SK278911B6 - Pipe made of copper or copper alloy and manufacturing process thereof - Google Patents

Pipe made of copper or copper alloy and manufacturing process thereof Download PDF

Info

Publication number
SK278911B6
SK278911B6 SK4206-89A SK420689A SK278911B6 SK 278911 B6 SK278911 B6 SK 278911B6 SK 420689 A SK420689 A SK 420689A SK 278911 B6 SK278911 B6 SK 278911B6
Authority
SK
Slovakia
Prior art keywords
copper
pipe
oxides
volume
range
Prior art date
Application number
SK4206-89A
Other languages
Slovak (sk)
Inventor
Achim Baukloh
Ulrich Reiter
Christian Triquet
Original Assignee
Km-Kabelmetal Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Km-Kabelmetal Aktiengesellschaft filed Critical Km-Kabelmetal Aktiengesellschaft
Publication of SK278911B6 publication Critical patent/SK278911B6/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal

Abstract

The copper or alloy pipe pit corrosion resistant is equipped with a layer of oxides on the internal surface. The oxide layer thickness, consisting of crystals based on copper oxides fixed on basic metal is in the range of 0,01 up to 0,09 microns and the crystals closed to copper oxides, with oriented structure (1, 1, 1) especially, have a size of corns 0,05 microns. The procedure closed to the production of this pipe is based on step closed to removal of fats with the use of solvent and on the step closed to continual lighting in a range of 600 up to 730 Celsius degrees and with the continual velocity of 220 m/min, while the lighting atmosphere inside the pipe is set according to the pipe diameter and velocity of the continual processing inside the pipe, while this atmosphere consists of 1 up to 25 volume percent, 5 up to 15 volume percent of oxygen and 75 up to 99 volume percent, at about 85 up to 95 volume percent of nitrogen, especially.

Description

Podľa ďalších spôsobov sa uskutočňuje žíhanie v redukčnej atmosfére a z vnútorného povrchu rúrok sa potom odstraňuje vzniknutý uhľovodíkový film pomocou abrazívneho prostriedku. Pritom sa tento prostriedok do rúrky zavádza buď prostredníctvom tlakového vzduchu alebo tlakovej vody.According to other methods, annealing is carried out in a reducing atmosphere and the formed hydrocarbon film is then removed from the inner surface of the tubes by an abrasive agent. This means is introduced into the pipe either by means of compressed air or pressurized water.

A konečne zo spisu DE-OS 30 04 455 je známe nastaviť obsah zvyškového uhľovodíka tým, že tepelné spracovanie po odmastení rúrky sa uskutočňuje v atmosfére obsahujúcej kyslík, ako je napríklad zmes plynov z kyslíka, hélia a argónu.Finally, it is known from DE-OS 30 04 455 to adjust the content of residual hydrocarbon in that the heat treatment after degreasing of the pipe is carried out in an oxygen-containing atmosphere, such as a mixture of oxygen, helium and argon gases.

Pri tepelnom spracovaní za oxidačných podmienok, najmä keď sú tieto podmienky stále, však nastáva nebezpečenstvo, že tvoriace sa vrstvy oxidov sa zle zachytávajú, majú väčšiu hrúbku a prípade sú porézne, čím sa nezabráni negatívnym vplyvom a tiež potláčaniu korózie. Navyše môžu vrstvy oxidov s hrúbkou väčšou alebo rovnou 0,2 pm pri nasledujúcom mechanickom spracovaní, napríklad pri ohýbaní, Takto popraskať alebo odpadnúť.However, in heat treatment under oxidizing conditions, especially when these conditions are stable, there is a danger that the oxide layers formed are poorly trapped, have a greater thickness and, if porous, are avoided, thus avoiding negative effects and also preventing corrosion. In addition, oxide layers with a thickness greater than or equal to 0.2 .mu.m can be cracked or dropped in a subsequent mechanical treatment, such as bending.

