SI23218A - Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles - Google Patents

Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles Download PDF

Info

Publication number
SI23218A
SI23218A SI200900340A SI200900340A SI23218A SI 23218 A SI23218 A SI 23218A SI 200900340 A SI200900340 A SI 200900340A SI 200900340 A SI200900340 A SI 200900340A SI 23218 A SI23218 A SI 23218A
Authority
SI
Slovenia
Prior art keywords
nanoparticles
rutile
suspension
synthesis
rutile nanoparticles
Prior art date
Application number
SI200900340A
Other languages
Slovenian (sl)
Inventor
Verhovšek Dejan
RoĹľman Tatjana
ÄŚeh Miran
Blagotinšek Pavel
Šturm Sašo
Žagar Kristina
Original Assignee
CINKARNA Metalurško kemična industrija Celje, d.d.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CINKARNA Metalurško kemična industrija Celje, d.d. filed Critical CINKARNA Metalurško kemična industrija Celje, d.d.
Priority to SI200900340A priority Critical patent/SI23218A/en
Priority to PCT/SI2010/000057 priority patent/WO2011056151A1/en
Publication of SI23218A publication Critical patent/SI23218A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/0475Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The subject of the invention are rutile nanoparticles and a process of synthesis for obtaining rutile nanoparticles from metatitanium acid which is a semifinished product in the production of TiO2 pigments. The synthesis of rutile nanoparticles from metatitanium acid is based on the so called gel-sol process. Rutile nanoparticles according to the invention are very fine particles in the form of an acid/neutral suspension, where rutile nanoparticles are polycrystalline and the crystallites exhibit anisothropic morphology and are about 5 nm wide and several 10 nm long, while rutile nanoparticles themselves have a size between 60 and 100 nm in length and 15 to 50 mm in width and a specific surface between 90 and 160 m2/g.

Description

NANODELCI RUTILA IN POSTOPEK SINTEZE ZA PRIDOBIVANJE NANODELCEV RUTILAROUTE nanoparticles and synthesis procedure for the production of rutile nanoparticles

Predmet izuma so nanodelci rutila in postopek sinteze za pridobivanje nanodelcev rutila iz metatitanove kisline, ki je polprodukt v proizvodnji pigmenta TiO2. Sinteza nanodelcev rutila iz metatitanove kisline temelji na t.i. gel-sol postopku.The subject matter of the invention is rutile nanoparticles and a synthesis process for the production of rutile nanoparticles from metatitanic acid, which is a byproduct in the production of TiO 2 pigment. The synthesis of metatitanic acid rutile nanoparticles is based on the so-called gel-salt process.

Izum obravnava sintezni postopek, s katerim lahko iz metatitanove kisline pridobimo dobro dispergirane, enakomerno velike in dobro kristalinične nanodelce TiO2 s kristalno strukturo rutila. Izum obravnava tudi sam material, nanodelce rutila, in njihove značilne karakteristike. Izhodna surovina sinteznega postopka je metatitanova kislina, ki je gel, ki nastane po hidrolizi t.i. črne raztopine in je nanokristaliničen aglomerat anatasa. Sintezni postopek opisuje način kako metatitanovo kislino ustrezno pretvoriti v nanodelce rutila, pri čemer le-ti nastanejo v obliki suspenzije. Sinteza nanodelcev rutila v obliki suspenzije je zelo pomembna, saj tako v nobenem koraku sinteze ne pride do nastanka vmesne, potencialno zdravju škodljive, prašne faze, prav tako pa se kot končni produkt tvorijo dobro kristalinični nanodelci, kar izključuje potrebo po kalcinacij skem postopku, kije energetsko potraten ter obremenjuje okolje z izpustom toplogrednih plinov.The invention contemplates a synthesis process whereby well dispersed, uniformly sized and well crystalline TiO 2 nanoparticles with the crystalline structure of rutile can be obtained from metatitanic acid. The invention also addresses the material itself, the rutile nanoparticles, and their characteristic characteristics. The starting material of the synthesis process is metatitanic acid, which is a gel formed after hydrolysis of a so-called black solution and is a nanocrystalline agglomerate of anatase. The synthesis process describes how metatitanoic acid is appropriately converted to rutile nanoparticles to form suspensions. Synthesis of rutile nanoparticles in suspension form is very important, since no intermediate step, potentially harmful, dusty phase is formed in any synthesis step, and well crystalline nanoparticles are formed as a final product, which eliminates the need for a calcination process which energy wasteful and burdens the environment with greenhouse gas emissions.

Titanov dioksid v obliki pigmenta je material s široko možnostjo aplikacij in sicer je uporaben za premaze, barve, kot dodatek plastiki, papirju, v kozmetiki, v farmacevtski industriji in še v mnogo drugih aplikacijah. Danes sta v največji meri uporabna dva postopka pridobivanja pigmentnega titanovega dioksida in sicer t.i. sulfatni ter kloridni postopek. Tako sulfatni kot kloridni postopek temeljita na visoko-temperatumi pretvorbi ustreznih komponent v pigmentni titanov dioksid. Pri sulfatnem postopku se pigment tvori v procesu kalcinacije v reakcijah hidrolize pridobljenega anatasnega gela, medtem ko se pri kloridnem postopku pigment tvori pri visoko-temperatumem izgorevanju titanovega tetraklorida s kisikom. Ravno postopek visoko-temperaturne kalcinacije, ki je prisoten pri sulfatnem in kloridnem postopku, preprečuje možnost pridobivanja delcev nano velikosti. Prav tako je postopek kalcinacije močno obremenjen z visoko energetsko porabo in temu primemo visoko količino izpustov toplogrednih plinov. Poleg tega je produkt, ki nastane prisoten v obliki prahu, ki je lahko potencialno zdravju škodljiv.Titanium dioxide in the form of pigment is a material with a wide range of applications, and is useful for coatings, paints, as an additive to plastics, paper, cosmetics, the pharmaceutical industry and many other applications. Today, two processes for the production of pigment titanium dioxide, i.e. sulfate and chloride process. Both the sulfate and chloride process are based on the high-temperature conversion of the corresponding components into pigment titanium dioxide. In the sulfate process, the pigment is formed in the calcination process in the hydrolysis reactions of the obtained anatase gel, while in the chloride process, the pigment is formed in the high-temperature combustion of titanium tetrachloride with oxygen. It is precisely the high-temperature calcination process present in the sulphate and chloride process that prevents the possibility of producing nano-sized particles. Also, the calcination process is heavily laden with high energy consumption and a high amount of greenhouse gas emissions is received. In addition, the resulting product is present in the form of dust that can be potentially harmful to health.

« 4«4

-2V patentu US 7413762 je opisan postopek pridobivanja nanodelcev rutila s tvorbo titanovega tetrakloridnega aerosola, ki pod vplivom vodne vlage hidrolizira v amorfni gel in/ali gel anatasa, ki se nato kalcinira v peči pri temperaturi med 150 in 400°C za čas 1 do 4 ur.-2 U.S. Pat. No. 7413762 describes a process for the production of rutile nanoparticles by the formation of titanium tetrachloride aerosol, which under the influence of water moisture hydrolyzes into an amorphous gel and / or anatase gel, which is then calcined in a furnace at a temperature of from 150 to 400 ° C for a period of from 1 to 4 hours

V patentu US 7326399 je opisan postopek pridobivanja nanodelcev titanovega dioksida in sicer v obliki suspenzij, v katerih se nanodelci tvorijo z umešanjem ustrezne titanove komponente (titanov tetraklorid, titanov sulfat) z ustreznim disperznim medijem, ki glede na količinsko razmerje s titanovo komponento določa velikost nanodelcev. Kot ustrezni dispergatorji se uporabijo različne organske komponente, npr. hidroksoocetna kislina, citronska kislina in različne aminokisline.US 7326399 discloses a process for the production of titanium dioxide nanoparticles in the form of suspensions in which nanoparticles are formed by mixing a suitable titanium component (titanium tetrachloride, titanium sulfate) with a suitable dispersion medium, which determines the size of the nanoparticles according to the quantitative relationship with the titanium component. . Various organic components are used as suitable dispersants, e.g. hydroxyacetic acid, citric acid and various amino acids.

