SI9520007A - Method and device for polymerising binders in fibrous materials especially mineral wool insulation - Google Patents

Method and device for polymerising binders in fibrous materials especially mineral wool insulation Download PDF

Info

Publication number
SI9520007A
SI9520007A SI9520007A SI9520007A SI9520007A SI 9520007 A SI9520007 A SI 9520007A SI 9520007 A SI9520007 A SI 9520007A SI 9520007 A SI9520007 A SI 9520007A SI 9520007 A SI9520007 A SI 9520007A
Authority
SI
Slovenia
Prior art keywords
mineral wool
irradiation
polymerization
ultraviolet radiation
radiation
Prior art date
Application number
SI9520007A
Other languages
Slovenian (sl)
Inventor
Frederic Mertz
Pascal Chartier
Christian Decker
Original Assignee
Saint Gobain Isover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover filed Critical Saint Gobain Isover
Publication of SI9520007A publication Critical patent/SI9520007A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/655Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions characterised by the apparatus for applying bonding agents
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0288Controlling heating or curing of polymers during moulding, e.g. by measuring temperatures or properties of the polymer and regulating the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/248Moulding mineral fibres or particles bonded with resin, e.g. for insulating or roofing board
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/554Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving by radio-frequency heating
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/645Impregnation followed by a solidification process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2503/00Use of resin-bonded materials as filler
    • B29K2503/04Inorganic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Paper (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The invention concerns a method and a device for polymerising substances in fibrous materials, in particular binding agents in mineral wool materials for insulation purposes, wherein the fibrous material having a given thickness (d) is subjected to UV irradiation in order to polymerise the substance having the form of a prepolymer impregnating the fibres, said irradiation of the material is carried out at a sufficiently high intensity level (IUV) to bring about, at a maximum depth (d) of intended polymerisation, a residual intensity exceeding such threshold value at which polymerisation of the selected binding agent under the influence of UV radiation is ensured within a given time limit, such time limit, however, precluding any undesirable degradation, due to the effects of the radiation, of organic substances in the portion at the surface of said material, and wherein the duration of irradiating a given surface unit of said material is kept within said time limit.

Description

Postopek in priprava za polimeriziranje snovi v vlaknenih materialih, predvsem veziv v materialih iz mineralne volne za izolacijske namene

Izum se nanaša na postopek za polimeriziranje snovi v vlaknenih materialih, predvsem veziv v materialih iz mineralne volne za izolacijske namene, pri čemer se vlakneni material, ki ima določeno debelino in ki se v danem primeru lahko neprekinjeno giba po proizvajalni liniji, je podvržen ultravijoličnemu sevanju, da se polimerizira snov, ki je v obliki predpolimera, ki impregnira vlakna, in na pripravo za polimeriziranje snovi v vlaknenih materialih, kot je predvsem vezivo v materialu iz vlaknene volne za izolacijske namene, pri čemer ta priprava obsega vsaj en ultravijolični sevalni izvor.

Takšna tehnika je poznana iz patentnega spisa US A 5 275 874. Namen tega znanega nauka je enakomerno polimerizirati material po vsej njegovi debelini. Izhajajoč iz dejstva, da energija, ki jo v materialu oddajo ultravijolični žarki eksponencialno pada z naraščajočo razdaljo od površine materiala, traja obdelava precej časa, da se doseže maksimalno enakomernost polimerizacije. V navedenem primeru po patentnem spisu US A 5 275 874 pade gostota sevalnega toka po prehodu skozi debelino materiala na en odstotek vpadajoče gostote toka, ko material potuje pod množico zaporedno nameščenih ultravijoličnih svetil, v bistvu po analogiji s prehodom skozi polimerizacijsko peč pri običajnem termičnem polimeriziranju.

Pri takšni obdelavi je iz izkušnje znotraj obsega predloženega izuma znano, da se organske sestavine na površini materiala iz mineralne volne neizogibno osmodijo in zoglenijo. Zaradi hitrega padca intenzitete, to se pravi na enoto površine dovedene moči, z globino pod obsevano površino je zahtevani vnos energije tako visok, da dovede do zoglenitve ali osmoditve organskih sestavin ob površini, npr. veziva na obsevani površini materiala iz mineralne volne.

Temu ustrezno izum temelji na nalogi, da se predvidi postopek po uvodnem delu patentnega zahtevka 1, s čimer se željena polimerizacija omogoči celo pri znatnih globinah materiala pod obsevano površino, ne da bi prišlo do nezaželjenih razkrojnih učinkov na površini materiala.

To nalogo se reši s tem, da se obsevanje izvaja pri zadosti visokem intenzitetnem nivoju, tako da se pri največji globini nameravane polimerizacije doseže preostalo intenziteto, ki presega takšno vrednost praga, pri kateri je polimerizacija izbranega veziva pod vplivom ultravijoličnega sevanja zagotovljena znotraj danih časovnih meja, pri čemer pa te časovne meje preprečujejo kakršnokoli nezaželjeno degradacijo zaradi učinkov sevanja na organske snovi v predelu blizu površine materiala, in da se trajanje obsevanja površinske enote materiala drži znotraj teh časovnih meja. V primeru vlaknenega materiala, ki se neprekinjeno giba ob proizvajalni liniji se to trajanje izbere tudi tako, daje v skladu s hitrostjo proizvajalne linije.

V teku raziskav pri delu, ki se nanaša na predloženi izum, je bilo ugotovljeno, da imajo materiali, ki pridejo v poštev kot predpolimeri, vrednosti praga za nivo intenzitete, to se pravi za moč obsevanja na enoto površine, nad katerim polimerizacija poteka znotraj zelo kratke časovne periode oziroma skoraj trenutno. Povečevanje intenzitetnega nivoja nad to vrednost praga ne pospeši polimerizacije znatno, ne da bi jo neugodno prizadelo. Dvig temperature na obsevani površini, ki vodi do pojava degradacijskih učinkov, pa je po drugi strani v bistvu sorazmeren trajanju obsevanja, pri čemer hitrost naraščanja temperature seveda narašča v odvisnosti od nivoja intenzitete.

Pri ultravijoličnem obsevanju se sprošča toplota glede na intenziteto sevanja bodisi zaradi toplotnega sevanja, ki ga hkrati oddaja ultravijoličen izvor, bodisi zaradi energijskih izgub ultravijoličnega sevanja, ki se tako pretvarja v toplotno sevanje; ti učinki se najočitneje pojavijo pri površini materiala, saj tam nastopajo najvišje temperature in omogočajo dekompozicijske pojave, čim je presežena določena temperaturna meja.

Ti pojavi, do katerih prihaja vzporedno vendar z različnim časovnim potekom, se uporabljajo v predloženem izumu, tako da se najprej določi nivo praga intenzitete, pri kateri se polimerizacija izvede hitro, npr. znotraj 0,2 s. Obravnavano površinsko enoto se nato obseva za tak čas in nivo intenzitete sevanja na površini se lahko dvigne toliko, da dvig temperature med tem vnaprej določenim časovnim intervalom, npr. 0,2 s, še vedno ostane pod dano temperaturno mejo, nad katero se lahko pričakujejo degradacijski učinki. Ta največja intenziteta, ki se lahko uporabi v vnaprej določeni kratki časovni periodi, pa zaradi padca intenzitete v materialu omejuje globino, znotraj katere ostaja intenziteta nad vrednostjo praga in znotraj katere je zato možna dejansko homogena polimerizacija.

Ker je tako vsaka površinska enota izpostavljena sevanju z visokim intenzitetnim nivojem le za kratko časovno periodo, se lahko obsevanje izvede v omejenem prostoru, da se prihrani prostor na proizvajalni liniji. V primeru neprekinjeno premikajoče se tkanine iz materiala na proizvajalni liniji je treba čas obsevanja vsake površinske enote izbrani tako, daje v skladu s hitrostjo linije, na splošno med 0,1 m/s in 1 m/s.

Če intenzitetni nivo sevanja presega 500 mW/cm2, še posebej pa 1 W/cm2 in na posebno prednosten način presega 2 W/cm2, potem se komercialno razpoložljive ultravijolične izvore lahko uporabi na račun učinkovitosti po eni strani, medtem ko so po drugi strani vseeno omogočeni visoki intenzitetni nivoji na površini. Kot je znano samo po sebi, so prednostni ultravijolični izvori za sevanje v valovnem področju nad 250 nm, prednostno nad 310 nm zaradi selektivno povečane prepustnosti materiala iz mineralne volne v tem področju.

Trajanje obsevanja površinske enote je prednostno krajše od 10 s in je prednostno krajše od 1 s in je predvsem krajše od 0,5 s.