Podobné problémy nastanú, keď sa rúrky musia po tepelnom spracovaní za oxidačných podmienok pre vytvorenie polotvrdého stavu ešte podrobiť spracovaniu, pri ktorom dôjde k zmenšeniu prierezu. Pretváracie sily potom rovnako spôsobia popraskanie a odpadávanie vrstvy oxidov, ktorá je vytvorená na vnútornom povrchu. Odlúpnuté oxidy môžu potom vnútri jednotlivých agregátov zariadenia spôsobiť poruchy.Similar problems arise when the tubes have to undergo a cross-sectional treatment after the heat treatment under oxidizing conditions to form a semi-hard state. The deformation forces then also cause the oxide layer formed on the inner surface to crack and fall off. The peeled oxides can then cause malfunctions within the individual plant units.

Úlohou vynálezu je vytvoriť vnútorne zoxidované rúrky z medi alebo zo zliatin medi so zvlášť vysokou odolnosťou proti jamkovej miestnej korózii, pri ktorých oxidy vytvorené na ich vnútorných povrchoch nevedú svojim nepriaznivým vytvorením alebo odlupovaním k negatívnym účinkom na odolnosť proti korózii rúrok alebo na funkčnú bezpečnosť zariadenia.SUMMARY OF THE INVENTION It is an object of the present invention to provide internally oxidized tubes of copper or copper alloys with a particularly high local corrosion resistance in which the oxides formed on their inner surfaces do not lead to adverse corrosion resistance or pipe safety effects.

Podstata vynálezuSUMMARY OF THE INVENTION

Túto úlohu spĺňa rúrka z medi alebo zo zliatiny medi odolná proti jamkovej korózii, s vrstvou oxidov na vnútornom povrchu, najmä na použitie v zdravotníctve, podľa vynálezu, ktorého podstatou je, že hrúbka vrstvy oxidov skladajúcich sa v podstate z kryštálov oxidov medi prichytených na základnom kove je v rozsahu od 0,01 do 0,09 pm a kryštály oxidov medi, najmä s orientovanou štruktúrou (1,1, 1), majú maximálnu veľkosť zŕn 0,05 pm.This task is accomplished by a copper or copper alloy tube resistant to pitting corrosion, with a layer of oxides on the inner surface, in particular for medical use, according to the invention, which is based on the layer thickness of oxides consisting essentially of crystals of copper oxides attached to the base the metal is in the range of 0.01 to 0.09 µm and the copper oxide crystals, especially with the oriented structure (1.1, 1), have a maximum grain size of 0.05 µm.

Podstatou spôsobu výroby rúrky podľa vynálezu je, že pozostáva z odmastenia rozpúšťadlom, z kontinuálneho žíhania v rozsahu teplôt od asi 600 do 730 °C a priebežnou rýchlosťou od 50 do 220 m/min., pričom v závislosti od priemeru rúrok a rýchlosti priebežného spracovania sa vnútri rúrky nastaví žíhacía atmosféra pozostávajúca z 1 až 25 % objemových, najmä 5 až 15 % objemových kyslíka a 75 až 99 % objemových, najmä asi 85 až 95 % dusíka.The process according to the invention is essentially based on solvent degreasing, continuous annealing in a temperature range of about 600 to 730 ° C and a continuous speed of 50 to 220 m / min, depending on the pipe diameter and the continuous processing speed. within the tube it sets a annealing atmosphere consisting of 1 to 25% by volume, in particular 5 to 15% by volume of oxygen and 75 to 99% by volume, especially about 85 to 95% of nitrogen.

Podľa výhodného vyhotovenia sa rúrka v poslednom kroku mäkko vyžíha.According to a preferred embodiment, the tube is soft annealed in the last step.

Podľa ďalšieho výhodného vyhotovenia sa ďalej prevedie jej ťahanie do polotvrdého stavu.According to a further preferred embodiment, it is further drawn to its semi-hard state.