V patentu WO 2008/036176 je opisan postopek pridobivanja nanodelcev rutila pri nizki temperaturi, pri kateri titanov tetraklorid ali titanil klorid reagirata z vodikovim peroksidom, pri čemer se tvori ustrezen titanov perokso kompleks. Slednji nato reagira pri temperaturi nad 55°C, pri čemer se tvorijo nanodelci rutila.WO 2008/036176 describes a process for the production of low temperature rutile nanoparticles in which titanium tetrachloride or titanyl chloride reacts with hydrogen peroxide to form the corresponding titanium peroxo complex. The latter then reacts at a temperature above 55 ° C to form rutile nanoparticles.

Opisani primeri pridobivanja nanodelcev rutila sicer vodijo do nastanka želenega produkta, vendar so za industrijsko proizvodnjo neprimerni ali manj primerni, saj bodisi temeljijo na kalcinaciji in/ali uporabi različnih organskih komponent, ki lahko končni produkt onesnažijo. Opisane pomanjkljivosti odpravlja predloženi izum, ki je opisan v nadaljevanju.The described examples of the production of rutile nanoparticles lead to the formation of the desired product, but are inappropriate or less suitable for industrial production, as they are either based on calcination and / or the use of various organic components which can contaminate the final product. The disadvantages described are eliminated by the present invention, which is described below.

Pričujoči izum je poenostavljen proces pridobivanja nanodelcev rutila, primeren za industrijsko aplikacijo in temelji na tvorbi nanodelcev rutila iz surovin, ki so prisotne pri proizvodnji pigmenta TiO2, v obliki končnih suspenzij, pri čemer sintezni postopek ne temelji na uporabi organskih komponent, ne vključuje procesa kalcinacije in s tem povezane potencialno škodljive suhe faze produkta ter posledično ne obremenjuje okolja z emisijami in izpusti toplogrednih plinov.The present invention is a simplified process for the production of rutile nanoparticles, suitable for industrial application and is based on the formation of rutile nanoparticles from raw materials present in the production of TiO 2 pigment in the form of final suspensions, the synthesis process not based on the use of organic components, does not include the process calcination and the associated potentially harmful dry phases of the product, and consequently does not pollute the environment with greenhouse gas emissions and discharges.

Pričujoči izum je proces pridobivanja nanodelcev rutila v obliki suspenzij, pri čemer se proces izvaja pri temperaturi pod 100°C in z visokim izkoristkom nad 90%. V procesu se tvorijo anizotropni nanodelci rutila, katerih velikost in morfologijo lahko kontroliramo s stopnjo prenasičenja, spreminjanjem koncentracije kisline potrebne za sintezo in/ali dodatkom različnih količin anorganskih soli, ki vplivajo na končno velikost nanodelcev. Glede na izbran postopek sinteze imajo lahko nanodelci rutila velikost med 60 in 100 nanometrov v dolžino in 15 do 50 nanometrov v širino. Temu primemo se spreminja tudi njihova specifična površina, ki meri od 90dol60m2/g.The present invention is a process for the production of rutile nanoparticles in the form of suspensions, the process being carried out at a temperature below 100 ° C and in high yields above 90%. Anisotropic rutile nanoparticles are formed in the process, the size and morphology of which can be controlled by the degree of supersaturation, alteration of the acid concentration required for synthesis, and / or the addition of various amounts of inorganic salts that affect the final size of the nanoparticles. Depending on the synthesis process chosen, rutile nanoparticles can have sizes between 60 and 100 nanometers in length and 15 to 50 nanometers in width. In addition, their specific surface area varies from 90dol60m 2 / g.

-3Proces temelji na sintezi natrijevega titanata iz začetne metatitanove kisline in nadaljnji reakciji titanata pri povišani temperaturi s kislino ustrezne masne koncentracije, pri čemer se tvorijo zgolj delci kristalne strukture rutila zelo majhne, nano velikosti.-3The process is based on the synthesis of sodium titanate from the initial methattanic acid and the subsequent reaction of the titanate at elevated temperature with an acid of appropriate mass concentration, forming only particles of the crystalline structure of rutile of very small, nano size.

Glavni cilj pričujočega izuma je postopek, primeren za industrijsko proizvodnjo nanodelcev rutila. Glavne prednosti pričujočega izuma so:The main object of the present invention is a process suitable for the industrial production of rutile nanoparticles. The main advantages of the present invention are:

- da se izvaja pri nizki temperaturi, pod 100°C- that it is carried out at a low temperature below 100 ° C

- da se nanodelci tvorijo v obliki končnih suspenzij, kar izključuje suho fazo produkta ter posledično ne predstavlja potencialne nevarnosti prašenja- that the nanoparticles are formed in the form of final suspensions, which excludes the dry phase of the product and therefore does not present a potential risk of dusting

- da so nanodelci dobro kristalinični in zato ni potrebe po kalcinaciji produkta, kar pomeni energetski prihranek in posledično postopek ne obremeni okolja z izpusti toplogrednih plinov- that the nanoparticles are well crystalline and therefore there is no need for calcination of the product, which means energy savings and consequently the process does not burden the environment with greenhouse gas emissions

- da so nanodelci dobro dispergirani v končni suspenziji, kar olajša njihovo uporabo- that the nanoparticles are well dispersed in the final suspension, which facilitates their use

- da so nanodelci enakomerno veliki- that the nanoparticles are uniformly large

- daje možno vplivati na velikost nanodelcev s vplivom na stopnjo prenasičenja, s spreminjanjem masne koncentracije kisline in/ali dodatkom ustreznih anorganskih soli- it is possible to influence the size of the nanoparticles by affecting the degree of saturation, by varying the mass concentration of the acid and / or by the addition of the corresponding inorganic salts

- daje izkoristek zelo visok in ponavadi nad 90%- yields very high and usually above 90%

Opis izumaDescription of the invention

Izum bo v nadaljevanju opisan z opisom sinteze, slikami in z izvedbenimi primeri, ki ustrezno ilustrirajo sam postopek sinteze in same nanodelce rutila.The invention will hereinafter be described with a description of the synthesis, figures and embodiments that adequately illustrate the synthesis process itself and the rutile nanoparticles themselves.

Slike prikazujejo:Pictures show:

Slika 1: Nanodelci rutila, pridobljeni po izumu, posneti z vrstičnim elektronskim mikroskopom,Figure 1: The rutile nanoparticles obtained according to the invention, recorded using a scanning electron microscope,

Slika 2: Rentgenski praškovni difraktogram, iz katerega je razviden naj intenzivnejši uklon pri 27,4°, kar je značilno za kristalno strukturo rutila,Figure 2: X-ray powder diffraction pattern showing the most intense deflection at 27.4 °, which is characteristic of the crystalline structure of rutile,

Slika 3: Visoko-ločljivostni posnetek nanodelcev rutila, ki smo jih posneli na presevnem elektronskem mikroskopu, pridobljenih po izvedbenem primeru 1,Figure 3: High resolution image of rutile nanoparticles recorded on a transmission electron microscope obtained according to embodiment 1,

Slika 4: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 1. izvedbenem primeru, iz katere je razvidno, da ima največji delež nanodelcev dolžino blizu 80 nm, medtem ko je njihova širina med 15-20 nm,Figure 4: Plot size distribution of nanoparticles obtained according to Embodiment 1, which shows that the largest proportion of nanoparticles has a length close to 80 nm, while their width is between 15-20 nm,

