layer of the coke layer (4) If formed from the coke layer 23e, typically coke layer (4) with the central root layer (23d) as shown in Figure 7° minimum in the border region (23f) between the peripheral root layer (23e) It has layer thickness (tmm.).

Içinden ham maddenin yüklendigi firin bogazi (22a) ile içinde yapiskan bölgenin olusturuldugu firin göbeginin (22b) iç çaplari farkli oldugundan, firin bogazindaki (22a) kok tabakasinin kalinligi tipik olarak firin göbegindeki (22b) kok tabakasinin kalinliginin yaklasik 2,2 katidir. Oven throat (22a), through which raw material is loaded, and inside The inner diameters of the oven core (22b) where the adhesive zone is formed are different. The thickness of the coke layer in the kiln throat (22a) is typical. As a result, the thickness of the coke layer in the furnace core (22b) is approximately 2.2 times.

Buna göre, firin göbegindeki hedef ortalama kok tabakasi kaliiiligiiidaii sarj basina yüksek firina yüklenen kok miktari belirlenerek ve merkezi kok tabakasi ile çevresel kok tabakasi arasindaki sinir bölgesinde kok tabakasi kalinligi, yani minimum kok tabakasi kalinligi, firin göbegindeki hedef kok tabakasi kalinliginin yaklasik 2,2 kati olacak sekilde yükleine miktari ayarlanarak, firin göbegindeki hedef kok tabakasi kalinligi gerçeklestirilebilir. Accordingly, the target average coke layer in the furnace core kaliiiligiiiidaii amount of coke loaded in the blast furnace per charge determined and the central coke layer and the peripheral coke layer the thickness of the root layer in the border region between layer thickness, the target coke layer thickness in the furnace core By adjusting the amount of load to be approximately 2.2 times, the oven The target root layer thickness in the core can be realized.

Bir kisim kok ile cevher malzemesinin karma tabaka halinde karistirildigi durumda döner oluklu yüksek firinda ham madde yüklemesi, örnegin dönüsümlü olarak sadece firin üst silosundan (23a) kok yükleyerek ve ayni anda firin üst silosundan (23a) kok ve firin üst silosundan (23c) cevher yükleyerek gerçeklestirilir. Firinda, kok tabakasi (4) ile kok ve cevher malzemesinin karistirilmasiyla olusturulan karma tabaka (5) lamine formda dönüsümlü olarak olusturulur. Mixed layer of some coke and ore material blast furnace raw material with rotary flute when mixed loading, for example only from the oven top silo (23a) alternately by loading coke and simultaneously removing the coke and oven top bin from the oven top silo (23a). This is accomplished by loading ore from the silo (23c). Bake, coke layer (4) by mixing the coke and ore material. The composite layer (5) formed is alternately in laminated form. is created.

Kok tabakasi yükleme prosedürünün spesifik bir örnegi olarak, sirali egme tekniginin kullanildigi asagidaki yöntein kullanilabilir. Ilk olarak, döner olugun (26) ham madde yükleme varis noktasi yüksek firinin (22) firin duvari iç çevresel bölgesine ayarlanarak, firin iç duvari çevresel bölgesinde çevresel kok tabakasi (23e) olusturmak için sadece kok depolayan firin üst silosundan (23a) kok yüklenir. Daha sonra, döner olugun (26) ham madde yükleme varis noktasi yüksek firinin merkezi bölgesine ayarlanarak, firin merkezi bölgesinde merkezi kok tabakasi (23d) olusturmak için firin üst silosundan (23a) kok yüklenir. As a specific example of the coke layer loading procedure, the sequential The following method using the bending technique can be used. First As a result, the rotary chute (26) has a high raw material loading destination. the oven wall (22) is adjusted to the inner circumferential region, the oven interior to form the peripheral root layer 23e in the peripheral region of the wall. coke is loaded only from the furnace top silo (23a), which stores coke. More Then, the rotary chute (26) has a high raw material loading destination. in the center zone of the oven, adjusted to the central zone of the oven. from the furnace top silo (23a) to form the central coke layer (23d). coke is loaded.

