SU141310A1 - The method of obtaining primary aluminum by electrolysis - Google Patents

The method of obtaining primary aluminum by electrolysis

Info

Publication number
SU141310A1
SU141310A1 SU720737A SU720737A SU141310A1 SU 141310 A1 SU141310 A1 SU 141310A1 SU 720737 A SU720737 A SU 720737A SU 720737 A SU720737 A SU 720737A SU 141310 A1 SU141310 A1 SU 141310A1
Authority
SU
USSR - Soviet Union
Prior art keywords
electrolysis
aluminum
electrolyte
primary aluminum
magnesium chloride
Prior art date
Application number
SU720737A
Other languages
Russian (ru)
Inventor
Л.Н. Антипин
С.Ф. Важенин
Т.Ф. Михаилик
Л.И. Трубачев
Original Assignee
Л.Н. Антипин
С.Ф. Важенин
Т.Ф. Михаилик
Л.И. Трубачев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Л.Н. Антипин, С.Ф. Важенин, Т.Ф. Михаилик, Л.И. Трубачев filed Critical Л.Н. Антипин
Priority to SU720737A priority Critical patent/SU141310A1/en
Application granted granted Critical
Publication of SU141310A1 publication Critical patent/SU141310A1/en

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

При получении алюмини  электролизом глиноземнокриолитовых расплавов температуру электролита необходимо поддерживать на уровне 950°.When aluminum is produced by the electrolysis of alumina cryolithic melts, the electrolyte temperature must be maintained at 950 °.

Описываемый способ получени  первичного алюмини  электролизом позвол ет значительно снизить температуру процесса, что приводит к сокращению расхода фтористых солей, повышению выхода по току, увеличению производительности электролизеров и снижению потерь алюмини .The described method for the production of primary aluminum by electrolysis can significantly reduce the process temperature, which leads to a reduction in the consumption of fluoride salts, an increase in the current efficiency, an increase in the productivity of the electrolyzers and a decrease in aluminum losses.

Достигаетс  это введением в состав электролита добавок хлористого магни , уменьшающего в зкость электролита и снижающего темнературу его плавлени . Хлористый магний (безводный) добавл ют к криолит-глиноземным электролитам в количестве 4-6 вес. %. Процесс электролиза осуществл етс  при криолитовом отношении 2,6-2,8.This is achieved by introducing magnesium chloride additives into the electrolyte, which reduces the electrolyte viscosity and reduces the temperature of its melting. Magnesium chloride (anhydrous) is added to cryolite-alumina electrolytes in an amount of 4-6 wt. % The electrolysis process is carried out with a cryolite ratio of 2.6-2.8.

Хлористый магний загружают небольщими порци ми непосредственно на открытую поверхность электролита в начале процесса электролиза или перед обработкой ванны на корку. Последующую корректировку состава электролита производ т раз в 10-12 дней в соответствии с данными анализа на содержание магни  и хлора. При нарушении стехиометрического соотношени  мелчду магнием и хлором корректировку по хлору производ т путем добавок хлористого натри .Magnesium chloride is loaded in small portions directly onto the open surface of the electrolyte at the beginning of the electrolysis process or before the bath is treated on the crust. Subsequent adjustments of the electrolyte composition are made once every 10-12 days in accordance with the data for magnesium and chlorine content. In case of violation of the stoichiometric ratio of magnesium chloride and chlorine, the chlorine adjustment is made by adding sodium chloride.

Введение в электролит указанных добавок хлористого магни  позвол ет при сохранении обычной токовой нагрузки снизить рабочую температуру электролита на 20-25°. Расход фтористых солей снижаетс  при этом на 5-10%, а выход по току увеличиваетс  на 1%. При сохранении рабочей температуры процесса на обычном уровне становитс  возможным на 6-8% повысить силу тока, проход щегоThe introduction of these magnesium chloride additives into the electrolyte makes it possible, while maintaining the usual current load, to reduce the operating temperature of the electrolyte by 20-25 °. The consumption of fluoride salts decreases at the same time by 5-10%, and the current efficiency increases by 1%. While maintaining the process temperature at a normal level, it becomes possible to increase by 6–8% the strength of the current passing

№141310-- 2 -/ .... :. - .№ 141310-- 2 - / ....:. -.