Slika 5: Nanodelci rutila, pridobljeni po 2. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 5: Rutile nanoparticles obtained from embodiment 2, taken with a scanning electron microscope,

-4Slika 6: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 2. izvedbenem primeru, iz katere je razvidno, da ima največji delež nanodelcev dolžino med 65-75 nm, medtem ko je njihova širina med 15-20 nm,-4Figure 6: Plot size distribution of nanoparticles obtained according to Embodiment 2, showing that the largest fraction of nanoparticles has a length between 65-75 nm, while their width is between 15-20 nm,

Slika 7: Nanodelci rutila, pridobljeni po 3. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 7: Rutile nanoparticles obtained according to embodiment 3, taken with a scanning electron microscope,

Slika 8: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 3. izvedbenem primeru, iz katere je razvidno, da ima največji delež nanodelcev dolžino med 80-90 nm, medtem ko je širina med 25-30 nm,Figure 8: Showing the nanoparticle size distribution obtained from the 3rd embodiment, which shows that the largest proportion of nanoparticles has a length between 80-90 nm, while the width is between 25-30 nm,

Slika 9: Nanodelci rutila, pridobljeni po 4. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 9: Rutile nanoparticles obtained from Embodiment 4, taken with a scanning electron microscope,

Slika 10: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 4. izvedbenem primeru, iz katere je razvidno, da ima največji delež nanodelcev dolžino med 110-130 nm, medtem ko je širina med 25 - 30 nm,Figure 10: Plot size distribution of nanoparticles obtained according to Embodiment 4, which shows that the largest proportion of nanoparticles has a length between 110-130 nm and a width between 25 and 30 nm,

Slika 11: Nanodelci rutila, pridobljeni po 5. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 11: Rutile nanoparticles obtained from the 5th embodiment, recorded with a scanning electron microscope,

Slika 12: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 4. izvedbenem primeru, iz katere je razvidno, da ima največji delež nanodelcev dolžino med 150-160 nm, medtem ko je širina med 30-40 nm.Figure 12: Plot size distribution of nanoparticles obtained according to Embodiment 4, which shows that the largest proportion of nanoparticles has a length between 150-160 nm and a width between 30-40 nm.

Postopek sinteze nanodelcev rutila temelji na uporabi metatitanove kisline, ki je polprodukt pri proizvodnji pigmenta TiO2 in je nanokristaliničen aglomerat anatasa, kije polimorf titanovega dioksida. Metatitanovo kislino najprej suspendiramo v ustreznem volumnu destilirane vode in jo ob hkratnem mešanju in segrevanju med 80 in 115°C reagiramo z natrijevim hidroksidom do končne visoke masne koncentracije, to je med 150 in 220 g/L. Pri tem se tvori t.i. natrijev titanat. Natrijev titanat je posebna titanova spojina, za katero je značilno, da nastane v posebni morfološki obliki in sicer v obliki močno aglomeriranih nanocevk, ki imajo zelo visoko specifično površino ter so hkrati slabo kristalinične. Ravno omenjeni lastnosti v veliki meri botrujeta, daje sledeča reakcija natrijevega titanata s kislino hitra in poteče kvantitativno, pri čemer se tvorijo nanodelci rutila.The process for the synthesis of rutile nanoparticles is based on the use of metatitanic acid, which is a by-product of the production of TiO 2 pigment and is a nanocrystalline agglomerate of anatase, which is a titanium dioxide polymorph. Metatitanic acid is first suspended in an appropriate volume of distilled water and reacted with sodium hydroxide to a final high mass concentration of 150 to 220 g / L while stirring and heating between 80 and 115 ° C. This produces the so-called sodium titanate. Sodium titanate is a special titanium compound, characterized by its formation in a special morphological form, in the form of highly agglomerated nanotubes, which have a very high specific surface area and are at the same time poorly crystalline. The aforementioned properties largely contribute to the subsequent reaction of sodium titanate with acid, which is rapid and quantitative, resulting in the formation of rutile nanoparticles.

Nastali natrijev titanat moramo pred reakcijo z mineralno kislino ustrezno očistiti in sicer moramo s filtracijo odstraniti prisotne sulfatne ione, ki motijo proces nastajanja nanodelcev kristalne strukture rutila. Po izvedeni filtraciji natrijev titanat resuspendiramo v ustrezno količino vode, pri čemer priredimo ustrezno masno koncentracijo Ti(IV) iona, ki neposredno • · • «The resulting sodium titanate must be properly purified before reacting with the mineral acid, and filtration must remove the sulfate ions present that interfere with the formation of nanoparticles of the crystalline structure of rutile. After the filtration is carried out, the sodium titanate is resuspended in an appropriate amount of water, with an appropriate mass concentration of Ti (IV) ion, which directly • · • «

-5določa stopnjo prenasičenja v sledeči reakciji z mineralno kislino. Običajno natrijev titanat resuspendiramo do masne koncentracije T1O2 med 90 in 180 g/L.-5 determines the degree of saturation in the next reaction with the mineral acid. Typically, sodium titanate is resuspended to a T1O2 mass concentration between 90 and 180 g / L.

Suspenziji natrijevega titanata nato dodamo ustrezno količino koncentrirane klorovodikove kisline in sicer do vrednosti pH med 4 in 5. S tem dosežemo, da se natrijev titanat v suspenziji dobro dispergira in je kot tak na razpolago z veliko specifično površino v sledeči reakciji sinteze nanodelcev rutila. Ko smo priredili vrednost pH, priredimo masno koncentracijo klorovodikove kisline do vsaj 70 g/L. Prireditev masne koncentracije klorovodikove kisline do vrednosti vsaj 70 g/L je zelo pomembna, saj s končno koncentracijo kisline neposredno določimo kristalno strukturo nastalih nanodelcev T1O2. V primeru, če bi bila končna koncentracija klorovodikove kisline manjša od navedene, bi kot produkt lahko nastal T1O2 kristalne strukture anatasa ali pa mešanica polimorfov anatasa in rutila. Masno koncentracijo kislino lahko tudi primemo povišamo, pri čemer bomo kot končni produkt pridobili nanodelce rutila, katerih velikost pa bo večja, kot v primeru, daje koncentracija mineralne kisline nižja. Povišanje masne koncentracije mineralne kisline vodi vedno v nastanek večjih nanodelcev. To nam omogoča enostavno in efektivno regulacijo velikosti nanodelcev z izbiro ustrezne masne koncentracije mineralne kisline.An appropriate amount of concentrated hydrochloric acid is then added to the suspension of sodium titanate to a pH between 4 and 5. This ensures that the sodium titanate is well dispersed in the suspension and is available as such with a large specific surface area in the next synthesis reaction of rutile nanoparticles. After adjusting the pH, adjust the mass concentration of hydrochloric acid to at least 70 g / L. Adjusting the hydrochloric acid mass concentration to at least 70 g / L is very important, since the final acid concentration directly determines the crystal structure of the T1O2 nanoparticles formed. If the final hydrochloric acid concentration was less than the indicated one, T1O2 crystalline structures of anatase or a mixture of anatase polymorphs and rutile could be produced as a product. The mass concentration of the acid can also be increased, whereby rutile nanoparticles will be obtained as a final product, the size of which will be larger than in the case of lower mineral acid concentration. Increasing the mineral acid mass concentration always leads to the formation of larger nanoparticles. This allows us to easily and effectively regulate the size of the nanoparticles by selecting the appropriate mass concentration of mineral acid.

Po prireditvi masne koncentracije klorovodikove kisline na želeno vrednost, suspenzijo počasi segrevamo in sicer do temperature približno 80°C, pri kateri se reakcija najbolj intenzivno vrši. Reakcijo pustimo teči dve uri in v tem času se natrijev titanat popolnoma pretvori v dobro dispergirane in enakomerno velike nanodelce rutila.After adjusting the hydrochloric acid mass concentration to the desired value, the suspension is slowly heated to a temperature of about 80 ° C, at which the reaction is most intensively carried out. The reaction was allowed to run for two hours, during which time the sodium titanate was completely transformed into well dispersed and uniformly large nanoparticles of rutile.

