SI23219A - Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles - Google Patents

Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles Download PDF

Info

Publication number
SI23219A
SI23219A SI200900341A SI200900341A SI23219A SI 23219 A SI23219 A SI 23219A SI 200900341 A SI200900341 A SI 200900341A SI 200900341 A SI200900341 A SI 200900341A SI 23219 A SI23219 A SI 23219A
Authority
SI
Slovenia
Prior art keywords
nanoparticles
anatase
acid
anatase nanoparticles
suspension
Prior art date
Application number
SI200900341A
Other languages
Slovenian (sl)
Inventor
Verhovšek Dejan
Gominšek Tomi
ÄŚeh Miran
Blagotinšek Pavel
Šturm Sašo
Žagar Kristina
Original Assignee
CINKARNA Metalurško kemična industrija Celje, d.d.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CINKARNA Metalurško kemična industrija Celje, d.d. filed Critical CINKARNA Metalurško kemična industrija Celje, d.d.
Priority to SI200900341A priority Critical patent/SI23219A/en
Publication of SI23219A publication Critical patent/SI23219A/en

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The subject of the invention are anatase nanoparticles and a process of synthesis for obtaining anatase nanoparticles from metatitanium acid which is a semifinished product in the production of TiO2 pigments. The synthesis of anatase nanoparticles from metatitanium acid is based on the so called gel-sol process. Anatase nanoparticles according to the invention are very fine particles in the form of an acid/neutral suspension, where anatase nanoparticles are polycrystalline and the crystallites exhibit isothropic morphology and have a diameter of about 4-5 nm, while anatase nanoparticles themselves have a diameter between 30 and 80 nm and a specific surface of 200 m2/g or more.

Description

NANODELCI ANATASA IN POSTOPEK SINTEZE ZA PRIDOBIVANJE NANODELCEV ANATASAAnatase nanoparticles and synthesis procedure for the production of anatase nanoparticles

Predmet izuma so nanodelci anatasa in sintezni postopek pridobivanja nanodelcev anatasa iz metatitanove kisline, ki je polprodukt v proizvodnji pigmenta TiO2. Sinteza nanodelcev anatasa iz metatitanove kisline po izumu temelji na t.i. sol-gel postopku priprave metatitanove kisline in njeni nadaljnji obdelavi z raztopino barijevega klorida.The subject matter of the invention is anatase nanoparticles and a synthesis process for the production of anatase nanoparticles from metatitanoic acid, which is a by-product of the production of TiO 2 pigment. The synthesis of metatitanoic acid anatase nanoparticles according to the invention is based on the so-called sol-gel method of preparing metatitanoic acid and its further treatment with barium chloride solution.

Izum obravnava sintezni postopek, s katerim lahko iz metatitanove kisline pridobimo dobro dispergirane, enakomerno velike in dobro kristalinične nanodelce TiO2 kristalne strukture anatasa. Izum obravnava tudi sam material, to je nanodelce anatasa in njegove karakteristike. Izum prav tako obravnava način pridobivanja metatitanove kisline različnih oblik. Namreč, metatitanova kislina, gel TiO2, je aglomerat manjših polikristaliničnih nanodelcev anatasa, katerih osnovna velikost je določena s parametri hidrolize t.i. črne raztopine. Glede na obliko metatitanove kisline lahko torej v procesu njene nadaljnje obdelave z raztopino barijevega klorida pridobimo suspenzije nanodelcev anatasa, ki se razlikujejo v velikosti.The invention contemplates a synthesis process whereby well dispersed, uniformly sized and well crystalline TiO 2 nanoparticles of the anatase crystal structure can be obtained from metatitanic acid. The invention also addresses the material itself, i.e. the anatase nanoparticles and its characteristics. The invention also relates to a method of producing metatitanoic acid of various forms. Namely, metatitanoic acid, TiO 2 gel, is an agglomerate of smaller polycrystalline anatase nanoparticles whose basic size is determined by the hydrolysis parameters of the so-called black solution. Depending on the form of metatitanoic acid, suspensions of anatase nanoparticles, which vary in size, can be obtained in the process of its further treatment with barium chloride solution.

Sintezni postopek opisuje način priprave različnih oblik metatitanove kisline, ki je aglomerat manjših polikristaliničnih nanodelcev anatasa, katerih velikost je določena z načinom izvedbe hidrolize t.i. črne raztopine in nadalje opisuje postopek pridobivanja stabilnih suspenzij nanodelcev anatasa iz izhodne metatitanove kisline z obdelavo z raztopino barijevega klorida. Sinteza nanodelcev anatasa v obliki suspenzije je zelo pomembna, saj v nobenem koraku sinteze ne pride do nastanka vmesne, potencialno zdravju škodljive, prašne faze, prav tako pa se kot končni produkt tvorijo dobro kristalinični nanodelci, kar izključuje potrebo po kalcinacij skem postopku, ki je energetsko potraten ter obremenjuje okolje z izpustom toplogrednih plinov.The synthesis process describes a method of preparing various forms of metatitanoic acid, which is an agglomerate of smaller polycrystalline anatase nanoparticles, the size of which is determined by the method of hydrolysis, e.g. black solution, and further describes the process of obtaining stable suspensions of anatase nanoparticles from the starting metatitanic acid by treatment with a solution of barium chloride. Synthesis of anatase nanoparticles in suspension form is very important, as no synthesis step produces an intermediate, potentially harmful, dusty phase, as well as the formation of well crystalline nanoparticles as a final product, which eliminates the need for a calcination process which is energy wasteful and burdens the environment with greenhouse gas emissions.

Titanov dioksid v obliki pigmenta je material s široko možnostjo aplikacij in sicer je uporaben za premaze, barve, kot dodatek plastiki, papirju, v kozmetiki, v farmacevtski industriji in še v mnogo drugih aplikacijah. Danes sta v največji meri uporabna dva postopka pridobivanja pigmentnega titanovega dioksida in sicer t.i. sulfatni ter kloridni postopek. Tako sulfatni kot kloridni postopek temeljita na visoko-temperatumi pretvorbi ustreznih komponent v pigmentni titanov dioksid. Pri sulfatnem postopku se pigment tvori v procesu kalcinacije v reakcijahTitanium dioxide in the form of pigment is a material with a wide range of applications, and is useful for coatings, paints, as an additive to plastics, paper, cosmetics, the pharmaceutical industry and many other applications. Today, two processes for the production of pigment titanium dioxide, i.e. sulfate and chloride process. Both the sulfate and chloride process are based on the high-temperature conversion of the corresponding components into pigment titanium dioxide. In the sulfate process, the pigment is formed in the process of calcination in the reactions

-2hidrolize pridobljenega anatasnega gela, medtem ko se pri kloridnem postopku pigment tvori pri visoko-temperaturnem izgorevanju titanovega tetraklorida s kisikom.Ravno postopek visoko-temperatume kalcinacije, ki je prisoten pri sulfatnem in kloridnem postopku, preprečuje možnost pridobivanja delcev anatasa nano velikosti, prav tako pa je značilno, da visoka temperatura kalcinacije vedno vodi v pretvorbo anatasa v termodinamsko stabilnejše fazo TiO2, rutil. Prav tako je postopek kalcinacije močno obremenjen z visoko energetsko porabo in temu primerno visoko količino izpustov toplogrednih plinov. Poleg tega je produkt, ki nastane prisoten v obliki prahu, ki je lahko potencialno škodljiv zdravju in okolju.-2 hydrolysis of the obtained anatase gel, while in the chloride process the pigment forms in the high-temperature combustion of titanium tetrachloride with oxygen. The high-temperature calcination process present in the sulfate and chloride process also prevents the production of nano-sized anatase particles. however, it is typical that high calcination temperatures always lead to the conversion of anatase to the thermodynamically more stable TiO 2 phase, rutile. The calcination process is also heavily laden with high energy consumption and a correspondingly high amount of greenhouse gas emissions. In addition, the resulting product is present in the form of dust that can be potentially harmful to health and the environment.

