SI23501A - Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology - Google Patents
Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology Download PDFInfo
- Publication number
- SI23501A SI23501A SI201000342A SI201000342A SI23501A SI 23501 A SI23501 A SI 23501A SI 201000342 A SI201000342 A SI 201000342A SI 201000342 A SI201000342 A SI 201000342A SI 23501 A SI23501 A SI 23501A
- Authority
- SI
- Slovenia
- Prior art keywords
- nanoparticles
- suspension
- anatase
- acid
- synthesis
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/005—Alkali titanates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Postopek sinteze za pridobivanje nanodelcev anatasa visoke specifične površine in sferične morfologijeSynthesis process for the production of high specific surface anatase nanoparticles and spherical morphology
Predmet izuma je postopek sinteze za pridobivanje nanodelcev anatasa visoke specifične površine in sferične morfologije, ki temelji na gel-sol reakciji, kjer je kot izhodna surovina uporabljena metatitanova kislina, kije nanokristalinični anatasni gel in je polprodukt pri proizvodnji pigmenta TiO2ter nanodelci anatasa pridobljeni po tem postopku. Predmet izuma je tudi natrijev titanat in sintezni postopek za pridobivanje natrijevega titanata, katerega oblika je primerna za uporabo v sinteznem postopku pridobivanja nanodelcev anatasa. Predmet izuma je tudi čiščenje nastale kisle suspenzije nanodelcev anatasa, iz katere odstranimo prebitno kislino s centrifugiranjem, in nadaljnja nevtralizacija očiščene suspenzije ob dvigu vrednosti pH, ne da bi se nanodelci medsebojno aglomerirali. Predmet izuma je tudi način, kako iz nanodelcev, ki so po sintezi iz natrijevega titanata polikristalinični, pridobiti monokristalinične nanodelce in sicer s prekristalizacijo v hidrotermalni reakciji.The subject of the invention is a synthesis process for the production of high specific surface anatase nanoparticles and spherical morphology based on a gel-sol reaction, where metatitanic acid is used as the starting material, which is a nanocrystalline anatase gel and is a by-product of the production of TiO 2 pigment and anatase nanoparticles. this procedure. The invention also provides sodium titanate and a synthesis process for the production of sodium titanate, the form of which is suitable for use in the synthesis process of the production of anatase nanoparticles. It is also an object of the invention to purify the resulting acid suspension of anatase nanoparticles from which excess acid is removed by centrifugation and further neutralize the purified suspension while raising the pH without agglomerating the nanoparticles. It is also an object of the invention to obtain monocrystalline nanoparticles from nanoparticles which are polycrystalline from sodium titanate synthesis by recrystallization in a hydrothermal reaction.
Izum obravnava postopek na podlagi katerega iz metatitanove kisline, kije intermediat v procesu proizvodnje pigmenta TiO2, pripravimo ustrezno obliko natrijevega titanata, kije primeren bodisi za pripravo nanodelcev rutila bodisi nanodelcev anatasa v reakciji s kislino. Natrijev titanat se pripravi v reakciji metatitanove kisline s koncentrirano bazo NaOH, razmerje med dodanim NaOH in TiO2 v metatitanovi kislini pa neposredno določa obliko nastalega titanata. Od oblike natrijevega titanata je odvisno ali se bo v reakciji s kislino tvoril rutil ali anatas v obliki dobro dispergiranih nanodelcev. Nastali delci so polikristalinični, kar pomeni, da so sestavljeni iz večjega števila manjših kristalitov sprijetih skupaj v delec.The invention provides a process whereby a suitable form of sodium titanate, which is suitable for the preparation of rutile nanoparticles or anatase nanoparticles in reaction with acid, is prepared from metatitanic acid, which is an intermediate in the process of producing pigment TiO 2 . Sodium titanate is prepared by the reaction of metatitanoic acid with a concentrated NaOH base, and the ratio of the added NaOH to TiO 2 in metatitanic acid directly determines the form of the titanium formed. The form of sodium titanate depends on whether rutile or anatase will form in the form of well-dispersed nanoparticles in reaction with the acid. The resulting particles are polycrystalline, which means that they consist of a number of smaller crystallites clustered together in a particle.
Izum obravnava tudi sintezo nanodelcev anatasa, kijih pridobimo v reakciji med specifično obliko natrijevega titanata in klorovodikovo kislino v t.i. gel-sol reakciji, ki vodi v nastanek dobro dispergiranih nanodelcev v kislem vodnem mediju. Po izvedeni sintezi so nanodelci dobro dispergirani in niso aglomerirani, ker imajo zaradi nizke vrednosti pH visoko vrednost zeta potenciala, kar omogoča, da se medsebojno odbijajo zaradi elektrostatskih sil. Pri spremembi vrednosti pH se potencial delcev zmanjša, kar vodi do pojava aglomeracije, to pa je nezaželeno, saj s tem nanodelci ne izkazujejo več svojih prvotnih lastnosti, ki so posledica njihove velike specifične površine. Zato je potrebno suspenziji dvigniti pH v prisotnosti • ·The invention also relates to the synthesis of anatase nanoparticles obtained by the reaction between a specific form of sodium titanate and hydrochloric acid in so-called. gel-salt reaction leading to the formation of well-dispersed nanoparticles in an acidic aqueous medium. After the synthesis, the nanoparticles are well dispersed and not agglomerated because they have a high zeta potential due to their low pH, which allows them to repel each other due to electrostatic forces. As the pH changes, the potential of the particles decreases, leading to agglomeration, which is undesirable since the nanoparticles no longer exhibit their original properties due to their large specific surface area. It is therefore necessary to raise the suspension pH in the presence of • ·
-2ustreznega disperganta, kije površinsko aktivna komponenta in preprečuje aglomeracijo nanodelcev na podlagi vzpostavitve steričnih, elektrostatskih in/ali elektrosteričnih sil.-2 of suitable dispersant, which is a surfactant component and prevents the agglomeration of nanoparticles based on the establishment of steric, electrostatic and / or electrostatic forces.
Predmet izuma je tako tudi izvedba ustrezne stabilizacije nanodelcev v suspenziji, pri čemur dodamo dispergant, ki prepreči aglomeracijo nanodelcev. S tem ohranimo prvotne lastnosti nanodelcev, kar je zelo pomembno za vrsto visokotehnoloških aplikacij nanodelcev TiO2, ki zahtevajo uporabo kemijsko nevtralnih vodnih suspenzij, kamor sodijo tankoslojni nanosi za samočistilne premaze, elektrokemijske sončne celice, fotokatalizatorji, UV zaščitni premazi,... Delci po sintezi so v osnovi polikristalinični, kar pomeni, daje posamezen delec sestavljen iz več manjših kristalitov. To lahko vpliva na nekatere fizikalne lastnosti materiala, zato je v nekaterih primerih zaželeno, da bi delce pripravili v t.i. monokristalinični obliki. To pomeni, da je posamezen delec tudi kristal sam zase. Transformacijo v monokristalinično obliko je možno doseči s termično obdelavo pri višji temperaturi, kar pa je nezaželeno, saj vedno pride do velike aglomeracije produkta in potencialno škodljivega prašenja ter velike porabe energije. Pričujoči izum obravnava alternativni postopek, ki temelji na t.i. hidrotermalni metodi, pri kateri se material v obliki vodne suspenzije podvrže visoki temperaturi in tlaku v avtoklavu, pri čemur se polikristalinični delci pretvorijo v monokristalinično obliko. Prednost postopka je v tem, da v nobenem koraku ne pride do potencialno škodljivega prašenja, prav tako pa je tudi poraba energentov manjša kot v primeru termične obdelave.It is also an object of the invention to perform an appropriate stabilization of the nanoparticles in suspension, whereby a dispersant is added which prevents the nanoparticle agglomeration. This preserves the original properties of the nanoparticles, which is very important for a number of high-tech applications of TiO 2 nanoparticles, which require the use of chemically neutral aqueous suspensions, including thin film coatings for self-cleaning coatings, electrochemical solar cells, photocatalysts, UV protective coatings, ... the syntheses are essentially polycrystalline, meaning that a single particle is composed of several smaller crystallites. This may affect some of the physical properties of the material, so in some cases it is desirable to prepare the particles in the so-called monocrystalline form. This means that the individual particle is also a crystal in itself. Transformation into a single crystalline form can be achieved by thermal treatment at a higher temperature, which is undesirable since there is always a large agglomeration of the product and potentially harmful dusting and high energy consumption. The present invention contemplates an alternative process based on the so-called hydrothermal method, in which the material in the form of an aqueous suspension is subjected to high temperature and pressure in an autoclave, whereby the polycrystalline particles are converted to a monocrystalline form. The advantage of the process is that in no step does the potentially harmful dusting occur, as well as the energy consumption is lower than in the case of heat treatment.
Vsi postopki, ki jih izum obravnava, temeljijo na procesih mokre kemije in se izvajajo v vodni suspenziji. Procesiranje v obliki suspenzije je zelo pomembno, saj tako v nobenem koraku ne pride do nastanka vmesne, zdravju potencialno škodljive prašne faze, prav tako pa se kot končni produkt tvorijo dobro kristalinični nanodelci, kar izključuje potrebo po kalcinacijskem postopku, ki je energetsko potraten ter obremenjuje okolje z izpustom toplogrednih plinov.All of the processes contemplated by the invention are based on wet chemistry processes and carried out in aqueous suspension. Suspension processing is very important, as no intermediate step is created in any step, potentially harmful to the dusty phase, and well crystalline nanoparticles are formed as a final product, which eliminates the need for an energy-consuming calcination process and burdensome greenhouse gas environment.
Titanov dioksid v obliki pigmenta je material s široko možnostjo aplikacij in sicer je uporaben za premaze, barve, kot dodatek plastiki, papirju, v kozmetiki, v farmacevtski industriji in še v mnogih drugih aplikacijah. Danes sta v največji meri uporabna dva postopka pridobivanja pigmentnega titanovega dioksida in sicer t.i. sulfatni ter kloridni postopek. Tako sulfatni kot kloridni postopek temeljita na visokotemperatumi pretvorbi ustreznih komponent v pigmentni titanov dioksid. Pri sulfatnem postopku se pigment tvori v procesu kalcinacije v reakcijah hidrolize pridobljenega anatasnega gela, medtem ko se pri kloridnem postopku pigment tvori • · «Titanium dioxide in the form of pigment is a material with a wide range of applications and is useful for coatings, paints, as an adjunct to plastics, paper, cosmetics, the pharmaceutical industry and many other applications. Today, two processes for the production of pigment titanium dioxide, i.e. sulfate and chloride process. Both the sulfate and chloride process are based on high-temperature conversion of the corresponding components into pigment titanium dioxide. In the sulphate process, the pigment is formed in the process of calcination in the hydrolysis reactions of the obtained anatase gel, while in the chloride process, the pigment is formed.
-3pri visokotemperaturnem izgorevanju titanovega tetraklorida s kisikom. Ravno postopek visokotemperatume kalcinacije, kije del sulfatnega in kloridnega postopka, preprečuje možnost pridobivanja delcev anatasa nano velikosti, prav tako pa je značilno, da visoka temperatura kalcinacije vedno vodi v pretvorbo anatasa v termodinamsko stabilnejšo fazo TiO2, rutil. Postopek kalcinacije je tudi močno obremenjen z visoko energetsko porabo in temu primemo visoko količino izpustov toplogrednih plinov. Poleg tega je produkt, ki nastane, prisoten v obliki prahu, ki je lahko potencialno škodljiv zdravju in okolju.-3High-temperature combustion of titanium tetrachloride with oxygen. Precisely the high-temperature calcination process, which is part of the sulfate and chloride process, prevents the possibility of producing nano-sized anatase particles, and it is also typical that high calcination temperature always leads to the conversion of anatase to the thermodynamically more stable TiO 2 phase, rutile. The calcination process is also heavily burdened with high energy consumption and a high amount of greenhouse gas emissions is received. In addition, the resulting product is present in the form of dust which can be potentially harmful to health and the environment.