Podľa ešte ďalšieho výhodného vyhotovenia sa ďalej prevedie jej ťahanie do tvrdého stavu.According to yet another preferred embodiment, the drawing thereof is further hardened.

Spôsobom podľa vynálezu je možno veľmi presne nastaviť takmer každú hodnotu vnútri daného rozsahu zmenami spôsobových parametrov. Odborník vo výrobe je pritom schopný stanoviť prevádzkové podmienky na žíhanie, najmä čas žíhania za oxidačných podmienok, rovnako ako zloženie a tlak k tomu potrebnej zmesi plynov.With the method of the invention, almost every value within a given range can be adjusted very precisely by changing the method parameters. The person skilled in the art is able to determine the operating conditions for annealing, in particular the annealing time under oxidising conditions, as well as the composition and pressure of the gas mixture necessary for this.

Na hospodárnu výrobu rúrok, ako aj pre rovnomerné vytvorenie povlaku z oxidov na vnútornom povrchu rúrok je nevyhnutný znak spôsobu podľa vynálezu, ktorým je priebežné žíhanie, to znamená, že ide o uskutočňovanie kontinuálneho postupu.In order to economically manufacture the tubes as well as to uniformly coat the oxides on the inner surface of the tubes, a feature of the process according to the invention is that of continuous annealing, that is, a continuous process.

Neočakávane bolo pri výskume zistené, že v rozpore s doterajším ponímaním odborného sveta, už veľmi nepatrné hrúbky' vrstvy oxidov na vnútornom povrchu rúrok zaručujú aj v agresívnych vodách dostatočnú ochranu pred jamkovou koróziou. Rovnako po pretvorení prierezu až o 20 % alebo po extrémnom ohýbaní až o 180° nenastane žiadne zhoršenie pôsobenia korózie.Unexpectedly, the research found that, contrary to the perception of the professional world, the very low layer thicknesses of the oxides on the inner surface of the tubes guarantee sufficient corrosion protection even in aggressive waters. Likewise, no corrosion deterioration occurs when the cross-section is deformed by up to 20% or after extreme bending of up to 180 °.

Ak vrstva oxidov na vnútornom povrchu rúrok vykazuje poškodenie popraskaním alebo odlúpnutím, je to možné ľahko zistiť okom. Na tieto skúmania boli rúrky v pozdĺžnom smere rozrezané, keď boli predtým pretvorené, napríklad keď boli ohnuté až o 180°. Vrstva oxidov bola na základnom kove označená za prichytenú, keď vnútorný povrch rúrok po pretvorení nevykazoval žiadne znaky porušenia popraskaním alebo odlúpnutím.If the oxide layer on the inner surface of the tubes shows damage by cracking or peeling, this can be easily detected by the eye. For these investigations, the tubes were cut in the longitudinal direction when they were previously deformed, for example when they were bent up to 180 °. The oxide layer was labeled attached to the base metal when the inner surface of the tubes after deformation showed no signs of cracking or peeling.

Pozorovaním vrstvy oxidov na základnom kove pomocou rastrového elektrónového mikroskopu bolo zistené, že veľkosť zŕn kryštálov oxidov medi neprekročí hodnotu 0,05 pm. Vizuálny obraz vrstvy oxidov sa vyznačuje oproti dosiaľ preskúmaným vnútorným povrchom rúrok veľkou jednotnosťou povrchu. Vrstva oxidov má svetločervenú farbu a má vysokú reflexnú schopnosť pri dopade svetla.By observing the oxide layer on the base metal using a scanning electron microscope, it was found that the grain size of the copper oxide crystals did not exceed 0.05 µm. The visual image of the oxide layer is characterized by a high surface uniformity over the inner tube surfaces examined so far. The oxide layer has a light red color and has a high reflective ability when light falls.