Ravno zaradi tega je bilo v zadnjih letih razvitih mnogo različnih postopkov pridobivanja nanodelcev anatasa.This is why many different processes for the production of anatase nanoparticles have been developed in recent years.

V patentu US 20060254461 je opisan postopek pridobivanja nanodelcev anatasa po sol-gel postopku in sicer iz začetnih organskih alkoksidov, ki pod specifičnimi reakcijskimi pogoji hidrolizirajo in tvorijo ustrezen sol. Sol se nato podvrže procesu staranja na temperaturi od 120-140°C, kar sproži proces nukleacije in rasti dobro kristaliničnih nanodelcev anatasa.US 20060254461 discloses a process for the preparation of anatase nanoparticles by a sol-gel process, from starting organic alkoxides, which under specific reaction conditions hydrolyze and form the corresponding salt. The salt then undergoes an aging process at a temperature of 120-140 ° C, which triggers the nucleation and growth of well crystalline anatase nanoparticles.

V patentu US 4954476 je opisan postopek pridobivanja nanodelcev anatasa s hidrotermalno metodo. Kot začetna substanca se uporabi meta- ali ortotitanova kislina, ki se nato pod specifičnimi pogoji izpostavi hidrotermalni reakciji. Tipično poteka hidrotermalna reakcija več ur pri temperaturi približno 180°C in povišanem tlaku vodne suspenzije. Pri nižji temperaturi poteka hidrotermalna sinteza dlje časa, celo več dni.US 4954476 discloses a process for the production of anatase nanoparticles by the hydrothermal method. The starting material is meta- or orthotitanoic acid, which is then subjected to a hydrothermal reaction under specific conditions. Typically, a hydrothermal reaction takes place for several hours at a temperature of about 180 ° C and an elevated pressure of the aqueous suspension. At lower temperature, hydrothermal synthesis takes a long time, even for several days.

V patentu US 7510694 je opisan postopek pridobivanja nanodelcev anatasa iz raztopine titanovega tetraklorida, ki se ji doda ustrezna količina hidrazin monohidrata. Reakcija se izvede pri sobni temperaturi pri pH približno 8, pri čemer nastane produkt visoke specifične površine z zelo majhnimi osnovnimi kristaliti anatasa.US 7510694 discloses a process for the preparation of anatase nanoparticles from a solution of titanium tetrachloride to which an appropriate amount of hydrazine monohydrate is added. The reaction is carried out at room temperature at a pH of about 8, yielding a product of high specific surface area with very small basic anatase crystallites.

Zgoraj podani primeri sinteze nanodelcev anatasa sicer vodijo do želenega produkta, vendar so neprimerni ali manj primerni za industrijsko proizvodnjo, saj opisani postopki bodisi temeljijo na uporabi dragih in/ali toksičnih organskih substanc, bodisi je potrebno uporabiti dolgotrajen in energijsko potraten proces, da se pridobi želena oblika nanodelcev. Prav tako je velika pomanjkljivost opisanih postopkov v tem, daje končni produkt močno aglomeriran prah nanodelcev anatasa, kar zmanjšuje možnost aplikacije končnega produkta.The above examples of synthesis of anatase nanoparticles lead to the desired product, but are unsuitable or less suitable for industrial production, since the processes described are either based on the use of expensive and / or toxic organic substances, or it takes a long and energy-consuming process to obtain the desired shape of the nanoparticles. A major disadvantage of the processes described is that the end product is a highly agglomerated powder of anatase nanoparticles, which reduces the possibility of application of the end product.

Nanodelci anatasa in sintezni postopek pridobivanja nanodelcev anatasa iz metatitanove kisline po izumu odpravljajo navedene pomanjkljivosti, saj omogočajo pridobivanje enakomerno • · • ·Anatase nanoparticles and synthesis process for the production of metatitanic acid anatase nanoparticles according to the invention eliminates the aforementioned disadvantages as they allow the production of uniformly • · • ·

-3velikih, dobro kristaliničnih in dobro dispergiranih nanodelcev anatasa v stabilni suspenziji, kar znatno olajša njihovo uporabo v visoko-tehnoloških aplikacijah.-3 large, well crystalline and well-dispersed anatase nanoparticles in stable suspension, which greatly facilitates their use in high-tech applications.

Pričujoči izum opisuje nanodelce anatasa in proces pridobivanja nanodelcev anatasa, ki je primeren za industrijsko aplikacijo in temelji na sintezi nanodelcev anatasa iz surovin, ki se uporabljajo pri proizvodnji pigmenta T1O2, v obliki končnih suspenzij, pri čemer sintezni postopek ne temelji na uporabi organskih komponent, ne vključuje procesa kalcinacije ter s tem povezane potencialno škodljive suhe faze produkta ter posledično ne obremenjuje okolja z emisijami in izpusti toplogrednih plinov.The present invention describes anatase nanoparticles and anatase nanoparticle production process suitable for industrial application based on the synthesis of anatase nanoparticles from raw materials used in the production of T1O2 pigment in the form of final suspensions, the synthesis process being not based on the use of organic components, it does not include the calcination process and the associated potentially harmful dry phase of the product, and consequently does not pollute the environment with greenhouse gas emissions and discharges.

Pričujoči izum je postopek pridobivanja nanodelcev anatasa v obliki stabilne suspenzije, pri čemer izhajamo iz gela T1O2, to je metatitanove kisline. V predloženem izumu je opisan postopek pridobivanja metatitanove kisline in sicer na način, ki omogoča kontrolo velikosti nanodelcev anatasa, ki nastanejo med hidrolizo t.i. črne raztopine in ki se združijo v močno aglomeriran gel Ί1Ο2, metatitanovo kislino. Opisan je tudi postopek obdelave metatitanove kisline z raztopino barijevega klorida, pri čemer se razbije aglomerate metatitanove kisline, posledično pa se sprostijo nanodelci anatasa, ki so nato prisotni v stabilni suspenziji.The present invention is a process for the production of anatase nanoparticles in the form of a stable suspension, starting from a T1O2 gel, that is metatitanic acid. The present invention describes a process for the preparation of metatitanoic acid in a manner that allows the size of anatase nanoparticles formed during hydrolysis to be controlled, e.g. black solutions and which combine into a strongly agglomerated gel1Ο2 gel, methattanoic acid. The process of treating metatitanoic acid with barium chloride solution is also described, breaking down methattanic acid agglomerates and subsequently releasing the anatase nanoparticles, which are then present in a stable suspension.