Ravno zaradi tega je bilo v zadnjih letih razvitih mnogo različnih postopkov pridobivanja nanodelcev anatasa.This is why many different processes for the production of anatase nanoparticles have been developed in recent years.
V patentu US 20060254461 je opisan postopek pridobivanja nanodelcev anatasa po sol-gel postopku in sicer iz začetnih organskih alkoksidov, ki pod specifičnimi reakcijskimi pogoji hidrolizirajo in tvorijo ustrezen sol. Sol se nato podvrže procesu staranja pri temperaturi od 120 -140 °C, kar sproži proces nukleacije in rasti dobro kristaliničnih nanodelcev anatasa.US 20060254461 discloses a process for the preparation of anatase nanoparticles by a sol-gel process, from starting organic alkoxides, which under specific reaction conditions hydrolyze and form the corresponding salt. The salt then undergoes an aging process at a temperature of 120-140 ° C, which triggers the nucleation and growth of well crystalline anatase nanoparticles.
V patentu US 4954476 je opisan postopek pridobivanja nanodelcev anatasa s hidrotermalno metodo. Kot začetna substanca se uporabi meta- ali ortotitanova kislina, ki se nato pod specifičnimi pogoji izpostavi hidrotermalni reakciji. Tipično poteka hidrotermalna reakcija več ur pri temperaturi približno 180 °C in povišanem tlaku vodne suspenzije. Pri nižji temperaturi poteka hidrotermalna sinteza dlje časa, celo več dni.US 4954476 discloses a process for the production of anatase nanoparticles by the hydrothermal method. The starting material is meta- or orthotitanoic acid, which is then subjected to a hydrothermal reaction under specific conditions. Typically, a hydrothermal reaction takes place for several hours at a temperature of about 180 ° C and an elevated pressure of the aqueous suspension. At lower temperature, hydrothermal synthesis takes a long time, even for several days.
V patentu US 7510694 je opisan postopek pridobivanja nanodelcev anatasa iz raztopine titanovega tetraklorida, ki se ji doda ustrezna količina hidrazin monohidrata. Reakcija se izvede pri sobni temperaturi pri pH približno 8, pri čemer nastane produkt visoke specifične površine z zelo majhnimi osnovnimi kristaliti anatasa.US 7510694 discloses a process for the preparation of anatase nanoparticles from a solution of titanium tetrachloride to which an appropriate amount of hydrazine monohydrate is added. The reaction is carried out at room temperature at a pH of about 8, yielding a product of high specific surface area with very small basic anatase crystallites.
Zgoraj podani primeri sinteze nanodelcev anatasa sicer vodijo do želenega produkta, vendar so neprimerni ali manj primerni za industrijsko proizvodnjo, saj opisani postopki bodisi temeljijo na uporabi dragih in/ali toksičnih organskih substancah, bodisi je potrebno uporabiti dolgotrajen in energijsko potraten proces, da se pridobi želena oblika nanodelcev. Prav tako je velika pomanjkljivost opisanih postopkov v tem, daje končni produkt močno aglomeriran prah nanodelcev anatasa, kar zmanjšuje možnost aplikacije končnega produkta.The above examples of synthesis of anatase nanoparticles lead to the desired product, but are unsuitable or less suitable for industrial production, since the processes described are either based on the use of expensive and / or toxic organic substances, or it takes a long and energy-consuming process to obtain the desired shape of the nanoparticles. A major disadvantage of the processes described is that the end product is a highly agglomerated powder of anatase nanoparticles, which reduces the possibility of application of the end product.
Nanodelci anatasa in sintezni postopek pridobivanja nanodelcev anatasa po izumu odpravljajo navedene pomanjkljivosti, saj omogočajo pridobivanje enakomerno velikih, dobro * ·Anatase nanoparticles and the synthesis process for the production of anatase nanoparticles according to the invention eliminate the disadvantages given that they allow the production of uniformly large, good * ·
-4kristaliničnih in dobro dispergiranih nanodelcev anatasa v stabilni kisli suspenziji, kar znatno olajša njihovo uporabo v visokotehnoloških aplikacijah.-4 crystalline and well-dispersed anatase nanoparticles in stable acid suspension, which greatly facilitates their use in high-tech applications.
Pridobivanje nanodelcev po izumu temelji na gel-sol sintezi, kjer uporabimo surovino natrijev titanat, ki ga pridobimo iz metatitanove kisline v reakciji z ustrezno količino baze NaOH. Sinteza natrijevega titanata se vrši pri temperaturi pod vreliščem in sicer pri približno 90 °C, vendar je lahko temperatura med reakcijo tudi višja ah nižja.The preparation of the nanoparticles according to the invention is based on gel-salt synthesis, where the raw material sodium titanate is obtained, which is obtained from metatitanic acid in reaction with an appropriate amount of NaOH base. The synthesis of sodium titanate is carried out at a temperature below 90 ° C, but the temperature may also be higher ah lower during the reaction.
V sledeči reakciji s klorovodikovo kislino natrijev titanat pretvorimo v suspenzijo dobro dispergiranih nanodelcev anatasa, ki so polikristalinični in sferične oblike ter veliki približno 40 nm. Postopek omogoča kontrolo njihove velikosti z izbiro ustreznih reakcijskih parametrov, tako da lahko pripravimo tudi večje ali manjše delce od 40 nm. Reakcija sinteze nanodelcev anatasa se izvede pri segrevanju na približno 80 °C, vendar je lahko temperatura med reakcijo tudi višja ali nižja.In the next reaction with hydrochloric acid, sodium titanate is converted into a suspension of well-dispersed anatase nanoparticles, which are polycrystalline and spherical in shape and approximately 40 nm in size. The process allows to control their size by selecting the appropriate reaction parameters so that larger or smaller particles of 40 nm can also be prepared. The synthesis of anatase nanoparticles is carried out when heated to about 80 ° C, but the temperature may also be higher or lower during the reaction.
Ker je nastala suspenzija nanodelcev anatasa po sintezi kisla, to omejuje njeno uporabo v določenih aplikacijah. Določena aplikacija lahko zahteva uporabo suspenzije nanodelcev s specifično vrednostjo pH, zato je zelo pomembno, da lahko suspenziji priredimo želeno vrednost pH, vendar hkrati ob tem ne povzročimo aglomeracije delcev. Za reševanje tega problema seje razvilo več različnih postopkov.Since the suspension of anatase nanoparticles was formed after acid synthesis, this limits its use in certain applications. A particular application may require the use of a suspension of nanoparticles with a specific pH value, so it is very important that the suspension can be adjusted to the desired pH value, but at the same time it does not cause particle agglomeration. Several sessions have been developed to address this problem.
V patentu US7344591 je opisan postopek tvorbe suspenzije nanodelcev TiO2 v prisotnosti ustreznega dispergatorja (glicin, glikolna kislina). Postopek temelji na sintezi nanodelcev TiO2 v mediju, v katerem je dispergant že prisoten in naj bi vodil do nastanka suspenzije, v kateri bi bili nanodelci dobro dispergirani, saj naj bi dodani dispergant preprečeval aglomeracijo že v fazi nastanka delcev. Vendar je postopek izveden na način, ki onemogoča nastanek enakomerno velikih delcev, prav tako pa so bile izvedene meritve DLS (Dynamic Light Scattering) neustrezne, saj je faktor polidisperznosti suspenzij zelo nizek, kar pomeni, da priloženi rezultati meritve DLS ne prikazujejo dejanskega stanja.US7344591 describes a process for forming a suspension of TiO 2 nanoparticles in the presence of a suitable dispersant (glycine, glycolic acid). The process is based on the synthesis of TiO 2 nanoparticles in a medium in which the dispersant is already present and leads to the formation of a suspension in which the nanoparticles would be well dispersed, since the added dispersant would prevent agglomeration as early as the particle formation stage. However, the process was performed in a manner that prevented the formation of uniformly large particles, and the DLS (Dynamic Light Scattering) measurements performed were inappropriate, since the polydispersity factor of the suspensions was very low, meaning that the DLS measurement results provided do not show the actual state.
V patentu US20080317959 je opisan postopek, s katerim sintetizirajo nanodelce TiO2 in jih stabilizirajo z uporabo ustreznih surfaktantov, kot je Triton Χ-100. Slaba stran opisanega postopka je, da temelji na uporabi surfaktantov, ki so relativno dragi in tako manj primerni za rabo na večjem, industrijskem nivoju. Prav tako pa so nastale suspenzije imele zelo nizko vsebnost TiO2, kar je z ekonomskega stališča zelo slabo.US20080317959 describes a process by which TiO 2 nanoparticles are synthesized and stabilized using suitable surfactants such as Triton Χ-100. The downside of the process described is that it is based on the use of surfactants, which are relatively expensive and thus less suitable for use on a larger, industrial scale. Also, the resulting suspensions had a very low TiO 2 content, which is very poor from an economic point of view.
Pričujoči izum omenjene probleme rešuje, saj opisuje postopek, s katerim kislo suspenzijo nanodelcev anatasa pretvorimo v nevtralno suspenzijo, ne da bi se pri tem nanodelciThe present invention solves these problems by describing a process by which the acid suspension of anatase nanoparticles is converted to a neutral suspension without the nanoparticles being
-5prekomemo aglomerirali. To se doseže z uporabo ustreznega disperganta, ki med dodajanjem baze preprečuje aglomeracijo delcev s tem, da se veže na njihovo površino. Dispergant, ki ga uporabimo v ta namen, je relativno poceni in omogoča pripravo stabilnih suspenzij z različno vsebnostjo TiC>2, tudi do 50 %.-5 over agglomerated. This is achieved by the use of a suitable dispersant which, while adding a base, prevents the agglomeration of the particles by binding to their surface. The dispersant used for this purpose is relatively inexpensive and allows the preparation of stable suspensions with a different TiC content of> 2, up to 50%.
Dispergant se doda v kislo suspenzijo med mešanjem in se raztopi v vodnem mediju ter tako enakomerno razporedi znotraj reakcijskega medija. Nato se doda koncentrirana baza, kije lahko NaOH ali katera druga (NH3, KOH, Na2CO3,...). Baza se dodaja med mešanjem do želene vrednosti pH, pri čemer je najustreznejša vrednost pH približno 7. Vrednost pH lahko ustrezno priredimo z dodatkom baze in je lahko med 4 do 12, pri čemer se stabilnost suspenzije ne spremeni znatno.The dispersant is added to the acidic suspension while stirring and dissolved in an aqueous medium to distribute evenly within the reaction medium. A concentrated base is then added, which may be NaOH or any other (NH3, KOH, Na2CO 3 , ...). The base is added while stirring to the desired pH value, with the most appropriate pH value being about 7. The pH value can be appropriately adjusted by addition of the base and can be between 4 and 12, without suspending the stability of the suspension significantly.