Ďalej bolo zistené, že kryštály vrstvy oxidov sa skladajú z Cu2O (oxidu meďnatého - kupritu) a majú najmä orientovanú (1, 1, 1) štruktúru.Furthermore, it has been found that the oxide layer crystals consist of Cu 2 O (cuprous oxide - cuprite) and have a particularly oriented (1,1,1) structure.

Prehľad obrázkov na výkresochBRIEF DESCRIPTION OF THE DRAWINGS

Priložený obrázok znázorňuje v 10 000 násobnom zväčšení vrstvu Cu2O prichytenú na vnútornom povrchu rúrky, pričom je možné rozoznať najmä najviac rovnomerný povrch vrstvy, poprípade jeho nepatrnú drsnosť.The enclosed figure shows in a 10,000-fold magnification a Cu 2 O layer adhered to the inner surface of the tube, whereby it is possible to recognize in particular the most uniform surface of the layer or its slight roughness.

SK 278911Β6SK 278911Β6

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Doteraz sa vychádzalo z toho, že medzi hrúbkou vrstvy oxidov a obsahom zvyšných uhľovodíkov na vnútornom povrchu rúrok je jednoduchý vzťah:So far, it has been assumed that there is a simple relationship between the thickness of the oxide layer and the remaining hydrocarbon content on the inner surface of the tubes:

Čím tenšia je vytvorená vrstva oxidov, tým nepatrnejší je rovnako obsah zvyšných uhľovodíkov. Zmenšenie obsahu zvyšných uhľovodíkov na hodnotu pod 0,03 mg/dm2 bolo však doteraz dosahované len extrémne nákladným odmasťovaním vnútorných povrchov rúrok pred žíhaním za oxidačných podmienok. Oxidačné žíhanie samo muselo pritom prebiehať v atmosfére, ktorá obsahuje asi 85 % zmesi vzácnych plynov - hélia a argónu.The thinner the oxide layer is formed, the less is the remaining hydrocarbon content. However, the reduction of the remaining hydrocarbon content to below 0.03 mg / dm 2 has so far been achieved only by extremely costly degreasing of the inner surfaces of the tubes prior to annealing under oxidizing conditions. The oxidation annealing itself had to take place in an atmosphere containing about 85% of a mixture of noble gases - helium and argon.

Vnútorne zoxidované rúrky podľa vynálezu teraz konečne ukazujú, že obsah zvyškových uhľovodíkov menší alebo rovný 0,05 mg/dm2 nie je nutne potrebný, aby sa zamedzilo škodám spôsobeným koróziou. Skôr je podstatná rovnomernosť a nepatrná hrúbka oxidácie, pričom táto hrúbka vrstvy je menšia ako 0, 2 pm, výhodne menšia než 0,1 pm.Finally, the internally oxidized pipes of the invention now show that a residual hydrocarbon content of less than or equal to 0.05 mg / dm 2 is not necessarily required to prevent corrosion damage. Rather, the uniformity and the low thickness of the oxidation are substantial, the layer thickness being less than 0.2 µm, preferably less than 0.1 µm.

Aby bolo možné vyrobiť vnútorne zoxidované rúrky podľa vynálezu, je treba najprv vnútorné povrchy guľatých medených rúrok, napríklad s fosforom dezoxidovanej medi, vhodným spôsobom odmastiť, napríklad tak, ako je popísané v spise DE-OS 32 07 135. Obsah zvyšného tuku na vnútornom povrchu rúrok bol pred oxidačným žíhaním pod hodnotou 0,4 mg/dm2.In order to produce the internally oxidized tubes according to the invention, the inner surfaces of the round copper tubes, for example with phosphorus-deoxidized copper, have to be degreased in an appropriate manner, for example as described in DE-OS 32 07 135. the tubes were below 0.4 mg / dm 2 prior to oxidation annealing.