Pričujoči izum torej temelji na dveh procesih in sicer na pridobivanju želene oblike metatitanove kisline in njeni naknadni obdelavi z raztopino barijevega klorida, s čimer sprostimo v aglomerat metatitanove kisline ujete nanodelce anatasa. Za predloženi izum je značilno, da se postopek izvaja pri nizkih temperaturah in sicer 105°C, kar je temperatura vrelišča raztopine iz katere pridobimo metatitanovo kislino, medtem ko se obdelava same metatitanove kisline izvaja pri sobni temperaturi. Za predloženi izum je značilno, da pridobimo nanodelce anatasa z visokim izkoristkom nad 90% in sicer v obliki polikristaliničnih izotropnih nanodelcev sferične oblike. Osnovne lastnosti nanodelcev anatasa kontroliramo z načinom priprave želene oblike metatitanove kisline. Ponavadi so nanodelci veliki med 30 in 40 nanometrov in imajo specifično površino nad 200 m /g.The present invention is therefore based on two processes, namely, obtaining the desired form of metatitanic acid and subsequently treating it with a solution of barium chloride, thereby releasing entrained anatase nanoparticles into the methattanic acid agglomerate. The present invention is characterized by the fact that the process is carried out at low temperatures of 105 ° C, which is the boiling point of the solution from which methattanoic acid is obtained, while the treatment of the methattanic acid itself is carried out at room temperature. It is characteristic of the present invention to obtain high yield anatase nanoparticles in excess of 90% in the form of polycrystalline isotropic spherical nanoparticles. The basic properties of anatase nanoparticles are controlled by the method of preparation of the desired form of metatitanoic acid. Usually nanoparticles are between 30 and 40 nanometers in size and have a specific surface area of over 200 m / g.

Glavni cilj pričujočega izuma je predložiti postopek, kije primeren za industrijsko proizvodnjo nanodelcev anatasa. Glavne prednosti pričujočega izuma so:The main object of the present invention is to provide a process suitable for the industrial production of anatase nanoparticles. The main advantages of the present invention are:

- da se proces izvaja pri relativno nizki temperaturi okoli 105°C, pri kateri poteka samo proces pridobivanja želene oblike metatitanove kisline, medtem ko se njena obdelava z raztopino barijevega klorida lahko vrši izvaja pri sobni temperaturi, • ·- that the process is carried out at a relatively low temperature of about 105 ° C, during which only the process of obtaining the desired form of metatitanoic acid is carried out, whereas its treatment with barium chloride solution can be carried out at room temperature, • ·

-4- da se nanodelci tvorijo v obliki končnih suspenzij, kar izključuje produkt v oblike suhe faze in zaradi tega ne predstavlja potencialne nevarnosti prašenja,-4- that the nanoparticles form in the form of final suspensions, which excludes the product into the dry phase forms and therefore does not present a potential risk of dusting,

- da so nanodelci dobro kristalinični in zaradi tega ni potrebna kalcinacija produkta, kar pomeni energetski prihranek in da posledično postopek ne obremenjuje okolja z izpusti toplogrednih plinov- that the nanoparticles are well crystalline and therefore do not require calcination of the product, which means energy savings and consequently that the process does not burden the environment with greenhouse gas emissions

- da so nanodelci dobro dispergirani v končni suspenziji, kar olajša njihovo uporabo,- that the nanoparticles are well dispersed in the final suspension, which facilitates their use,

- da so nanodelci enakomerno veliki,- that the nanoparticles are uniformly large,

-daje možno vplivati na velikost nanodelcev anatasa s kontrolo reakcijskih parametrov pridobivanja metatitanove kisline,- the size of anatase nanoparticles can be affected by controlling the reaction parameters of the production of metatitanoic acid,

- daje izkoristek zelo visok in ponavadi nad 90%.- yields very high and usually above 90%.

Opis izumaDescription of the invention

Izum bo v nadaljevanju opisan z opisom sinteze, slikami in z izvedbenimi primeri, ki ustrezno ilustrirajo sam postopek sinteze in same nanodelce anatasa.The invention will hereinafter be described with a description of the synthesis, figures and embodiments that adequately illustrate the synthesis process itself and the anatase nanoparticles themselves.

Slike prikazujejo:Pictures show:

Slika 1: Nanodelci anatasa, pridobljeni po izumu, posneti z vrstičnim elektronskim mikroskopom,Figure 1: Anatase nanoparticles obtained according to the invention, recorded using a scanning electron microscope,

Slika 2: Rentgenski praškovni difraktogram, iz katerega je razvidno, da imajo delci kristalno strukturo anatasa.Figure 2: X-ray powder diffraction pattern showing that the particles have the crystal structure of anatase.

Slika 3: Visoko-ločljivostni posnetek nanodelcev anatasa, ki smo jih posneli s presevnim elektronskim mikroskopom, pridobljenih po izvedbenem primeru 1,Figure 3: High resolution image of anatase nanoparticles taken with a transmission electron microscope obtained according to embodiment 1,

Slika 4: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 1. izvedbenem primeru, iz katere je razvidno, daje povprečni premer nanodelcev 40 nm,Figure 4: Plot size distribution of nanoparticles obtained according to Embodiment 1, showing that the average nanoparticle diameter is 40 nm,

Slika 5: Rentgenski praškovni difraktogram stranskega produkta reakcije, barijevega sulfata, iz katerega je razvidno, da ima izoborjeni barijev sulfat dobro kristaliničnost,Figure 5: X-ray powder diffractogram of the by-product of the reaction, barium sulphate, showing that the barium sulphate which has been ejected has good crystallinity,

Slika 6: Nanodelci anatasa, pridobljeni po 2. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 6: Anatase nanoparticles obtained from Embodiment 2, taken with a scanning electron microscope,

Slika 7: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 2. izvedbenem primeru, iz katere je razvidno, daje povprečni premer nanodelcev 80 nm,Figure 7: Plot size distribution of nanoparticles obtained according to embodiment 2, which shows that the average nanoparticle diameter is 80 nm,

Slika 8: Nanodelci anatasa, pridobljeni po 3. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 8: Anatase nanoparticles obtained according to embodiment 3, taken with a scanning electron microscope,

Slika 9: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 3. izvedbenem primeru, iz katere je razvidno, daje povprečni premer nanodelcev 60 nm,Figure 9: Plot size distribution of nanoparticles obtained according to the 3rd embodiment, which shows that the average nanoparticle diameter is 60 nm,

Slika 10: Nanodelci anatasa, pridobljeni po 4. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 10: Anatase nanoparticles obtained from Embodiment 4, taken with a scanning electron microscope,

Slika 11: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 4. izvedbenem primeru, iz katere je razvidno, daje povprečni premer nanodelcev 30 nm,Figure 11: Plot size distribution of nanoparticles obtained according to Embodiment 4, which shows that the average nanoparticle diameter is 30 nm,

Slika 12: Nanodelci anatasa, pridobljeni po 5. izvedbenem primeru, posneti z vrstičnim elektronskim mikroskopom,Figure 12: Anatase nanoparticles obtained according to the 5th embodiment, recorded with a scanning electron microscope,

Slika 13: Prikaz porazdelitve velikosti nanodelcev, pridobljenih po 4. izvedbenem primeru, iz katere je razvidno, daje povprečni premer nanodelcev 20 nm.Figure 13: Plot size distribution of nanoparticles obtained according to Embodiment 4, which shows that the average nanoparticle diameter is 20 nm.