Po sintezi in/ali stabilizaciji imamo suspenzijo, v kateri so nanodelci dobro dispergirani pri želeni vrednosti pH. Ker pa so nanodelci v osnovi polikristalinični, to pomeni, da ne izkazujejo optimalnih fizikalnih in kemijskih lastnosti, saj je posamezen delec sestavljen iz več manjših kristalitov, meje med njimi pa lahko predstavljajo oviro za določen proces (npr. pretok elektronov). Optimalne lastnosti nanodelcev se dosežejo le, če imajo delci obliko monokristala, saj v tem primeru na njihove lastnosti ne vplivajo morebitni defekti v notranji strukturi, kot so to npr. meje med posameznimi kristaliti. Postopki, ki omogočajo tvorbo monokristalinične oblike, ponavadi temeljijo na termični obdelavi, v kateri izpostavitev visoki temperaturi vodi do konsolidacije manjših kristalitov v večjega. Ker je ta proces energetsko potraten in ker vodi do nastanka suhe, potencialno zdravju škodljive prašne faze, je manj ustrezen. Alternativni postopek temelji na t.i. hidrotermalnem postopku, v katerem se lahko monokristalinična oblika materiala tvori v vodnem mediju pri temperaturi nad vreliščem in temu primernemu visokemu tlaku. Hidrotermalna metoda je dobro poznana sintezna metoda in jo obravnavajo različni izumi.After synthesis and / or stabilization, we have a suspension in which the nanoparticles are well dispersed at the desired pH. However, since the nanoparticles are essentially polycrystalline, this means that they do not exhibit optimal physical and chemical properties, since a single particle is composed of several smaller crystallites, and the boundaries between them can be a barrier to a particular process (eg electron flow). The optimum properties of the nanoparticles are achieved only if the particles are in the form of a single crystal, since in this case their properties are not affected by any defects in the internal structure, such as e.g. the boundaries between the individual crystallites. The processes that allow the formation of a single crystalline form are usually based on thermal treatment, in which exposure to high temperature leads to the consolidation of smaller crystallites into larger ones. Because this process is energy consuming and leads to the formation of a dry, potentially harmful dust phase, it is less appropriate. The alternative procedure is based on i.i. a hydrothermal process in which the monocrystalline form of the material can be formed in an aqueous medium at a temperature above boiling point and at this suitable high pressure. The hydrothermal method is a well-known synthesis method and is contemplated by various inventions.
V patentu US20090223412 je opisana hidrotermalna metoda, s katero se tvorijo monokristalinični nanodelci T1O2, pri čemer pa se kot izhodna surovina uporabi vodotopna komponenta titana. Ta se izpostavi hidrotermalnim pogojem in sicer temperaturi 160 °C za čas 16 ur. Podoben postopek je opisan v patentu US5776239, kjer seje hidrotermalna metoda izvedla pri višji temperaturi in krajšem času, vendar pa zopet le na osnovi vodotopne titanove komponente.US20090223412 discloses a hydrothermal method for the formation of single crystalline T1O2 nanoparticles using a water-soluble titanium component as the feedstock. It is exposed to hydrothermal conditions at a temperature of 160 ° C for a period of 16 hours. A similar process is described in US5776239, where the hydrothermal method was performed at a higher temperature and for a shorter time, but again only on the basis of a water-soluble titanium component.
Slaba stran obeh postopkov je ta, da šele med potekom reakcije definiramo obliko končnega produkta, saj se delci formirajo iz vodotopne komponente. Prav tako je za oba opisanaThe disadvantage of both processes is that it is only during the course of the reaction that the form of the final product is defined, since the particles are formed from the water-soluble component. It is also described for both
-6postopka značilno, daje reakcija dolgotrajna, kar predstavlja velik problem za morebiten prenos na industrijski nivo. To še toliko bolj otežujejo zelo visoke temperature, opisane v obeh postopkih.-6 The process is characterized by the fact that the reaction is long-lasting, which is a big problem for a possible transfer to the industrial level. This is all the more aggravated by the very high temperatures described in both procedures.
Pričujoči izum obravnava postopek, kije krajši in se vrši pri relativno nizki temperaturi ter temelji na hidrotermalni metodi, ki omogoča pretvorbo polikristaliničnih delcev anatasa v monokristalinične. Surovina, ki se uporabi je stabilna suspenzija nanodelcev anatasa z vrednostjo pH med 4 in 12. Suspenzija se podvrže hidrotermalnim pogojem in sicer temperaturi med 130 do 250 °C in tlaku, ki sovpada s to temperaturo. Hidrotermalna reakcija poteka 2 do 4 uri, pri čemer se tvorijo monokristalinični nanodelci anatasa. Nastali delci so po velikosti zelo podobni izhodnim, polikristaliničnim delcem in so tudi podobne oblike.The present invention contemplates a shorter process carried out at a relatively low temperature based on a hydrothermal method that enables the conversion of polycrystalline anatase particles to monocrystalline ones. The raw material to be used is a stable suspension of anatase nanoparticles with a pH between 4 and 12. The suspension is subjected to hydrothermal conditions, at a temperature between 130 and 250 ° C and a pressure that coincides with that temperature. The hydrothermal reaction takes 2 to 4 hours to form monocrystalline anatase nanoparticles. The resulting particles are very similar in size to the starting, polycrystalline particles and are also similar in shape.
Glavni cilj pričujočega izuma je predložitev postopkov, ki so primerni za industrijsko pridobivanje nanodelcev anatasa različnih velikosti in kristaliničnosti v obliki kislih, bazičnih in/ali nevtralnih suspenzij, v katerih so nanodelci dobro dispergirani in po možnosti neaglomerirani. Glavne prednosti pričujočega izuma so:The main object of the present invention is to provide processes suitable for the industrial production of anatase nanoparticles of various sizes and crystallinity in the form of acidic, basic and / or neutral suspensions in which the nanoparticles are well dispersed and preferably non-agglomerated. The main advantages of the present invention are:
da proces temelji na uporabi surovine, natrijevega titanata, ki se lahko proizvede iz t.i. metatitanove kisline, kije pomemben polprodukt pri proizvodnji pigmenta TiO2 po sulfatnem postopku, da se natrijev titanat proizvede iz metatitanove kisline pri relativno nizki temperaturi (pod 100 °C) v reakciji z NaOH, da s količino NaOH oziroma molskim razmerjem med TiO2 in NaOH definiramo obliko natrijevega titanata, kije surovina za sintezo nanodelcev TiO2. Če je molsko razmerje NaOH : TiO2 med 3 in 4, pridobimo natrijev titanat, kije primeren samo za pridobivanje nanodelcev TiO2 kristalne strukture rutila. Če je molsko razmerje manjše in sicer med 1 in 2, nastane natrijev titanat, ki je primeren za pridobivanje nanodelcev TiO2 kristalne strukture anatasa, ne da bi se hkrati tvoril tudi rutil.that the process is based on the use of a raw material, sodium titanate, which can be produced from so-called metatitanic acid, which is an important intermediate in the production of TiO 2 pigment by the sulphate process, that sodium titanate is produced from metatitanic acid at a relatively low temperature (below 100 ° C) in reaction with NaOH to define the form of sodium titanate, which is the raw material for the synthesis of TiO 2 nanoparticles, by the amount of NaOH or the molar ratio between TiO 2 and NaOH. If the molar ratio of NaOH: TiO 2 is between 3 and 4, sodium titanate is obtained, which is only suitable for obtaining TiO 2 nanoparticles of the crystalline structure of rutile. If the molar ratio is smaller between 1 and 2, sodium titanate is formed, which is suitable for the production of TiO 2 nanoparticles of the crystalline structure of anatase without simultaneously forming rutile.
da za namen pridobivanja nanodelcev anatasa pridobimo natrijev titanat, ki ga lahko ustrezno očistimo, da odstranimo presežek baze s filtracijo, dekantiranjem in/ali centrifugiranjem, da očiščen natrijev titanat resuspendiramo v vodi in dodamo klorovodikovo kislino ali dušikovo (V) kislino do ustrezne koncentracije in izvedemo sintezo nanodelcev anatasa v reakciji pri povišani temperaturi, vendar pod temperaturo vrelišča (pod 100 °C), da se nanodelci tvorijo v obliki kisle suspenzije v kateri so dobro dispergirani,to obtain anatase nanoparticles to obtain sodium titanate, which can be properly purified to remove excess base by filtration, decantation and / or centrifugation, to resuspend the purified sodium titanate in water and to add hydrochloric acid or nitric acid to the appropriate concentration, and synthesize anatase nanoparticles in a reaction at elevated temperature but below boiling point (below 100 ° C) to form the nanoparticles as an acidic suspension in which they are well dispersed,
-7 da se nanodelci tvorijo v obliki dobro polikristaliničnih delcev, kar pomeni, da ni potrebe po termični obdelavi, s čimer se prihranijo energenti in prepreči posledični izpust toplogrednih plinov v okolje, da so nanodelci enakomerno veliki, pri čemer lahko njihovo velikost kontroliramo z izbiro ustreznih reakcijskih parametrov, da se kisla suspenzija zlahka nevtralizira z uporabo baze ob prisotnosti disperganta, citronske kisline, ki preprečuje nezaželeno aglomeracijo nanodelcev. Stabilnost suspenzije je pogojena predvsem s količino dodanega disperganta in naj bo vsaj 10 % glede na maso TiO2 v suspenziji.-7 that the nanoparticles are formed in the form of well polycrystalline particles, which means that there is no need for thermal treatment, which saves energy and prevents the consequent release of greenhouse gases into the environment, that the nanoparticles are evenly sized, and their size can be controlled by choice appropriate reaction parameters to easily neutralize the acidic suspension using a base in the presence of a dispersant, a citric acid that prevents unwanted agglomeration of the nanoparticles. Suspension stability is conditional on the amount of dispersant added and should be at least 10% by weight of TiO 2 in suspension.
da se nastala suspenzija lahko podvrže t.i. hidrotermalnem postopku, kjer v avtoklavu suspenzijo izpostavimo visokim temperaturam, nad temperaturo vrelišča, in temu primernemu tlaku, pri čemer pride do transformacije polikristaliničnih delcev v monokristalinične.that the resulting suspension may be subjected to, e.g. a hydrothermal process where the suspension is subjected to high temperatures above the boiling point and to this appropriate pressure in the autoclave, resulting in the transformation of the polycrystalline particles into monocrystalline ones.
- da se hidrotermalna metoda izvede v suspenziji, kar prepreči nastanek potencialno škodljive prašne faze, da imajo vsi navedeni postopki zelo visok izkoristek in sicer nad 95 %- that the hydrothermal method is carried out in suspension, which prevents the formation of a potentially harmful dust phase, that all of these processes have a very high efficiency, above 95%
Opis izumaDescription of the invention
Izum bo v nadaljevanju opisan z opisi postopkov, slikami in z izvedbenimi primeri, ki ustrezno ilustrirajo sam postopek sinteze nanodelcev anatasa, njegovo stabilizacijo z ustreznim dispergantom in uporabo hidrotermalne metode za pridobivanje monokristalinične oblike nanodelcev. Izum bo vseboval tudi podroben opis izhodne surovine, natrijevega titanata, ki lahko glede na izveden postopek sinteze, predstavlja izhodno surovino za pridobivanje nanodelcev rutila ali nanodelcev anatasa.The invention will hereinafter be described by process descriptions, figures and embodiments that adequately illustrate the process of synthesis of anatase nanoparticles, its stabilization with a suitable dispersant, and the use of a hydrothermal method to obtain the monocrystalline form of nanoparticles. The invention will also contain a detailed description of the feedstock, sodium titanate, which, depending on the synthesis process performed, may be the feedstock for the production of rutile nanoparticles or anatase nanoparticles.