Velikost nanodelcev rutila v največji meri kontroliramo s prirejeno masno koncentracijo klorovodikove kisline, ki je potrebna za izvedbo sinteze. Če priredimo masno koncentracijo klorovodikove kisline na 70 g/L, pridobimo zelo majhne nanodelce rutila anizotropne morfologije z dolžino do 80 nm in širino približno 20 nm. Če masno koncentracijo klorovodikove kisline povečamo, se primerno poveča tudi končna velikost nanodelcev rutila. Tako že npr. pri masni koncentraciji kisline 100 g/L pridobimo nanodelce rutila, katerih dolžina se poveča na približno 90 nm, širina pa na 30 nm. Višja koncentracija mineralne kisline še dodatno poveča končno velikost nanodelcev rutila.The size of rutile nanoparticles is largely controlled by the adjusted mass concentration of hydrochloric acid required to perform the synthesis. Adjusting the hydrochloric acid mass concentration to 70 g / L yields very small rutile nanoparticles of anisotropic morphology with a length of up to 80 nm and a width of about 20 nm. If the hydrochloric acid mass concentration is increased, the final size of the rutile nanoparticles is also increased accordingly. For example, At an acidic mass concentration of 100 g / L, rutile nanoparticles are obtained whose length increases to about 90 nm and width to 30 nm. Higher mineral acid concentrations further increase the final size of rutile nanoparticles.

Velikost nastalih nanodelcev rutila lahko v veliki meri kontrolirano tudi s stopnjo prenasičenja, to je s prireditvijo specifične masne koncentracije T1O2 ob suspendiranju natrijevega titanata v vodi ali z dodatkom specifične količine anorganske soli NaCl. Dodatek soli NaCl lahko znatno zmanjša velikost nanodelcev rutila, kar omogoča pridobivanje materiala zelo visoke specifične površine.The size of the rutile nanoparticles formed can also be largely controlled by the degree of supersaturation, that is, by adjusting the specific mass concentration of T1O2 while suspending sodium titanate in water or by adding a specific amount of inorganic NaCl salt. The addition of NaCl salt can significantly reduce the size of rutile nanoparticles, allowing the material to be obtained from a very high specific surface area.

-6Na ta način lahko sintezo ustrezno priredimo in pridobimo različne oblike nanodelcev rutila, ki se med sabo razlikujejo predvsem po velikosti in posledično po specifični površini.-6In this way, the synthesis can be appropriately adapted and different shapes of rutile nanoparticles are obtained, which differ mainly in size and, consequently, in the specific surface area.

Ne glede na spreminjanje reakcijskih parametrov sinteze nanodelcev rutila pa za same nanodelce obstajajo skupne značilnosti in sicer:Regardless of the change in the reaction parameters of the synthesis of rutile nanoparticles, there are common characteristics for the nanoparticles themselves:

• nanodelci rutila so polikristalinični, kar pomeni, da so sestavljeni iz posameznih manjših kristalitov rutila. Kristalih izkazujejo anizotropno morfologijo in so široki približno 5 nm (nanometrov) in dolgi več 10 nm.• rutile nanoparticles are polycrystalline, meaning that they are composed of single smaller rutile crystallites. The crystals exhibit anisotropic morphology and are approximately 5 nm (nanometer) wide and 10 nm long.

• nanodelci rutila izkazujejo značilno anizotropno morfologijo, ki je posledica agregacije anizotropnih kristalitov rutila.• rutile nanoparticles exhibit characteristic anisotropic morphology as a result of aggregation of anisotropic rutile crystallites.

Na koncu postopka dobimo kislo suspenzijo nanodelcev rutila, ki je lahko končni produkt sinteze ali pa lahko kislo suspenzijo tudi ustrezno očistimo neželenih ionov. V ta namen smo razvili dva postopka in sicer:At the end of the process, an acidic suspension of rutile nanoparticles is obtained, which may be the end product of the synthesis, or the acidic suspension may also be adequately purified from unwanted ions. To this end, we have developed two procedures, namely:

• Dvig pH: Kisli suspenziji lahko ustrezno dvignemo pH z dodatkom baze, s čimer priredimo površinski naboj nanodelcev blizu izoelektrične točke, kar povzroči njihovo aglomeracijo in usedanje ter zmožnost filtracije. Filtrirane nanodelce rutila lahko čistimo z dodajanjem ustrezne količine vode, ki kontinuimo spira neželene ione. Na ta način lahko kvantitativno odstranimo prebitno kislino in morebitne prisotne ione soli, ki smo jo dodali za kontrolo velikosti nanodelcev.• Increase in pH: Acid suspensions can be adequately raised by the addition of a base to adjust the surface charge of nanoparticles near the isoelectric point, resulting in their agglomeration and deposition and filtration capacity. The filtered nanoparticles of rutile can be purified by adding an adequate amount of water, which continuously flushes out unwanted ions. This way we can quantitatively remove excess acid and any salt ions present that have been added to control the size of the nanoparticles.

• Centrifugiranje kisle suspenzije nanodelcev rutila: Centrifugiranje suspenzije omogoča separacijo tekoče in trdne faze ter odstranitev kisle tekoče faze z dekantacijo. V primeru, da centrifugiranje ne zadostuje za separacijo obeh faz, lahko v suspenzijo dodamo manjšo količino raztopine aluminijevega sulfata, ki usedanje pospeši. Po odlitju kisle tekoče frakcije se trdna faza TiO2 resuspendira v vodi in premeša ter nato ponovi cikel centrifugiranja. To se ponavlja, dokler ne odstranimo večino kisline ali prisotnih vodotopnih soli.• Centrifugation of acidic suspension of rutile nanoparticles: Centrifugation of the suspension allows the separation of the liquid and solid phases and the removal of the acidic liquid phase by decantation. If spinning is not sufficient to separate the two phases, a smaller amount of aluminum sulphate solution may be added to the suspension to accelerate deposition. After casting the acidic liquid fraction, the TiO 2 solid phase is resuspended in water and stirred and then the centrifugation cycle is repeated. This is repeated until most of the acid or water soluble salts are removed.

Z obema postopkoma čiščenja na koncu pridobimo dobro očiščene nanodelce rutila. Te lahko po potrebi posušimo v sušilniku in pridobimo zelo fin bel prah nanodelcev ali pa nanodelce obdržimo v obliki nevtralne suspenzije.With both purification processes, well-purified rutile nanoparticles are ultimately obtained. These can be dried in an oven if necessary, to obtain a very fine white powder of nanoparticles, or to retain the nanoparticles as a neutral suspension.

