SU295317A1 - Method of automatic control of furnace-reactor unit of hydrocracking plant - Google Patents

Method of automatic control of furnace-reactor unit of hydrocracking plant

Info

Publication number
SU295317A1
SU295317A1 SU6701199631A SU1199631A SU295317A1 SU 295317 A1 SU295317 A1 SU 295317A1 SU 6701199631 A SU6701199631 A SU 6701199631A SU 1199631 A SU1199631 A SU 1199631A SU 295317 A1 SU295317 A1 SU 295317A1
Authority
SU
USSR - Soviet Union
Prior art keywords
furnace
temperature
automatic control
reactor unit
hydrocracking plant
Prior art date
Application number
SU6701199631A
Other languages
Russian (ru)
Inventor
С.М. Зеньковский
В.М. Курганов
В.Г. Аксенов
Н.И. Голубев
С.А. Иванкин
С.М. Затуловский
Ю.Н. Оськин
В.В. Донсков
А.И. Васейко
В.Г. Соловьев
Б.Э. Кушнер
Original Assignee
Специальное Конструкторское Бюро По Автоматике В Нефтепереработке И Нефтехимии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Специальное Конструкторское Бюро По Автоматике В Нефтепереработке И Нефтехимии filed Critical Специальное Конструкторское Бюро По Автоматике В Нефтепереработке И Нефтехимии
Priority to SU6701199631A priority Critical patent/SU295317A1/en
Application granted granted Critical
Publication of SU295317A1 publication Critical patent/SU295317A1/en

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

Изобретение относитс  к автоматиза ции производственных процессов, в част ности , к блокам печь-реактор установ ки гидрокрекинга, и может быть исполь зовано в химической и нефтехимическрй промышленности. Известен способ автоматического управлени  блоком печь-реактор установки гидрокрекинга путем поддерживани  температуры гаэосырьевой смеси, например, в пределах 420 - 430°С на выходе из печи изменением расхода топлива в печь и регулировани  температуры на входе в каждый слой катализатора воздействием на расход охлаждающего газа, подаваемого в тот же слой Однако известный способ не обладает достаточным качеством регулировани и рейкци  может выйти в зону теплового взрыва . С целью устранени  указанных недостатков в предлагаемом способе температуру на входе в слой катализатора корректируют по температуре на выходе из сло  при превышении последней допустимого значени , например, в пределах 445 - , и, кроме того понижают температуру, например , в пределах 390 - 410°С в зависимости от суммарного расхода охлаждающего газа, подаваемого в реактор, Сущность способа по сн етс  схемой , состо щей из датчиков 1-7 темпер ратуры, датчиков 8-10 расхода, пропорционально - интегральных регул торов 11-14, вторичных самопишущих приборов 15-18 и 19-21, приборов 22-25 простейших алгебраических ор рацивг приборов 26-29 ограничени  сигналов, задатчика (элемент УСЭППа) 30, трехмембранного пневмореле(элемент УСЭППа 31, реле 32 переключений термопар 33-39 , хромель-Копелевых диафрагм 40-42, nHeBMaTH4e CJfHX приборов 43-44 предварени , клапанов 45-48, реле 49-51 соотношени . Каждый слой катализатора имеет по две термопары, на входе и на выходе из сло ; верхнюю (34,36,38) дл  поддержани  на стабильном уровне вгшанной температуры реакции, нижнюю (33,3.5 37) дл  контрол  за разогревом сло  катализатора (возможны случаи порчи катализатора или выхода экзотермической реакции в зону теплового взрыва ). Термопара 37 расположена в слое катализатора зоны А. Зоны Вив катализатора имеют одинаковые схемы регулировани  температуры. Вход вThe invention relates to the automation of production processes, in particular, to furnace-reactor units of a hydrocracking unit, and can be used in the chemical and petrochemical industries. There is a known method of automatically controlling a furnace-reactor unit of a hydrocracking unit by maintaining the temperature of the gas-raw mixture, for example, between 420 and 430 ° C at the exit of the furnace by varying the fuel consumption to the furnace and controlling the inlet temperature to each catalyst layer by affecting the flow rate of the cooling gas supplied to the same layer. However, the known method does not have sufficient quality of regulation and the rection may go into the zone of thermal explosion. In order to eliminate these drawbacks in the proposed method, the temperature at the inlet to the catalyst bed is adjusted by the temperature at the outlet of the layer when the last permissible value is exceeded, for example, within 445 - and, moreover, the temperature is lowered, for example, within 390-410 ° C depending on the total flow rate of the cooling gas supplied to the reactor, the essence of the method is explained by a circuit consisting of temperature sensors 1-7, flow sensors 8-10, proportionally - integral regulators 11-14, secondary self-recording at oors 15-18 and 19-21, devices 22-25 of the simplest algebraic devices 26-29 of signal limiting, setting device (USEPP element) 30, three-membrane pneumorel (USEPP element 31, relay 32 of thermocouple switching 33-39, chromel-Kopelevy diaphragms 40-42, nHeBMaTH4e CJfHX devices 43-44, valves 45-48, relays 49-51 ratios. Each layer of catalyst has two thermocouples, one inlet and one outlet of the layer; the top one (34,36,38) to maintain a stable level of reaction temperature, the bottom one (33,3.5 37) to control the heating of the catalyst bed (there may be catalyst damage or exothermic reaction to a thermal explosion zone). Thermocouple 37 is located in the catalyst zone of Zone A. The Viv catalyst zones of the catalyst have the same temperature control circuit. Sign in