Slike prikazujejo:Pictures show:
Slika 1: Natrijev titanat, primeren za sintezo nanodelcev anatasa v gel-sol reakciji, pridobljen po izumu v izvedbenem primeru 1 in posnet z vrstičnim elektronskim mikroskopom,Figure 1: Sodium titanate suitable for the synthesis of anatase nanoparticles in the gel-sol reaction obtained according to the invention in embodiment 1 and taken with a scanning electron microscope,
Slika 2: Nanodelci anatasa, pridobljeni po izumu v izvedbenem primeru 1, posneti z vrstičnim elektronskim mikroskopom,Figure 2: Anatase nanoparticles obtained according to the invention in embodiment 1, taken with a scanning electron microscope,
Slika 3: Rentgenski praškovni difraktogram, iz katerega so razvidni ukloni značilni za kristalno strukturo anatasa pridobljen v izvedbenem primeru 1, « *Figure 3: X-ray powder diffraction pattern showing the defects characteristic of the crystal structure of anatase obtained in Example 1, «*
-8Slika 4: Natrijev titanat sintetiziran z razmerjem NaOH:TiC>2 4 in je primeren za sintezo nanodelcev rutila v gel-sol reakciji, pridobljen po izumu v izvedbenem primeru 2 in posnet z vrstičnim elektronskim mikroskopom,-8Figure 4: Sodium titanate synthesized with a NaOH ratio: TiC> 2 4 and suitable for the synthesis of rutile nanoparticles in the gel-salt reaction obtained according to the invention in embodiment 2 and taken with a scanning electron microscope,
Slika 5: Natrijev titanat sintetiziran z razmerjem NaOLLTiCE 3 in je primeren za sintezo nanodelcev rutila v gel-sol reakciji, pridobljen po izumu v izvedbenem primeru 2 in posnet z vrstičnim elektronskim mikroskopom,Figure 5: Sodium titanate synthesized by NaOLLTiCE 3 ratio and suitable for synthesis of rutile nanoparticles in the gel-sol reaction obtained according to the invention in embodiment 2 and taken with a scanning electron microscope,
Slika 6: Rentgenski praškovni difraktogram, iz katerega so razvidni ukloni značilni za kristalno strukturo rutila pridobljen v izvedbenem primeru 2,Figure 6: X-ray powder diffraction pattern showing the defects characteristic of the crystalline structure of rutile obtained in Example 2,
Slika 7: Nanodelci rutila pridobljeni v gel-sol reakciji, kadar uporabimo natrijev titanat pridobljen z molskim razmerjem NaOHiTiCh med 3 in 4, pridobljen po izumu v izvedbenem primeru 2 in posnet z vrstičnim elektronskim mikroskopom,Figure 7: Rutile nanoparticles obtained in a gel-sol reaction when using sodium titanate obtained with a NaOHiTiCh molar ratio of 3 to 4 obtained according to the invention in embodiment 2 and taken with a scanning electron microscope,
Slika 8: Diagram porazdelitve velikosti delcev/aglomeratov, ki nastanejo po nevtralizaciji z bazo po izvedbenem primeru 3 in je bila določena z meritvijo DLS (dynamic light scattering), Slika 9: Diagram porazdelitve velikosti delcev/aglomeratov, ki nastanejo po nevtralizaciji z bazo po izvedbenem primeru 4 in je bila določena z meritvijo DLS (dynamic light scattering), Slika 10: Diagram porazdelitve velikosti delcev/aglomeratov, ki nastanejo po nevtralizaciji z bazo po izvedbenem primeru 5 in je bila določena z meritvijo DLS (dynamic light scattering), Slika 11: Diagram porazdelitve velikosti delcev/aglomeratov, ki nastanejo po nevtralizaciji z bazo po izvedbenem primeru 6 in je bila določena z meritvijo DLS (dynamic light scattering), Slika 12: Visokoločljivostni posnetek nanodelcev anatasa, ki smo jih posneli s presevnim elektronskim mikroskopom, pridobljenih po izvedbenem primeru 1,Figure 8: Particle size / agglomerate size distribution diagram after base neutralization according to Example 3 and determined by DLS (dynamic light scattering) measurement, Figure 9: Particle size / agglomerate size distribution diagram after base neutralization Embodiment 4 and was determined by DLS (dynamic light scattering) measurement, Figure 10: Particle size / agglomerate size distribution chart after neutralization with base according to Embodiment 5 and determined by DLS (dynamic light scattering) measurement, Figure Figure 11: Particle size / agglomerate particle size distribution diagram after neutralization with base according to embodiment 6 as determined by DLS (dynamic light scattering) measurement, Figure 12: High resolution image of anatase nanoparticles taken with a transmission electron microscope obtained according to Example 1,
Slika 13: Nanodelci anatasa, pridobljeni po izumu v izvedbenem primeru 7, posneti z vrstičnim elektronskim mikroskopom,Figure 13: Anatase nanoparticles obtained according to the invention in Embodiment 7, taken with a scanning electron microscope,
Slika 14: Visokoločljivostni posnetek nanodelcev anatasa, ki smo jih posneli s presevnim elektronskim mikroskopom, pridobljenih po izvedbenem primeru 7,Figure 14: High resolution image of anatase nanoparticles taken with a transmission electron microscope obtained from embodiment 7,
Slika 15: Rentgenski praškovni difraktogram, iz katerega je razviden naj intenzivnejši uklon značilen za kristalno strukturo anatasa pridobljen v izvedbenem primeru 7,Figure 15: X-ray powder diffraction pattern showing the most intense deflection characteristic of the crystal structure of anatase obtained in Example 7,
Slika 16: Nanodelci anatasa, pridobljeni po izumu v izvedbenem primeru 8, posneti z vrstičnim elektronskim mikroskopom,Figure 16: Anatase nanoparticles obtained according to the invention in embodiment 8, taken with a scanning electron microscope,
Slika 17: Visokoločljivostni posnetek nanodelcev anatasa, ki smo jih posneli s presevnim elektronskim mikroskopom, pridobljenih po izvedbenem primeru 8,Figure 17: High resolution image of anatase nanoparticles taken with a transmission electron microscope obtained from embodiment 8,
Slika 18: Nanodelci anatasa, pridobljeni po izumu v izvedbenem primeru 9, posneti z vrstičnim elektronskim mikroskopom, * ·Figure 18: Anatase nanoparticles obtained according to the invention in Embodiment 9, taken with a scanning electron microscope, * ·
-9Slika 19: Visokoločljivostni posnetek nanodelcev anatasa, ki smo jih posneli s presevnim elektronskim mikroskopom, pridobljenih po izvedbenem primeru 9,-9Figure 19: High resolution image of anatase nanoparticles taken with a transmission electron microscope obtained from embodiment 9,
Slika 20: Nanodelci anatasa, pridobljeni po izumu v izvedbenem primeru 10, posneti z vrstičnim elektronskim mikroskopom,Figure 20: Anatase nanoparticles obtained according to the invention in Embodiment 10, taken with a scanning electron microscope,
Slika 21: Visokoločljivostni posnetek nanodelcev anatasa, ki smo jih posneli s presevnim elektronskim mikroskopom, pridobljenih po izvedbenem primeru 10.Figure 21: High resolution image of anatase nanoparticles taken with a transmission electron microscope obtained from embodiment 10.
Postopek sinteze nanodelcev anatasa temelji na uporabi metatitanove kisline, kije polprodukt pri proizvodnji pigmenta TiO2. Metatitanova kislina je nanokristaliničen aglomerat anatasa z velikostjo med 0,5 do nekaj mikrometrov. Metatitanova kislina predstavlja surovino za sintezo t.i. natrijevega titanata, ki je izhodni material za nadaljnjo gel-sol sintezo nanodelcev TiO2. Natrijev titanat se tvori v reakciji med metatitanovo kislino in koncentrirano bazo NaOH. Masna koncentracij a NaOH je približno 750 g/L in se doda do končnega molskega razmerja NaOH : TiO2 4:1 do 1:2.Process for the synthesis of nanoparticles of anatase is based on the use of metatitanic acid, which is a semi-product in the production of the pigment TiO second Metatitanic acid is an anatase nanocrystalline agglomerate with a size between 0.5 and several micrometers. Metatitanoic acid is the raw material for the synthesis of so-called sodium titanate, which is the starting material for further gel-salt synthesis of TiO 2 nanoparticles. Sodium titanate is formed in the reaction between metatitanoic acid and concentrated NaOH base. The mass concentration of a NaOH is about 750 g / L and added to a final molar ratio of NaOH: TiO 2 4: 1 to 1: 2.
Potrebno je poudariti, daje z molskim razmerjem med NaOH in TiO2 v reakciji določena specifična oblika natrijevega titanata. Oblika natrijevega titanata pa primarno določa obliko TiO2, ki nastane v sledeči gel-sol reakciji s kislino. Tako je značilno, da natrijev titanat, ki nastane ob višjem molskem razmerju NaOH : TiO2 promovira nastanek nanodelcev TiO2 s kristalno strukturo rutila, medtem ko natrijev titanat pridobljen z nižjim molskim razmerjem NaOH : TiO2 promovira nastanek nanodelcev TiO2 s kristalno strukturo anatasa. Če želimo v gel-sol reakciji sinteze nanodelcev TiO2 pridobiti nanodelce rutila, moramo tvoriti natrijev titanat, ki nastane v reakciji z molskim razmerjem NaOH : TiO2 med 4:1 do 3:1. Če pa želimo v gel-sol reakciji sinteze nanodelcev TiO2 pridobiti nanodelce anatasa, moramo tvoriti natrijev titanat, ki nastane v reakciji z molskim razmerjem NaOH : TiO2 med 1:1 do 1:2. Z obliko sintetiziranega natrijevega titanata v največji meri določimo obliko nastalega produkta TiO2, kar močno olajša izvedbo same reakcije.It should be noted that the specific molar ratio of NaOH to TiO 2 determines the specific form of sodium titanate in the reaction. The form of sodium titanate, however, primarily determines the form of TiO 2 which is formed in the subsequent gel-salt reaction with acid. Thus, it is characteristic that sodium titanate formed at a higher molar ratio of NaOH: TiO 2 promotes the formation of TiO 2 nanoparticles with the crystalline structure of rutile, whereas sodium titanate obtained with a lower molar ratio of NaOH: TiO 2 promotes the formation of TiO 2 nanoparticles with the crystalline structure of anatase . In order to obtain rutile nanoparticles in the gel-sol reaction of synthesis of TiO 2 nanoparticles, sodium titanate is formed which is formed by reaction with a molar ratio of NaOH: TiO 2 between 4: 1 to 3: 1. However, if an anatase nanoparticle is to be obtained in the gel-sol reaction of the synthesis of TiO 2 nanoparticles, then sodium titanate is formed which is formed by reaction with a molar ratio of NaOH: TiO 2 between 1: 1 to 1: 2. The form of the synthesized sodium titanate is largely determined by the form of the resulting TiO 2 product, which greatly facilitates the reaction itself.
Če želimo v gel-sol reakciji tvoriti nanodelce anatasa, izvedemo sintezo natrijevega titanata v reakciji med konc. NaOH in metatitanovo kislino, v kateri je molsko razmerje med NaOH in TiO2 maksimalno 1:1, lahko pa je tudi manjše in sicer do 1:3. Reakcija sinteze natrijevega titanata se izvede pri temperaturi med 80 in 120 °C, medtem ko je koncentracija TiO2 v suspenziji med 50 in 400 g/L, zaželeno pa je vsaj med 200 in 400 g/L. Nastali natrijev titanat moramo pred gel-sol reakcijo z mineralno kislino ustrezno očistiti in sicer moramo s filtracijo odstraniti prebitno bazo ter večji del sulfatnih ionov. Po izvedenem čiščenju natrijev titanat • ·In order to form anatase nanoparticles in the gel-sol reaction, the synthesis of sodium titanate in the reaction between conc. NaOH and metatitanoic acid, in which the molar ratio of NaOH to TiO 2 is maximum 1: 1, but may be lower, up to 1: 3. The sodium titanate synthesis reaction is carried out at a temperature between 80 and 120 ° C, while the concentration of TiO 2 in the suspension is between 50 and 400 g / L, and at least between 200 and 400 g / L is desirable. The resulting sodium titanate must be properly purified before the gel-salt reaction with the mineral acid, and the excess base and most of the sulfate ions must be removed by filtration. After cleaning the titanium sodium • ·
- 10resuspendiramo v ustrezno količino vode, s čemer priredimo ustrezno masno koncentracijo T1O2. Običajno natrijev titanat resuspendiramo do masne koncentracije T1O2 med 90 in 180 g/L. Nastalo suspenzijo mešamo in ji med mešanjem dodamo klorovodikovo kislino do masne koncentracije med 20 in 100 g/L, zaželena pa je koncentracija 50 g/L. Spreminjanje masne koncentracije kisline vodi v nastanek različno velikih nanodelcev anatasa, ki pa so polikristalinični.- 10 is resuspended in an appropriate amount of water, thereby adjusting the appropriate mass concentration of T1O2. Typically, sodium titanate is resuspended to a T1O2 mass concentration between 90 and 180 g / L. The resulting suspension is stirred and hydrochloric acid is added to the concentration between 20 and 100 g / L while stirring, and a concentration of 50 g / L is desired. Changing the acid mass concentration leads to the formation of differently sized anatase nanoparticles, which are polycrystalline.