Postopek sinteze za pridobivanje nanodelcev rutila visoke specifične površine in anizotropne morfologije po izumu temelji na t.i. gel-sol reakciji, kjer kot izhodno surovino uporabimo metatitanovo kislino, kije nanokristalinični anatasni gel in je polprodukt pri proizvodnjiThe synthesis process for the production of high specific surface rutile nanoparticles and the anisotropic morphology of the invention is based on the so-called. gel-salt reaction where metatitanoic acid, which is a nanocrystalline anatase gel and is a by-product of production, is used as a feedstock

-Ίpigmenta TiCh je značilen po s tem, da se metatitanova kislina najprej pretvori v natrijev titanat v reakciji z NaOH, kjer je množinsko razmerje NaOH : T1O2 = 4 : 1, da poteka čiščenje suspenzije natrijevega titanata in je pridobljena suspenzija masne koncentracije T1O2 med 120 in 125 g/L in vrednosti pH malo nad 4, daje suspenzija natrijevega titanata uporabljena kot surovina za direktno sintezo nanodelcev rutila v sledeči reakciji, daje izvedena sinteza nanodelcev rutila iz suspenzije natrijevega titanata z dodatkom klorovodikove kisline masne koncentracije med 70 in 160 g/L, da poteka reakcije pri temperaturi 80°C v času dveh ur, da so pridobljeni nanodelci rutila v obliki kisle suspenzije približne masne koncentracije 100 g/L, da je možno nanodelce očistiti iz kisle suspenzije z dvigom vrednosti pH, s čimer dosežemo aglomeracijo nanodelcev ali s centrifugiranjem kisle suspenzije ob hkratnem dodatku manjše količine aluminijevega sulfata, pri čemer se cikel centrifugiranja večkrat ponovi. S spreminjanjem masne koncentracije klorovodikove kisline, ki nastopa v reakciji, je mogoča kontrola nad velikostjo nanodelcev. Velikost nanodelcev rutila je lahko prirejena na približno 70 nm dolžine in do 160 nm dolžine, pri čemer pa je razmerje med dolžino in širino nanodelca med 5 in 6. Pridobljeni nanodelci rutila so v obliki kisle suspenzije približne masne koncentracije 100 g/L ter da se lahko nanodelce izolira in očisti. Iz začetne suspenzije je odstranjena kislina in je suspenziji po želji prirejen pH na želeno vrednost. Postopek ves čas poteka v mokrem, torej v obliki suspenzije, kar preprečuje morebiten nastop potencialno škodljivega prašenja. Pridobljeni nanodelci so polikristalinčni in zato ni potrebe po energetsko potratni kalcinaciji produkta.-Pigment TiCh is characterized in that metatitanic acid is first converted to sodium titanate in reaction with NaOH, where the plural ratio of NaOH is: T1O2 = 4: 1, to purify the suspension of sodium titanate and obtain a suspension of T1O2 mass concentration between 120 and 125 g / L and pH values slightly above 4, that the sodium titanate suspension is used as the raw material for the direct synthesis of rutile nanoparticles in the following reaction, that the synthesis of rutile nanoparticles from the sodium titanate suspension is carried out by adding hydrochloric acid with a mass concentration between 70 and 160 g / L to react at 80 ° C for two hours to obtain rutile nanoparticles in the form of an acidic suspension of an approximate mass concentration of 100 g / L so that the nanoparticles can be purified from the acidic suspension by raising the pH to achieve agglomeration of the nanoparticles or by centrifuging the acidic suspension while adding a small amount of aluminum sulfate, the cycle being centrifuged repeat the bite several times. By varying the mass concentration of hydrochloric acid involved in the reaction, it is possible to control the size of the nanoparticles. The size of rutile nanoparticles can be adjusted to about 70 nm in length and up to 160 nm in length, with the ratio of nanoparticle length to width between 5 and 6. The obtained rutile nanoparticles are in the form of an acidic suspension of an approximate mass concentration of 100 g / L and that it can isolate and clean the nanoparticles. Acid is removed from the initial suspension and the pH is adjusted to the desired value as desired. The process is constantly carried out in the wet, ie in the form of a suspension, which prevents the occurrence of potentially harmful dust. The nanoparticles obtained are polycrystalline and therefore there is no need for energy-consuming calcination of the product.

Nanodelci rutila so v obliki kisle/nevtralne suspenzije, pri čemer so nanodelci rutila polikristalinični in kristaliti izkazujejo anizotropno morfologijo in so široki približno 5 nm in dolgi več 10 nm, sami nanodelci rutila pa so velikosti med 60 in 100 nm v dolžino in 15 do 50 nm v širino ter je njihova specifična površina med 90 do 160 m2/g.The rutile nanoparticles are in acid / neutral suspension, the rutile nanoparticles being polycrystalline and the crystallites exhibiting anisotropic morphology and about 5 nm wide and 10 nm long and the rutile nanoparticles themselves being between 60 and 100 nm in length and 15 to 50 nm in width and their specific surface area is between 90 and 160 m 2 / g.

Izvedbeni primer 1: Sinteza nanodelcev rutila z visoko specifično površino in anizotropno morfologijo s povprečno dolžino nanodelcev 80 nm (nanometrov) in širino nanodelcev 15-20 nm.Embodiment 1: Synthesis of rutile nanoparticles with a high specific surface area and anisotropic morphology with an average nanoparticle length of 80 nm (nanometers) and a nanoparticle width of 15-20 nm.

Sinteza nanodelcev rutila poteka v dveh stopnjah in sicer:The synthesis of rutile nanoparticles is carried out in two stages, namely:

• sinteza ustreznega prekurzorja za sintezo nanodelcev, ki je natrijev titanat • pretvorba natrijevega titanata v nanodelce rutila• synthesis of a suitable precursor for the synthesis of nanoparticles, which is sodium titanate • conversion of sodium titanate into rutile nanoparticles

Izhodna surovina za sintezo nanodelcev rutila je t.i. metatitanova kislina, ki je nanokristalinični aglomerat anatasa zelo visoke specifične površine (nad 200 m2/g). Sestavni kristaliti anatasa vThe starting material for the synthesis of rutile nanoparticles is so-called metatitanic acid, which is a nanocrystalline agglomerate of anatase of very high specific surface area (above 200 m 2 / g). Anatase constituent crystallites in

-8metatitanovi kislini so veliki približno 5 nm. Metatitanovo kislino pretvorimo v natrijev titanat v reakciji z NaOH.-8metatitanoic acids are approximately 5 nm in size. Metatitanic acid is converted to sodium titanate by reaction with NaOH.

V tipičnem eksperimentu smo za sintezo natrijevega titanata uporabili metatitanovo kislino masne koncentracije TiO2 290 - 300 g/L in NaOH masne koncentracije 750 g/L. Tipična reakcijska mešanica za sintezo natrijevega titanata vsebuje NaOH in TiO2 v množinskem razmerju NaOH : TiO2 4,2.In a typical experiment, metatitanoic acid, TiO 2 290-300 g / L and NaOH 750 g / L, were used for the synthesis of sodium titanate. A typical reaction mixture for the synthesis of sodium titanate contains NaOH and TiO 2 in a multiplicity of NaOH: TiO 2 4.2.

Po dodatku NaOH metatitanovi kislini, je bila končna masna koncentracija NaOH 220 g/L. Pretvorba metatitanove kisline v natrijev titanat poteka 2,5 uri pri temperaturi 110-115°C.After the addition of NaOH to metatitanoic acid, the final mass concentration of NaOH was 220 g / L. The conversion of metatitanoic acid to sodium titanate takes 2.5 hours at 110-115 ° C.

Ob koncu reakcije pridobimo bazično suspenzijo natrijevega titanata, ki jo nato podvržemo intenzivnemu pranju oziroma spiranju presežnega NaOH in med procesom nastalih soli. Predvsem pomembno je, da se odstranijo sulfatni ioni, ki so prisotni v začetni surovini, metatitanovi kislini, in ki motijo nadaljnji proces formiranja nanodelcev rutila. Spiranje vršimo vse dokler je prisoten presežek NaOH in sulfatni (SO42') ioni. Prisotnost sulfatnih ionov sproti preverjamo kvalitativno in sicer z obarjalnim testom z vodno raztopino barijevega klorida (BaCl2). Sprani natrijev titanat nato resuspendiramo v vodi in sicer do masne koncentracije 120-125 g/L (preračunano na TiO2). To je izhodna surovina za nadaljnjo sintezo nanodelcev rutila.At the end of the reaction, a basic suspension of sodium titanate is obtained, which is then subjected to intensive washing or washing of excess NaOH and during the formation of salts. It is of particular importance to remove the sulfate ions present in the starting material, metatitanoic acid, which disrupt the further formation of rutile nanoparticles. Rinse is carried out until excess NaOH and sulfate (SO4 2 ') ions are present. The presence of sulphate ions is verified qualitatively by means of a precipitate test with an aqueous solution of barium chloride (BaCl 2 ). The washed sodium titanate is then resuspended in water to a mass concentration of 120-125 g / L (calculated on TiO 2 ). It is the starting material for further synthesis of rutile nanoparticles.