Kok tabakasinin bu sekilde yüklenmesi durumunda, kok tabakasi (4) Sekil 7,de gösterildigi gibi merkezi kok tabakasi (23d) ile çevresel kok tabakasi (23e) arasiiidaki sinir bölgesinde (23f) minimum tabaka kalinligina (tmm.) sahiptir. If the coke layer is loaded in this way, the coke layer (4) As shown in Figure 7, the central root layer (23d) and the peripheral The minimum layer in the nerve region (23f) between the root layer (23e) It has thickness (tmm.).

Içinden ham maddenin yüklendigi firin bogazi (22a) ile içinde yapiskan bölgenin olusturuldugu firin göbeginin (22b) iç çaplari farkli oldugundan, firin bogazindaki (22a) kok tabakasinin kalinligi firin göbegindeki (22b) kok tabakasinin kalinliginin yaklasik 2,2 katidir. Oven throat (22a), through which raw material is loaded, and inside The inner diameters of the oven core (22b) where the adhesive zone is formed are different. thickness of the coke layer in the kiln throat (22a). It is approximately 2.2 times the thickness of the root layer in the core (22b).

Buna göre, cevher malzemesiyle karistirinak için kok karisim oranindan, firin göbegindeki hedef ortalama kok tabakasi kalinligi ayarlanarak ve firin bogazindaki kok tabakasi kalinligi, firin göbeginde ayarlanan ortalama kok tabakasi kalinliginin yaklasik 2,2 kati olacak sekilde kok yükleme miktari ayarlanarak, açiklanan ham madde yükleme yöntemi gerçek yüksek firina uygulanabilir. ÖRNEKLER Birinci Ornek Bu örnek, yüksek firin ham maddesinin yüksek firina kok ile cevher malzemesi karistirilmadan bir kok tabakasi ve bir cevher tabakasi halinde yüklenmesi durumuyla ilgilidir. Accordingly, the coke mix for mixing with the ore material the target average coke layer thickness in the furnace core by adjusting and the thickness of the coke layer in the oven throat, the oven approximately 2.2 of the average root layer thickness set in the core By adjusting the coke loading amount to be solid, the raw material described material loading method is applicable to real blast furnace. EXAMPLES First Example This example is based on blast furnace feedstock with blast furnace coke and ore. a coke layer and an ore layer without mixing the material It is related to the loading status.

Sekil 7°de gösterildigi gibi, gerçek döner oluklu yüksek firinda, ayni pik demir çekme oraninda firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügü oraiii degistirilmis ve ilgili durumlardaki islem sonuçlari karsilastirilmistir. As shown in Figure 7, in a real rotary flute blast furnace, the same minimum coke layer in the furnace core at the pig iron draw ratio arithmetic mean root particle size ratio with thickness changed and the results of the processes in the relevant cases are compared.

Tablo 2 sonuçlari göstermektedir. Table 2 shows the results.

Burada, pik demir çekme orani, gün basina yüksek firinin çekme orani (t/ gün) firin hacmine (m3) bölünerek elde edilir. Indirgeme ajani orani, kok orani ve pulvarize kömür orani, 1 t sicak metal üretilirken kullanilan, sirasiyla indirgeme ajani miktari, kok miktari ve pulvarize kömür miktaridir (kg/t). Here, the pig iron draw rate is the blast furnace draw rate per day. (t/day) divided by the kiln volume (m3). reducing agent ratio, coke ratio and pulverized coal ratio, when producing 1 t hot metal amount of reducing agent used, amount of coke and pulverized is the amount of coal (kg/t).