Proces sinteze nanodelcev anatasa temelji na uporabi t.i. črne raztopine, ki je polprodukt pri proizvodnji pigmenta T1O2 in je močno kisla raztopina titanil sulfata, kije vodotopna komponenta Ti(IV). Iz črne raztopine lahko direktno pridobimo metatitanovo kislino specifične oblike v t.i. procesu hidrolize. V procesu hidrolize črne raztopine pri temperaturi vrelišča črne raztopine, to je približno 105°C, potekajo reakcije polikondenzacije, nukleacije ter rasti delcev, v katerih se tvorijo končni polikristalinični nanodelci anatasa in sicer v obliki močno aglomeriranega gela T1O2, t.j. metatitanove kisline s kemijsko formulo TiCLKhO. Na velikost polikristaliničnih nanodelcev anatasa, ki tvorijo metatitanovo kislino, vplivamo direktno preko specifičnih reakcijskih parametrov izvedbe hidrolize, še posebej pa je pomembna količina dodanih hidroliznih kali, ki reakcijo hidrolize ustrezno kontrolirajo in hkrati zvišajo končni izkoristek reakcije. Hidrolizne kali so posebej pripravljeni nano kristali anatasa, ki so veliki približno 5 nm in so močno aglomerirani. So pomembna surovina, ki sejo proizvaja s hidrolizo raztopine titanilovega sulfata, uporablja pa se večinoma za nadzor reakcij hidrolize črne raztopine in povečanja izkoristka teh reakcij.The synthesis process of anatase nanoparticles is based on the use of e.g. black solution, which is a by-product of the production of T1O2 pigment and is a strongly acidic solution of titanyl sulfate, which is the water-soluble component of Ti (IV). From the black solution, metatitanoic acid of a specific form can be directly obtained, i.e. hydrolysis process. In the process of hydrolysis of the black solution at the boiling point of the black solution, i.e., about 105 ° C, polycondensation, nucleation, and particle growth reactions take place in which the final polycrystalline anatase nanoparticles are formed, in the form of a strongly agglomerated T1O2 gel, i.e. metatitanic acid of the chemical formula TiCLKhO. The size of the metatitanic acid-forming anatase polycrystalline nanoparticles is influenced directly by the specific reaction parameters of the hydrolysis implementation, and the amount of hydrolysis tin added is particularly important, which controls the hydrolysis reaction appropriately while increasing the final yield of the reaction. Hydrolysis pads are specially prepared nano crystals of anatase, which are approximately 5 nm in size and are highly agglomerated. They are an important raw material that is produced by hydrolysis of a solution of titanyl sulfate and is used mainly to control the hydrolysis reactions of the black solution and to increase the yield of these reactions.

Količina dodanih hidroliznih kali je zelo pomembna, ker usmerjajo reakcijo hidrolize črne raztopine preko procesa t.i. sekundarne nukleacije, ki predvideva, da lahko že posamezen kristalit anatasa, ki je prisoten v hidroliznih kaleh, predstavlja center za nukleacijo in rast nanodelcev anatasa v končnem produktu reakcije, t.j. metatitanove kisline. To pomeni, da lahko s količino dodanih hidroliznih kali direktno vplivamo na stopnjo prenasičenja in s tem na velikost osnovnih polikristalov anatasa, ki so prisotni v metatitanovi kislini. S tem je podana možnost kontrole in pridobivanja različno velikih polikristaliničnih nanodelcev anatasa s spreminjanjem količine dodanih hidroliznih kali med hidrolizo črne raztopine.The amount of hydrolysis kale added is very important because they direct the hydrolysis reaction of the black solution through a process of t.i. secondary nucleation, which assumes that a single crystallite of anatase present in the hydrolysis pellets may represent the nucleation and growth center of the anatase nanoparticles in the final reaction product, i.e. metatitanoic acid. This means that the amount of hydrolysis tin added can directly affect the degree of supersaturation and, consequently, the size of the basic anatase polycrystals present in methattanic acid. This gives the possibility to control and obtain differently sized polycrystalline anatase nanoparticles by varying the amount of hydrolysis kale added during hydrolysis of the black solution.

• ·• ·

-6Metatitanovo kislino, pridobljeno pri hidrolizi črne raztopine, po koncu reakcije ustrezno filtriramo in speremo, s čimer odstranimo prisotno žveplovo kislino. Končna metatitanova kislina je visoko-viskozen gel TiO2, ki je primeren za direktno pridobivanje nanodelcev anatasa. Le-te pridobimo tako, da določenemu volumnu metatitanove kisline z visoko masno koncentracijo TiO2 nad 350 g/L dodamo ustrezen volumen vodne raztopine barijevega klorida z molamo koncentracijo 0,5 M in mešamo pri normalnih pogojih (sobna temperatura, atmosferski tlak) 15 minut. Ko mešanje ustavimo, pridobimo zelo stabilno suspenzijo nanodelcev anatasa, ki so se sprostili iz metatitanove kisline pri reakciji z barijevim kloridom. Barijev kation ima zelo veliko tendenco vezave sulfatnega iona, ki je vezni element med polikristaliničnimi nanodelci anatasa znotraj aglomerata metatitanove kisline. Ko se barijev ion veže s sulfatnimi ioni znotraj aglomerata metatitanove kisline, se nanodelci anatasa sprostijo in so prisotni le kot dobro dispergirani nanodelci znotraj zelo stabilne suspenzije. Barijev sulfat, kije stranski produkt reakcije med barijevim kationom in sulfatnim ionom, se izloči na dno reakcijske posode in se ga lahko odstrani z centrifugiranjem/dekantiranjem oziroma s filtracijo. Prav tako je iz suspenzije možno odstraniti morebiti prisotne moteče ione in sicer z aglomeracijo nanodelcev anatasa z dvigom vrednosti pH suspenzije, s čimer dosežemo t.i. izoelektrično točko. Aglomerirane nanodelce anatasa lahko filtriramo že na grobih filtrih in nastali filtmi kolač spiramo, s čimer odstranimo morebiti prisotne moteče ione. Tako očiščen produkt lahko nato resuspendiramo v vodi ter tako pridobimo stabilno suspenzijo, v kateri so prisotni izključno nanodelci anatasa.-6Metatitanic acid obtained from the hydrolysis of the black solution is filtered and washed after the end of the reaction to remove the sulfuric acid present. The final metatitanoic acid is a high-viscosity TiO 2 gel, which is suitable for the direct production of anatase nanoparticles. They are obtained by adding an appropriate volume of barium chloride aqueous solution with a molar concentration of 0.5 M to a given volume of methattanic acid with a high concentration of TiO 2 above 350 g / L and stirring under normal conditions (room temperature, atmospheric pressure) for 15 minutes. . When stirring is stopped, a very stable suspension of anatase nanoparticles released from metatitanoic acid is obtained by reaction with barium chloride. The barium cation has a very high tendency to bind the sulfate ion, which is the binding element between the polycrystalline anatase nanoparticles within the methattanic acid agglomerate. When barium ion binds with sulfate ions within the methattanic acid agglomerate, the anatase nanoparticles are released and present only as well-dispersed nanoparticles within a very stable suspension. Barium sulfate, which is a by-product of the reaction between barium cation and the sulfate ion, is removed to the bottom of the reaction vessel and can be removed by centrifugation / decantation or filtration. It is also possible to remove any interfering ions from the suspension by agglomeration of the anatase nanoparticles by raising the pH of the suspension, thereby reaching the so-called isoelectric point. Agglomerated anatase nanoparticles can be filtered on coarse filters and the resulting cake filters are washed off, eliminating any disturbing ions present. The purified product can then be resuspended in water to obtain a stable suspension in which only anatase nanoparticles are present.