Sinteza nanodelcev rutila iz natrijevega titanata se izvede po enostavnem postopku, kjer suspenzijo titanata segrejemo na primemo temperaturo in dodamo klorovodikovo kislino primerne koncentracije, ki zadostuje za kvantitativno pretvorbo v rutil, ne da bi se pri tem tvoril tudi anatas.Synthesis of rutile nanoparticles of sodium titanate is carried out by a simple process where the titanate suspension is heated to a suitable temperature and hydrochloric acid of a suitable concentration sufficient for quantitative conversion to rutile is formed without anatas being formed.

V eksperimentu smo 500 mL suspenziji natrijevega titanata masne koncentracije 120-125 g/L dodali 37% klorovodikovo kislino do končne masne koncentracije 70 g/L. Nastalo suspenzijo smo segrevali pri 80°C 2 uri ob konstantnem mešanju reakcijske mešanice pri 200 rpm. Pridobimo kislo suspenzijo nanodelcev rutila masne koncentracije ~ 100 g/L, ki smo jo nato oprali tako, da smo suspenziji dodali ustrezno količino NaOH masne koncentracije 700 g/L do vrednosti pH med 4 in 5. Pri tem pH se nanodelci aglomerirajo, saj je dosežena t.i. izoelektrična točka, kjer je naboj nanodelcev blizu 0. Aglomerirane nanodelce rutila smo nato sprali z vodo na laboratorijski nuči ob uporabi filter celuloznega papirja. Sprane nanodelce smo nato posušili v sušilniku pri 80°C za potrebe analiz z XRD, Sbet in analiz na vrstičnem (SEM) ter presevnem (TEM) elektronskem mikroskopu.In the experiment, 37% hydrochloric acid was added to a 500 mL suspension of sodium titanate with a mass concentration of 120-125 g / L to a final mass concentration of 70 g / L. The resulting suspension was heated at 80 ° C for 2 hours with constant stirring of the reaction mixture at 200 rpm. An acidic suspension of rutile nanoparticles of ~ 100 g / L mass was obtained, which was then washed by adding an appropriate amount of 700 g / L NaOH mass concentration to a pH of between 4 and 5. The pH of the nanoparticles was agglomerated, since reached you isoelectric point where the charge of the nanoparticles is close to 0. The agglomerated rutile nanoparticles were then washed with water at the laboratory using a cellulose paper filter. The washed nanoparticles were then dried in an oven at 80 ° C for analysis by XRD, Sbet, and scanning (SEM) and screening (TEM) electron microscope analyzes.

Nanodelci rutila, ki so prikazani na sliki 1, so bili posneti z vrstičnim elektronskim mikroskopom. Kristalno strukturo smo določili z XRD analizo, ki je prikazana na sliki 2 inThe rutile nanoparticles shown in Figure 1 were captured using a scanning electron microscope. The crystal structure was determined by XRD analysis, which is shown in Figure 2 and

-9prikazuje le naj intenzivnejši karakteristični uklon za rutil. Specifično površino nanodelcev smo določili s Sbet meritvijo. Specifična površina nanodelcev, pridobljenih po opisanem postopku, je med 115 in 130 m2/g.-9 shows only the most intense characteristic burst for rutile. The specific surface area of the nanoparticles was determined by Sbet measurement. The specific surface area of the nanoparticles obtained by the procedure described is between 115 and 130 m 2 / g.

Slika 3 je visoko-ločljivostni posnetek nanodelca rutila, posnetega s presevnim elektronskim mikroskopom, ki prikazuje njihovo specifično morfologijo in naravo kristalitov, ki ga sestavljajo. Kot je razvidno iz slike, je nanodelec rutila sestavljen iz podolgovatih kristalov rutila, agregiranih v posamezen polikristalinični nanodelec.Figure 3 is a high-resolution image of a rutile nanoparticle taken with a screening electron microscope showing their specific morphology and the nature of the crystallites that make up it. As can be seen from the figure, the rutile nanoparticle is composed of elongated rutile crystals aggregated into a single polycrystalline nanoparticle.

Slika 4 prikazuje porazdelitev velikosti nanodelcev iz katere je razvidno, da ima največji delež nanodelcev dolžino blizu 80 nm, medtem ko je širina med 15-20 nm.Figure 4 shows the nanoparticle size distribution showing that the largest fraction of nanoparticles has a length close to 80 nm, while the width is between 15-20 nm.

Izvedbeni primer 2: Sinteza nanodelcev rutila z visoko specifično površino in anizotropno morfologijo s povprečno dolžino nanodelcev 65-75 nm (nanometrov) in širino nanodelcev 1520 nm.Embodiment 2: Synthesis of rutile nanoparticles with a high specific surface area and anisotropic morphology with an average nanoparticle length of 65-75 nm (nanometers) and a nanoparticle width of 1520 nm.

Sinteza nanodelcev rutila je potekala po istem postopku kot v izvedbenem primeru 1, z izjemo, da smo 15 minut po dodatku klorovodikove kisline, dodali tudi NaCl in sicer do masne koncentracije 120 g/L. Za NaCl je namreč znano, da lahko zmanjša velikost nanodelcev tekom sol-gel ali gel-sol reakcije.The synthesis of rutile nanoparticles was carried out in the same manner as in embodiment 1, except that 15 minutes after the addition of hydrochloric acid, NaCl was added to a mass concentration of 120 g / L. NaCl is known to reduce the size of nanoparticles during the sol-gel or gel-sol reaction.

Ob koncu reakcije smo nanodelce izolirali iz kisle suspenzije s centrifugiranjem pri 4000 rpm in večkratnim spiranjem/resuspendiranjem v vodi ter dodatkom manjše količine vodne raztopine aluminijevega sulfata. Dodatek aluminijevega sulfata je bil potreben za doseganje boljšega usedanja nanodelcev med centrifugiranjem. Očiščene nanodelce rutila smo nato posušili v sušilniku pri 80°C za potrebe analiz z XRD, Sbet in analiz na vrstičnem ter presevnem elektronskem mikroskopu.At the end of the reaction, the nanoparticles were isolated from the acidic suspension by centrifugation at 4000 rpm and repeated washing / resuspension in water and the addition of a small amount of aqueous aluminum sulfate solution. The addition of aluminum sulfate was required to achieve better deposition of nanoparticles during centrifugation. The purified rutile nanoparticles were then dried in an oven at 80 ° C for XRD, Sbet analysis and scanning and scanning electron microscope analyzes.

Na sliki 5 so prikazani nanodelci rutila, posneti z vrstičnim elektronskim mikroskopom. Slika 6 prikazuje porazdelitev velikosti nanodelcev, iz katere je razvidno, da ima največji delež nanodelcev dolžino med 65 in 75 nm, medtem ko je širina med 15-20 nm. Specifična površina nanodelcev, pridobljenih po opisanem postopku, je med 120 in 160 m2/g.Figure 5 shows rutile nanoparticles imaged by a scanning electron microscope. Figure 6 shows the size distribution of the nanoparticles, which shows that the largest proportion of nanoparticles has a length between 65 and 75 nm, while the width is between 15-20 nm. The specific surface area of the nanoparticles obtained by the procedure described is between 120 and 160 m 2 / g.

Izvedbeni primer 3: Sinteza nanodelcev rutila z visoko specifično površino in anizotropno morfologijo s povprečno dolžino nanodelcev 80-90 nm (nanometrov) in širino nanodelcev 2530 nm.Embodiment 3: Synthesis of rutile nanoparticles with a high specific surface area and anisotropic morphology with an average nanoparticle length of 80-90 nm (nanometers) and a nanoparticle width of 2530 nm.