Geleneksel Karsilastirmali Ornek 1 Firin göbegindeki ortalama kok 233 117 171 tabakasi kalinligi (Lcm) (mm) Firin göbegindeki ortalaina 430 210 321 Firin göbegindeki minimum kok 3,0 1,5 2,2 tabakasi kalinligi ile aritmetik ortalaina kok partikül büyüklügünün orani (Lcmm/Dc) Firin bogazindaki ortalama kok 513 257 376 tabakasi kalinligi (mm) Firin bogazindaki ortalama 946 461 707 Pik demir çekme orani 2,0 2,0 2,0 lndirgeme ajani orani (kg/t) 510 508 505 Kok orani (kg/t) 362 372 355 Pulvarize kömür orani (kg/t) 148 136 150 Gaz kullanim orani (%) 48,] 48,5 48,6 Dolgulu tabaka basinç düsmesi 21,8 28,5 21,9 (kPa/(Nm3/dk)) Tabloda gösterildigi gibi, Ornek lsde, basinç düsmesi geleneksel örnektekine hemen hemen esittir ve bu yüzden geçirgenlik direncinde artis olmamistir. Hattâ, Ornek 1”de, ortalama kok tabakasi kalinligi ve ayni zamanda cevher tabakasi kalinligi, geleneksel 'örnege kiyasla önemli ölçüde azaltilinistir ve daha düsük bir indirgeine ajani oraniyla artan indirgeme verimi elde edilmistir. Traditional Comparative Example 1 Average coke in the oven core 233 117 171 layer thickness (Lcm) (mm) Ortalaina in the oven core 430 210 321 Minimum coke in the oven core 3.0 1.5 2.2 arithmetic with layer thickness average coke particle ratio of magnitude (Lcmm/Dc) Average coke in the furnace throat 513 257 376 layer thickness (mm) Average 946 461 707 in the oven throat Pig iron shrinkage 2.0 2.0 2.0 Reducing agent rate (kg/t) 510 508 505 Coke rate (kg/t) 362 372 355 Pulverized coal rate (kg/t) 148 136 150 Gas usage rate (%) 48,] 48.5 48.6 Filled sheet pressure drop 21.8 28.5 21.9 (kPa/(Nm3/min)) As shown in the table, in Example ls, the pressure drop is conventional is almost equal to that in the example, and therefore in the permeation resistance did not increase. Moreover, in Example 1, the average root layer thickness and at the same time, the ore layer thickness is compared to the traditional 'sample'. significantly reduced and with a lower reducing agent ratio increased reduction efficiency was obtained.

Diger taraftan, Karsilastirmali Ornek l”de, firin göbegindeki minimum kok tabakasi kalinligi ile aritmetik ortalama kok partikül büyüklügünün orani 2°den azdir. Buna göre, basinç düsmesi geleneksel örnektekinden daha yüksektir ve bu yüzden geçirgenlik direncinde artis olmustur. On the other hand, in Comparative Example 1, arithmetic mean coke particle with minimum coke layer thickness the ratio of its magnitude is less than 2°. Accordingly, the pressure drop higher than that of the conventional sample and therefore the permeability increased in resistance.

Ikinci Ornek Bu örnek, yüksek firin ham maddesinin yüksek firina bir kok tabakasi ve bir kisim kok ile cevher malzemesi karistirilarak olusturulan bir kok ve cevher malzemesi karma tabakasi halinde yüklenmesi durumuyla ilgilidir. Second Example This example is a blast furnace coke layer of the blast furnace feedstock. and a portion of coke formed by mixing the ore material. loading of coke and ore material into mixed layer relates to the situation.

Sekil 73de gösterildigi gibi, gerçek döner oluklu yüksek firinda, ayni pik demir çekme oraninda cevher malzemesiyle karistirma için kok karisim orani ile firin göbegindeki ortalama kok tabakasi kalinligi degistirilmis ve ilgili durumlardaki islem sonuçlari karsilastirilmistir. As shown in Figure 73, in a real rotary flute blast furnace, the same coke for mixing with ore material at pig iron draw ratio Average coke layer thickness in the furnace core by mixing ratio changed and the results of the processes in the relevant cases are compared.

Tablo 3 sonuçlari göstermektedir. Table 3 shows the results.