слой замер етс  термопарами 34   36 .и через датчики 2 и 4 температуры в ж.эчестве переменной поступает в регул торы 13 и 14. Предусмотрена коррекци  температуры входа в слой по температуре выхода из него; сигналы от термопар 33 и 35 через датчики 1 и 3 температуры,ограниченные по миниму му приборами 26 и 27 .подступают на суммирукйцие приборы 22 и 23 через реле 49 и 50 соотнесени ,куда подаетс  задание от- задатчиков вторичных приборов 15 и 16. Выходные импульсы суммиру ющих приборов 22 и 23  вл ютс  заданием регул торам 13 и 14,которые управл ют подачей хладоагента в реактор при помс ци клапанов 45 и 4б,Ограничение сигналов по минимуму предусмотрено дл  того,чтобы коррекци  началась при температуре, превышающей критичес кую величину, например 445 - 455°С, Дл  того, чтобы исключить толчок при подключении в схему корректирующего звена, предусмотрены реле 49 и 50 соотношени . Схема работает до тех пор, пока суммарное количество хладоагента, замер емое диафрагмами 40 и 41 и датчиками 9 и 10 расхода и просуммированное на приборе 24, на превысит заранее установленного максимальног;о значени  Когда наступит этот момент, импульс прибора 28 ограничени  сигналов, н.астроенный на максимум, произведет переключение каналов в реле 32 переклЕо .чени , отключив задание регул тору 11 ,от вторичного прибора датчика и подключив ему задание от прибора 25 суммировани . Выходное давление из прибора 28 ограничени  сигналов подбираетс  таким образом, чтобы оно соответствовало заданию определенной температуры регул тору. Эта температура должна быть заведомо ниже исходной температуры реакции, например 390-410 С. Блок 43 предварени , установленный на выходе из прибора ограничени ,служит дл  подавлени  инерции объекта,the layer is measured by thermocouples 34 36. and through sensors 2 and 4 of the temperature in the well, the variable enters the controllers 13 and 14. The temperature of the entrance to the layer is corrected according to the temperature of exit; signals from thermocouples 33 and 35 through temperature sensors 1 and 3, limited to the minimum by instruments 26 and 27. devices 22 and 23 step up on summing up through relays 49 and 50 of correlation, to which the reference devices of secondary devices 15 and 16 are fed. Output pulses summing devices 22 and 23 are assigned to regulators 13 and 14, which control the supply of refrigerant to the reactor when valves 45 and 4b are used. Minimum limit signals are provided so that correction starts at a temperature above the critical value, for example 445 - 455 ° С, Dl In order to eliminate a push when a corrective element is connected to the circuit, relays 49 and 50 are provided for ratios. The circuit works as long as the total amount of refrigerant measured by diaphragms 40 and 41 and flow sensors 9 and 10 and added to the device 24 does not exceed the pre-set maximum; about the value When this moment comes, the pulse of the device 28 limits the signals, n. Arranged to maximum, will switch the channels in the relay 32 to switch, by disconnecting the task to controller 11 from the secondary device of the sensor and connecting to it the task from device 25 summing. The output pressure from the signal limiting device 28 is adjusted so that it corresponds to setting the desired temperature to the controller. This temperature must be obviously lower than the initial reaction temperature, e.g., 390-410 ° C. A precut unit 43 installed at the outlet of the limiting device serves to suppress the inertia of the object,

изобретени  the invention

1,Способ автоматического управлени  блоком печь-реактор установки гидрокрекинга путем поддержани  температуры газосырьевой смеси, например1, Method for automatic control of a hydrocracking furnace-reactor unit by maintaining the temperature of the gas raw material, for example

в пределах 420 -430°С, на выходе из печи изменением расхода топлива в печ и регулировани  температуры на входе в каждый слой KaTajgHsasOpa воздействием на расход Охлаждающего газа, подаваемого в тот же слой, отличающийс  тем, что, с целью повышени  качества регулировани , температуру на входе в слой катализатора корректируют по температуре на выходе из сло  при превышении последней допустимого значени , например, в пределах 445 - 455С.within 420-430 ° C, at the exit of the furnace by varying the fuel consumption in the furnace and controlling the inlet temperature to each KaTajgHsasOpa layer by affecting the flow rate of the cooling gas supplied to the same layer, characterized in that, in order to improve the quality of regulation, the temperature at the entrance to the catalyst bed, the temperature at the exit from the bed is adjusted when the last permissible value is exceeded, for example, within 445 - 455 ° C.