Jednotlivé dĺžky medených rúrok na koncoch navzájom spojených spojovacími kusmi priepustnými pre plyn boli žíhané v kontinuálnom postupe prostredníctvom odporového alebo indukčného ohrevu pri teplote ležiacej v rozsahu od 600 do 730 °C, pričom dovnútra rúrok bola vháňaná kontrolovaná zmes plynov. V závislosti od priebežnej rýchlosti určenej medzi 50 a 220 m/min., ako aj na priereze rúrok, bola nastavená atmosféra vnútri rúrok.The individual copper pipe lengths at the ends connected to each other by gas permeable couplings were annealed in a continuous process by resistive or induction heating at a temperature ranging from 600 to 730 ° C, with a controlled gas mixture being blown into the tubes. Depending on the continuous velocity determined between 50 and 220 m / min, as well as the tube cross-section, the atmosphere inside the tubes was set.

Zmes plynov sa skladala najmä z 5 až asi 15 % objemových kyslíka a 85 až 95 % objemových inertného plynu, napríklad cenovo priaznivého dusíka. Stálou kontrolou parametrov teploty a rýchlosti priebežného žíhania, ako aj obsahu kyslíka v plynnej atmosfére mohla byt nastavená veľmi rovnomerná vrstva oxidov medi, ktorej hrúbka má hodnotu ležiacu vnútri požadovaného rozsahu.The gas mixture consisted in particular of 5 to about 15% by volume of oxygen and 85 to 95% by volume of an inert gas such as cost-effective nitrogen. By constantly monitoring the temperature and continuous annealing parameters as well as the oxygen content of the gas atmosphere, a very uniform copper oxide layer having a thickness within the desired range could be set.

Ako výsledok mnohých uskutočnených pokusov bolo zistené, že výhodná hrúbka vrstvy oxidov medi prichytených na základnom kove bola v podstate vnútri rozsahu medzi 0,03 a 0,09 pm. Táto tenká vrstva oxidov medi zostane celkom prichytená aj potom, čo medená rúrka bola pretvorená až o 20 % zmenšením prierezu alebo až do 180° ohnutia. Odlupovanie alebo popraskanie vrstvy oxidov po pretvorení nebolo možné rozoznať ani pod mikroskopom pri 40 násobnom zväčšení.As a result of many experiments carried out, it has been found that the preferred layer thickness of the copper oxides attached to the base metal was substantially within the range between 0.03 and 0.09 µm. This thin layer of copper oxides remains completely attached even after the copper tube has been reformed by up to 20% by reducing the cross-section or up to 180 ° bend. The peeling or cracking of the oxide layer after transformation could not be detected even under a microscope at 40x magnification.

Dobrá priľnavosť oxidov medi má zvláštny význam pre prípad, že sa majú vyrobiť medené rúrky polotvrdé. Pre nastavenie stavu polotvrdý sa totiž musia medené rúrky žíhané namäkko pretvoriť so zmenšením prierezu, pričom napríklad sú ťahané z rozmeru 19 mm na priemer 15 mm.The good adhesion of copper oxides is of particular importance when semi-hard copper tubes are to be produced. In order to adjust the semi-hard state, the soft-annealed copper tubes must be deformed with a reduction in cross-section, for example drawn from a dimension of 19 mm to a diameter of 15 mm.

Natvrdo ťahané medené rúrky sa obvykle pretvoria na požadovaný konečný rozmer, bez toho, aby bolo nutné medzi postupné kroky ťahania vložiť «kryštalizačné žíhanie.The hard-drawn copper tubes are usually converted to the desired final dimension without the need for crystallization annealing to be inserted between successive drawing steps.

Na vyhotovenie tenkého prídavku oxidov medi na vnútornom povrchu rúrok sa potom rúrky krátkodobo pri teplotách asi 250 °C tepelne spracujú tak, že sa mechanické vlastnosti nemôžu nevýhodne zmeniť.To produce a thin addition of copper oxides on the inner surface of the tubes, the tubes are then heat treated at temperatures of about 250 ° C for a short time so that the mechanical properties cannot be adversely changed.