Burada, pik demir çekme orani, gün basina yüksek firinin çekme orani (t/gün) firin hacmine (m3) bölünerek elde edilir. Indirgenie ajani orani, kok orani ve pulvarize kömür orani, 1 t sicak metal üretilirken kullanilaii, sirasiyla indirgeme ajani miktari, kok miktari ve pulvarize kömür miktaridir (kg/t). Örnek 2 Ornek 3 Karsilastirmali Firin göbegindeki minimum kok 55 1 10 47 tabakasi kaliiiligi (Lcmin.) Aritmetik ortalama kok partikül 50 50 50 büyüklügü (Dc) (mm) Firin göbegindeki minimum kok 1,1 2,2 0,9 tabakasi kalinligi ile aritmetik ortalama kok partikül Firin bogazindaki ortalama kok 297 418 279 tabakasi kalinligi (mm) Firin göbegindeki ortalama kok 135 190 127 tabakasi kalinligi (Leon.) (mm) Pik demir çekme orani (t/m3/gün) 2,0 2,0 2,0 Indirgeme ajani orani (kg/t) 505 506 514 Kok orani (kg/t) 357 358 366 Kok karisim orani (Ckar) (kg/t) 160 160 160 Pulvarize kömür orani (kg/t) 148 148 148 Gaz kullanim orani (%) 48,6 48,3 47,5 Dolgulu tabaka basinç düsmesi 21,7 21,2 23,8 (kPa/(Nm3/dk)) Tabloda gösterildigi gibi, Ornek 2 ve 3°te, basinç düsmesi düsüktür ve yeterli geçirgenlik saglanmistir. Ek olarak, kok orani düsürülmüstür ve bu da daha düsük bir indirgeme ajani kullanilmasina katkida bulunmu stur. Here, the pig iron draw rate is the blast furnace draw rate per day. (t/day) divided by the kiln volume (m3). Reducing agent ratio, coke ratio and pulverized coal ratio, when producing 1 t hot metal amount of reducing agent, amount of coke and pulverized is the amount of coal (kg/t). Example 2 Example 3 Comparative Minimum coke in oven core 55 1 10 47 layer thickness (Lcmin.) Arithmetic mean coke particle 50 50 50 size (Dc) (mm) Minimum coke in the oven core 1.1 2.2 0.9 arithmetic with layer thickness average coke particle Average coke in the furnace throat 297 418 279 layer thickness (mm) Average coke in the oven core 135 190 127 layer thickness (Leon.) (mm) Pig iron drawing rate (t/m3/day) 2.0 2.0 2.0 Reducing agent rate (kg/t) 505 506 514 Coke rate (kg/t) 357 358 366 Coke mix ratio (Ckar) (kg/t) 160 160 160 Pulverized coal rate (kg/t) 148 148 148 Gas usage rate (%) 48.6 48.3 47.5 Filled sheet pressure drop 21.7 21.2 23.8 (kPa/(Nm3/min)) As shown in the table, in Examples 2 and 3, the pressure drop is low and sufficient permeability is achieved. In addition, the coke ratio has been reduced and this contributes to the use of a lower reducing agent has been found.

Diger taraftan, Karsilastirmali Ornek 2'de, firin göbegindeki ortalama kok tabakasi kalinligi yukaridaki Formül 1'de tanimlanan alt limitin altindadir. Buna göre, basinç düsmesi daha yüksektir ve geçirgenlik azalmistir. Bunun yani sira, Karsilastirmali Ornek 2”de, geçirgenlik azalmasindan dolayi kok orani artmistir. Üçüncü Ornek Kok karisim orani Tablo 4”teki kosullara göre degistirilmis ve ilgili durumlardaki islem sonuçlari karsilastirilmistir. Tablo 4 sonuçlari göstermektedir. Tablo 4,te gösterilenler haricindeki kosullar Ornek 2°deki kosullarla aynidir. On the other hand, in Comparative Example 2, the average in the oven core The root layer thickness is below the lower limit defined in Formula 1 above. is below. Accordingly, the pressure drop is higher and the permeability has decreased. Besides, in Comparative Example 2, the permeability coke ratio increased due to the decrease. Third Example The coke mix ratio was changed according to the conditions in Table 4 and the relevant The results of the operation in the cases were compared. Table 4 results shows. Conditions other than those shown in Table 4 Example It is the same as the conditions at 2°.