Pri mnogih običajnih obdelovalnih postopkih se mineralna vlakna izdelujejo iz raztaljenega stekla, ki mu je dodana snov, npr. predpolimer veziva, v teku odlaganja kot volnena plast in se nato ta snov, npr. vezivo, polimerizira. V takšnem primeru ima material iz mineralne volne še vedno sorazmerno visoko temperaturo, ko se snov polimerizira tako, da se dvig temperature na površinski strani do temperaturne meje pod vplivom sevanja začenja iz sorazmerno visoke začetne temperature. Predvsem v takšnem primeru se material iz mineralne volne prednostno hladi do kar se da nizke temperature pred obsevanjem, da se tako omogoči večji dopusten dvig temperature zaradi obdelave s sevanjem. Hlajenje hkrati z obsevanjem pa zaradi kratke časovne periode obsevanja ne daje učinka, ki bi opravičil s tem povezan izdatek. Uporaba postopka po izumu pa je po drugi strani predvsem prednostna pri vseh tistih izdelovalnih postopkih, kjer je material iz mineralne volne pred polimeriziranjem pri nižji temperaturi, prednostno pri temperaturi okolice. To je npr. takrat, kadar se vezivo uvaja v obliki pare ali aerosola, kot je poznano iz DE A 44 06 863 oziroma DE A 4410 020.

Delež kisika, ki ga vsebuje vlaknen material in ki je pri običajni obdelavi okoli 21 % kot v obdajajoči ga atmosferi, se med obsevanjem prednostno zniža do manj kot 10 %, še bolje celo pod 5 % in na posebno prednosten način na manj kot 1 %. Pri običajni polimerizaciji, ki uporablja radikale, ta ukrep prostim radikalom snovi, ki jih je treba polimerizirati in ki se stvorijo s sevanjem, prepreči, da jih zasede kisik, in tako prepreči neuspešno polimerizacijo na teh mestih. To je predvsem pomembno pri filmih monomerov zelo majhne debeline in nizki intenziteti obsevanja.

Obsevanje se prednostno izvaja na obeh večjih ploskvah materiala, tako da sevalna energija prodira po debelini materiala z obeh strani. Globina prodiranja sevanja se lahko na ta način več kot podvoji, ko se globini prodiranja prekrivata na sredini materiala. Posebno dobro se uporabi ta učinek prekrivanja, če se obe strani obsevata hkrati, tako da sta na določenem mestu znotraj materiala hkrati prisotni energiji od obsevanja obeh strani.

Ni potrebno, da je polimerizacija homogena po vsej debelini materiala. Predvsem v primeru dvostranskega obsevanja lahko povsem zadošča, če se polimerizirajo sloji materiala ob površini in preostane bolj ali manj široka notranja plast z znatno zmanjšano polimerizacijo. V primeru polimeriziranja veziva se željeno povečanje mehanske trdnosti doseže v zunanjih predelih, tako da je odpornost na upogibanje, ki je pogosto najpomembnejša, le stežka prizadeta zaradi nižje mehanske trdnosti v središčnem področju plošče. Nepopolna polimerizacija je pogosto prav tako sprejemljiva, kjer so pomembne druge lastnosti razen odpornosti na upogibanje, npr. površinska tesnitev, ploskovna trdnost ali podobno. Kadar se polimerizirajo druge snovi razen veziv, se lahko izkaže, da je nehomogena polimerizacija po debelini ugodna, odvisno od funkcije snovi in uporabe izdelka.

V primeru nehomogene polimerizacije po debelini je lahko prav tako ugodno, kot je opisano v DE A 44 06 863 ali DE A 44 10 020, da se že nehomogeno porazdeljeno vnese snov v material. Tako se lahko npr. v primeru veziva na ta način večjo koncentracijo veziva doseže v predelih blizu površin kot v središčnem področju plošče, kar ima za posledico izdelavo z željeno najboljšo uporabo določene količine veziva.

Kot predpolimer so predvsem primerne multifunkcionalne akrilne in metakrilne spojine, kot je poznano samo po sebi. Nadaljnje primerne snovi so predpolimeri v obliki monomerov, oligomerov ali polimerov, ki obsegajo nenasičene funkcionalne skupine, ki se jih da polimerizirati, kot so akrilne, metakrilne, vinilne, viniletrske, alilne ali maleatne skupine, ki lahko reagirajo v smislu podaljševanja verige in/ali premreženja. Vezivo je lahko zmes teh spojin in obsega fotoiniciator, da se omogoči polimeriziranje preko ultravijolične svetlobe. Ugotovilo se je, da so predpolimerske zmesi, ki obsegajo epoksiakrilate posebno prednostne za predloženi izum.

Priprava po izumu za izvajanje postopka po izumu je značilna po tem, da obsega sredstvo za fokusiranje ultravijoličnega sevanja na vsaj en fokusiran snop majhne širine.

S takšnim fokusiranjem se lahko doseže visok nivo površinske intenzitete.

Predvsem pri polimerizaciji na tekoči proizvodni liniji je lahko prednostno, če se izvede fokusiranje v linearno obliko, npr. raztezajčo se preko širine izdelovane tkanine. Širino linearno fokusiranega snopa se lahko nato uskladi s hitrostjo transporta izdelovane tkanine, da se pride do željenega trajanja obsevanja vsake površinske enote brez prisotnosti premičnih delov.

Alternativno pa se lahko fokusiranje tudi izvede v obliki točke, pri čemer tako stvorjeni tenek snop visoke intenzitete potuje po materialu v željenem v vnaprej določenem vzorcu. Na ta način se lahko polimerizira snov v vlaknenem materialu, ki ima neravno površino v primeru oblikovanih izdelkov, npr. cevnih odsekov, ki imajo obliko votlega valja. To premikanje fokusiranega snopa se lahko npr. dobi z zelo omejenimi izdatki s pomočjo nihajočega zrcala. Visoka intenziteta ali gostota moči takšnega snopa, ki je fokusiran v obliki točke, omogoča velike globine prodiranja za polimeriziranje snovi, ki imajo posebej kratke polimerizacijske čase. Predvsem takšno nihajno gibanje s tankim snopom omogoča dobro prilagoditev različnim hitrostim linije. Za določene primere uporabe lahko zadošča, da se s snopom osvetli le del celotne površinske ploskve vlaknenega materiala in se vmes omogoči presled6 ke, v katerih polimerizacija ni potrebna ali pa do nje dejansko pride zaradi učinkovanja priležnega obsevanja na razdaljo.

Na prednosten način se fokusiran snop usmeri v končno žarišče, to se pravi snop se zbere v točko in ne obstoji iz vzporednih žarkov. Zahvaljujoč primernemu fokusiranju se žarišče lahko pozicionira v željeni globini materiala, tako da se sorazmerno višjo intenziteto dobi tam na manjši površini, čeprav je oslabljena zaradi sipanja na vlaknih, ki ležijo više. Takšno oblikovanje fokusiranega snopa je predvsem primerno v primeru fokusiranega snopa v obliki linije.

Nadaljnje podrobnosti, značilnosti in prednosti izuma so razvidne iz sledečega opisa izvedbenih primerov ob sklicevanju na risbo, v kateri sl. 1 prikazuje značilno funkcijo intenzitetnega nivoja glede na debelino plasti izdelka iz mineralne volne, ki je podvržena obojestranskemu ultravijočičnemu obsevanju, sl. 2 prikazuje stopnjo pretvorbe v odvisnosti od časa pri različnih nivojih intenzitete, sl. 3 prikazuje segrevanje površine materiala iz mineralne volne pri različnih nivojih intenzitete, sl. 4 prikazuje povezavo nivoja intenzitete in polimerizacije po debelini plošče izdelka iz mineralne volne, ki je bila. obdelana po izumu z obojestranskim ultravijoličnim obsevanjem, sl. 5 prikazuje shematično poenostavljen prikaz priprave po izumu, ki ima linearno fokusiranje ultravijoličnega sevanja, in sl. 6 prikazuje shematično poenostavljeno predstavitev priprave po izumu s snopom, ki je fokusiran v točko na materialu iz mineralne volne.

Da se olajša razumevanje, se iste referenčne oznake uporabljajo za identične ali ustrezajoče si dele oz. grafično predstavljene funkcije.

Sl. 1 ponazarja značilno funkcijo lokalnega intenzitetnega nivoja ultravijoličnega

Ί sevanja v odvisnosti od debeline vlaknenega materiala, npr. za izdelek iz mineralne volne, ki je podvržen obojestranskemu ultravijoličnemu obsevanju svoje površine.

Kot abscisa ali X os je prikazana debelina stene ali globina d izdelka iz mineralne volne, ki ima v predstavljenem primeru debelino stene 12 cm. Leva ordinata ali Y os prikazuje intenzitetni nivo 1^ ulravijoličnega sevanja od 0 do 100 % in desna ordinata ali Y os prikazuje intenzitetni nivo 1^ ulravijoličnega sevanja od 0 do 2000 mW/cm2. V predstavljenem primeru 2000 mW/cm2 ustreza intenzitetnemu nivoju 100 % ultravijoličnega sevanja.