2. Способ ПОП.1, отличающийс  тем, что, с целью предупреждени  выхода реакции в зону теплового взрыва , осуществл ют понижение температуры, например в пределах 390-410°С, на выходе из печи в зависимости от сум марного расхода охлаждающего газа, подаваемого в реактЬр..2. Method POP.1, characterized in that, in order to prevent the reaction from entering the thermal explosion zone, the temperature is reduced, for example, between 390-410 ° C, at the exit of the furnace, depending on the total flow rate of cooling gas supplied in the reactor ..

SU6701199631A 1967-11-28 1967-11-28 Method of automatic control of furnace-reactor unit of hydrocracking plant SU295317A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU6701199631A SU295317A1 (en) 1967-11-28 1967-11-28 Method of automatic control of furnace-reactor unit of hydrocracking plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU6701199631A SU295317A1 (en) 1967-11-28 1967-11-28 Method of automatic control of furnace-reactor unit of hydrocracking plant

Publications (1)

Publication Number Publication Date
SU295317A1 true SU295317A1 (en) 1977-10-25

Family

ID=20441480

Family Applications (1)

Application Number Title Priority Date Filing Date
SU6701199631A SU295317A1 (en) 1967-11-28 1967-11-28 Method of automatic control of furnace-reactor unit of hydrocracking plant

Country Status (1)

Country Link
SU (1) SU295317A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017035093A1 (en) * 2015-08-24 2017-03-02 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US9725652B2 (en) 2015-08-24 2017-08-08 Saudi Arabian Oil Company Delayed coking plant combined heating and power generation
US9745871B2 (en) 2015-08-24 2017-08-29 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US9803513B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities
US9803511B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities
US9803505B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics and naphtha block facilities
US9803507B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic Rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and continuous-catalytic-cracking-aromatics facilities
US9803508B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil diesel hydrotreating and aromatics facilities
US9803506B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil hydrocracking and aromatics facilities
US9816401B2 (en) 2015-08-24 2017-11-14 Saudi Arabian Oil Company Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017035093A1 (en) * 2015-08-24 2017-03-02 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US9725652B2 (en) 2015-08-24 2017-08-08 Saudi Arabian Oil Company Delayed coking plant combined heating and power generation
US9745871B2 (en) 2015-08-24 2017-08-29 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US9803513B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities
US9803511B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities
US9803145B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil refining, aromatics, and utilities facilities
US9803930B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated hydrocracking and diesel hydrotreating facilities
US9803505B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics and naphtha block facilities
US9803507B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic Rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and continuous-catalytic-cracking-aromatics facilities
US9803508B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil diesel hydrotreating and aromatics facilities
US9803506B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil hydrocracking and aromatics facilities
US9803509B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil refining and aromatics facilities
US9816759B2 (en) 2015-08-24 2017-11-14 Saudi Arabian Oil Company Power generation using independent triple organic rankine cycles from waste heat in integrated crude oil refining and aromatics facilities
US9816401B2 (en) 2015-08-24 2017-11-14 Saudi Arabian Oil Company Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling
US9828885B2 (en) 2015-08-24 2017-11-28 Saudi Arabian Oil Company Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling with flexibility
US9845996B2 (en) 2015-08-24 2017-12-19 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US9845995B2 (en) 2015-08-24 2017-12-19 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US9851153B2 (en) 2015-08-24 2017-12-26 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US9869209B2 (en) 2015-08-24 2018-01-16 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US9879918B2 (en) 2015-08-24 2018-01-30 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US9891004B2 (en) 2015-08-24 2018-02-13 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US9915477B2 (en) 2015-08-24 2018-03-13 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
CN108138592A (en) * 2015-08-24 2018-06-08 沙特阿拉伯石油公司 The recycling and reuse of discarded energy in industrial equipment
US10113805B2 (en) 2015-08-24 2018-10-30 Saudi Arabian Oil Company Systems for recovery and re-use of waste energy in hydrocracking-based configuration for integrated crude oil refining and aromatics complex
US10113448B2 (en) 2015-08-24 2018-10-30 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power
US10119764B2 (en) 2015-08-24 2018-11-06 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US10125640B2 (en) 2015-08-24 2018-11-13 Saudi Arabian Oil Company Modified goswami cycle based conversion of gas processing plant waste heat into power and cooling with flexibility
US10125639B2 (en) 2015-08-24 2018-11-13 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power and cooling
US10126067B2 (en) 2015-08-24 2018-11-13 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US10174640B1 (en) 2015-08-24 2019-01-08 Saudi Arabian Oil Company Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling with flexibility
US10227899B2 (en) 2015-08-24 2019-03-12 Saudi Arabian Oil Company Organic rankine cycle based conversion of gas processing plant waste heat into power and cooling
US10301977B2 (en) 2015-08-24 2019-05-28 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US10385275B2 (en) 2015-08-24 2019-08-20 Saudi Arabian Oil Company Delayed coking plant combined heating and power generation
US10429135B2 (en) 2015-08-24 2019-10-01 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US10436517B2 (en) 2015-08-24 2019-10-08 Saudi Arabian Oil Company Systems for recovery and re-use of waste energy in hydrocracking-based configuration for integrated crude oil refining and aromatics complex
US10443946B2 (en) 2015-08-24 2019-10-15 Saudi Arabian Oil Company Systems for recovery and re-use of waste energy in crude oil refining and aromatics complex
US10480352B2 (en) 2015-08-24 2019-11-19 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power and cooling
US10480864B2 (en) 2015-08-24 2019-11-19 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US10502494B2 (en) 2015-08-24 2019-12-10 Saudi Arabian Oil Company Systems for recovery and re-use of waste energy in crude oil refining facility and aromatics complex through simultaneous intra-plant integration and plants' thermal coupling
US10502495B2 (en) 2015-08-24 2019-12-10 Saudi Arabian Oil Company Systems for recovery and re-use of waste energy in crude oil refining facility and aromatics complex
US10577981B2 (en) 2015-08-24 2020-03-03 Saudi Arabian Oil Company Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling
US10767932B2 (en) 2015-08-24 2020-09-08 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US10801785B2 (en) 2015-08-24 2020-10-13 Saudi Arabian Oil Company Recovery and re-use of waste energy in industrial facilities
US10927305B2 (en) 2015-08-24 2021-02-23 Saudi Arabian Oil Company Delayed coking plant combined heating and power generation
US10961460B2 (en) 2015-08-24 2021-03-30 Saudi Arabian Oil Company Delayed coking plant combined heating and power generation
US10961873B2 (en) 2015-08-24 2021-03-30 Saudi Arabian Oil Company Power generation from waste energy in industrial facilities
US10995636B2 (en) 2015-08-24 2021-05-04 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power
US11073050B2 (en) 2015-08-24 2021-07-27 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power