Kok karisim orani (Cm.) (kg/t) 60 80 100 Firin göbegindeki ortalama kok 180 180 180 tabakasi kalinligi (Leon.) (mm) Formül Pin sag tarafi 161 155 149 Indirgeine ajani orani (kg/t) 510 508 507 Kok orani (kg/t) 362 360 359 Pulvarize kömür orani (kg/t) 148 148 148 Gaz kullanim orani (%) 48,1 48,2 48,3 Dolgulu tabaka basinç düsmesi 21,8 21,7 21,6 (kPa/(Nin3/dk)) Tabloda gösterildigi gibi, 80 kg/t°luk bir kok karisim orani kullaiiilan Ornek 5 ve 6”da basinç düsmesi 60 kg/tsluk bir kok karisim orani kullanilan Ornek 4”tekinden daha düsük olmustur ve daha iyi bir geçirgenlik elde edilmistir. Ek olarak, kok orani azaltilmistir ve bu da daha düsük bir indirgeme ajani kullanilmasina katkida bulunmustur. Coke mix ratio (Cm.) (kg/t) 60 80 100 Average coke in the oven core 180 180 180 layer thickness (Leon.) (mm) Formula Pin right side 161 155 149 Reducing agent rate (kg/t) 510 508 507 Coke rate (kg/t) 362 360 359 Pulverized coal rate (kg/t) 148 148 148 Gas usage rate (%) 48.1 48.2 48.3 Filled sheet pressure drop 21.8 21.7 21.6 (kPa/(Nin3/min)) As shown in the table, a coke mix ratio of 80 kg/t° is used. Pressure drop in Example 5 and 6 A coke mix ratio of 60 kg/t it was lower than in Example 4 used and a better permeability is achieved. In addition, the proportion of coke has been reduced, which contributed to the use of a lower reducing agent.

Claims (1)