Claims (6)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Rúrka z medi alebo zo zliatiny medi odolná proti jamkovej korózii, s vrstvou oxidov na vnútornom povrchu, najmä na použitie v zdravotníctve, vyznačujúca sa tým, že hrúbka vrstvy oxidov pozostávajúcich v podstate z kryštálov oxidov medi prichytených na základnom kove je v rozsahu od 0,01 do 0,09 μιη a kryštály oxidov medi, najmä s orientovanou štruktúrou (1, 1, 1), majú maximálnu veľkosť zŕn 0,05 μπι.1. Copper or copper alloy tube resistant to pitting corrosion, with a layer of oxides on the inner surface, particularly for medical use, characterized in that the thickness of the layer of oxides consisting essentially of crystals of copper oxides adhered to the base metal ranges from 0.01 to 0.09 μιη and the copper oxide crystals, in particular with the oriented structure (1, 1, 1), have a maximum grain size of 0.05 μπι. 2. Spôsob výroby rúrky podľa nároku 1, v y z n a č ujúci sa tým, že pozostáva z krokov odmastenia rozpúšťadlom a kontinuálneho žíhania v rozsahu teplôt od asi 600 do 730 °C a priebežnou rýchlosťou od 50 do 220 m/min., pričom v závislosti od priemeru rúrok a rýchlosti priebežného spracovania sa vnútri rúrky nastaví žíhacia atmosféra pozostávajúca z 1 až 25 % objemových, najmä 5 až 15 % objemových kyslíka a 75 až 99 % objemových, najmä asi 85 až 95 % objemových dusíka.The method of manufacturing a pipe according to claim 1, characterized in that it comprises the steps of solvent degreasing and continuous annealing in a temperature range of about 600 to 730 ° C and a continuous velocity of from 50 to 220 m / min. A annealing atmosphere consisting of 1 to 25% by volume, in particular 5 to 15% by volume of oxygen and 75 to 99% by volume, in particular about 85 to 95% by volume of nitrogen, is set inside the pipe of the pipe diameter and the throughput rate. 3. Spôsob podľa nároku 2, vyznačujúci sa t ý m, že v poslednom kroku sa mäkko vyžíha.Method according to claim 2, characterized in that in the last step it is soft annealed. 4. Spôsob podľa nároku 2, vyznačujúci sa t ý m, že sa ďalej uskutočni jej ťahanie do polotvrdého stavu.The method according to claim 2, characterized in that it is further drawn to a semi-hard state. 5. Spôsob podľa nároku 2, vyznačujúci sa t ý m, že sa ďalej uskutoční jej ťahanie do tvrdého stavu.A method according to claim 2, characterized in that it is further drawn to a hard state. 6. Použitie rúrky podľa nároku 1 ako inštalačnej rúrky odolnej proti jamkovej korózii, s obsahom zvyšných uhľovodíkov v rozsahu od 0,05 do 0,15 mg/dm2 a s hrúbkou vrstvy oxidov v rozsahu od 0, 03 do 0, 09 pm.Use of a pipe as claimed in claim 1 as a corrosion-resistant installation pipe with a residual hydrocarbon content in the range of 0.05 to 0.15 mg / dm 2 and an oxide layer thickness in the range of 0.03 to 0.09 µm.
SK4206-89A 1988-08-12 1989-07-10 Pipe made of copper or copper alloy and manufacturing process thereof SK278911B6 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3827353A DE3827353A1 (en) 1988-08-12 1988-08-12 INTERNAL OXIDIZED TUBES

Publications (1)

Publication Number Publication Date
SK278911B6 true SK278911B6 (en) 1998-04-08

Family

ID=6360685

Family Applications (1)

Application Number Title Priority Date Filing Date
SK4206-89A SK278911B6 (en) 1988-08-12 1989-07-10 Pipe made of copper or copper alloy and manufacturing process thereof