Ne glede na spreminjanje reakcijskih parametrov sinteze nanodelcev anatasa pa za same nanodelce obstajajo skupne značilnosti in sicer:Regardless of changing the reaction parameters of the synthesis of anatase nanoparticles, there are common characteristics for the nanoparticles themselves:

• nanodelci anatasa so polikristalinični, kar pomeni, da so sestavljeni iz posameznih manjših kristalitov anatasa. Kristaliti izkazujejo izotropno morfologijo in so veliki približno 4-5 nm.• Anatase nanoparticles are polycrystalline, which means they are made up of individual smaller anatase crystallites. The crystallites exhibit isotropic morphology and are about 4-5 nm in size.

• nanodelci anatasa izkazujejo značilno sferično morfologijo, ki je posledica agregacije izotropnih kristalitov anatasa.• Anatase nanoparticles exhibit characteristic spherical morphology as a result of aggregation of isotropic anatase crystallites.

Postopek sinteze za pridobivanje nanodelcev anatasa z visoko specifično površino in sferično morfologijo po izumu temelji na sol-gel reakciji, kjer je kot izhodna surovina uporabljena čma raztopina, ki vsebuje titanilov sulfat v topni obliki in je polprodukt pri proizvodnji pigmenta TiO2 je značilen po tem, da se čma raztopina podvrže reakciji hidrolize, pri kateri se titanilov sulfat v reakcijah polikondenzacije pretvori v metatitanovo kislino, ki je nanokristalinični • ·The synthesis process for the production of anatase nanoparticles with a high specific surface area and spherical morphology according to the invention is based on a sol-gel reaction using a soluble titanium sulphate solution as a starting material and a by-product of producing TiO 2 pigment. to subject the solution to a hydrolysis reaction in which the titanyl sulfate is converted into polycondensation reactions in the polycondensation reactions, which is nanocrystalline • ·

-Ίaglomerat anatasa, da se hidroliza črne raztopine izvede v prisotnosti hidroliznih kali, katere reakcijo usmerjajo in definirajo obliko metatitanove kisline ter v njej prisotnih polikristalov anatasa, da se nastalo obliko metatitanove kisline ustrezno pretvori v nanodelce anatasa z ustreznim dodatkom raztopine barijevega klorida različnih molarnih koncentracij, da poteka reakcija med barij evim kloridom in v metatitanovi kislim prisotnim sulfatom pri sobni temperaturi, da se ob dodatku barijevega klorida tvori barijev sulfat, ki je stranski produkt reakcije in nastane kot produkt precipitacije med v metatitanovi kislini prisotnimi sulfatnimi ioni in barijevimi kationi, da se nastali barijev sulfat kvantitativno loči iz suspenzije nanodelcev anatasa z usedanjem in/ali centrifugiranj em/dekantiranjem, daje na koncu pridobljena kisla suspenzija nanodelcev anatasa zelo stabilna, da na koncu pridobljena kisla suspenzija nanodelcev anatasa vsebuje med 200 do 300 g/L TiO2. Nanodelce anatasa je mogoče očistiti iz kisle suspenzije z dvigom vrednosti pH in s tem doseženo aglomeracijo nanodelcev ter spiranjem nastalega produkta pri filtraciji. Očiščene nanodelce anatasa je mogoče resuspendirati in tako prirediti suspenzijo z želenim pH in masno koncentracijo TiO2.- Anatase agglomerate to hydrolyze the black solution in the presence of hydrolysis tin, the reaction of which directs and defines the form of metatitanic acid and the anatase polycrystals present therein, so that the resulting form of metatitanic acid is appropriately converted into anatase nanoparticles by the different addition of barium chloride solution that the reaction is carried out between barium chloride and meth-titanium acid-present sulfate at room temperature to form barium sulfate, which is a by-product of the reaction, with the addition of barium chloride, and is formed as a product of precipitation between the meth-titanium acid sulfate ions and barium cations present, the resulting barium sulfate is quantitatively separated from the suspension of anatase nanoparticles by sedimentation and / or centrifugation / decantation, making the resulting acidic suspension of the anatase nanoparticles very stable so that the resulting acid suspension of the anatase nanoparticles contains between 200 and 300 g / L TiO 2 . Anatase nanoparticles can be purified from the acidic suspension by raising the pH to achieve the nanoparticle agglomeration and washing the resulting product upon filtration. Purified anatase nanoparticles can be resuspended to adjust the suspension with the desired pH and TiO 2 mass concentration.

S spreminjanjem količine hidroliznih kali, ki nastopajo v reakciji hidrolize črne raztopine, je omogočena kontrola nad velikostjo nanodelcev. Velikost nanodelcev anatasa je lahko prirejena med 30 do 80 nm ali več. Pridobljeni nanodelci anatasa so v obliki kisle suspenzije približne masne koncentracije med 200 do 300 g/L in se jih lahko izolira in očisti. Iz začetne suspenzije je odstranjena kislina in je suspenziji po želji prirejen pH na želeno vrednost. Postopek poteka ves čas v mokrem, torej v obliki suspenzije, kar preprečuje morebiten nastop potencialno škodljivega prašenja. Pridobljeni nanodelci so polikristalinčni in zato ni potrebe po energetsko potratni kalcinaciji produkta.By varying the amount of hydrolysis pellets involved in the black solution hydrolysis reaction, the size of the nanoparticles is controlled. Anatase nanoparticle sizes may be adjusted between 30 and 80 nm or more. The anatase nanoparticles obtained are in acidic suspension with an approximate mass concentration of between 200 and 300 g / L and can be isolated and purified. Acid is removed from the initial suspension and the pH is adjusted to the desired value as desired. The process is constantly carried out in the wet, ie in the form of a suspension, which prevents the occurrence of potentially harmful dusting. The nanoparticles obtained are polycrystalline and therefore there is no need for energy-consuming calcination of the product.

Nanodelci atanasa po izumu so polikristalinični, pri čemer kristaliti izkazujejo izotropno morfologijo in so veliki približno 4-5 nm in izkazujejo značilno sferično morfologijo, kije posledica agregacije izotropnih kristalitov anatasa.The atanas nanoparticles of the invention are polycrystalline, with the crystallites exhibiting isotropic morphology and about 4-5 nm in size and exhibiting characteristic spherical morphology resulting from the aggregation of isotropic anatase crystallites.