Na desni strani desne ordinate po eni strani in na levi strani leve ordinate po drugi strani sta narisani puščici, ki kažeta proti sredini slike in ponazarjata vpadajoče ultravijolično sevanje z energijo hv. Ker se obsevanje vrši z obeh strani izdelka iz mineralne volne, intenzitetni nivo po debelini d, ki je ponazorjen s krivuljo 1, poteka približno simetrično na središčno linijo, tako da bo v nadaljnjem sprva obravnavana le leva polovica diagrama. Vidi se, da intenzitetni nivo 1^ ostro pade že po sorazmerno majhni globini d prodiranja. Od začetnega intenzitetnega nivoja Iuv z vrednostjo 100 % na površini mineralne volne intenzitetni nivo 1^ v tem primeru pade pod 50 % že po manj kot 1 cm prodiranja, po globini prodiranja 2 cm pa je že pod 10 % in v središčnem področju izdelka iz mineralne volne znaša le pod 5 % intenzitetnega nivoja 1^ vpadajočega sevanja na površini. Ta oster padec intenzitetnega nivoja 1^ po globini prodiranja je po eni strani povzročen z nizko prepustnostjo ultravijoličnega sevanja skozi material iz mineralne volne in po drugi strani je posledica pretvorbe energije ultravijoličnega sevanja v termično energijo že v najzgomejših slojih materiala iz mineralne-volne brez povezane polimerizacije.

Prva presoja krivulje 1 za intenziteto, kot je prikazana, privede do rezultata, da je potrebno zadovoljivo polimerizacijo snovi v vlaknenih materialih omejiti na predele materiala blizu površin, ker intenzitetni nivo 1^ ultravijoličnega sevanja pada prehitro in tako onemogoča zagotoviti zadosti visoko rezidualno intenziteto v središčnem področju, da bi se tam dosegla zadovoljiva polimerizacija. Če se torej intenzitetni nivo 1^ sevanja poviša na tolikšno vrednost, da se središčno področje vlaknenega materiala lahko še vedno zadovoljivo polimerizira, bi to imelo za posledico tako visoke intenzitetne nivoje na površini, da se ne bi dalo izogniti poškodbi materiala na površini, npr. zoglenitvi ali osmoditvi površinskih organskih sestavin, npr. snovi, ki se polimerizira, ali veziva.

Na sl. 2 je prikazana funkcija polimerizacije snovi v vlaknenih materialih v odvisnosti od časa pri različnih intenzitetnih nivojih ultravijoličnega sevanja. Na abscisi ali X osi je prikazan čas t obsevanja v sekundah od 0 do 1,5 s. Leva ordinata ali Y os prikazuje povezano stopnjo P pretvorbe zaradi polimerizacije od 0 do 100 %. Krivulje IUV1 do 1^7 prikazujejo različne intenzitetne nivoje 1^ ultravijoličnega sevanja z npr. IUV1 = 2 mW/cm2, = 5 mW/cm2, 1^ = 11 mW/cm2, 1^ = 25 mW/cm2, 1^ = 55 mW/cm2, = 128 mW/cm2 in 1^ = 220 mW/cm2. Tako intenzitetni nivo 1^ narašča od do IUV7.

Vseh sedem krivulj ima značilne skupne značilnosti. Le-te so, najprej skupna izhodiščna točka v izhodišču 0 grafa. Po kratkem presledku tej skupni izhodiščni točki sledi vzpon krivulje s pozitivnim gradientom dP/dt, ki mu sledi skoraj linearno področje naraščanja s stalnim pozitivnim gradientom dP/dt. Temu področju linearnega naraščanja nato pri vseh prikazanih krivuljah sledi pojemajoče naraščanje, to se pravi naraščanje s padajočim pozitivnim gradientom dP/dt, dokler se ne dospe do skoraj vodoravnega linearnega odseka brez nadaljnjega naraščanja, to se pravi s stalnim gradientom dP/dt blizu nič. Meja stopnje P pretvorbe s polimerizacijo, ki se jo doseže v tem stalnem odseku, se lahko označi kot meja nasičenja stopnje P polimerizacije, do katere pride pri določenem intenzitetnem nivoju 1^ sevanja.

Strm gradient linearnega naraščanja v sprednjem delu krivulj se povečuje z naraščajočo intenziteto 1^ ultravijoličnega sevanja in ni zelo različna v primeru krivulje za za 2 mW/cm2, medtem ko je zelo strm gradient prisoten pri krivulji IUV7 za 220 mW/cm2. Kot prehoda od strmega dvigovanja v sprednjem predelu krivulj proti vodoravnemu, skoraj linearnemu področju krivulj ni zelo različen v primeru dveh intenzitetnih nivojev IUV1 in 1^2, v primeru intenzitetnega nivoja 1^^ je zelo dobro razločljiv, medtem ko intenzitetni nivoji 1^^ do izvajajo jasno različne loke prehoda od ostrih naraščanj do stalnih predelov krivulj. Razen tega do tega loka prehoda prihaja v zgodnejši časovni točki z naraščajočim intenzitetnim nivojem 1^.

To pomeni, da je v primerih nižjih intenzitetnih nivojev 1^ ultravijoličnega sevanja treba obsevati material iz mineralne volne relativno dalj časa, dokler ne pride do nikakršnega nadaljnjega naraščanja polimerizacije, kije nizka pri katerikoli stopnji. Če pa se za obsevanje materiala iz mineralne volne uporablja sorazmerno visoko ultravijolično sevanje, se visoko stopnjo polimerizacije doseže že v zelo kratki časovni periodi in se zelo hitro doseže maksimum in se nato ne more nič več povečati, ampak ostaja stalna. To pomeni, da obstoji meja za čas obsevanja za vsak pomemben intenzitetni nivo sevanja, znotraj katere se doseže največjo polimerizacijo in se z raztezanjem omenjene meje proti daljšemu obsevanju ne more doseči nadaljnjega povečanja polimerizacije.

V prikazanem primeru pride do strmega naraščanja polimerizacije pri intenzitetnem nivoju 1^ za 220 mW/cm2 že po približno 0,05 s in doseže svojo maksimalno vrednost že po trajanju obsevanja od 0,2 s do 0,3 s, in sicer v tem primeru okoli 80 %. To prikazuje, da se lahko pri zadostnem intenzitetnem nivoju obsevanja doseže maksimum polimerizacije visokega nivoja že po kratkem času obsevanja.

Površinsko gretje vlaknenega materiala ali materiala iz mineralne volne pri različnih intenzitetnih nivojih ultravijoličnega sevanja je v nadaljnjem razloženo podrobneje, sklicujoč se na sl. 3. Abscisa ali X os predstavlja čas t v sekundah. Ordinata ali Y os prikazuje temperaturo površine materiala iz mineralne volne v °C. Vodoravna črtkana linija pri 20 °C predstavlja temperaturo okolice kot referenčno vrednost. V predloženem primeru začenja od predpostavke, daje material iz mineralne volne pri temperaturi okoli 20 °C, preden se začne obsevanje. Druga vodoravna črtkana linija pri 20 °C prikazuje zgornjo mejo termične obremenitve organskih sestavin, kot so snovi, ki se jih lahko polimerizira, ali vezivo običajnega materiala iz mineralne volne na njegovi površini. V samem grafu je funkcija temeprature v odvisnosti od časa prikazana za dva intenzitetna nivoja IUV1 in IUV2, izmed katerih je IUV1 najnižji in v tem primeru 11 mW/cm2 in je IUV2 najvišji intenzitetni nivo in v tem primeru znaša 2000 mW/cm2. Lahko se ugotovi, da temperatura površine materiala iz mineralne volne narašča skoraj sorazmerno s časom pri stalnem intenzitetnem nivoju ultravijoličnega sevanja. To linearno temperaturno naraščanje je odvisno od intenzitetnega nivoja 1^, tako da gradient te ravne temperaturne linije narašča z naraščajočim intenzitetnim nivojem. Če se material iz mineralne volne obseva z visokimi nivoji intenzitete ultravijoličnega sevanja, se temperaturno mejo, npr. 200 °C, pri kateri se pojavi poškodba površine materiala iz mineralne volne, doseže že po sorazmerno kratkem času. Novo vedenje o teh povezavah se lahko izrabi v nauku predloženega izuma, s tem da se zmanjša periode obsevanja, ko se obsevajo materiali iz mineralne volne do te mere, da se lok prehoda od strmega naraščanja proti maksimumu polimerizacije lahko ravno doseže znotraj te periode. To omogoča uporabo intenzitetnih nivojev, ki ne povzročajo poškodbe na površini pri kratkih obsevalnih časih, čeprav bi po daljšem obsevanju vodili do poškodbe površine, in vendar omogočajo uvajanje zadostne intenzitete v sredino materiala, da se prav tako omogoči zadostno polimerizacijo P znotraj takšne periode obsevanja.