Country Status (28)

Country Link
EP (1) EP0356732B1 (en)
JP (1) JP2895095B2 (en)
KR (1) KR940010772B1 (en)
AR (1) AR247013A1 (en)
AT (1) ATE76175T1 (en)
CA (1) CA1324584C (en)
CZ (1) CZ280990B6 (en)
DD (1) DD284078A5 (en)
DE (2) DE3827353A1 (en)
DK (1) DK169750B1 (en)
DZ (1) DZ1349A1 (en)
ES (1) ES2036763T3 (en)
FI (1) FI90136C (en)
GR (1) GR3004809T3 (en)
HU (1) HU214381B (en)
IE (1) IE61097B1 (en)
IL (1) IL91145A (en)
MA (1) MA21591A1 (en)
MX (1) MX173263B (en)
NO (1) NO177688C (en)
PL (1) PL161517B1 (en)
PT (1) PT91428B (en)
RO (1) RO109463B1 (en)
SK (1) SK278911B6 (en)
SU (1) SU1716974A3 (en)
TN (1) TNSN89088A1 (en)
YU (1) YU46649B (en)
ZA (1) ZA896043B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155365B2 (en) * 1992-08-10 2001-04-09 日本ケーブル・システム株式会社 Accelerator operation device
DE4417455C2 (en) * 1994-05-19 1997-09-25 Wieland Werke Ag Use of a corrosion-resistant tube with inner oxide layers
DE19819925A1 (en) * 1998-05-05 1999-11-11 Km Europa Metal Ag Process for creating a protective layer on the inner surface of a copper pipe
FI107543B (en) * 1998-07-30 2001-08-31 Outokumpu Oy A method for making a copper tube
US6293336B1 (en) 1999-06-18 2001-09-25 Elkay Manufacturing Company Process and apparatus for use with copper containing components providing low copper concentrations portable water
KR100466182B1 (en) * 2002-09-16 2005-01-13 허봉락 Anti-shocking member
FI120359B (en) * 2002-12-18 2009-09-30 Cupori Group Oy Method and apparatus for treating an inner surface of a copper or copper alloy tube
DE102007055446A1 (en) * 2007-11-12 2009-05-14 Hansgrohe Ag Provision of water-bearing components from brass alloys with reduced metal ion release
KR102567102B1 (en) * 2017-05-12 2023-08-14 주식회사 쿠라레 Polyurethane for polishing layer, polishing layer including polyurethane and modification method of the polishing layer, polishing pad, and polishing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU80891A1 (en) * 1979-02-07 1980-09-24 Liege Usines Cuivre Zinc SANITARY TUBES OF PHOSPHORUEX COPPER OR CORROSION-RESISTANT PHOSPHORUS COPPER ALLOYS AND PROCESS FOR THEIR PRODUCTION
DE3003228C2 (en) * 1980-01-30 1981-11-26 Wieland-Werke Ag, 7900 Ulm Process for improving the corrosion resistance of installation pipes made of copper
LU83165A1 (en) * 1981-02-25 1982-09-10 Liege Usines Cuivre Zinc TUBES FOR CONDENSERS OR HEAT EXCHANGERS OF CORROSION RESISTANT COPPER ALLOYS AND METHOD FOR THE PRODUCTION THEREOF
DE3760510D1 (en) * 1987-03-07 1989-10-05 Wieland Werke Ag Process for improving the corrosion resistance of hard or semi-hard copper fitting tubes