Izvedbeni primer 1: Sinteza nanodelcev anatasa z visoko specifično površino in sferično morfologijo s povprečnim premerom delcev 40 nm.Embodiment 1: Synthesis of anatase nanoparticles with high specific surface area and spherical morphology with an average particle diameter of 40 nm.

Za sintezo nanodelcev anatasa uporabimo t.i. črno raztopino, v kateri je prisoten titanilov sulfat z masno koncentracijo med 210 do 230 g/L. Črna raztopina vsebuje žveplovo (VI) kislino z visoko masno koncentracijo med 400 do 450 g/L ter manjšo masno koncentracijo Ti3+ iona inFor the synthesis of anatase nanoparticles, the so-called black solution is used, in which titanyl sulfate is present with a mass concentration between 210 and 230 g / L. The black solution contains sulfuric (VI) acid with a high mass concentration of between 400 and 450 g / L and a lower mass concentration of Ti 3+ ion and

-8sicer 1-2 g/L. Črno raztopino se segreje na 85°C in sejo prelije v šaržni hidrolizer, kjer seji dodajo t.i. hidrolizne kali v obliki suspenzije z masno koncentracijo 40 g/L in vrednostjo pH približno 4.3. Dodatek hidroliznih kali je ponavadi do končne vsebnosti 0,6%.-8 otherwise 1-2 g / L. The black solution was heated to 85 [deg.] C. and poured into a batch hydrolyzer, where the sessions were added so-called. hydrolysis tin in the form of a suspension with a mass concentration of 40 g / L and a pH value of approximately 4.3. The addition of hydrolysis potassium is usually up to a final content of 0.6%.

Nastala suspenzija se direktno segreva s paro do temperature vretja med 105-110°C (20 minut) in se nato kuha pri tej temperaturi nadaljnjih 45 minut. V času 120 minut se nadalje dodaja voda do primerne razredčitve, kar je odvisno od koncentracije TiO2 vstopne raztopine. Na koncu sledi izpust iz hidrolizerja in ohladitev suspenzije na 60°C.The resulting suspension was heated directly with steam to a boiling point between 105-110 ° C (20 minutes) and then boiled at this temperature for a further 45 minutes. Water was added to a suitable dilution over a period of 120 minutes, depending on the concentration of TiO 2 inlet solution. This is followed by the discharge from the hydrolyzer and the suspension being cooled to 60 ° C.

Pridobljen produkt se nato filtrira na posebnih svečnih filtrih in intenzivno spira z vodo, s čimer se odstrani žveplova kislina in drugi vodotopni ioni. Pri tem pridobimo gel TiO2, t.j. metatitanovo kislino, ki se lahko neposredno uporabi za pridobivanje polikristaliničnih nanodelcev anatasa.The product obtained is then filtered on special candle filters and washed intensively with water, thus eliminating sulfuric acid and other water-soluble ions. This produces a TiO 2 gel, ie methattanoic acid, which can be directly used to obtain polycrystalline anatase nanoparticles.

Tipičen laboratorijski poizkus je bil sledeč. Zajelo seje 400 mL metatitanove kisline (koncentracija TiO2 med 370 in 410 g/L), ki se ji je med mešanjem dodalo 150 mL vodne raztopine barijevega klorida z množinsko koncentracijo 0,5 M. Mešanje je potekalo nadaljnjih 15 min pri 200 rpm. Reakcija se začne vršiti takoj ob po dodatku barijevega klorida v suspenzijo metatitanove kisline. Barijev kation se veže s sulfatnimi ioni, ki so prisotni znotraj aglomeratov metatitanove kisline, pri čemer se sprostijo nanodelci anatasa, kot stranski produkt pa se tvori barijev sulfat, ki se usede na dno reakcijske posode. Oborjeni barijev sulfat lahko zlahka odstranimo s centrifugiranjem/dekantiranjem nastale suspenzije nanodelcev anatasa ali s filtracijo. V primeru filtracije preidejo nanodelci anatasa skozi filter, barijev sulfat pa ostane na površini filtra in ga lahko kvantitativno odstranimo.A typical lab experiment was as follows. It captured 400 mL of metatitanoic acid (TiO 2 concentration between 370 and 410 g / L), to which 150 mL of aqueous barium chloride solution with a bulk concentration of 0.5 M was added while stirring. The stirring was continued for a further 15 min at 200 rpm. The reaction is started immediately after the addition of barium chloride to the methattanoic acid suspension. Barium cation binds to the sulfate ions present within the methattanic acid agglomerates, releasing the anatase nanoparticles, and as a by-product barium sulfate is formed, which settles to the bottom of the reaction vessel. The precipitated barium sulfate can be easily removed by centrifugation / decantation of the resulting suspension of anatase nanoparticles or by filtration. In the case of filtration, the anatase nanoparticles pass through the filter, and barium sulfate remains on the filter surface and can be quantitatively removed.

Ob koncu separacije tako pridobimo dva produkta in sicer zelo stabilno suspenzijo nanodelcev anatasa in barijev sulfat, ki se tvori v reakciji med sulfatnimi ioni ter kationi barija, ki so prisotni v metatitanovi kislini.At the end of the separation, two products are thus obtained, namely a very stable suspension of anatase nanoparticles and barium sulfate, which is formed in the reaction between sulfate ions and the barium cations present in metatitanic acid.

Nanodelce anatasa lahko uporabimo v obliki suspenzije oziroma jih po potrebi lahko izoliramo. Izolacija poteka na način, da se kisli suspenziji nanodelcev anatasa doda primerna količina baze, npr. NaOH, kar povzroči aglomeracijo nanodelcev, ker so le-ti dosegli izoelektrično točko. Aglomerirane nanodelce lahko nato speremo in jih osušimo ali pa resuspendiramo v izbranem mediju ter tako pridobimo suspenzijo z želenimi karakteristikami, to je z določeno vrednostjo pH in določeno masno koncentracijo TiO2.Anatase nanoparticles can be used in suspension or can be isolated if necessary. Isolation is carried out by adding an appropriate amount of base to the acid suspension of the anatase nanoparticles, e.g. NaOH, which causes agglomeration of the nanoparticles because they have reached the isoelectric point. The agglomerated nanoparticles can then be washed and dried or resuspended in the selected medium to obtain a suspension having the desired characteristics, that is, with a certain pH value and a certain mass concentration of TiO 2 .

Nanodelce anatasa smo analizirali z XRD, z vrstično elektronsko mikroskopijo (SEM) in s presevno elektronsko mikroskopijo (TEM).Anatase nanoparticles were analyzed by XRD, scanning electron microscopy (SEM) and screening electron microscopy (TEM).

-9Nanodelci anatasa, ki so prikazani na sliki 1, so bili posneti na vrstičnem elektronskem mikroskopu. Iz posnetka je razvidno, da nanodelci merijo približno 40 nm ter izkazujejo sferično morfologijo. Kristalno strukturo nanodelcev anatasa smo določili z XRD analizo (Slika 2). Iz rentgenskega praškovnega diffaktograma so razvidni karakteristični ukloni za anatas, ki pa so zaradi majhne velikosti kristalitov široki.-9The anatase nanoparticles shown in Figure 1 were recorded on a scanning electron microscope. The image shows that the nanoparticles measure approximately 40 nm and exhibit spherical morphology. The crystal structure of anatase nanoparticles was determined by XRD analysis (Figure 2). The X-ray powder diffractogram shows characteristic anatase deflections, which, however, are wide due to the small size of the crystallites.