Skupaj s fizikalnimi povezavami, ki so prikazane na sl. 1 in 2, postane jasno, da obstoji delovno območje, ki je odvisno od intenzitetnega nivoja Iuv ultravijoličnega sevanja, debeline d izdelka iz mineralne volne, periode t obsevanja in prikazane temperaturne meje, v katerem je možna maksimalna in hitra polimerizacija snovi v vlaknenih materialih, ne da bi bilo treba pričakovati površinsko poškodbo.

Material iz mineralne volne je lahko prisoten pri visoki temperaturi pred obsevanjem zaradi predhodnih obdelovalnih korakov. Nadaljnje gretje zaradi obsevanja lahko nato povzroči, da se prekorači temperaturno mejo sorazmerno hitro in tako povzroči termično obremenitev organskih sestavin, kot je snov, ki se jo lahko polimerizira, ali vezivo običajnega materiala iz mineralne volne, na njegovi površini. Tako se lahko predvidi hlajenje materiala iz mineralne volne pred obsevanjem, npr. s pomočjo primernih priprav, kot so npr. predlagane v DE A 44 06 863 ali v DE A 44 10 020, s čimer se lahko prepreči hiter dvig temperature zaradi obsevanja do vrednosti nad temperaturno mejo in s tem poškodbo površine.

Povezava na osnovi primera po predloženem izumu med spremembami intenzitetnega nivoja na eni strani in polimerizacijo na drugi strani in debelino d izdelka iz mineralne volne pri dvostranskem ultravijoličnem obsevanju je prikazana na sl. 4. Abscisa prikazuje na isti način kot na sl. 1 debelino d izdelka iz mineralne volne, kije v slučaju primera 12 cm. Na levi ordinati je prikazan intenzitetni nivo 1^ od 0 do 100 % in na desni ordinati intenzitetni nivo 1^ od 0 do 2000 mW/cm2. Tukaj intenzitetni nivo 100 % ustreza 2000 mW/cm2. Dodatno je prikazana polimerizacija P od 0 do 100 % na desni ordinati. Podobno kot na sl. 1 puščice hv z desne in z leve simbolizirajo dovajanje energije z obsevanjem z ultravijoličnim sevanjem. Krivulja 1 ponovno prikazuje spreminjanje intenzitetnega nivoja preko debeline d podobno kot na sl. 1. Krivulja 3 prikazuje spremembo polimerizacije pri obsevanju od leve in krivulja 4 prikazuje spreminjanje polimerizacije P pri obsevanju z desne. Do obsevanja prihaja z obeh strani, razvoj polimerizacije P pa ima za posledico nalaganje krivulj 3 in 4, kar je grafično prikazano s krivuljo 2. V tem primeru sta krivulji 3 in 4 približno druga drugi zrcalni glede na sredino materiala iz mineralne volne kot njuno os, tako da je tudi krivulja 2 približno simetrična glede na središčni predel.

V nadaljnjem sta najprej obravnavani krivulji 1 in 3, na osnovi česar bo prikazana povezava med spreminjanjem intenzitetnega nivoja in polimerizacijo P. Dokler in11 tenzitetni nivo 1^, ki ostro pade že po majhni globini pronicanja v krivulji 1, še presega zadosti visoko mejo, lahko pride do skoraj maksimalne polimerizacije P. Če ta meja ni dosežena, krivulja 3 pade prav tako in končno doseže 0. Isto velja za krivuljo 4 pri obsevanju z desne. Če se upošteva razlage, ki se nanašajo na sl. 1 do 3, postane jasno, da se skoraj enakomerno dobro polimerizacijo lahko doseže v materialu iz mineralne volne po vsej njegovi debelini pri dovolj visoki začetni intenziteti ultravijoličnega sevanja na površini izdelka iz mineralne volne, ki nato na značilen način hitro pada, vendar ne dalj kot do določene intenzitetne meje, pri kateri še vedno v znatni meri prihaja do polimerizacije, in pri ustrezno izbranem trajanju obsevanja. Na ta način bi bilo možno polimerizirati materiale iz mineralne volne po vsej njihovi debelini. Je pa npr. možno z vplivanjem na čas obsevanja doseči, da se snovi v teh materialih iz mineralne volne polimerizirajo le v bližini njihovih površin, in doseči, da ne prihaja do nikakršne polimerizacije ali le do zmanjšane polimerizacije v njihovih središčnih predelih.

Nepolimerizirani deli snovi v vlaknenem materialu so podvrženi staranju zaradi njihovega reagiranja s kisikom iz atmosfere in drugimi reaktanti, s čimer se odpravi njihova reaktivnost in snov postane inertna.

Sl. 5 prikazuje shematično poenostavljeno predstavitev izvedbenega primera priprave po izumu, ki ima linearno fokusiranje ultravijoličnega sevanja. Izvor 10 ultravijoličnega sevanja, prednostno linearen izvor ultravijoličnega sevanja, je nameščen v prvem žarišču reflektorja 12, katerega prerez ima prednostno obliko parabole ali elipse. Ultravijolično sevanje, ki ga seva izvor 10 ultravijoličnega sevanja je fokusirano na drugo žariščno točko 14· s pomočjo reflektorja 12. Druga žariščna točka 14 je nameščena v bližini površine materiala 16 iz mineralne volne, ki ga je treba obsevati, ali v materialu iz mineralne volne. Material 16 iz mineralne volne je lahko tkanina iz materiala iz mineralne volne in je npr. transportiran na transportni pripravi, ki ni prikazana, pod vsaj enim izvorom 10 ultravijoličnega sevanja in/ali nad vsaj enim izvorom 10 ultravijoličnega sevanja in po njem potuje linearno fokusiran snop 18 najmanjše širine b približno pravokotno na smer transportiranja.

Sl. 6 prikazuje shematično poenostavljeno predstavitev priprave po izumu, ki tvori fokusiran snop, ki je točkasto izoblikovan na materialu iz mineralne volne. Izvor 10 ultravijoličnega sevanja je v tem primeru točkast in je nameščen v prvem žarišču zrcala 12, kije približno semielipsoidno. S pomočjo tega semielipsoidnega reflektorja se ultravijolično sevanje iz sevalnega izvora 10 fokusira v drugem žarišču 14.

Drugo žarišče 14 pa je po drugi strani nameščeno blizu površine ali znotraj materiala 16 iz mineralne volne, ki je npr. lahko izveden iz tridimenzionalno izoblikovanih delcev in katerega površinski obris otipava ultravijoličen snop 18 pod vpadnim kotom, ki je približno 900 na ravninsko normalo ustreznega obsevanega ravninskega elementa. To se lahko doseže s pomočjo primerne premične opreme za izvor 10 ultravijoličnega sevanja, ki ni prikazana, in/ali s pomočjo premičnih zrcalnih enot, ki prav tako niso prikazane.

Pripravi s sl. 5 in 6 uporabljata končni žarišči na nivoju materiala iz mineralne volne, ki ga je treba obdelati. Povsem podobne učinke pa se lahko doseže, ko se uporablja tanke snope z neskončnimi žarišči, to se pravi vzporednimi žarki.

Vsebnost kisika v vlaknenem materialu med obdelavo je treba prednostno znižati pod 10 % ali celo prednostno pod 5 % ali celo najbolj prednostno pod 1 %, pri čemer naj se praktično v celoti izogne primeru, v katerem prosti radikali snovi, ki jo je treba polimerizirati, proizvedeni z ultravijoličnim sevanjem s pomočjo fotoiniciatorjev, reagirajo s kisikom in je polimerizacija na tem mestu preprečena.

V primeru zadostnega zmanjšanja vsebnosti kisika v vlaknenem materialu se lahko tako doseže bolj popolno polimerizacijo snovi. Nadaljnja prednost uporabe inertne atmosfere je v tem, da se zmanjša možno tvorjenje ozona, ker v pretežno inertni atmosferi kisikove molekule, ki se lahko razcepijo z energijo ultravijoličnega sevanja, da tvorijo kisikove radikale, in ki lahko nato tvorijo ozon, niso več prisotne.

Zmanjšano vsebnost kisika se lahko na preprost način doseže z izpiranjem materiala iz mineralne volne z drugim plinom, npr. z dušikom, ali na bolj ekonomičen način z ogljikovim dioksidom ali vodno paro.

Za ISOVER SA 1NT-GOBAIN: L.) i.’ ’/ ’ΐ.Ο.Ο.

Process and preparation for polymerisation of substances in fibrous materials, in particular binders in mineral wool materials for insulation purposes

The invention relates to a process for the polymerization of substances in fibrous materials, in particular binders in mineral wool materials for insulating purposes, wherein the fibrous material, which has a certain thickness and which can optionally move continuously along the production line, is subjected to ultraviolet radiation to polymerize a substance in the form of a fiber impregnating prepolymer and to a device for polymerizing a substance in fibrous materials, such as, in particular, a binder in fibrous wool material for insulation purposes, the device comprising at least one ultraviolet radiation source.