Sinteza nanodelcev rutila je potekala po istem postopku kot v izvedbenem primeru 1, z izjemo, da smo koncentracijo klorovodikove kisline priredili na vrednost 100 g/L.The synthesis of rutile nanoparticles was carried out in the same manner as in embodiment 1 except that the hydrochloric acid concentration was adjusted to 100 g / L.

-10Izolacijo nanodelcev rutila smo dosegli na enak način kot v izvedbenem primeru 2.-10The isolation of rutile nanoparticles was achieved in the same manner as in embodiment 2.

Na sliki 7 so prikazani nanodelci rutila, posneti z vrstičnim elektronskim mikroskopom. Slika 8 prikazuje porazdelitev velikosti nanodelcev, iz katere je razvidno, da ima največji delež nanodelcev dolžino med 80 in 90 nm, medtem ko je širina med 25 - 30 nm. Specifična 'S površina nanodelcev, pridobljenih po opisanem postopku, je med 105 in 125 m /g.Figure 7 shows rutile nanoparticles imaged by a scanning electron microscope. Figure 8 shows the nanoparticle size distribution showing that the largest fraction of nanoparticles has a length between 80 and 90 nm while the width is between 25 - 30 nm. The specific surface area of the nanoparticles obtained by the procedure described is between 105 and 125 m / g.

Izvedbeni primer 4: Sinteza nanodelcev rutila z visoko specifično površino in anizotropno morfologijo s povprečno dolžino nanodelcev 110-130 nm (nanometrov) in širino nanodelcev 25-30 nm.Embodiment 4: Synthesis of rutile nanoparticles with a high specific surface area and anisotropic morphology with an average nanoparticle length of 110-130 nm (nanometers) and a nanoparticle width of 25-30 nm.

Sinteza nanodelcev rutila je potekala po istem postopku kot v izvedbenem primeru 1, z izjemo, da smo koncentracijo klorovodikove kisline priredili na vrednost 130 g/L.The synthesis of rutile nanoparticles was carried out according to the same procedure as in Embodiment 1, except that the hydrochloric acid concentration was adjusted to 130 g / L.

Izolacijo nanodelcev rutila smo dosegli na enak način kot v izvedbenem primeru 2.The isolation of rutile nanoparticles was achieved in the same manner as in embodiment 2.

Na sliki 9 so prikazani nanodelci rutila, posneti z vrstičnim elektronskim mikroskopom. Slika 10 prikazuje porazdelitev velikosti nanodelcev, iz katere je razvidno, da ima največji delež nanodelcev dolžino med 110 in 130 nm, medtem ko je širina med 25-30 nm. Specifična površina nanodelcev, pridobljenih po opisanem postopku, je med 105 in 115 m2/g.Figure 9 shows the rutile nanoparticles imaged by a scanning electron microscope. Figure 10 shows the nanoparticle size distribution showing that the largest fraction of nanoparticles has a length between 110 and 130 nm while the width is between 25-30 nm. The specific surface area of the nanoparticles obtained by the procedure described is between 105 and 115 m 2 / g.

Izvedbeni primer 5: Sinteza nanodelcev rutila z visoko specifično površino in anizotropno morfologijo s povprečno dolžino nanodelcev 150-160 nm (nanometrov) in širino nanodelcev 30-40 nm.Embodiment 5: Synthesis of rutile nanoparticles with a high specific surface area and anisotropic morphology with an average nanoparticle length of 150-160 nm (nanometers) and a nanoparticle width of 30-40 nm.

Sinteza nanodelcev rutila je potekala po istem postopku kot v izvedbenem primeru 1, z izjemo, da smo koncentracijo klorovodikove kisline priredili na vrednost 160 g/L.The synthesis of rutile nanoparticles was carried out according to the same procedure as in Embodiment 1 except that the hydrochloric acid concentration was adjusted to 160 g / L.

Izolacijo nanodelcev rutila smo dosegli na enak način kot v izvedbenem primeru 2.The isolation of rutile nanoparticles was achieved in the same manner as in embodiment 2.

Na sliki 11 so prikazani nanodelci rutila, posneti z vrstičnim elektronskim mikroskopom. Slika 12 prikazuje porazdelitev velikosti nanodelcev iz katere je razvidno, da ima največji delež nanodelcev dolžino med 150 in 160 nm, medtem ko je širina med 30 - 40 nm. Specifična površina nanodelcev, pridobljenih po opisanem postopku, je med 90 in 100 m2/g.Figure 11 shows the rutile nanoparticles imaged by a scanning electron microscope. Figure 12 shows the nanoparticle size distribution showing that the largest fraction of nanoparticles has a length between 150 and 160 nm, while the width is between 30 - 40 nm. The specific surface area of the nanoparticles obtained by the process described is between 90 and 100 m 2 / g.

Claims (8)