Slika 3 prikazuje visoko-ločljivostni posnetek nanodelca anatasa, ki prikazuje njegovo specifično morfologijo in naravo kristalitov, ki ga sestavljajo. Kot je razvidno iz slike, je nanodelec anatasa sestavljen iz zelo majhnih kristalov, agregiranih v posamezen polikristalinični nanodelec.Figure 3 shows a high-resolution image of the anatase nanoparticle, showing its specific morphology and the nature of the crystallites that make up it. As can be seen from the figure, the anatase nanoparticle consists of very small crystals aggregated into a single polycrystalline nanoparticle.

Slika 4 prikazuje porazdelitev velikosti nanodelcev, iz katere je razvidno, da ima največji delež nanodelcev premer približno 40 nm.Figure 4 shows the nanoparticle size distribution showing that the largest fraction of nanoparticles has a diameter of about 40 nm.

Slika 5 je rentgenski praškovni difraktogram stranskega produkta reakcije, barijevega sulfata.Figure 5 is an X-ray powder diffraction pattern of the reaction product, barium sulfate.

Iz diffaktograma je jasno razvidno, da so vrhovi zelo dobro definirani, kar nakazuje dobro kristaliničnost barijevega sulfata. Prav tako iz diffaktograma ni razvidnih uklonov za anatas, kar dokazuje, da nam je pri separaciji uspela kvantitativna ločitev anatasa od barijevega sulfata.The diffractogram clearly shows that the peaks are very well defined, indicating good crystallinity of barium sulfate. Likewise, diffractograms do not show any anatase deviations, which proves that we were able to quantitatively separate anatas from barium sulfate during separation.

Izvedbeni primer 2: Sinteza nanodelcev anatasa z visoko specifično površino in sferično morfologijio s povprečnim premerom delcev 70 nm.Embodiment 2: Synthesis of anatase nanoparticles with a high specific surface area and spherical morphology with an average particle diameter of 70 nm.

Sinteza nanodelcev anatasa je potekala po istem postopku, kot v izvedbenem primeru 1, z razliko, da smo v fazi hidrolize črne raztopine dodali 0,1% hidroliznih kali. Posledično so tekom hidrolize nastali nanodelci anatasa prikazani na sliki 6. Slika 7 prikazuje porazdelitev velikosti nanodelcev iz katere je razvidno, da ima največji delež nanodelcev premer približno 70 nm.Synthesis of anatase nanoparticles was carried out according to the same procedure as in embodiment 1, except that 0.1% hydrolysis kale was added during the hydrolysis phase of the black solution. As a result, the hydrolysis of the anatase nanoparticles formed is shown in Figure 6. Figure 7 shows the nanoparticle size distribution showing that the largest proportion of nanoparticles has a diameter of about 70 nm.

Izvedbeni primer 3: Sinteza nanodelcev anatasa z visoko specifično površino in sferično morfologijio s povprečnim premerom delcev 50-55 nm.Embodiment 3: Synthesis of anatase nanoparticles with a high specific surface area and spherical morphology with an average particle diameter of 50-55 nm.

Sinteza nanodelcev anatasa je potekala po istem postopku, kot v izvedbenem primeru 1, z izjemo, da smo v fazi hidrolize črne raztopine dodali 0,3% hidroliznih kali. Posledično so tekom hidrolize nastali nanodelci anatasa prikazani na sliki 8. Slika 9 prikazuje porazdelitev velikosti nanodelcev iz katere je razvidno, da ima največji delež nanodelcev premer približno 50-55 nm.Synthesis of anatase nanoparticles was performed according to the same procedure as in embodiment 1, except that 0.3% hydrolysis kale was added during the hydrolysis phase of the black solution. As a result, the hydrolysis of the resulting anatase nanoparticles is shown in Figure 8. Figure 9 shows the size distribution of the nanoparticles, which shows that the largest proportion of nanoparticles has a diameter of about 50-55 nm.

-10Izvedbeni primer 4: Sinteza nanodelcev anatasa z visoko specifično površino in sferično morfologijio s povprečnim premerom delcev 30-35 nm.-10Example 4: Synthesis of anatase nanoparticles with a high specific surface area and spherical morphology with an average particle diameter of 30-35 nm.

Sinteza nanodelcev anatasa je potekala po istem postopku, kot v izvedbenem primeru 1, z izjemo, da smo v fazi hidrolize črne raztopine dodali 0,9% hidroliznih kali. Posledično so tekom hidrolize nastali nanodelci anatasa prikazani na sliki 10. Slika 11 prikazuje porazdelitev velikosti nanodelcev iz katere je razvidno, da ima največji delež nanodelcev premer približno 30-35 nm.Synthesis of anatase nanoparticles was performed according to the same procedure as in embodiment 1, except that 0.9% of hydrolysis kale was added during the hydrolysis phase of the black solution. As a result, the hydrolysis of the resulting anatase nanoparticles is shown in Figure 10. Figure 11 shows the nanoparticle size distribution showing that the largest proportion of nanoparticles has a diameter of about 30-35 nm.

Izvedbeni primer 5: Sinteza nanodelcev anatasa z visoko specifično površino in sferično morfologijio s povprečnim premerom delcev 30 nm.Embodiment 5: Synthesis of anatase nanoparticles with a high specific surface area and spherical morphology with an average particle diameter of 30 nm.

Sinteza nanodelcev anatasa je potekala po istem postopku, kot v izvedbenem primeru 1, z izjemo, da smo v fazi hidrolize črne raztopine dodali 1,8% hidroliznih kali. Posledično so tekom hidrolize nastali nanodelci anatasa prikazani na sliki 12. Slika 13 prikazuje porazdelitev velikosti nanodelcev iz katere je razvidno, da ima največji delež nanodelcev premer približno 30 nm.Synthesis of anatase nanoparticles was performed according to the same procedure as in Example 1, except that 1.8% of the hydrolysis kale was added during the hydrolysis phase of the black solution. As a result, hydrolysis results in the formation of anatase nanoparticles in Figure 12. Figure 13 shows the nanoparticle size distribution showing that the largest proportion of nanoparticles has a diameter of about 30 nm.