Po prireditvi masne koncentracije klorovodikove kisline na želeno vrednost, suspenzijo počasi segrevamo in sicer do temperature približno 80 °C, pri kateri reakcija najbolj intenzivno poteka. Reakcijo pustimo teči dve uri in v tem času se natrijev titanat popolnoma pretvori v dobro dispergirane in enakomerno velike nanodelce anatasa. Temperaturo reakcije lahko spreminjamo in sicer od 50 °C do temperature vrelišča, kar pa ne vpliva znatno na končno obliko delcev.After adjusting the hydrochloric acid mass concentration to the desired value, the suspension is slowly warmed up to a temperature of about 80 ° C, at which the reaction is most intense. The reaction was allowed to run for two hours, during which time the sodium titanate was completely transformed into well dispersed and uniformly sized anatase nanoparticles. The reaction temperature can be varied from 50 ° C to boiling point, which does not significantly affect the final shape of the particles.
Za delce, ki nastanejo v gel-sol reakciji je značilno:Particles formed in the gel-sol reaction are characterized by:
• nanodelci anatasa so polikristalinični, kar pomeni, da so sestavljeni iz posameznih manjših kristalitov anatasa. Kristalih so v povprečju veliki približno 5 nanometrov. Sami nanodelci so sestavljeni iz več kristalitov in so, odvisno od koncentracije kisline, ki se uporabi v gel-sol reakciji, veliki med 25 in 60 nanometrov.• Anatase nanoparticles are polycrystalline, which means they are made up of individual smaller anatase crystallites. The crystals average about 5 nanometers in size. The nanoparticles themselves are composed of several crystallites and, depending on the concentration of acid used in the gel-sol reaction, are between 25 and 60 nanometers in size.
• nanodelci anatasa so grobo sferične morfologije in imajo relativno ozko porazdelitev velikosti.• Anatase nanoparticles have roughly spherical morphologies and have a relatively narrow size distribution.
Ob koncu sinteznega postopka pridobimo kislo suspenzijo nanodelcev anatasa, kije lahko končni produkt sinteze, lahko pa kislo suspenzijo tudi ustrezno očistimo neželenih ionov. V ta namen smo razvili dva postopka in sicer:At the end of the synthesis process, an acidic suspension of the anatase nanoparticles is obtained, which can be the final product of the synthesis, and the acidic suspension can also be appropriately purified from unwanted ions. To this end, we have developed two procedures, namely:
• Dvig pH: Kisli suspenziji lahko ustrezno dvignemo pH z dodatkom baze, s čimer priredimo površinski naboj nanodelcev blizu izoelektrične točke, kar povzroči njihovo aglomeracijo in usedanje ter zmožnost filtracije. Aglomerirane nanodelce anatasa lahko čistimo z dodajanjem ustrezne količine vode v fazi filtracije, s čimer kontinuimo speremo neželene ione. Na ta način lahko kvantitativno odstranimo prebitno kislino in vodotopne soli.• Increase in pH: Acid suspensions can be adequately raised by the addition of a base to adjust the surface charge of nanoparticles near the isoelectric point, resulting in their agglomeration and deposition and filtration capacity. The agglomerated anatase nanoparticles can be purified by adding an appropriate amount of water during the filtration phase, thus continuously washing away the unwanted ions. In this way, excess acid and water-soluble salts can be quantitatively removed.
• Centrifugiranje kisle suspenzije nanodelcev anatasa: Centrifugiranje suspenzije omogoča separacijo tekoče in trdne faze ter odstranitev kisle tekoče faze z dekantacijo. V primeru da centrifugiranje ne zadostuje za separacijo obeh faz, lahko v suspenzijo dodamo manjšo količino raztopine aluminijevega sulfata, ki usedanje pospeši. Po• Centrifugation of acid suspension of anatase nanoparticles: Centrifugation of the suspension allows the separation of the liquid and solid phases and the removal of the acidic liquid phase by decantation. In case centrifugation is not sufficient to separate the two phases, a smaller amount of aluminum sulphate solution can be added to the suspension to accelerate deposition. Po
odlitju kisle tekoče frakcije se trdna faza TiO2 resuspendira v vodi in premeša ter nato ponovi cikel centrifugiranja. To se ponavlja, dokler ne odstranimo večino kisline ali prisotnih vodotopnih soli.After casting the acidic liquid fraction, the TiO 2 solid phase is resuspended in water and stirred and the centrifugation cycle is repeated. This is repeated until most of the acid or water soluble salts are removed.
Z obema postopkoma čiščenja na koncu pridobimo dobro očiščene nanodelce anatasa, ki jih lahko uporabimo v določenih aplikacijah.With both cleaning processes, we end up with well-purified anatase nanoparticles that can be used in specific applications.
Čiščenje z dodatkom baze je načeloma manj zaželeno, saj vodi v ireverzibilno aglomeracijo nanodelcev, kar lahko vodi v izgubo njihovih značilnih fizikalnih in kemijskih lastnosti. Čiščenje kisline s centrifugiranjem ne povzroči aglomeracije ali pa je le-ta manjša, vendar pa ne odstrani kisline kvantitativno. Tako samo s centrifugiranjem ni možno dobiti povsem nevtralnih suspenzij, v katerih bi bili delci dobro dispergirani.Cleaning with the addition of a base is, in principle, less desirable as it leads to irreversible agglomeration of the nanoparticles, which can lead to the loss of their characteristic physical and chemical properties. Purification of the acid by centrifugation does not lead to agglomeration or is less agglomerated, but does not quantitatively remove the acid. Thus, only neutral suspensions in which the particles would be well dispersed cannot be obtained by centrifugation.
Temu se izognemo tako, da suspenziji nanodelcev TiO2 dodamo določeno količino disperganta, ki se oprime površine delca in ohranja dispergiranost sistema na podlagi mehanizma stabilizacije. Dispergantov je več oblik in temu primemo je tudi več mehanizmov stabilizacije in sicer elektrostatska stabilizacija, sterična stabilizacija in elektrosterična stabilizacija.This is avoided by adding a certain amount of dispersant to the suspension of TiO 2 nanoparticles, which adheres to the surface of the particle and maintains the dispersion of the system based on the stabilization mechanism. There are many forms of dispersants and several stabilization mechanisms, such as electrostatic stabilization, steric stabilization and electrosteric stabilization.
Dispergant, ki smo ga uporabili je citronska kislina in deluje na podlagi elektrostatske stabilizacije. To pomeni, da molekule citronske kisline ob vezavi na površino nanodelca TiO2, efektivno zvišajo električni naboj in s tem povzročijo Coulombsko odbojno silo, kar omogoči, da se nanodelci ne aglomerirajo tudi v primeru, ko spreminjamo vrednost pH suspenzije. Stabilizacija s citronsko kislino seje izvedla na suspenziji nanodelcev anatasa, ki so nastali v gel-sol reakciji med natrijevim titanatom, nastalim pri sintezi med NaOH in metatitanovo kislino v molskem razmerju NaOH:TiO2 1:1, in klorovodikovo kislino, kije imela končno koncentracijo v suspenziji 50 g/L. Suspenzijo smo najprej centrifugirali, da smo s tem odstranili večji del kisline. Nanodelci so se usedli na dno centrifugirke in so tvorili gosto pogačo TiO2. Pogačo smo nato resuspendirali v vodi do masne koncentracije med 50 in 400 g/L in nato dodali citronsko kislino do vsebnosti 1 - 20 % glede na maso v suspenziji prisotnega TiO2. Od količine dodanega disperganta je bila odvisna stopnja aglomeracije delcev v suspenziji po nevtralizaciji z bazo.The dispersant we used is citric acid and it works by electrostatic stabilization. This means that citric acid molecules, when bonded to the TiO 2 nanoparticle surface, effectively increase the electrical charge, thereby causing a Coulomb repulsive force, which allows the nanoparticles not to agglomerate even when the pH of the suspension is changed. Stabilization with citric acid was performed on a suspension of anatase nanoparticles formed in a gel-sol reaction between sodium titanate formed during the synthesis between NaOH and metatitanic acid in a molar ratio of NaOH: TiO 2 1: 1, and hydrochloric acid having a final concentration in a suspension of 50 g / L. The suspension was first centrifuged to remove most of the acid. The nanoparticles settled on the bottom of the centrifuge and formed a thick cake of TiO 2 . The cake was then resuspended in water to a mass concentration between 50 and 400 g / L and then citric acid was added to a content of 1 - 20% by weight in suspension of TiO 2 present. The amount of dispersant added depended on the degree of particle agglomeration in suspension after neutralization with the base.
Citronsko kislino lahko dodamo tako v suhi kot tudi v raztopljeni obliki. Citronsko kislino smo dobro premešali, nato pa izvedli dvig pH suspenzije z dodajanjem baze. Izbrana baza je bila NaOH masne koncentracije ~ 750 g/L, vendar bi se lahko uporabila katera druga baza, ki je vodotopne narave, prav tako pa bi se lahko uporabila v nižji masni koncentraciji. Vrednost pHCitric acid can be added in both dry and dissolved form. The citric acid was mixed well and then the pH of the suspension was raised by adding a base. The base selected was NaOH of a mass concentration of ~ 750 g / L, but any other base that is water-soluble in nature could be used and could also be used at a lower mass concentration. The pH value
-12smo priredili med 5 in 10. Nastale suspenzije so izkazovale večjo ali manjšo mero aglomeracije delcev, kar je bilo predvsem odvisno od količine dodane citronske kisline. Večji dodatek citronske kisline je vedno vodil v nastanek manj viskoznih suspenzij, ki so izkazovale dobro dispergiranost osnovnih delcev.-12 We adjusted between 5 and 10. The resulting suspensions showed a greater or lesser degree of particle agglomeration, which was mainly dependent on the amount of citric acid added. Higher addition of citric acid always led to the formation of less viscous suspensions, which showed good dispersion of the basic particles.
Dispergiranost in aglomeracijo delcev po dodatku baze smo merili z metodo sipanja svetlobe DLS (dynamic light scattering). Na podlagi meritev DLS smo lahko določili količino citronske kisline, kije zadostovala za dosego dobre dispergiranosti oz. nizke stopnje aglomeracije.The dispersion and agglomeration of the particles after addition of the base was measured by the DLS (dynamic light scattering) method. Based on DLS measurements, we were able to determine the amount of citric acid that was sufficient to achieve good dispersion. low agglomeration rates.
Ker pa se med dodatkom baze vrši nevtralizacija med preostalim delom kisline in dodano bazo, so posledično prisotne vodotopne soli. Te so nezaželene, saj bi lahko motile uporabo nevtralnih suspenzij nanodelcev v nekaterih aplikacijah, zato jih je zaželeno odstraniti. Odstranjevanje soli, ki nastanejo med nevtralizacijo, je možno zaradi posledične visoke ionske moči suspenzije, ki zmanjša elektrostatski odboj nanodelcev. Zaradi tega lahko nanodelce iz nevtraliziranih suspenzij izločimo s centrifugiranjem, pri čemer bistri, tekoči del nad pogačo vsebuje veliko vodotopnih soli in ga kot takšnega tudi zavržemo. Pogačo lahko nato zopet resuspendiramo v vodi do določene masne koncentracije TiO2, kije lahko tudi do 30 % suhe snovi. Pri tem se tvori povsem stabilna suspenzija nanodelcev, ki se ne poseda, saj je ionska moč nastale suspenzije prenizka, ker seje del soli s centrifugiranjem odstranil. Tako ni več efekta senčenja elektrostatskega naboja koloidnega dvosloja nanodelcev TiO2, ki se posledično medsebojno odbijajo in tvorijo stabilno suspenzijo.However, since neutralization is carried out between the rest of the acid and the added base during addition of the base, water-soluble salts are consequently present. These are undesirable since they may interfere with the use of neutral nanoparticle suspensions in some applications and are therefore desirable to remove. Removal of salts formed during neutralization is possible due to the resulting high ionic strength of the suspension, which reduces the electrostatic repulsion of the nanoparticles. As a result, nanoparticles can be separated from neutralized suspensions by centrifugation, with the clear, liquid portion above the cake containing many water-soluble salts and discarded as such. The cake can then be resuspended in water to a certain mass concentration of TiO 2 , which can be as high as 30% dry matter. This creates a completely stable suspension of the nanoparticles, which is not possessed, since the ionic strength of the resulting suspension is too low as some of the salts are removed by centrifugation. Thus, there is no longer an effect of shading the electrostatic charge of the colloidal bilayer of TiO 2 nanoparticles, which subsequently repel each other and form a stable suspension.