Such a technique is known from U.S. Patent No. 5,257,874. The purpose of this known art is to uniformly polymerize the material throughout its thickness. Based on the fact that the energy emitted in the material by ultraviolet rays decreases exponentially with increasing distance from the surface of the material, it takes a long time to process to achieve maximum uniformity of polymerization. In this case, according to U.S. Patent No. 5,275,874, the radiation flux density after passing through the thickness of the material drops to one percent of the incident flux density when the material travels below a plurality of ultraviolet lamps, essentially analogous to the passage through a polymerization furnace in conventional thermal polymerization. .

In such processing, it is known from the experience within the scope of the present invention that the organic constituents on the surface of mineral wool material are inevitably osmotic and charred. Due to the rapid decrease in intensity, that is to say, per unit area of power input, with the depth below the irradiated surface, the required energy input is so high that it results in the charring or ossification of the organic components at the surface, e.g. binders on the irradiated surface of mineral wool material.

Accordingly, the invention is based on the task of providing a method according to the introductory part of claim 1, thereby enabling the desired polymerization even at considerable depths of material below the irradiated surface without undesirable undesirable effects on the surface of the material.

This task is solved by irradiating at a sufficiently high intensity level so that at a maximum depth of the intended polymerization the residual intensity is exceeded beyond such a threshold that the polymerization of the selected binder under the influence of ultraviolet radiation is ensured within the given time limits. However, these time limits prevent any undesirable degradation due to the effects of radiation on organic matter in the region near the surface of the material, and to keep the irradiation time of the surface unit of the material within these time limits. In the case of fibrous material continuously moving along the production line, this duration shall also be chosen in accordance with the speed of the production line.

In the course of research into the present invention, it has been found that the materials that are suitable as prepolymers have threshold values for the level of intensity, that is, for the irradiance power per unit area above which polymerization takes place within a very short periods of time, or almost instantaneously. Increasing the intensity level above this threshold does not significantly accelerate the polymerization without adversely affecting it. The rise in temperature on the irradiated surface leading to degradation effects, on the other hand, is essentially proportional to the duration of irradiation, with the rate of increase of temperature naturally increasing depending on the intensity level.

In the case of ultraviolet radiation, heat is released according to the intensity of the radiation, either due to the thermal radiation emitted by the ultraviolet source at the same time or from the energy losses of the ultraviolet radiation, which is thus converted into thermal radiation; these effects are most evident at the surface of the material, since they occur at the highest temperatures and allow for decomposition phenomena as soon as a certain temperature limit is exceeded.

These phenomena occurring in parallel but with different time course are used in the present invention by first determining the intensity threshold level at which polymerization is carried out rapidly, e.g. within 0.2 s. The surface unit under consideration is then irradiated for such a time and the level of radiation intensity on the surface can be raised so that the temperature rise during this predetermined time interval, e.g. 0.2 s, still remains below a given temperature limit above which degradation effects can be expected. This maximum intensity, which can be used for a predetermined short period of time, however, due to the drop in intensity in the material, limits the depth within which the intensity remains above the threshold value and within which, therefore, homogeneous polymerization is possible.

As each surface unit is thus exposed to high intensity radiation for only a short period of time, irradiation can be carried out in a confined space to save space on the production line. In the case of a continuously moving fabric of material on the production line, the irradiation time of each surface unit should be chosen to be consistent with the line speed, generally between 0.1 m / s and 1 m / s.

If the radiation intensity level exceeds 500 mW / cm 2 , and especially 1 W / cm 2 and in a particularly preferred way exceeds 2 W / cm 2 , then commercially available ultraviolet sources may be used at the expense of efficiency on the one hand, while on the other hand, high intensity levels on the surface are still enabled. As is known in itself, ultraviolet radiation sources in the wavelength range above 250 nm are preferred, preferably above 310 nm due to the selectively increased permeability of the mineral wool material in this area.

The irradiation duration of the surface unit is preferably less than 10 s and is preferably less than 1 s and preferably less than 0.5 s.

In many conventional machining processes, mineral fibers are made of molten glass to which a substance is added, e.g. prepolymer binder, during deposition as a woolen layer and then this substance, e.g. binder, polymerizes. In such a case, the mineral wool material still has a relatively high temperature when the substance is polymerized so that the rise in temperature on the surface side to the temperature limit under the influence of radiation starts from a relatively high initial temperature. Particularly in such a case, the mineral wool material is preferably cooled to as low a temperature as possible prior to irradiation, in order to allow a higher allowable temperature rise due to radiation treatment. However, due to the short irradiation with irradiation, the short irradiation period has no effect that would justify the associated expenditure. The use of the process according to the invention, on the other hand, is particularly preferred in all those manufacturing processes where the mineral wool material is polymerized at a lower temperature, preferably at ambient temperature. This is e.g. when the binder is introduced in the form of steam or aerosol as known from DE A 44 06 863 and DE A 4410 020, respectively.

The fraction of oxygen contained in the fibrous material, which is about 21% in normal treatment than in the surrounding atmosphere, is preferably reduced to less than 10% during irradiation, even better below 5% and in a particularly preferred manner to less than 1% . In the case of conventional polymerization using radicals, this measure prevents the free radicals of the substances that are to be polymerized and which are generated by radiation, preventing them from being occupied by oxygen, and thus preventing the failure of polymerization at these sites. This is especially important for monomer films of very low thickness and low irradiation intensity.

The irradiation is preferably carried out on both major surfaces of the material so that the radiation energy penetrates the thickness of the material from both sides. In this way, the penetration depth can more than double when the penetration depths overlap in the middle of the material. This overlap effect is particularly well used if both sides are irradiated simultaneously, so that at a certain point inside the material, the energy from the irradiation of both sides is simultaneously present.

The polymerization does not need to be homogeneous throughout the thickness of the material. In particular, in the case of bilateral irradiation, it may be sufficient to polymerize the layers of material adjacent to the surface and to leave a more or less wide inner layer with significantly reduced polymerization. In the case of binder polymerisation, the desired increase in mechanical strength is achieved in the outer regions so that the flexural resistance, which is often the most important, is only severely affected by the lower mechanical strength in the center region of the plate. Incomplete polymerization is often also acceptable where other properties besides flexural resistance are important, e.g. surface sealing, surface strength or the like. When polymerizing substances other than binders, non-homogeneous thickness polymerization may prove advantageous, depending on the function of the substance and the use of the product.

In the case of non-homogeneous thickness polymerization, it may also be advantageous, as described in DE A 44 06 863 or DE A 44 10 020, to introduce a non-homogeneously distributed substance into the material. Thus, e.g. in the case of a binder in this way, a greater concentration of the binder is achieved in the regions near the surfaces than in the center region of the plate, which results in the production with the desired best use of a given amount of binder.

Multifunctional acrylic and methacrylic compounds, as known per se, are particularly suitable as prepolymer. Further suitable substances are prepolymers in the form of monomers, oligomers or polymers comprising polymerizable unsaturated functional groups, such as acrylic, methacrylic, vinyl, vinyl ether, allyl or maleate groups, which may react in terms of chain extension and / or crosslinks. The binder may be a mixture of these compounds and comprise a photoinitiator to allow for polymerization via ultraviolet light. It has been found that prepolymer compositions comprising epoxyacrylates are particularly preferred for the present invention.

The apparatus of the invention for carrying out the method of the invention comprises the means for focusing ultraviolet radiation on at least one focused beam of small width.

Such focusing can achieve a high level of surface intensity.

Particularly in the case of polymerization on a liquid production line, it may be advantageous to focus in a linear fashion, e.g. extending beyond the width of the fabric made. The width of the linearly focused beam can then be matched to the transport speed of the fabric fabricated to achieve the desired irradiation duration of each surface unit without the presence of moving parts.

Alternatively, focusing may also be done in the form of a point, whereby the high-intensity thin beam created in this way travels through the material desired in a predetermined pattern. In this way, a substance can be polymerized in a fibrous material having an uneven surface in the case of molded products, e.g. tubular sections having the shape of a hollow cylinder. This shifting of the focused beam may, e.g. gets with very limited expenditures using a swinging mirror. The high intensity or power density of such a point-focused beam allows for deep penetration depths for the polymerization of substances having particularly short polymerization times. Notably, such thin-beam oscillatory motion allows for good adaptation to different line speeds. For certain applications, it may be sufficient to illuminate only a portion of the entire surface of the fibrous material with a beam and to allow intervals at which polymerization is unnecessary or actually occurs due to the effect of close irradiation.