Similar Documents

Publication Publication Date Title
SU295317A1 (en) Method of automatic control of furnace-reactor unit of hydrocracking plant
EP0206165B1 (en) Clock thermostat
US4605161A (en) Pattern-switching temperature control apparatus
US3208741A (en) Method and system for the automatic controlling of grid coolers or traveling grids
NO149444B (en) PROCEDURE AND APPARATUS FOR PROCESSING RADAR INFORMATION DATA
US3633820A (en) Furnace installation with commutative control system
SU1604854A1 (en) Method of automatic control of diffusion process
JPS5447006A (en) Controlling of steam temperature of boiler
SU1414842A1 (en) Device for automatic control of hydrocarbon dehydrogenation process
SU1242232A1 (en) Arrangement for regulating temperature conditions in tubular reactor for polymerization
SU1511737A1 (en) Apparatus for automatic control of exothermal process
SU1358844A1 (en) Method of automatic regulation of heat dispense for heating multiple-block warmhouses
SU1368022A1 (en) Method of controlling thermal conditions of a gang of reactors operating in parallel
SU842088A2 (en) Method of automatic control of captax production process
SU982760A1 (en) Gas drying process automatic control system
SU1745281A1 (en) Method of automatic control of evaporation process
SU640280A1 (en) Device for regulating two interrelated parameters
SU1230668A1 (en) Method of automatic control of temperature regime in apparatus of periodic action with heat-transfer agent circuit
JPS57187552A (en) Controller for water heater
SU1229513A1 (en) System for automatic control of drum boiler feed
SU1304003A1 (en) Device for controlling temperature of multizone broaching installations
SU1344842A1 (en) Method and apparatus for controlling pulp digestion temperature in intermittent-action digesters
SU730982A1 (en) Automatic control apparatus for reduction-cooling plant
SU556481A1 (en) Device for automatic control of the pyrolysis process in a tube furnace
SU546359A1 (en) The method of automatic control of the distillation column