Kljub temu, da se s postopkom stabilizacije lahko tvorijo suspenzije s poljubno vrednostjo pH, pa se izhodni material ne spremeni in s tem ohrani svoje lastnosti, kar je zelo pomembno za mnoge aplikacije, predvsem fotokatalitsko delovanje.Although suspensions of any pH can be formed by the stabilization process, the starting material does not change and thus retains its properties, which is very important for many applications, especially photocatalytic activity.
Kljub temu je za nekatere aplikacije zaželeno, da bi bil TiO2 v obliki monokristaliničnih delcev, saj imajo ti načeloma boljše fizikalne lastnosti. Ker je z gel-sol sintezo nemogoče tvoriti monokristalinične delce, moramo uporabiti metodo, ki to dovoljuje. Takšna metoda je hidrotermalna sinteza, ki temelji na uporabi avtoklava, v katerem se topljenec raztopi in kristalizira v monokristalinično obliko. Hidrotermalna metoda ponavadi temelji na relativno visokih temperaturah in s tem povezanim tlakom vode ter se lahko izvaja daljši čas, saj se mora topljenec najprej raztopiti in šele nato kristalizirati v končen produkt. Dolgemu času reakcije bi se tako bilo možno izogniti, če bi bil topljenec prisoten v obliki delcev visoke specifične površine. Zato smo v naših poizkusih kot izhodni material uporabili že predhodno pripravljeno in stabilizirano suspenzijo nanodelcev anatasa, kije imela razpon pH med 5 do 10 in masno koncentracijo TiO2 med 40 in 350 g/L. Ko se takšna suspenzija izpostavi hidrotermalnim • ·Nevertheless, for some applications it is desirable that TiO 2 be in the form of monocrystalline particles, since these generally have better physical properties. Since it is impossible to form monocrystalline particles with gel-salt synthesis, a method permitting this must be used. Such a method is a hydrothermal synthesis based on the use of an autoclave in which the solute dissolves and crystallizes into a monocrystalline form. The hydrothermal method is usually based on relatively high temperatures and the associated water pressure, and can be performed for a longer period since the solute must first dissolve and then crystallize into the final product. Long reaction times could thus be avoided if the solute were present in the form of particles with a high specific surface area. Therefore, in our experiments, a previously prepared and stabilized suspension of anatase nanoparticles having a pH range between 5 and 10 and a mass concentration of TiO 2 between 40 and 350 g / L was used as starting material. When such a suspension is exposed to hydrothermal • ·
- 13 pogojem, se najprej vrši raztapljanje polikristaliničnih nanodelcev anatasa, ki pa poteče relativno hitro, saj je na razpolago zelo velika površina, ki izhaja iz majhne velikosti T1O2 delcev. Po začetni stopnji raztapljanja sledi stopnja formiranja delcev, ki pa zaradi specifičnih reakcijskih pogojev nastanejo v monokristalinični obliki. Čas reakcije, potreben za nastanek končnega produkta, je bil med 2 - 5 ur, kar je bilo predvsem odvisno od temperature medija, ki je bila med 180 in 210 °C.- 13 conditions, the dissolution of polycrystalline anatase nanoparticles is first carried out, but expires relatively quickly, as a very large surface area is available, resulting from the small size of T1O2 particles. The initial stage of dissolution is followed by the stage of particle formation, which, due to specific reaction conditions, is formed in monocrystalline form. The reaction time required for the formation of the final product was between 2 - 5 hours, which was mainly dependent on the temperature of the medium, which was between 180 and 210 ° C.
Hidro termalni pogoji so torej relativno blagi, zaradi oblike izhodnega materiala (stabilizirana, dobro dispergirana suspenzija nanodelcev anatasa) pa je reakcija tudi dokaj hitra.Hydro thermal conditions are therefore relatively mild, and due to the shape of the starting material (stabilized, well-dispersed suspension of anatase nanoparticles), the reaction is also quite rapid.
Izvedbeni primer 1: Sinteza nanodelcev anatasa visoke specifične površine in sferične morfologijeEmbodiment 1: Synthesis of high specific surface anatase nanoparticles and spherical morphology
Sinteza nanodelcev anatasa poteka v dveh stopnjah in sicer:Synthesis of anatase nanoparticles is carried out in two stages, namely:
• sinteza ustreznega prekurzorja za sintezo nanodelcev, kije natrijev titanat, • pretvorba natrijevega titanata v nanodelce anatasa.• synthesis of a suitable precursor for the synthesis of sodium titanate nanoparticles; • conversion of sodium titanate into anatase nanoparticles.
Izhodna surovina za sintezo nanodelcev anatasa je t.i. metatitanova kislina, kije nanokristalinični aglomerat anatasa zelo visoke specifične površine (nad 200 m2/g). Sestavni kristaliti anatasa v metatitanovi kislini so veliki približno 5 nm. Metatitanovo kislino pretvorimo v natrijev titanat v reakciji z NaOH.The starting material for the synthesis of anatase nanoparticles is so-called metatitanic acid, which is a nanocrystalline anatase agglomerate with a very high specific surface area (over 200 m 2 / g). The constituent crystallites of anatase in metatitanic acid are approximately 5 nm in size. Metatitanic acid is converted to sodium titanate by reaction with NaOH.
V tipičnem eksperimentu smo za sintezo natrijevega titanata uporabili metatitanovo kislino masne koncentracije T1O2 290 - 300 g/L in NaOH masne koncentracije 750 g/L. Tipična reakcijska mešanica za sintezo natrijevega titanata vsebuje NaOH in T1O2 v molskem razmerju NaOH :TiO2 med 1:1 in 1:2.In a typical experiment, metatitanic acid of a mass concentration of T1O2 290 - 300 g / L and a NaOH mass concentration of 750 g / L were used for the synthesis of sodium titanate. A typical reaction mixture for the synthesis of sodium titanate contains NaOH and T1O2 in a molar ratio of NaOH: TiO 2 between 1: 1 and 1: 2.
Pretvorba metatitanove kisline v natrijev titanat poteka 2 uri pri temperaturi 90 °C.The conversion of metatitanoic acid to sodium titanate takes 2 hours at 90 ° C.
Ob koncu reakcije pridobimo bazično suspenzijo natrijevega titanata, ki jo nato podvržemo intenzivnemu pranju oziroma spiranju presežnega NaOH in med procesom nastalih soli. Predvsem pomembno je, da se odstranijo sulfatni ioni, ki so prisotni v začetni surovini, metatitanovi kislini, in presežna količina baze, ki bi lahko prekomerno nevtralizirala mineralno kislino v sledeči gel-sol reakciji. Spiranje vršimo vse dokler je prisoten presežek NaOH in sulfatni (SO4 ’) ioni. Natrijev titanat, ki smo ga pridobili po zgoraj opisanem postopku, je prikazan na sliki 1.At the end of the reaction, a basic suspension of sodium titanate is obtained, which is then subjected to intensive washing or washing of excess NaOH and during the formation of salts. It is of particular importance to remove the sulfate ions present in the starting material, metatitanic acid, and the excess amount of base that could over-neutralize the mineral acid in the subsequent gel-salt reaction. The washing is carried out as long as excess NaOH and sulfate (SO4 ') ions are present. The titanium sodium obtained by the procedure described above is shown in Figure 1.
Sprani natrijev titanat nato resuspendiramo v vodi in sicer do masne koncentracije 120-125 g/L (preračunano na T1O2). To je izhodna surovina za nadaljnjo sintezo nanodelcev anatasa.The washed sodium titanate is then resuspended in water to a mass concentration of 120-125 g / L (calculated on T1O2). It is the starting material for further synthesis of anatase nanoparticles.
• · ·• · ·
- 14Sinteza nanodelcev anatasa iz natrijevega titanata se izvede po enostavnem postopku, kjer suspenzijo titanata segrejemo na primemo temperaturo in dodamo klorovodikovo kislino primerne koncentracije, ki zadostuje za kvantitativno pretvorbo v anatas.- 14The synthesis of anatase nanoparticles from sodium titanate is carried out by a simple process where the titanate suspension is heated to a suitable temperature and hydrochloric acid of a suitable concentration sufficient for quantitative conversion to anatase is added.
V eksperimentu smo 500 mL suspenziji natrijevega titanata masne koncentracije 120-125 g/L dodali 37 % klorovodikovo kislino do končne masne koncentracije 50 g/L. Nastalo suspenzijo smo segrevali pri 80 °C 1 uro ob konstantnem mešanju reakcijske mešanice pri 200 rpm. Pridobimo kislo suspenzijo nanodelcev anatasa masne koncentracije ~ 100 g/L. Suspenzija se lahko očisti prebitne kisline z dodatkom ustrezne količine NaOH, s katerim bi kislino nevtralizirali, vendar bi obenem tudi ireverzibilno aglomerirali nanodelce, kar bi znatno poslabšalo njihove osnovne fizikalne in kemijske lastnosti. Zaradi tega smo se raje posluževali načina čiščenja s centrifugiranjem, s čimer smo odstranili odvečno kislino, ne da bi nanodelce aglomerirali. S centrifugiranjem se prebitna kislina ne da kvantitativno odstraniti, tako daje nekaj vedno ostane. Preostanek kisline je lahko pomemben, saj zagotavlja nizko vrednost pH, ko nanodelce resuspendiramo v vodo, kar posledično nanodelcem priredi visoko vrednost pH in s tem omogoči dobro stabilnost nastale suspenzije.In the experiment, 37% hydrochloric acid was added to a 500 mL suspension of sodium titanate with a mass concentration of 120-125 g / L to a final mass concentration of 50 g / L. The resulting suspension was heated at 80 ° C for 1 hour with constant stirring of the reaction mixture at 200 rpm. An acidic suspension of ~ 100 g / L anatase nanoparticles is obtained. The suspension can be purified from excess acid by adding an adequate amount of NaOH to neutralize the acid but at the same time irreversibly agglomerate the nanoparticles, which would significantly impair their basic physical and chemical properties. For this reason, we preferred to use a centrifugation cleaning method to remove excess acid without agglomerating the nanoparticles. Centrifugation does not remove excess acid quantitatively so that something always remains. The residual acidity can be important as it provides a low pH value when resuspended nanoparticles in water, which in turn gives the nanoparticles a high pH value and thus provides good stability of the resulting suspension.
Tako smo lahko iz pogače po centrifugiranju pripravili suspenzijo z vsebnostjo suhe snovi tudi do 30 %.Thus, a suspension with a dry matter content of up to 30% could be prepared from the cake after centrifugation.
Nanodelci anatasa, ki so nastali v gel-sol reakciji so prikazani na sliki 2 in so bili posneti z vrstičnim elektronskim mikroskopom. Nanodelci anatasa so veliki v povprečju 50 nanometrov in so sferične morfologije. Kristalno strukturo nastalih nanodelcev smo preverili z rentgensko praškovno difrakcijo (XRD). Difraktogram, ki prikazuje uklone značilne za kristalno strukturo anatasa je prikazan na sliki 3.Anatase nanoparticles formed in the gel-sol reaction are shown in Figure 2 and were taken with a scanning electron microscope. Anatase nanoparticles average 50 nanometers in size and have spherical morphologies. The crystal structure of the resulting nanoparticles was verified by X-ray powder diffraction (XRD). A diffractogram showing the defects characteristic of the crystal structure of the anatase is shown in Figure 3.