через электролизер и, следовательно, соответственно увеличить производительность последнего. Температура начала кристаллизации электролита обычного состава лри введении в него 5% хлористого магни  снижаетс  более чем на 80°, а в зкость - почти в два раза. Одновременно на 5-10% возрастает электропроводность электролита и соотаетственно снижаетс  удельный расход электроэнергии на производство алюмини .through the electrolyzer and, therefore, accordingly increase the performance of the latter. The temperature of the onset of crystallization of an electrolyte of the usual composition when 5% magnesium chloride is introduced into it decreases by more than 80 °, and the viscosity almost doubled. At the same time, the electrical conductivity of the electrolyte increases by 5-10% and the specific energy consumption for aluminum production decreases accordingly.

Полезность данного предложени  подтверждаетс  Днепропетровским алюминиевым заводом, Укргипроцветметом и Институтом цветных металлов им. Калинина.The usefulness of this proposal is confirmed by the Dnepropetrovsk aluminum plant, Ukrgiprotsvetmet and the Institute of non-ferrous metals. Kalinin.

Предмет изобретени Subject invention

Claims (2)

1.Способ получени  первичного алюмини  электролизом, отличающийс  тем, что, с целью снижени  температуры плавлени ,, плотности и в зкости криолит-глиноземных расплавов, снижени  потерь алюмини  и увеличени  выхода по току алюмини , в электролит ввод т хлорид магни  в количестве от 4 до 6%.1. A method of producing primary aluminum by electrolysis, characterized in that, in order to reduce the melting temperature, density and viscosity of cryolite-alumina melts, reduce aluminum loss and increase the current output of aluminum, magnesium chloride in an amount from 4 to 6%. 2.Способ по п. 1, о т л и ч а ю ш, и и с   тем, что процесс электролиза осуществл етс  при криолитовом отнощении 2,6-2,8.2. A method according to claim 1, wherein the electrolysis process is carried out at a cryol ratio of 2.6 to 2.8.
SU720737A 1961-03-08 1961-03-08 The method of obtaining primary aluminum by electrolysis SU141310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU720737A SU141310A1 (en) 1961-03-08 1961-03-08 The method of obtaining primary aluminum by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU720737A SU141310A1 (en) 1961-03-08 1961-03-08 The method of obtaining primary aluminum by electrolysis

Publications (1)

Publication Number Publication Date
SU141310A1 true SU141310A1 (en) 1961-11-30

Family

ID=48297259

Family Applications (1)

Application Number Title Priority Date Filing Date
SU720737A SU141310A1 (en) 1961-03-08 1961-03-08 The method of obtaining primary aluminum by electrolysis

Country Status (1)

Country Link
SU (1) SU141310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464234A (en) * 1982-04-01 1984-08-07 The United States Of America As Represented By The United States Department Of Energy Production of aluminum metal by electrolysis of aluminum sulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464234A (en) * 1982-04-01 1984-08-07 The United States Of America As Represented By The United States Department Of Energy Production of aluminum metal by electrolysis of aluminum sulfide

Similar Documents

Publication Publication Date Title
NO20160141A1 (en) Electrolyte for producing aluminum by molten electrolysis
US3226311A (en) Process of producing calcium by electrolysis
SU141310A1 (en) The method of obtaining primary aluminum by electrolysis
GB666281A (en) Improvements relating to the production of magnesium-lithium alloys
US3034972A (en) Electrolytic production of aluminum
US2431723A (en) Electrolytic method for producing magnesium alloys
CN105803490A (en) Electrolyte composition used for aluminum electrolysis
US5114545A (en) Electrolyte chemistry for improved performance in modern industrial alumina reduction cells
SU929741A1 (en) Process for producing sol of hydrated titanium dioxide
SU127038A1 (en) Electrolyte composition for babbitt-lead lead-calcium alloys
Haarberg et al. Current efficiency for aluminium deposition from molten cryolite-alumina electrolytes in a laboratory cell
SU449993A1 (en) Electrolytic method for producing magnesium
SU373325A1 (en) ®С? SHOWN'1
SU1313891A1 (en) Method of producing magnesium oxide
US3203877A (en) Electrolytic nickel plating bath
SU452106A3 (en) Electrolyte to produce magnesium and chlorine
US2991235A (en) Method for supplying current to the anode of aluminum refining cells
SU55393A1 (en) Method for the final dehydration of chloride electrolytes to produce magnesium
SU61995A1 (en) Electrolytic Cobalt Production Method
SU1578232A1 (en) Method of electrolytic production of aluminium
SU145098A1 (en) Iron electrolyte
Syukron et al. The effect of bath temperature on alumina solubility for reduction cell
RU1812245C (en) Process for electrolytically producing magnesium and chlorine from chloromagnesium raw material
SU456852A1 (en) Electrolyte correction method
SU132624A1 (en) Method for electrochemical production of aluminum oxychlorides