In a preferred way, the focused beam is directed to the final focus, i.e. the beam is collected at a point and does not exist from parallel beams. Thanks to proper focusing, the focal point can be positioned at the desired depth of material so that a relatively higher intensity is obtained there on a smaller surface, although it is weakened by scattering on fibers lying higher. This type of focused beam design is particularly suitable in the case of a line-shaped focused beam.

Further details, features and advantages of the invention are apparent from the following description of embodiments with reference to the drawing in which FIG. 1 shows a characteristic function of the intensity level with respect to the thickness of the mineral wool product layer subjected to bilateral ultraviolet irradiation, FIG. 2 shows the degree of conversion as a function of time at different intensity levels; FIG. 3 shows the heating of the mineral wool material surface at different intensity levels; FIG. 4 shows the relationship between the intensity level and the polymerization by the thickness of the mineral wool product plate that was. treated according to the invention by bilateral ultraviolet radiation, FIG. 5 shows a schematically simplified view of a device according to the invention having linear focusing of ultraviolet radiation, and FIG. 6 shows a schematically simplified representation of a device according to the invention with a beam focused at a point on mineral wool material.

In order to facilitate understanding, the same reference marks are used for identical or corresponding parts, respectively. graphically represented functions.

FIG. 1 illustrates the characteristic function of the local intensity level of the ultraviolet

Ί radiation depending on the thickness of the fiber material, e.g. for a mineral wool product which is subjected to two-sided ultraviolet irradiation of its surface.

The wall thickness or depth d of the mineral wool product having a wall thickness of 12 cm is shown as an abscissa or X axis. The left ordinate or the Y axis shows the intensity level of 1 ^ ulraviolet radiation from 0 to 100% and the right ordinate or Y axis shows the intensity level of 1 ^ ulraviolet radiation from 0 to 2000 mW / cm 2 . In the present case, 2000 mW / cm 2 corresponds to the intensity level of 100% ultraviolet radiation.

On the right side of the right ordinate on one side and on the left side of the left ordinate on the other are drawn arrows pointing towards the center of the image and illustrating the incident ultraviolet radiation with energy hv. Since irradiation is performed on both sides of the mineral wool product, the intensity level d, illustrated by curve 1, runs approximately symmetrically to the center line, so that only the left half of the diagram will be considered initially. It can be seen that the intensity level 1 ^ drops sharply after a relatively small depth d of penetration. From the initial intensity level I uv with a value of 100% on the mineral wool surface, the intensity level 1 ^ in this case falls below 50% after less than 1 cm of penetration, and at a penetration depth of 2 cm it is already below 10% and in the central area of the product from mineral wool is only below 5% of the intensity level of 1 ^ incident radiation on the surface. This sharp decrease in the intensity level 1 ^ in the depth of penetration is caused, on the one hand, by the low permeability of ultraviolet radiation through the mineral wool material and, on the other hand, by the conversion of ultraviolet radiation energy into thermal energy even in the thickest layers of mineral wool material without associated polymerization. .

The first estimate of the intensity curve 1 as shown leads to the result that satisfactory polymerization of the substance in the fiber materials must be limited to areas of the material near the surfaces, since the intensity level of 1 ^ ultraviolet radiation falls too fast, thus making it impossible to provide a sufficiently high residual intensity in the center field to achieve satisfactory polymerization there. Therefore, if the intensity level of 1 ^ radiation is raised to such a value that the central area of the fibrous material can still be satisfactorily polymerized, this would result in such high intensity levels on the surface that no damage to the material on the surface would be avoided, e.g. carbonisation or ossification of surface organic constituents, e.g. polymerizable substance or binder.

In FIG. 2 shows the function of time-dependent polymerization of fibers in fibrous materials at different intensities of ultraviolet radiation. The abscissa or X axis shows the time t of irradiation in seconds from 0 to 1.5 s. The left ordinate or the Y axis shows the associated P conversion rate due to a 0 to 100% polymerization. Curves I of UV1 to 1 ^ 7 show different intensities of 1 ^ ultraviolet radiation with e.g. I UV1 = 2 mW / cm 2 , = 5 mW / cm 2 , 1 ^ = 11 mW / cm 2 , 1 ^ = 25 mW / cm 2 , 1 ^ = 55 mW / cm 2 , = 128 mW / cm 2 in 1 ^ = 220 mW / cm 2 . Thus the intensity level 1 ^ rises from to I UV7 .

All seven curves have common characteristics in common. They are, first, a common starting point in the starting 0 graph. After a short interval, this common starting point is followed by the rise of the curve with a positive gradient dP / dt, followed by an almost linear region of increase with a constant positive gradient dP / dt. This area of linear ascension is then followed by a declining increase in all the curves shown, that is, increasing with a decreasing positive gradient dP / dt until it reaches a nearly horizontal linear section without further increase, i.e. with a constant gradient of dP / dt near zero. The limit of the P conversion rate with the polymerization achieved in this continuous section can be denoted as the saturation limit of the P polymerization step, which occurs at a given intensity level of 1 ^ radiation.

The steep gradient of linear rise in the front of the curves increases with increasing intensity of 1 ^ ultraviolet radiation and is not very different in the case of the 2 mW / cm 2 curve, while a very steep gradient is present in the IUV7 curve of 220 mW / cm 2 . The angle of transition from the steep rise in the front of the curves to the horizontal, almost linear region of the curves is not very different in the case of two intensity levels IUV1 and 1 ^ 2, in the case of the intensity level 1 ^^ it is very clearly distinguished, while the intensity levels 1 ^^ to perform distinctly different transition arcs from sharp rises to constant curve sections. In addition, this transition arc occurs at an earlier time point with an increasing intensity level of 1 ^.

This means that in cases of lower intensities of 1 ^ ultraviolet radiation, the mineral wool material should be irradiated for a relatively long time until there is no further increase in polymerization, which is low at any stage. However, if a relatively high ultraviolet radiation is used to irradiate mineral wool material, the high degree of polymerization is achieved within a very short period of time and maximum is reached very quickly and then can no longer increase but remains constant. This means that there is a limit for the irradiation time for each significant radiation intensity level within which the maximum polymerization is achieved, and a further increase of the polymerization cannot be achieved by extending said boundary against longer irradiation.

In the example shown, there is a sharp increase in polymerization at an intensity level of 1 ^ by 220 mW / cm 2 after about 0.05 s and reaches its maximum value after the irradiation duration from 0.2 s to 0.3 s, in which about 80%. This shows that at a sufficient intensity level of irradiation, a maximum of high-level polymerization can be achieved after a short irradiation time.

The surface heating of fibrous or mineral wool material at different intensity levels of ultraviolet radiation is further explained in more detail, with reference to FIG. 3. The abscissa or X axis represents the time tv seconds. The ordinate or the Y axis shows the surface temperature of the mineral wool material in ° C. The horizontal dashed line at 20 ° C represents the ambient temperature as a reference value. In the present case, it starts with the assumption that the mineral wool material is at a temperature of about 20 ° C before irradiation begins. The second horizontal dashed line at 20 ° C shows the upper limit of thermal loading of organic constituents such as polymerizable substances or the binder of conventional mineral wool material on its surface. In the graph itself, the temperature function, as a function of time, is shown for two intensity levels I UV1 and I UV2 , of which I UV1 is the lowest and in this case 11 mW / cm 2 and I UV2 is the highest intensity level and in this case is 2000 mW / cm 2 . It can be observed that the surface temperature of the mineral wool material rises almost proportionally with time at a constant intensity level of ultraviolet radiation. This linear temperature rise depends on the intensity level 1 ^, so that the gradient of this straight temperature line increases with increasing intensity level. If the mineral wool material is irradiated with high levels of ultraviolet radiation, the temperature limit, e.g. 200 ° C, which causes damage to the surface of the mineral wool material, is reached within a relatively short time. New knowledge of these linkages can be exploited in the teachings of the present invention by reducing irradiation periods when mineral wool materials are irradiated to such an extent that the arc of transition from steep growth to maximum polymerization can be precisely reached within that period. This allows the use of intensities that do not cause surface damage at short irradiation times, although after prolonged irradiation would lead to surface damage, and yet allow the introduction of sufficient intensity into the middle of the material to allow sufficient polymerization of P within such irradiation period.

Together with the physical connections shown in FIG. 1 and 2, it becomes clear that there is a working area, which depends on the intensity level I uv ultraviolet radiation, the thickness d of the mineral wool of the period t of irradiation and shows the temperature limit, in which the possible maximum and rapid polymerisation of substances in fibrous materials , without having to expect superficial damage.

Mineral wool material may be present at high temperature before irradiation due to pre-treatment steps. Further heating due to irradiation can then cause the temperature limit to be exceeded relatively quickly, thereby causing thermal loading of organic components such as a polymerizable substance or a binder of conventional mineral wool material on its surface. Thus, cooling of the mineral wool material prior to irradiation, e.g. by means of suitable preparations, such as e.g. proposed in DE A 44 06 863 or in DE A 44 10 020, which can prevent rapid rise in temperature due to irradiation to values above the temperature limit and thus damage to the surface.