ISTEMLERREQUESTS 1. Bir yüksek firina (22) ham madde yüklemek için, cevher malzemesi ile kok içeren yüksek firin ham maddesinin bir döner oluk (26) kullanilarak yüksek firina (22) yüklenmesini içeren ve yüksek firin ham maddesinin yüksek firina (22) kok ile cevher malzemesi karistirilmadan bir kok tabakasi (4) ve bir cevher tabakasi (5) olarak veya bir kok tabakasi (4) ve bir kisiin kok ile cevher malzemesi karistirilarak olusturulan kok ve cevher malzemesi karma tabakasi olarak yüklendigi, yüksek firin ham maddesinin yüksek firina (22) kok ile cevher malzemesi karistirilmadan yüklenmesi halinde, sarj basina yüksek firina (22) yüklenen kok tabakasi (4) yüksek firinin göbegine (22b) ulastiginda firin göbegindeki (22b) kok tabakasinin (4) minimum kalinligi ile kokun aritmetik ortalama partikül büyüklügünün oraninin, asagidaki Formül l°le tanimlanan aralikla sinirlandirilinis oldugu veya yüksek firin ham maddesinin yüksek firina (22) bir kisim kok ile cevher malzemesi karistirilarak yüklenmesi halinde, asagidaki Forinül 2'yle tanimlanan aralikla sinirlandirilmis oldugu, firin göbegindeki (22b) kok tabakasinin (4) ortalama tabaka kalinliginin 190 mm veya daha aziyla sinirlandirilmis oldugu, Lciiiiii./DC 22 (l) Lcmin/Dc 2-0,0063 Ckar_ + 2 (2) bu formüllerde Ckar_”in, karma tabakada kg/t cinsinden kok karisim orani, Lle-nîn, firin göbeginde (22b) mm cinsinden sarj basina yüksek firina (22) yüklenen minimum kok tabakasi (4) ve Dc°nin, kokun mm cinsinden aritmetik ortalama partikül büyüklügü oldugu bir yöntem. . Istem l°de tarif edilen bir yüksek firina (22) ham madde yüklemek için, yüksek firin hani maddesinin yüksek firina (22) kok tabakasi (4) ve bir kisim kok ile cevher malzemesi karistirilarak olusturulan kok ve cevher malzemesi karma tabakasi olarak yüklenmesi halinde, firin göbeginde (22b) sarj basina yüksek firina (22) yüklenen kok tabakasinin (4) ortalama tabaka kalinliginin, karma tabakadaki kok karisim oranina bagli olarak asagidaki Formül 3sle tanimlanan bir aralikla sinirlandirilmis oldugu, bu formülde Ckanün, kg/t cinsinden kok karisim orani ve Lcort_7niii, firin göbeginde (22b) sarj basina yüksek firina (22) yüklenen kok tabakasinin (4) mm cinsinden ortalama tabaka kalinligi oldugu bir yöntem. . Istem 2”de tarif edilen bir yüksek firina (22) ham madde yüklemek için, kok karisim oraninin (Ckar.) 80 kg/t veya daha fazla oldugu yöntem.1. A blast furnace (22) is loaded with ore material and coke-containing blast furnace feedstock (22) using a rotary chute (22) and blast furnace feedstock (22) is loaded with coke and ore material The blast furnace raw material is loaded as a coke layer (4) and an ore layer (5) without mixing, or as a coke layer (4) and a person as a mixed layer of coke and ore material formed by mixing coke with ore material, the blast furnace raw material (22) coke When the coke layer (4) loaded in the blast furnace (22) per charge reaches the core (22b) of the blast furnace, the ratio of the minimum thickness of the coke layer (4) in the furnace core (22b) and the arithmetic mean particle size of coke is calculated by the following Formula where the range is limited to ° or if the blast furnace raw material is loaded into the blast furnace (22) by mixing a portion of coke and ore material. Lciiiiii./DC 22 (l) Lcmin/Dc 2-0.0063 Ckar_ + 2 (2) in these formulas, Ckar_”, the coke mix ratio in kg/t in the mixed layer, Lle-n, the minimum coke layer (4) loaded in the blast furnace (22) per charge per charge in the furnace core (22b) and Dc in mm, the coke A method where the arithmetic mean particle size is in mm. . In order to load raw material into a blast furnace (22) as defined in claim 1, if the blast furnace material is loaded as a coke layer (4) of the blast furnace (22) and a mixed layer of coke and ore material formed by mixing a part of coke with ore material, In the furnace core (22b) the average layer thickness of the coke layer (4) loaded in the blast furnace (22) per charge is limited to a range defined by the following Formula 3 depending on the coke mixture ratio in the mixed layer, in this formula C is the coke mixture ratio in kg/t and Lcort_7niii, a method where the coke layer (4) loaded in the blast furnace 22 per charge in the furnace core (22b) is the average layer thickness in mm. . The method for loading raw materials into a blast furnace (22) as defined in claim 2, where the coke mix ratio (Ckar.) is 80 kg/t or more.
TR2016/13510T 2014-03-28 2015-03-20 Method of loading raw material into blast furnace. TR201613510T1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014070372 2014-03-28
JP2014118011 2014-06-06
PCT/JP2015/001596 WO2015146114A1 (en) 2014-03-28 2015-03-20 Method for charging starting material into blast furnace

Publications (1)

Publication Number Publication Date
TR201613510T1 true TR201613510T1 (en) 2017-02-21

Family

ID=54194664

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2016/13510T TR201613510T1 (en) 2014-03-28 2015-03-20 Method of loading raw material into blast furnace.

Country Status (6)