Izvedbeni primer 2: Sinteza nanodelcev rutila visoke specifične površine in anizotropno morfologijoExample 2: Synthesis of high specific surface rutile nanoparticles and anisotropic morphology
Reakcija sinteze nanodelcev rutila se izvede po zelo podobnem postopku kot sinteza nanodelcev anatasa, z razliko, daje bil natrijev titanat, ki smo ga uporabili, sintetiziran v drugačnem molskem razmerju med NaOH in TiO2 v metatitanovi kislini. Molsko razmerje med NaOH in TiO2 v reakciji priprave natrijevega titanata je bilo 4, načeloma pa je lahko tudi nižje in sicer tudi do 3.The synthesis of rutile nanoparticles is carried out in a very similar procedure to the synthesis of anatase nanoparticles, except that the sodium titanate used was synthesized in a different molar ratio between NaOH and TiO 2 in metatitanoic acid. The molar ratio of NaOH to TiO 2 in the sodium titanate preparation reaction was 4, but in principle may be lower, up to 3.
Tako pridobljen natrijev titanat smo sprali na podoben način, kot je opisano v izvedbenem primeru 1. Specifična oblika natrijevega titanata, ki nastane pri molskem razmerju med NaOH in TiO2 v metatitanovi kislini enakem 4 in je primerna za gel-sol sintezo rutila, je prikazana na • *The sodium titanate thus obtained was washed in a similar manner to that described in embodiment 1. The specific form of sodium titanate formed at a molar ratio of NaOH to TiO 2 in metatitanic acid equal to 4 and suitable for gel-salt synthesis of rutile is shown on • *
- 15 sliki 4. Specifična oblika natrijevega titanata, ki nastane pri molskem razmerju med NaOH in T1O2 v metatitanovi kislini enakem 3 in je prav tako primerna za gel-sol sintezo rutila, je prikazana na sliki 5.- 15 Fig. 4. The specific form of sodium titanate, which is formed by the molar ratio of NaOH to T1O2 in metatitanic acid equal to 3 and is also suitable for the gel-salt synthesis of rutile, is shown in Fig. 5.
Za sintezo nanodelcev rutila smo natrijev titanat, prikazan na sliki 4, resuspendirali v vodi do masne koncentracije 120-125 g/L in dodali 37 % klorovodikovo kislino do končne masne koncentracije 70 g/L. Gel-sol reakcijo smo izvedli pri temperaturi 80 °C v času 2 h.For the synthesis of rutile nanoparticles, the sodium titanate shown in Figure 4 was resuspended in water to a mass concentration of 120-125 g / L and 37% hydrochloric acid was added to a final mass concentration of 70 g / L. The gel-sol reaction was carried out at 80 ° C for 2 h.
Pridobimo kislo suspenzijo nanodelcev rutila masne koncentracije ~ 100 g/L.An acidic suspension of rutile nanoparticles of a mass concentration of ~ 100 g / L is obtained.
Kristalno strukturo nastalih nanodelcev smo preverili z rentgensko praškovno difrakcijo (XRD). Difraktogram, ki prikazuje uklone značilne za kristalno strukturo rutila je prikazan na sliki 6. Slika 7 prikazuje nanodelce rutila, ki so nastali po zgoraj opisanem postopku in je bila narejena na vrstičnem elektronskem mikroskopu.The crystal structure of the resulting nanoparticles was verified by X-ray powder diffraction (XRD). A diffractogram showing the defects characteristic of the crystalline structure of rutile is shown in Figure 6. Figure 7 shows the rutile nanoparticles formed by the procedure described above and made on a line electron microscope.
Izvedbeni primer 3: Stabilizacija suspenzije nanodelcev anatasa s citronsko kislino v količini 5 % glede na maso T1O2.Embodiment 3: Stabilization of the suspension of anatase nanoparticles with citric acid in an amount of 5% by weight of T1O2.
Stabilizacijo suspenzije smo izvedli na kisli suspenziji nanodelcev anatasa, ki smo jo pridobili s centrifugiranjem in resuspendiranjem nastale pogače, kot je to opisano v izvedbenem primeruSuspension stabilization was performed on the acid suspension of anatase nanoparticles obtained by centrifugation and resuspension of the resulting cake, as described in the embodiment
1. Izhodna suspenzija nanodelcev je imela masno koncentracijo T1O2 približno 400 g/L in vrednost pH okoli 1. Kisli suspenziji smo dodali citronsko kislino monohidrat (suha oblika,1. The starting suspension of the nanoparticles had a T1O2 mass concentration of about 400 g / L and a pH value of about 1. Citric acid monohydrate (dry form,
100 %, C6H8O7-H2O) in sicer v količini 5 % glede na maso prisotnega T1O2 v začetni kisli suspenziji. Po dodatku citronske kisline seje suspenzija mešala približno 30 minut, do popolnega raztapljanja citronske kisline. Zatem seje izvedla nevtralizacija nastale suspenzije in sicer s koncentriranim NaOH masne koncentracije ~ 750 g/L. Nevtralizacija seje vršila do vrednosti pH 7,5. Med dodajanjem NaOH seje viskoznost suspenzije manjšala, kar nakazuje na povečanje dispergiranosti delcev v suspenziji. Dispergiranost smo določali z meritvijo DLS (dynamic light scattering), ki temelji na sipanju svetlobe na delcih v suspenziji. Meritev z DLS in porazdelitev velikosti delcev po nevtralizaciji je prikazana na sliki 8.100%, C 6 H 8 O7-H 2 O), in an amount of 5% by weight of the T1O2 present in the initial acidic suspension. After the addition of citric acid, the suspension was stirred for approximately 30 minutes, until complete dissolution of the citric acid. Subsequently, the resulting suspension was neutralized with a concentrated NaOH mass concentration of ~ 750 g / L. Neutralization of the session was performed to a pH of 7.5. During the addition of NaOH, the viscosity of the suspension decreases, indicating an increase in the dispersion of the particles in the suspension. The dispersion was determined by measuring DLS (dynamic light scattering) based on the scattering of light on particles in suspension. The DLS measurement and particle size distribution after neutralization is shown in Figure 8.
Ker vsebuje nastala suspenzija dokaj veliko soli, ki so nastale ob nevtralizaciji kisline z NaOH, je zaželeno, da se slednje v čim večji meri odstranijo. To je možno doseči s centrifugiranjem, s katerim dosežemo posedanje nanodelcev in tako ločimo T1O2 od tekočega medija, v katerem so prisotne soli. Centrifugiranje in posledično usedanje nanodelcev je možno ravno zaradi prisotnosti soli, ki zvišajo ionsko moč medija suspenzije in s tem zmanjšajo odbojne sile med nanodelci. Po izvedenem centrifugiranju lahko čisto frakcijo oddekantiramo in pogačo resuspendiramo. Ker ima nastala suspenzija veliko nižjo ionsko moč, so posledično odbojneSince the resulting suspension contains quite a few salts which have been formed by the neutralization of the acid with NaOH, it is desirable to remove the latter as much as possible. This can be achieved by centrifugation to obtain the deposition of the nanoparticles, thus separating T1O2 from the liquid medium in which the salts are present. Centrifugation and subsequent deposition of nanoparticles is possible precisely because of the presence of salts which increase the ionic strength of the suspension medium and thus reduce the repulsive forces between the nanoparticles. After centrifugation, the pure fraction can be decanted and the cake resuspended. Because the resulting suspension has much lower ionic strength, they are consequently repulsive
-16sile med delci bolj izrazite in nastala suspenzija je povsem stabilna in zato niti s centrifugiranjem ne moremo izločiti nanodelcev TiO2.-16 forces between the particles are more pronounced and the resulting suspension is completely stable and therefore even TiO 2 nanoparticles cannot be separated by centrifugation.
Izvedbeni primer 4: Stabilizacija suspenzije nanodelcev anatasa s citronsko kislino v količini 10 % glede na maso TiO2.Embodiment 4: Stabilization of the suspension of anatase nanoparticles with citric acid in an amount of 10% by weight of TiO 2 .
Eksperiment stabilizacije smo izvedli na podoben način kot je opisano v izvedbenem primeru 3, z razliko, daje bila količina dodane citronske kisline 10 % glede na maso TiO2.The stabilization experiment was performed in a similar manner to that described in Embodiment 3, except that the amount of citric acid added was 10% by weight of TiO 2 .
Ker je bilo dodano več citronske kisline, je bila tudi dispergiranost sistema po dodatku NaOH boljša. Dispergiranost smo določili z meritvijo DLS in je prikazana na sliki 9.As more citric acid was added, the dispersion of the system after NaOH addition was also better. The dispersion was determined by measuring DLS and is shown in Figure 9.
Izvedbeni primer 5: Stabilizacija suspenzije nanodelcev anatasa s citronsko kislino v količini 15 % glede na maso TiO2.Embodiment 5: Stabilization of the suspension of anatase nanoparticles with citric acid in an amount of 15% by weight of TiO 2 .
Eksperiment stabilizacije smo izvedli na podoben način kot je opisano v izvedbenem primeru 3, z razliko, daje bila količina dodane citronske kisline 15 % glede na maso TiO2.The stabilization experiment was performed in a similar manner to that described in Embodiment 3, except that the amount of citric acid added was 15% by weight of TiO 2 .
Ker je bilo dodano več citronske kisline, je bila tudi dispergiranost sistema po dodatku NaOH boljša. Dispergiranost smo določili z meritvijo DLS in je prikazana na sliki 10.As more citric acid was added, the dispersion of the system after NaOH addition was also better. The dispersion was determined by DLS measurement and is shown in Figure 10.
Izvedbeni primer 6: Stabilizacija suspenzije nanodelcev anatasa s citronsko kislino v količini 20 % glede na maso TiO2.Embodiment 6: Stabilization of the suspension of anatase nanoparticles with citric acid in an amount of 20% by weight of TiO 2 .
Eksperiment stabilizacije seje izvedel na podoben način kot je opisano v izvedbenem primeru 3, z razliko, daje bila količina dodane citronske kisline 20 % glede na maso TiO2.The session stabilization experiment was performed in a similar manner to that described in embodiment 3, except that the amount of citric acid added was 20% by weight of TiO 2 .
Ker je bilo dodano več citronske kisline, je bila tudi dispergiranost sistema po dodatku NaOH boljša. Dispergiranost smo določili z meritvijo DLS in je prikazana na sliki 11.As more citric acid was added, the dispersion of the system after NaOH addition was also better. The dispersion was determined by DLS measurement and is shown in Figure 11.
Izvedbeni primer 7: Hidrotermalna sinteza monokristaliničnih nanodelcev anatasa iz stabilizirane suspenzije polikristaliničnih nanodelcev anatasa masne koncentracije 40 g/L in vrednosti pH 9.Embodiment 7: Hydrothermal synthesis of monocrystalline anatase nanoparticles from a stabilized suspension of polycrystalline anatase nanoparticles with a mass concentration of 40 g / L and a pH value of 9.
Kot izhodni material za hidrotermalno sintezo smo uporabili suspenzijo nanodelcev anatasa, ki je bila stabilizirana z 10 % dodane citronske kisline in imela po nevtralizaciji vrednost pH 9. Po nevtralizaciji z NaOH se čiščenje nastalih soli s centrifugiranjem ni vršilo, ampak seje uporabila kar osnovna suspenzija.As the starting material for hydrothermal synthesis, a suspension of anatase nanoparticles was used, which was stabilized with 10% citric acid added and had a pH value after neutralization. After neutralization with NaOH, the purification of the resulting salts by centrifugation was not carried out, but the basic suspension was used.