The connection on the basis of the present invention between changes in intensity level on the one hand and polymerization on the other and the thickness d of the mineral wool product upon bilateral ultraviolet irradiation is shown in FIG. 4. Displays the abscissa in the same manner as in FIG. 1 thickness d of mineral wool product, in the case of 12 cm. The left ordinate shows an intensity level 1 ^ from 0 to 100% and the right ordinate shows an intensity level 1 ^ from 0 to 2000 mW / cm 2 . Here, the intensity level 100% corresponds to 2000 mW / cm 2 . Additionally, polymerization P from 0 to 100% on the right ordinate is shown. Similar to FIG. 1 arrows hv on the right and on the left symbolize the energy supply by ultraviolet radiation. Curve 1 shows again the variation of the intensity level over the thickness d similar to that in FIG. 1. Curve 3 shows the change in polymerization on irradiation from the left and curve 4 shows the change in polymerization P on irradiation on the right. Irradiation occurs on both sides, and the development of polymerization P results in the loading of curves 3 and 4, which is graphically represented by curve 2. In this case, curves 3 and 4 are approximately mirror-like with respect to the center of the mineral wool material as their axis , so that curve 2 is also approximately symmetrical with respect to the center region.

The curves 1 and 3 are discussed first, which will show the relationship between the change in intensity level and the polymerization of P. As long as the tensile level 1 ^, which falls sharply after a small penetration depth in curve 1, still exceeds a sufficiently high limit, Nearly maximum polymerization of P. occurs. If this limit is not reached, curve 3 drops also and finally reaches 0. The same applies to curve 4 when irradiated to the right. Taking into account the explanations given in FIG. 1 to 3, it becomes clear that almost uniformly good polymerization can be achieved in mineral wool material over its entire thickness at a sufficiently high initial intensity of ultraviolet radiation on the surface of the mineral wool product, which then drops rapidly in a typical manner but not further than up to a certain intensity limit at which polymerization is still substantially occurring, and at an appropriately selected irradiation duration. In this way it would be possible to polymerize mineral wool materials throughout their thickness. It is, for example. by influencing the irradiation time, the substances in these mineral wool materials can be polymerized only near their surfaces, and no polymerization or only reduced polymerization in their central regions is achieved.

Non-polymerized parts of a substance in a fibrous material are subjected to aging due to their reaction with oxygen from the atmosphere and other reactants, thereby eliminating their reactivity and making the substance inert.

FIG. 5 shows a schematically simplified representation of an embodiment of a device according to the invention having linear focusing of ultraviolet radiation. The source of ultraviolet radiation 10, preferably a linear source of ultraviolet radiation, is located in the first focal point of the reflector 12, the cross section of which is preferably in the form of a parabola or ellipse. Ultraviolet radiation emitted by the source 10 of the ultraviolet radiation is focused on the second focal point 14 · by means of a reflector 12. The second focal point 14 is located near the surface of the mineral wool material 16 to be irradiated or in the mineral wool material . The mineral wool material 16 may be a mineral wool material fabric and is e.g. transported on a transport device not shown below at least one ultraviolet radiation source 10 and / or above at least one ultraviolet radiation source 10 and thereafter travel a linearly focused bundle 18 of minimum width b approximately perpendicular to the transport direction.

FIG. 6 shows a schematically simplified representation of a device according to the invention forming a focused bundle, which is point-shaped on mineral wool material. The origin of the ultraviolet radiation 10 is point-like in this case and is located in the first focus of the mirror 12, which is approximately semielipsoid. With the help of this semielipsoid reflector, ultraviolet radiation from a radiation source 10 is focused in a different focus 14.

The second focus 14, on the other hand, is located close to the surface or inside the material 16 of mineral wool, e.g. may be made of three-dimensional particles and whose surface contour is sensed by an ultraviolet beam 18 at an angle of incidence about 90 0 to the plane normal of the corresponding irradiated plane element. This can be achieved by suitable movable equipment for the source 10 of the ultraviolet radiation which is not shown and / or by means of movable mirror units which are also not shown.

Prepare with FIG. 5 and 6 use end foci at the level of the mineral wool material to be treated. Quite similar effects can be achieved when using thin beams with infinite foci, that is, parallel beams.

The oxygen content of the fibrous material during treatment should preferably be reduced below 10%, or even preferably below 5%, or even most preferably below 1%, practically completely avoiding the case in which the free radicals of the substance to be polymerized, produced by ultraviolet radiation using photoinitiators react with oxygen and polymerization at this site is prevented.

If the oxygen content of the fiber material is sufficiently reduced, a more complete polymerization of the substance can be achieved. A further advantage of using an inert atmosphere is that it reduces the possible formation of ozone, because in a predominantly inert atmosphere oxygen molecules that can be cleaved by the energy of ultraviolet radiation to form oxygen radicals and which can then form ozone are no longer present.

Reduced oxygen content can be easily achieved by washing the mineral wool material with another gas, e.g. with nitrogen, or in a more economical way with carbon dioxide or water vapor.

For ISOVER WITH 1NT-GOBAIN: L.) i. ''/' ΐ.Ο.Ο.

Claims (15)