Country Link
JP (1) JP5884208B1 (en)
KR (1) KR101767358B1 (en)
CN (1) CN106133151B (en)
BR (1) BR112016022237B1 (en)
TR (1) TR201613510T1 (en)
WO (1) WO2015146114A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502610B2 (en) 2020-04-13 2024-06-19 日本製鉄株式会社 Blast furnace operation method, charging method control device, charging method control program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910402B2 (en) 1978-12-08 1984-03-08 川崎製鉄株式会社 How to operate a blast furnace with mixed charges
JPH0776366B2 (en) 1987-07-31 1995-08-16 新日本製鐵株式会社 Blast furnace operation method
JP2820478B2 (en) 1990-01-16 1998-11-05 川崎製鉄株式会社 Feeding method for bellless blast furnace
JPH06136414A (en) 1992-10-28 1994-05-17 Nippon Steel Corp Blast furnace operation method
JPH06136415A (en) * 1992-10-28 1994-05-17 Nippon Steel Corp Blast furnace operation method
JP2945820B2 (en) 1993-07-07 1999-09-06 新日本製鐵株式会社 Blast furnace charge distribution control method
JPH08189926A (en) 1995-01-06 1996-07-23 Nippon Steel Corp Method for under-load softening test of ore
JP4269847B2 (en) 2002-08-30 2009-05-27 Jfeスチール株式会社 Raw material charging method for bell-less blast furnace
JP4759985B2 (en) * 2004-10-29 2011-08-31 Jfeスチール株式会社 Blast furnace operation method
US10058948B2 (en) 2010-12-29 2018-08-28 Illinois Tool Works Inc. Weld cell system with communication
EP2851438B1 (en) * 2012-05-17 2016-10-05 JFE Steel Corporation Method for loading raw material into blast furnace
CN104302784A (en) * 2012-05-18 2015-01-21 杰富意钢铁株式会社 Method for charging starting material into blast furnace
JP5949746B2 (en) * 2012-12-25 2016-07-13 Jfeスチール株式会社 Reactor simulating blast furnace cohesive zone

Also Published As

Publication number Publication date
KR20160129032A (en) 2016-11-08
CN106133151B (en) 2018-02-23
WO2015146114A8 (en) 2016-08-18
KR101767358B1 (en) 2017-08-10
JP5884208B1 (en) 2016-03-15
CN106133151A (en) 2016-11-16
JPWO2015146114A1 (en) 2017-04-13
BR112016022237B1 (en) 2021-02-09
WO2015146114A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
Murakami et al. Reduction disintegration behavior of iron ore sinter under high H2 and H2O conditions
CN110600086B (en) Ore blending method based on high-temperature metallurgical performance of iron ore
KR101860255B1 (en) Coal mixture, method for manufacturing coal mixture, and method for manufacturing coke
KR101668584B1 (en) Method for charging raw materials into blast furnace
CN104458789B (en) Method for detecting high temperature performance of iron ore powder
CN108593700A (en) It is a kind of simulation coke blast furnace melting with soft deterioration process test method and simulator
TR201710896T1 (en) Method of loading raw material into blast furnace.
US10337078B2 (en) Solid agglomerate of fine metal particles comprising a liquid oily lubricant and method for making same
TR201613510T1 (en) Method of loading raw material into blast furnace.
CN109211631B (en) Method for measuring reflow property of iron-containing furnace burden
CN104655819A (en) Predication method for heat reactivity of cokes
EP2851434B1 (en) Method for loading raw material into blast furnace
CN104630453B (en) It is a kind of choose the titanium compound of vanadium containing chromium type in addition of Iron Ore Powder method
BRPI0920547B1 (en) METHOD FOR OPERATING BLAST FURNACES USING UNCOOKED PELLETS CONTAINING COAL
CN102798578A (en) Method for forecasting ring forming degree of rotary kiln
JP6747232B2 (en) Blast furnace raw material mixing ratio estimation method
CN105314897B (en) A kind of method that utilization iron tailings adjusts blast furnace slag viscosity coefficient
JP5786810B2 (en) Blast furnace operation method
CN103819207B (en) A kind of RH stove vacuum chamber chromium-free brick and preparation method thereof
JP2013147692A (en) Method of operating blast furnace at high tapping ratio of pig iron
Davydenko et al. Investigation of slag foaming by additions of briquettes in the EAF during stainless steel production
KR101377773B1 (en) Method for predicting size of cokes
Wang et al. Experimental Study on the Effect of Waste Gas Recovery on Iron Ore Sintering
CN109072318B (en) Method for charging raw material into blast furnace
JP5521353B2 (en) Blast furnace thermal preservation zone temperature estimation method