Suspenzijo smo izpostavili hidrotermalnim pogojem in sicer smo jo segrevali do temperature 210 °C za čas 3 ur. Iz polikristaliničnih nanodelcev prikazanih na sliki 12, smo v hidrotermalniThe slurry was exposed to hydrothermal conditions and heated to 210 ° C for 3 hours. From the polycrystalline nanoparticles shown in Fig. 12, we are in hydrothermal
-17sintezi uspeli pridobili povsem monokristaliničen produkt. Nastali nanodelci so monokristali, kar smo dokazali z analizo na presevnem elektronskem mikroskopu. Slika 13 je SEM slika in prikazuje nastale nanodelce pri manjši povečavi, slika 14 pa visoko-ločljivostno sliko pridobljeno s presevnim elektronskim mikroskopom (TEM). Na sliki je jasno razvidna monokristalinična narava delca.-17 syntheses were able to obtain a completely monocrystalline product. The nanoparticles formed are single crystals, as evidenced by analysis on a screening microscope. Figure 13 is a SEM image and shows the nanoparticles formed at a smaller magnification, and Figure 14 is a high resolution image obtained with a transmission electron microscope (TEM). The figure clearly shows the monocrystalline nature of the particle.
Kristalno strukturo nastalega materiala smo preverili z rentgensko praškovno difrakcijo, s katero je bilo določeno, daje nastali produkt izključno anatas. Praškovni difraktogram nastalega produkta je prikazan na sliki 15 in prikazuje naj intenzivnejši uklon.The crystal structure of the resulting material was verified by X-ray powder diffraction, which determined that the resulting product was exclusively anatas. The powder diffraction pattern of the resultant product is shown in Figure 15 and shows the most intense scattering.
Izvedbeni primer 8: Hidrotermalna sinteza monokristaliničnih nanodelcev anatasa iz stabilizirane suspenzije polikristaliničnih nanodelcev anatasa masne koncentracije 200 g/L in vrednosti pH 9.Embodiment 8: Hydrothermal synthesis of monocrystalline anatase nanoparticles from a stabilized suspension of polycrystalline anatase nanoparticles with a mass concentration of 200 g / L and a pH value of 9.
Kot izhodni material za hidrotermalno sintezo smo uporabili suspenzijo nanodelcev anatasa, ki je bila stabilizirana z 10 % dodane citronske kisline in imela po nevtralizaciji vrednost pH 9. Masna koncentracija T1O2 v suspenziji je bila ~ 200 g/L.Anatase nanoparticle suspension stabilized with 10% citric acid added and pH pH 9 neutralized after neutralization was used as the starting material for hydrothermal synthesis. The concentration of T1O2 in the suspension was ~ 200 g / L.
Suspenzijo smo izpostavili hidrotermalnim pogojem in sicer smo jo segrevali do temperature 210 °C za čas 3 ur. Slika 16 je SEM slika in prikazuje nastale nanodelce pri manjši povečavi, slika 17 pa visoko-ločljivostno sliko pridobljeno s presevnim elektronskim mikroskopom (TEM), ki prikazuje posamezne delce z značilno kristaliničnostjo značilno za monokristal.The slurry was exposed to hydrothermal conditions and heated to 210 ° C for 3 hours. Figure 16 is a SEM image and shows the nanoparticles formed at a smaller magnification, and Figure 17 is a high resolution image obtained by a transmission electron microscope (TEM) showing single particles with characteristic crystallinity characteristic of a single crystal.
Izvedbeni primer 9: Hidrotermalna sinteza monokristaliničnih nanodelcev anatasa iz stabilizirane suspenzije polikristaliničnih nanodelcev anatasa masne koncentracije 300 g/L in vrednosti pH 8,5.Embodiment 9: Hydrothermal synthesis of monocrystalline anatase nanoparticles from a stabilized suspension of polycrystalline anatase nanoparticles with a mass concentration of 300 g / L and a pH value of 8.5.
Kot izhodni material za hidrotermalno sintezo smo uporabili suspenzijo nanodelcev anatasa, ki je bila stabilizirana z 10 % dodane citronske kisline in imela po nevtralizaciji vrednost pH 8,5. Masna koncentracija T1O2 v suspenziji je bila ~ 300 g/L.Anatase nanoparticle suspension, stabilized with 10% citric acid added and having a pH of 8.5 after neutralization, was used as the starting material for hydrothermal synthesis. The mass concentration of T1O2 in the suspension was ~ 300 g / L.
Suspenzijo smo izpostavili hidrotermalnim pogojem in sicer smo jo segrevali do temperature 210 °C za čas 3 ur. Slika 18 je SEM slika in prikazuje nastale nanodelce pri manjši povečavi, slika 19 pa visoko-ločljivostno sliko pridobljeno s presevnim elektronskim mikroskopom (TEM), ki prikazuje posamezne delce s kristaliničnostjo značilno za monokristal.The slurry was exposed to hydrothermal conditions and heated to 210 ° C for 3 hours. Figure 18 is a SEM image and shows the nanoparticles formed at a small magnification, and Figure 19 is a high resolution image obtained by a transmission electron microscope (TEM) showing single particles with crystallinity characteristic of a single crystal.
- 18Izvedbeni primer 10: Hidrotermalna sinteza monokristaliničnih nanodelcev anatasa iz stabilizirane suspenzije polikristaliničnih nanodelcev anatasa masne koncentracije 300 g/L in vrednosti pH 8,5.- 18Example 10: Hydrothermal synthesis of monocrystalline anatase nanoparticles from a stabilized suspension of polycrystalline anatase nanoparticles with a mass concentration of 300 g / L and a pH value of 8.5.
Kot izhodni material za hidro termalno sintezo smo uporabili suspenzijo nanodelcev anatasa, ki je bila stabilizirana z 10 % dodane citronske kisline in imela po nevtralizaciji vrednost pH 8,5. Masna koncentracija TiO2 v suspenziji je bila ~ 300 g/L.Anatase nanoparticle suspension stabilized with 10% citric acid added and having a pH value of 8.5 was neutralized as the starting material for hydro thermal synthesis. The mass concentration of TiO 2 in suspension was ~ 300 g / L.
Suspenzijo smo izpostavili hidrotermalnim pogojem in sicer smo jo segrevali do temperature 180 °C za čas 5 ur. Slika 20 je SEM slika in prikazuje nastale nanodece pri manjši povečavi, slika 21 pa visoko-ločljivostno sliko pridobljeno s presevnim elektronskim mikroskopom (TEM), ki prikazuje posamezne delce s kristaliničnostjo značilno za monokristal.The suspension was exposed to hydrothermal conditions and heated to 180 ° C for 5 hours. Figure 20 is a SEM image and shows the nanoparticles formed at a small magnification, and Figure 21 is a high resolution image obtained by a transmission electron microscope (TEM) showing single particles with crystallinity characteristic of a single crystal.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201000342A SI23501A (en) | 2010-10-25 | 2010-10-25 | Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology |
PCT/SI2011/000061 WO2013062491A1 (en) | 2010-10-25 | 2011-10-25 | Synthesis method for obtaining anatase nanoparticles of high specific surface area and spherical morphology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201000342A SI23501A (en) | 2010-10-25 | 2010-10-25 | Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology |
Publications (1)
Publication Number | Publication Date |
---|---|
SI23501A true SI23501A (en) | 2012-04-30 |
Family
ID=45446163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201000342A SI23501A (en) | 2010-10-25 | 2010-10-25 | Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI23501A (en) |
WO (1) | WO2013062491A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104211113B (en) * | 2014-09-19 | 2016-06-08 | 安徽迪诺环保新材料科技有限公司 | A kind of titanium dioxide manufacture method of stable type bigger serface |
CN104495915B (en) * | 2015-01-14 | 2016-03-09 | 辽宁石化职业技术学院 | The separation method of foreign metal ion in a kind of production process of titanium pigment |
CN105800677B (en) * | 2016-05-18 | 2017-07-21 | 云南林缘香料有限公司 | Titanium dioxide slurry produces metatitanic acid production method and equipment |
WO2021117568A1 (en) * | 2019-12-12 | 2021-06-17 | 昭和電工株式会社 | Highly heat-resistant anatarse-type titanium oxide and method for producing same |
CN115231685B (en) * | 2022-08-17 | 2024-04-09 | 江苏大学 | Method for removing heavy metal nickel ions in wastewater by oxidation/adsorption method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3701984A1 (en) | 1987-01-23 | 1988-08-04 | Siemens Ag | METHOD FOR PRODUCING TITANOXIDE CATALYSTS |
FI89900C (en) * | 1990-03-01 | 1993-12-10 | Kemira Oy | NYTT FRAMSTAELLNINGSFOERFARANDE AV TITANDIOXID |
DE4222905A1 (en) * | 1992-07-11 | 1994-01-13 | Kronos Titan Gmbh | Subpigmentary titanium dioxide with improved photostability |
WO1997015526A1 (en) | 1995-10-27 | 1997-05-01 | E.I. Du Pont De Nemours And Company | Hydrothermal process for making ultrafine metal oxide powders |
US7510694B2 (en) | 2003-11-13 | 2009-03-31 | Council Of Scientific & Industrial Research | Process for simultaneous preparation of nanocrystalline anatase titanium dioxide powder and hydrazine monohydrochloride |
US7326399B2 (en) | 2005-04-15 | 2008-02-05 | Headwaters Technology Innovation, Llc | Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same |
SG127749A1 (en) | 2005-05-11 | 2006-12-29 | Agency Science Tech & Res | Method and solution for forming anatase titanium dioxide, and titanium dioxide particles, colloidal dispersion and film |
ITFI20060030A1 (en) | 2006-02-01 | 2007-08-02 | Colorobbia Italiana Spa | PROCESS FOR THE PREPARATION OF AQUATIC DISPERSIONS OF TI02 IN THE NANOPARTICELLE FORM AND DISPERSIONS OBTAINABLE WITH THIS PROCESS |
DE102006032755A1 (en) | 2006-07-14 | 2008-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Stable suspensions of crystalline TiO2 particles from hydrothermally treated sol-gel precursor powders |
-
2010
- 2010-10-25 SI SI201000342A patent/SI23501A/en not_active IP Right Cessation
-
2011
- 2011-10-25 WO PCT/SI2011/000061 patent/WO2013062491A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013062491A1 (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sugimoto et al. | Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. Formation process and size control | |
Yang et al. | Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics | |
JP5175053B2 (en) | Nanostructured particles with high thermal stability | |
Lee et al. | Preparation of TiO 2 sol using TiCl 4 as a precursor | |
EP2969957B1 (en) | Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same | |
JP2005519845A (en) | Method for producing single crystal cerium oxide powder | |
SI23501A (en) | Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology | |
Souvereyns et al. | Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles | |
JP4281943B2 (en) | Method for producing plate-like alumina particles | |
JP2010105892A (en) | Zirconia fine particle and method for producing the same | |
CN103380083B (en) | The manufacture method of rutile-type titanium oxide sol | |
Ye et al. | Microemulsion-assisted hydrothermal preparation and infrared radiation property of TiO2 nanomaterials with tunable morphologies and crystal form | |
SI23218A (en) | Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles | |
US20050014850A1 (en) | Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems | |
Sugimoto et al. | Formation mechanism of uniform spindle-type titania particles in the gel-sol process | |
Chen et al. | Non-solvolytic synthesis of aqueous soluble TiO 2 nanoparticles and real-time dynamic measurements of the nanoparticle formation | |
Yang et al. | Hydrothermal synthesis of well-dispersed TiO2 nano-crystals | |
Kim et al. | Effects of negative ions in aqueous Ti solution on formation of ultrafine TiO2 powder by low temperature homogeneous precipitation | |
Pramanik et al. | Effects of reactant concentration and OH− ions on the formation of nanocrystalline BaTiO3 in solution | |
Zhou et al. | Controlling shape and size of TiO2 nanoparticles with sodium acetate | |
Mahata et al. | Hydrothermal synthesis of aqueous nano-TiO2 sols | |
KR100503858B1 (en) | Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids | |
KR20120122451A (en) | Manafacturing method of titanium oxide nano particle using hydrothermal synthesis | |
Gao et al. | Influence of some parameters on the synthesis of ZrO2 nanoparticles by heating of alcohol–aqueous salt solutions | |
US9567236B2 (en) | Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20120510 |
|
KO00 | Lapse of patent |
Effective date: 20201029 |