1. Postopek za polimeriziranje snovi v vlaknenih materialih, predvsem veziv v materialih iz mineralne volne za izolacijske namene, pri katerem se vlakneni material, ki ima dano debelino (d) in ki se v danem primeru lahko neprekinjeno premika po izdelovalni liniji, se podvrže ultravijoličnemu obsevanju, da se polimerizira snov, ki ima obliko predpolimera, ki impregnira vlakna, označen s tem, da se obsevanje materiala izvede pri dovolj visokem intenzitetnem nivoju (1^), da se pri maksimalni globini nameravane polimerizacije doseže rezidualno intenziteto, ki presega takšno vrednost praga, pri kateri je zagotovljena polimerizacija izbranega veziva pod vplivom ultravijoličnega sevanja znotraj dane časovne meje, pri čemer pa takšna časovna meja izključuje z učinki sevanja povzročeno nezaželjeno degradacijo organskih snovi v predelu ob površini omenjenega materiala, in je v primeru vlaknenega materiala, ki se neprekinjeno premika po izdelovalni liniji, kompatibilna s hitrostjo linije, in da se trajanje (t) obsevanja dane površinske enote omenjenega materiala drži znotraj omenjene časovne meje.A process for the polymerisation of a substance in fibrous materials, in particular binders in mineral wool materials for insulating purposes, in which a fibrous material having a given thickness (d) and which can optionally move continuously along the production line is subjected to ultraviolet irradiation to polymerize a fiber-impregnated prepolymeric substance, characterized in that the irradiation of the material is carried out at a sufficiently high intensity level (1 ^) to achieve a residual intensity exceeding such value at the maximum depth of the intended polymerization a threshold at which the polymerization of the selected binder under the influence of ultraviolet radiation is ensured within a given time limit, while excluding such a time limit by the undesired effects of radiation caused by the undesirable degradation of organic matter in the region along the surface of said material, and in the case of fibrous material which is continuous moves along a production line compatible with speed lines, and that the duration (t) of irradiation of a given surface unit of said material is kept within said time limit. 2. Postopek po zahtevku 1, označen s tem, da omenjeni intenzitetni nivo (1,^) na površini omenjenega materiala iz mineralne volne presega 500 mW/cm2, prednostno presega 1 W/cm2 in še posebno presega 2 W/cm2.Method according to claim 1, characterized in that said intensity level (1, ^) on the surface of said mineral wool material exceeds 500 mW / cm 2 , preferably exceeds 1 W / cm 2 and in particular exceeds 2 W / cm 2 . 3. Postopek po zahtevku 1 ali 2, označen s tem, da valovna dolžina uporabljenega ultravijoličnega sevanja presega 250 nm in prednostno 310 nm.A method according to claim 1 or 2, characterized in that the wavelength of the ultraviolet radiation used exceeds 250 nm and preferably 310 nm. 4. Postopek po kateremkoli izmed zahtevkov 1 do 3, označen s tem, da je trajanje (t) obsevanja omenjene površinske enote krajše od 10 s, prednostno krajše od 1 s in predvsem krajše od 0,5 s.A method according to any one of claims 1 to 3, characterized in that the irradiation duration (t) of said surface unit is less than 10 s, preferably less than 1 s and especially less than 0.5 s. 5. Postopek po kateremkoli izmed zahtevkov 1 do 4, označen s tem, da se površina omenejnega materiala iz mineralne volne pred obsevanjem ohladi.Method according to any one of claims 1 to 4, characterized in that the surface of said mineral wool material is cooled before irradiation. 6. Postopek po kateremkoli izmed zahtevkov 1 do 5, označen s tem, da je delež kisika, ki je vsebovan v atmosferi znotraj omenjenega materiala iz mineralne volne, zmanjšan na manj kot 10 %, prednostno manj kot 5 % in še posebej manj kot 1 %.Process according to any one of claims 1 to 5, characterized in that the proportion of oxygen contained in the atmosphere inside said mineral wool material is reduced to less than 10%, preferably less than 5% and especially less than 1 %. 7. Postopek po kateremkoli izmed zahtevkov 1 do 6, označen s tem, da se obsevata obe večji ploskvi omenjenega materiala.A method according to any one of claims 1 to 6, characterized in that both major surfaces of said material are irradiated. 8. Postopek po zahtevku 7, označen s tem, da se obe strani obsevata hkrati.Method according to claim 7, characterized in that both sides are irradiated simultaneously. 9. Postopek po zahtevku 7 ali 8, označen s tem, da je področje z nizko stopnjo polimerizacije predvideno v središčnem področju omenjenega materiala.A method according to claim 7 or 8, characterized in that a low polymerization region is provided in the central region of said material. 10. Postopek po kateremkoli izmed zahtevkov 1 do 9, označen s tem, da se kot predpolimer za oblikovanje veziva uporablja zmes snovi, ki obsegajo epoksiakrilat.A process according to any one of claims 1 to 9, characterized in that a mixture of substances comprising epoxyacrylate is used as a prepolymer for forming the binder. 11. Priprava za polimeriziranje snovi v vlaknenih materialih, kot je predvsem vezivo v materialu iz mineralne volne za izoalcijske namene, obsegajoča vsaj en izvor (10) ultravijoličnega sevanja, označena s tem, da so predvidena sredstva (12) za fokusiranje ultravijoličnega sevanja v vsaj enem fokusiranem snopu (18) majhne širine (b).11. A device for polymerizing a substance in fibrous materials, such as, in particular, a binder in mineral wool material for isohalation purposes, comprising at least one ultraviolet radiation source (10), characterized in that the means (12) for focusing the ultraviolet radiation in at least one focused beam (18) of small width (b). 12. Priprava po zahtevku 11, označena s tem, da je fokusiran snop (18) izoblikovan tako, daje linearen, in se ga prednostno drži stacionarnega.Device according to claim 11, characterized in that the focused beam (18) is shaped in a linear manner and is preferably held stationary. 13. Priprava po zahtevku 11, označena s tem, da ima omenjeni fokusiran snop (18) obliko točke, ki se hitro giba po omenjenem materialu (16) iz mineralne volne z ene strani na drugo, tako da prednostno obseva vso njegovo površino.Apparatus according to claim 11, characterized in that said focused bundle (18) has the form of a point that moves rapidly along said material (16) from mineral wool from one side to the other so that it preferably irradiates its entire surface. 14. Priprava po kateremkoli izmed zahtevkov 11 do 13, označena s tem, da ima omenjeni fokusirani snop (18) žarišče (14), ki se nahaja znotraj omenjenega materiala (16) iz mineralne volne, ki ga je treba obdelati.Apparatus according to any one of claims 11 to 13, characterized in that said focused bundle (18) has a focal point (14) located within said mineral wool material (16) to be treated. 15. Priprava po kateremkoli izmed zahtevkov 11 do 14, označena s tem, da sta izvora (10) ultravijoličnega sevanja nameščena na obeh straneh večjih ploskev omenjenega materiala (16) iz mineralne volne.Device according to any one of claims 11 to 14, characterized in that the sources (10) of the ultraviolet radiation are arranged on either side of the larger surfaces of said mineral wool material (16).
SI9520007A 1994-06-17 1995-06-16 Method and device for polymerising binders in fibrous materials especially mineral wool insulation SI9520007A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4421254A DE4421254A1 (en) 1994-06-17 1994-06-17 Method and device for polymerizing substances in fiber materials, in particular binders in mineral wool materials for insulation purposes

Publications (1)

Publication Number Publication Date
SI9520007A true SI9520007A (en) 1996-06-30

Family

ID=6520848

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9520007A SI9520007A (en) 1994-06-17 1995-06-16 Method and device for polymerising binders in fibrous materials especially mineral wool insulation

Country Status (16)

Country Link
EP (1) EP0717798A1 (en)
JP (1) JPH09505117A (en)
KR (1) KR960705097A (en)
CN (1) CN1129020A (en)
AU (1) AU2792795A (en)
BR (1) BR9506267A (en)
CA (1) CA2168014A1 (en)
CZ (1) CZ337595A3 (en)
DE (1) DE4421254A1 (en)
FI (1) FI960127A0 (en)
HU (1) HUT72828A (en)
NO (1) NO960018L (en)
PL (1) PL313167A1 (en)
SI (1) SI9520007A (en)
WO (1) WO1995035402A1 (en)
ZA (1) ZA954731B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003262A1 (en) * 2004-01-21 2005-08-11 Basf Ag Thermally polymerizable mixtures of multifunctional macromonomers and polymerization initiators and their use as binders for substrates
US11858215B2 (en) 2018-04-30 2024-01-02 Hewlett-Packard Development Company, L.P. Build material heaters with baffles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1349058A (en) * 1970-05-19 1974-03-27 Ici Ltd Non-woven webs
DE2937081A1 (en) * 1978-09-11 1980-03-20 Unisearch Ltd METHOD FOR GRANTING PERMANENT BENDING PROPERTIES
US4300468A (en) * 1980-03-24 1981-11-17 The United States Of America As Represented By The Secretary Of The Navy Position interlock system for submarine masts and closure
CH660489A5 (en) * 1984-08-31 1987-04-30 Bernhard Glaus METHOD AND DEVICE FOR CURING POLYMERIZABLE COATING MEASURES ON NON-TEXTILE SUBSTRATES.
US5227229A (en) * 1990-12-20 1993-07-13 Minnesota Mining And Manufacturing Company Nonwoven polyester articles and method of making same
US5275874A (en) * 1991-12-23 1994-01-04 Owens-Corning Fiberglas Technology Inc. Glass fiber insulation bonded with a UV cured system

Also Published As

Publication number Publication date
PL313167A1 (en) 1996-06-10
BR9506267A (en) 1997-08-12
KR960705097A (en) 1996-10-09
AU2792795A (en) 1996-01-15
CA2168014A1 (en) 1995-12-28
FI960127A (en) 1996-01-11
FI960127A0 (en) 1996-01-11
CZ337595A3 (en) 1996-05-15
DE4421254A1 (en) 1995-12-21
WO1995035402A1 (en) 1995-12-28
ZA954731B (en) 1996-01-26
CN1129020A (en) 1996-08-14
NO960018D0 (en) 1996-01-03
NO960018L (en) 1996-01-03
HU9503489D0 (en) 1996-02-28
EP0717798A1 (en) 1996-06-26
HUT72828A (en) 1996-05-28
JPH09505117A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
O'Connell et al. Plastics for high-power laser applications: a review
Kumagai et al. Ablation of polymer films by a femtosecond high‐peak‐power Ti: sapphire laser at 798 nm
RU2108986C1 (en) Method of manufacturing endless thread
Nishii et al. Photochemical reactions in GeO 2-SiO 2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser
EP0218244B1 (en) Method for producing optical fiber
US5888617A (en) Object with matted surface and polymerization method for the production of the matting
DE60001499D1 (en) POLYPROPYLENE WITH LONG-CHAIN BRANCHES
FR2477058B1 (en)
Hautefeuille et al. New perspectives for direct PDMS microfabrication using a CD-DVD laser
SI9520007A (en) Method and device for polymerising binders in fibrous materials especially mineral wool insulation
US11673328B2 (en) Methods for preventing oxygen inhibition of a light-initiated polymerization reaction in a 3D printing system using inert gas
Dickens et al. Thermal and photolytic degradation of plates of poly (methyl methacrylate) containing monomer
Darraud et al. Optical modifications of polymers by ion beam irradiation
Liang et al. Fabrication and amplification of Rhodamine B‐doped step‐index polymer optical fiber
Katayama et al. Diffraction measurement of grating structure induced by irradiation of femtosecond laser pulse in acrylate block copolymers
Phomsakha et al. Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers
JPS55153327A (en) Laser annealing device
Watanabe et al. Surface modification of poly (ethylene terephthalate) fiber by excimer light
Mirzadeh et al. CO2-pulsed laser induced surface grafting of acrylamide onto ethylene-propylene-rubber (EPR)—I
KR890006307A (en) Curing method and apparatus of optical fiber coating
Ihlemann et al. Near-UV laser ablation of doped polymers
US20080315133A1 (en) Uv Irradiation Unit
GB2168493A (en) Ageing materials
Li et al. Laser‐Induced Polymerization of Photosensitive Resin for Silk Fabric Joining
Alexandrov et al. Formation of 3D dielectric structures by initiating polymerization with the fourth harmonic of an Nd laser