Patentni zahtevkiPatent claims 1 . Postopek sinteze za pridobivanje nanodelcev rutila visoke specifične površine in anizotropne morfologije, ki temelji na gel-sol reakciji, kjer je kot izhodna surovina uporabljena metatitanova kislina, ki je nanokristalinični anatasni gel in je polprodukt pri proizvodnji pigmenta TiO2, označen s tem, da se metatitanova kislina najprej pretvori v natrijev titanat v reakciji z NaOH, kjer je množinsko razmerje NaOH : TiO2 = 4:1,1. Synthesis process for the production of high specific surface rutile nanoparticles and anisotropic gel-salt-based anisotropic morphology, wherein metatitanic acid, which is a nanocrystalline anatase gel and is a by-product of the production of TiO 2 pigment, is used as a starting material, characterized in that metatitanic acid is first converted to sodium titanate by reaction with NaOH, where the plural ratio of NaOH: TiO 2 = 4: 1, - da poteka čiščenje suspenzije natrijevega titanata in je pridobljena suspenzija masne koncentracije TiO2 med 120 in 125 g/L in vrednosti pH malo nad 4,- the titanium suspension of sodium titanium is purified and a suspension of a TiO 2 mass concentration between 120 and 125 g / L and a pH value of slightly above 4 is obtained, - da je suspenzija natrijevega titanata uporabljena kot surovina za direktno sintezo nanodelcev rutila v sledeči reakciji, daje izvedena sinteza nanodelcev rutila iz suspenzije natrijevega titanata z dodatkom klorovodikove kisline masne koncentracije med 70 in 160 g/L,- that the sodium titanate suspension is used as the raw material for the direct synthesis of rutile nanoparticles in the following reaction, that the synthesis of rutile nanoparticles from the sodium titanate suspension is carried out by adding hydrochloric acid with a mass concentration between 70 and 160 g / L, - da poteka reakcije pri temperaturi 80°C v času dveh ur, da so pridobljeni nanodelci rutila v obliki kisle suspenzije približne masne koncentracije 100 g/L,- the reaction is carried out at a temperature of 80 ° C for two hours to obtain the rutile nanoparticles in the form of an acidic suspension of an approximate mass concentration of 100 g / L, - daje možno nanodelce očistiti iz kisle suspenzije z dvigom vrednosti pH, s čimer dosežemo aglomeracijo nanodelcev ali s centrifugiranjem kisle suspenzije ob hkratnem dodatku manjše količine aluminijevega sulfata, pri čemer se cikel centrifugiranja večkrat ponovi- it is possible to purify the nanoparticles from the acidic suspension by raising the pH to achieve agglomeration of the nanoparticles or by centrifuging the acidic suspension while adding a small amount of aluminum sulfate, repeating the spin cycle several times 2. Postopek po zahtevku 1, označen s tem, daje s spreminjanjem masne koncentracije klorovodikove kisline, ki nastopa v reakciji, omogočena kontrola nad velikostjo nanodelcev.Process according to claim 1, characterized in that by changing the mass concentration of the hydrochloric acid involved in the reaction, it is possible to control the size of the nanoparticles. 3. Postopek po zahtevku 1, označen s tem, daje lahko velikost nanodelcev rutila prirejena na približno 70 nm dolžine in do 160 nm dolžine, pri čemer pa je razmerje med dolžino in širino nanodelca med 5 in 6.A method according to claim 1, characterized in that the size of the rutile nanoparticles can be adjusted to about 70 nm in length and up to 160 nm in length, with the ratio of nanoparticle length to width between 5 and 6. 4. Postopek po zahtevku 1, označen s tem, da so pridobljeni nanodelci rutila v obliki kisle suspenzije približne masne koncentracije 100 g/L ter da se lahko nanodelce izolira in očisti.Process according to claim 1, characterized in that the obtained rutile nanoparticles are in acidic suspension form an approximate mass concentration of 100 g / L and that the nanoparticles can be isolated and purified. 5. Postopek po zahtevku 1, označen s tem, daje iz začetne suspenzije odstranjena kislina in je suspenziji po želji prirejen pH na želeno vrednost.Process according to claim 1, characterized in that the initial suspension is acid removed and the suspension is optionally adjusted to pH to the desired value. 6. Postopek po zahtevku 1 do 5, označen s tem, da sam postopek ves čas poteka v mokrem, torej v obliki suspenzije, kar preprečuje morebiten nastop potencialno škodljivega prašenja.Method according to Claims 1 to 5, characterized in that the process itself takes place in the wet, ie in the form of a suspension, which prevents the occurrence of potentially harmful dusting. -127. Postopek po zahtevku 1 do 6, označen s tem, da so na ta način pridobljeni nanodelci polikristalinčni in zato ni potrebe po energetsko potratni kalcinaciji produkta.-127. Process according to Claims 1 to 6, characterized in that the nanoparticles thus obtained are polycrystalline and therefore there is no need for energy-wasteful calcination of the product. 8. Nanodelci rutila, označeni s tem, da so pridobljeni po postopku po zahtevkih od 1 do 7.Rutile nanoparticles, characterized in that they are obtained by the process of claims 1 to 7. 9. Nanodelci rutila, označeni s tem, da so v obliki kisle/nevtralne suspenzije, pri čemer so nanodelci rutila polikristalinični in kristaliti izkazujejo anizotropno morfologijo in so široki približno 5 nm in dolgi več 10 nm, sami nanodelci rutila pa so velikosti med 60 in 100 nm v dolžino in 15 do 50 nm v širino ter je njihova specifična površina med 90 do 160 m2/g.9. Rutile nanoparticles, characterized in that they are in acid / neutral suspension, the rutile nanoparticles being polycrystalline and crystallites exhibiting anisotropic morphology and approximately 5 nm wide and more than 10 nm in length, and the rutile nanoparticles themselves being between 60 and 100 nm in length and 15 to 50 nm in width and their specific surface area is between 90 and 160 m 2 / g.
SI200900340A 2009-11-04 2009-11-04 Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles SI23218A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200900340A SI23218A (en) 2009-11-04 2009-11-04 Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles
PCT/SI2010/000057 WO2011056151A1 (en) 2009-11-04 2010-10-20 Rutile nanoparticles and synthesis method for obtaining rutile nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200900340A SI23218A (en) 2009-11-04 2009-11-04 Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles

Publications (1)

Publication Number Publication Date
SI23218A true SI23218A (en) 2011-05-31

Family

ID=43532607

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200900340A SI23218A (en) 2009-11-04 2009-11-04 Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles

Country Status (2)

Country Link
SI (1) SI23218A (en)
WO (1) WO2011056151A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379917B2 (en) * 2014-09-19 2018-08-29 富士ゼロックス株式会社 Electrostatic charge image developer, image forming method and image forming apparatus
JP6379923B2 (en) * 2014-09-22 2018-08-29 富士ゼロックス株式会社 Electrostatic image developing toner, electrostatic image developer, image forming method, image forming apparatus, and toner set
CN104495920B (en) * 2015-01-09 2016-03-02 攀钢集团攀枝花钢铁研究院有限公司 The control method of crystal conversion band temperature in titanium dioxide calcining process
CN104495919B (en) * 2015-01-09 2016-05-25 攀钢集团攀枝花钢铁研究院有限公司 Rutile type titanium white calcining heat control method and autocontrol method thereof
CN104495915B (en) * 2015-01-14 2016-03-09 辽宁石化职业技术学院 The separation method of foreign metal ion in a kind of production process of titanium pigment
CN111039319A (en) * 2019-12-10 2020-04-21 华南理工大学 Method for preparing commercial titanium dioxide from waste denitration catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448683A (en) * 1944-02-09 1948-09-07 Du Pont Titanium oxide production
JPS62235215A (en) * 1986-04-07 1987-10-15 Nippon Shokubai Kagaku Kogyo Co Ltd Production of rutile titanium oxide sol
FI89900C (en) * 1990-03-01 1993-12-10 Kemira Oy NYTT FRAMSTAELLNINGSFOERFARANDE AV TITANDIOXID
US7413726B2 (en) 2004-03-26 2008-08-19 Council Of Scientific And Industrial Research Synthesis of ultrafine rutile phase titanium dioxide particles
US7326399B2 (en) 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
KR100977349B1 (en) * 2005-09-30 2010-08-20 사까이가가꾸고오교가부시끼가이샤 Process for producing fine particle of rutile-form titanium oxide
CN101595059A (en) 2006-09-21 2009-12-02 托库森美国股份有限公司 The temperature production method of the TiO 2 particles of nanometer size

Also Published As

Publication number Publication date
WO2011056151A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
SI23218A (en) Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles
EP2969957B1 (en) Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same
Lee et al. Effect of HCl concentration and reaction time on the change in the crystalline state of TiO2 prepared from aqueous TiCl4 solution by precipitation
KR20100014340A (en) Processes for the hydrothermal production of titanium dioxide
US20080156229A1 (en) Processes for the hydrothermal production of titanuim dioxide
Myint et al. The effect of heat treatment on phase transformation and morphology of nano-crystalline titanium dioxide (TiO2)
SI23501A (en) Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology
Chen et al. Hydrothermal synthesis of perovskite CaTiO 3 tetragonal microrods with vertical V-type holes along the [010] direction
Inada et al. Synthesis and photocatalytic activity of small brookite particles by self-hydrolysis of TiOCl2
KR101764016B1 (en) Method for preparation of pure anatase type TiO2 powders
Zhang et al. Analysis of the structure of titanium tetrachloride derived precipitates
JP4811723B2 (en) Method for producing metal oxide fine particle powder
KR102578964B1 (en) Titanium oxide particles and method for producing the same
SI23219A (en) Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles
KR100503858B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
KR100500305B1 (en) Method for preparing nano-size anatase titania powder and sol by glycol process
Mahata et al. Hydrothermal synthesis of aqueous nano-TiO2 sols
RU2618879C1 (en) Method of obtaining nanodispersed titanium dioxide powder with rutile structure
US9567236B2 (en) Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same
JP7106770B2 (en) Highly heat-resistant anatase-type titanium oxide and method for producing the same
KR20120122451A (en) Manafacturing method of titanium oxide nano particle using hydrothermal synthesis
KR100413720B1 (en) Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100503857B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Barium Powder from Aqueous Titanium Tetrachloride and Barium Chloride Solutions Prepared by Use of Inorganic Acids
Mangrola et al. Structural property of environment friendly catalyst material titanium Dioxide
KR100519039B1 (en) A process for preparing an ultrafine particle of brookite-type titanium oxide, using titanium tetrachloride and aqueous hydrochloric acid

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20110616

KO00 Lapse of patent

Effective date: 20191105