Also Published As

Publication number Publication date
YU118689A (en) 1991-02-28
ZA896043B (en) 1990-05-30
NO177688C (en) 1995-11-15
DK169750B1 (en) 1995-02-13
DK388089A (en) 1990-02-13
IE892217L (en) 1990-02-12
AR247013A1 (en) 1994-10-31
DD284078A5 (en) 1990-10-31
IL91145A0 (en) 1990-03-19
IL91145A (en) 1995-07-31
NO893246L (en) 1990-02-13
NO893246D0 (en) 1989-08-11
FI90136C (en) 1993-12-27
EP0356732A1 (en) 1990-03-07
CS8904206A2 (en) 1991-09-15
TNSN89088A1 (en) 1991-02-04
ES2036763T3 (en) 1993-06-01
FI893785A0 (en) 1989-08-10
FI893785A (en) 1990-02-13
PT91428A (en) 1990-03-08
DE58901399D1 (en) 1992-06-17
KR940010772B1 (en) 1994-11-11
YU46649B (en) 1994-01-20
PL161517B1 (en) 1993-07-30
MA21591A1 (en) 1990-04-01
HUT54786A (en) 1991-03-28
HU214381B (en) 1998-03-30
DE3827353A1 (en) 1990-02-22
PT91428B (en) 1995-08-09
GR3004809T3 (en) 1993-04-28
IE61097B1 (en) 1994-09-21
CZ280990B6 (en) 1996-05-15
CA1324584C (en) 1993-11-23
ATE76175T1 (en) 1992-05-15
KR900003417A (en) 1990-03-26
JP2895095B2 (en) 1999-05-24
EP0356732B1 (en) 1992-05-13
FI90136B (en) 1993-09-15
NO177688B (en) 1995-07-24
JPH0261054A (en) 1990-03-01
DK388089D0 (en) 1989-08-08
SU1716974A3 (en) 1992-02-28
MX173263B (en) 1994-02-14
RO109463B1 (en) 1995-02-28
DZ1349A1 (en) 2004-09-13

Similar Documents

Publication Publication Date Title
CN102732857B (en) Plasma chamber components with erosion resistant yttrium comprising metal with oxidized coating
EP2455949B1 (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
SK278911B6 (en) Pipe made of copper or copper alloy and manufacturing process thereof
WO2012111840A1 (en) Copper foil for graphene production and graphene production method using copper foil
JP5758205B2 (en) Copper foil for producing graphene and method for producing graphene using the same
WO2014027528A1 (en) Rolled copper foil for graphene production and graphene production method
EP0246986B1 (en) Process for manufacturing strips from partially recrystallized zircaloy 2 or zircaloy 4, and strips obtained in this way
US4175163A (en) Stainless steel products, such as sheets and pipes, having a surface layer with an excellent corrosion resistance and production methods therefor
JP4636389B2 (en) Protective layer for aluminum-containing alloys for use at high temperatures and method for producing such a protective layer
EP1571233A1 (en) Method of hardening a beta titanium member
JP5865211B2 (en) Copper foil for producing graphene and method for producing graphene using the same
JP6515379B2 (en) Low melting point molten metal processing member excellent in corrosion resistance and method for manufacturing the same
CA1293163C (en) Deposition process of a protective coating on steel products
FR2575764A1 (en) Process for the manufacture of a strip made of zirconium zircaloy 2 or restored zircaloy 4 alloy, and strip obtained
JP4922703B2 (en) Catheter tube manufacturing core and manufacturing method thereof
KR870001106B1 (en) Aluminum coated steel sheet and process for producing the same
US5522951A (en) Method for manufacturing a zinc wire
JPH09323116A (en) Manufacture of aluminum tubing coated with zinc layer on its inside surface
JP5243764B2 (en) Catheter tube forming core material and method for manufacturing the same
JP2008067842A (en) Core material for manufacturing catheter tube and method of manufacturing the same
JP2001183089A (en) Anti-corrosion copper or copper alloy pipe having bent segment, its manufacturing method and water supplying and hot water supplying device
JP2000282140A (en) Production of copper or copper alloy tube
JPH049428A (en) Manufacture of low cr stainless steel having ti oxide film
JPH11158591A (en) High corrosion resistance zirconium alloy tube and its production
FR2701963A1 (en) Process for manufacturing a metal part coated with mineral materials, part obtained and its use