Claims (8)

Patentni zahtevkiPatent claims 1 . Postopek sinteze za pridobivanje nanodelcev anatasa z visoko specifično površino in sferično morfologijo, ki temelji na sol-gel reakciji, kjer je kot izhodna surovina uporabljena črna raztopina, ki vsebuje titanilov sulfat v topni obliki in je polprodukt pri proizvodnji pigmenta TiO2, označen s tem,1. Synthesis process for the production of anatase nanoparticles with a high specific surface area and spherical morphology based on a sol-gel reaction, where a black solution containing soluble titanyl sulfate and a by-product of the production of TiO 2 pigment is used as the starting material , - da se črna raztopina podvrže reakciji hidrolize, pri kateri se titanilov sulfat v reakcijah polikondenzacije pretvori v metatitanovo kislino, kije nanokristalinični aglomerat anatasa,- that the black solution undergoes a hydrolysis reaction in which the titanyl sulfate is converted into metatitanoic acid in the polycondensation reactions, which is the nanocrystalline anatase agglomerate, - da se hidroliza črne raztopine izvede v prisotnosti hidroliznih kali, katere reakcijo usmerjajo in definirajo obliko metatitanove kisline ter v njej prisotnih polikristalov anatasa,- hydrolysis of the black solution is carried out in the presence of hydrolysis tin, the reaction of which directs and defines the form of metatitanoic acid and the anatase polycrystals present therein, - da se nastalo obliko metatitanove kisline ustrezno pretvori v nanodelce anatasa z ustreznim dodatkom raztopine barijevega klorida različnih molamih koncentracij,- that the resulting form of methattanoic acid is properly converted into anatase nanoparticles by the appropriate addition of a solution of barium chloride of different molar concentrations, - da poteka reakcija med barijevim kloridom in v metatitanovi kislini prisotnim sulfatom pri sobni temperaturi,- the reaction is carried out between barium chloride and the sulphate present in methattanic acid at room temperature, - da se ob dodatku barijevega klorida tvori barij ev sulfat, kije stranski produkt reakcije in nastane kot produkt precipitacije med v metatitanovi kislini prisotnimi sulfatnimi ioni in barijevimi kationi,- that, with the addition of barium chloride, barium sulphate is formed, which is a by-product of the reaction and is formed as a product of precipitation between the sulphate ions and barium cations present in the metatitanic acid, - da se nastali barijev sulfat kvantitativno loči iz suspenzije nanodelcev anatasa z usedanjem in/ali centrifugiranj em/dekantiranjem,- that the barium sulfate formed is quantitatively separated from the suspension of anatase nanoparticles by deposition and / or centrifugation / decantation, - daje na koncu pridobljena kisla suspenzija nanodelcev anatasa zelo stabilna,- the acidic suspension of the anatase nanoparticles obtained in the end is very stable, - da na koncu pridobljena kisla suspenzija nanodelcev anatasa vsebuje med 200 do 300 g/L TiO2,- that the resulting acidic suspension of the anatase nanoparticles contains between 200 and 300 g / L TiO 2 , - daje možno nanodelce anatasa očistiti iz kisle suspenzije z dvigom vrednosti pH in s tem doseženo aglomeracijo nanodelcev ter spiranjem nastalega produkta pri filtraciji,- it is possible to purify anatase nanoparticles from acidic suspension by raising the pH value, thereby achieving nanoparticle agglomeration and washing the resulting product upon filtration, - daje možno očiščene nanodelce anatasa resuspendirati in tako prirediti suspenzijo z želenim pH in masno koncentracijo TiO2.- it is possible to resuspend the purified anatase nanoparticles in order to adjust the suspension with the desired pH and TiO 2 mass concentration. 2. Postopek po zahtevku 1, označen s tem, daje s spreminjanjem količine hidroliznih kali, ki nastopajo v reakciji hidrolize črne raztopine, omogočena kontrola nad velikostjo nanodelcev.2. The method according to claim 1, characterized in that the size of the nanoparticles is controlled by varying the amount of hydrolysis pellets involved in the hydrolysis reaction of the black solution. 3. Postopek po zahtevku 1, označen s tem, daje lahko velikost nanodelcev anatasa prirejena med 30 do 80 nm ali več.Method according to claim 1, characterized in that the size of the anatase nanoparticles can be adjusted between 30 and 80 nm or more. 4. Postopek po zahtevku 1, označen s tem, da so pridobljeni nanodelci anatasa v obliki kisle suspenzije približne masne koncentracije med 200 do 300 g/L in se jih lahko izolira in očisti.Process according to claim 1, characterized in that the anatase nanoparticles obtained in the form of an acidic suspension have an approximate mass concentration of between 200 and 300 g / L and can be isolated and purified. • ·• · -125. Postopek po zahtevku 1, označen s tem, daje iz začetne suspenzije odstranjena kislina in je suspenziji po želji prirejen pH na želeno vrednost.-125. Process according to claim 1, characterized in that the initial suspension is acid removed and the suspension is optionally adjusted to pH to the desired value. 6. Postopek po zahtevku 1 do 5, označen s tem, da sam postopek poteka ves čas v mokrem, torej v obliki suspenzije, kar preprečuje morebiten nastop potencialno škodljivega prašenja.Method according to Claims 1 to 5, characterized in that the process itself is constantly carried out in the wet, ie in the form of a suspension, which prevents the occurrence of potentially harmful dusting. 7. Postopek po zahtevku 1 do 6, označen s tem, da so na ta način pridobljeni nanodelci polikristalinčni in zato ni potrebe po energetsko potratni kalcinaciji produkta.Process according to Claims 1 to 6, characterized in that the nanoparticles thus obtained are polycrystalline and therefore there is no need for energy-wasteful calcination of the product. 8. Nanodelci atanasa, označeni s tem, da so pridobljeni po postopku po zahtevkih od 1 do 7.8. Atanas nanoparticles, characterized in that they are obtained by the process of claims 1 to 7. 9. Nanodelci atanasa, označeni s tem, da so nanodelci anatasa polikristalinični, pri čemer kristaliti izkazujejo izotropno morfologijo in so veliki približno 4-5 nm in izkazujejo značilno sferično morfologijo, kije posledica agregacije izotropnih kristalitov anatasa.9. Athanas nanoparticles, characterized in that the anatase nanoparticles are polycrystalline, the crystallites exhibiting isotropic morphology and about 4-5 nm in size and exhibiting characteristic spherical morphology resulting from the aggregation of isotropic anatase crystallites.
SI200900341A 2009-11-04 2009-11-04 Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles SI23219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200900341A SI23219A (en) 2009-11-04 2009-11-04 Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200900341A SI23219A (en) 2009-11-04 2009-11-04 Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles

Publications (1)

Publication Number Publication Date
SI23219A true SI23219A (en) 2011-05-31

Family

ID=44065513

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200900341A SI23219A (en) 2009-11-04 2009-11-04 Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles

Country Status (1)

Country Link
SI (1) SI23219A (en)

Similar Documents

Publication Publication Date Title
AU2010292604B2 (en) Methods of producing titanium dioxide nanoparticles
EP3705455B1 (en) Method for producing titanium oxide fine particles
US8182602B2 (en) Method of preparing a well-dispersable microcrystalline titanium dioxide product, the product, and the use thereof
KR20000008868A (en) Production method of crystal titanium dioxide ultrafine powder from titanium tetrachloride using low temperature homogeneous precipitation method
KR20100014340A (en) Processes for the hydrothermal production of titanium dioxide
US20080156229A1 (en) Processes for the hydrothermal production of titanuim dioxide
SI23218A (en) Rutile nanoparticles and process of synthesis for obtaining rutile nanoparticles
TWI609842B (en) Oxygen (IRON OXYHYDROXIDE) Nano Dispersion
US9198843B2 (en) Process for manufacturing of high surface area USP grade nano-anatase base
SI23501A (en) Synthesis method for obtaining anatase nanoparticles of high specificsurface area and spherical morphology
JP2019527186A (en) Method for producing titanium dioxide and titanium dioxide obtained thereby
SI23219A (en) Anatase nanoparticles and process of synthesis for obtaining anatase nanoparticles
KR102578964B1 (en) Titanium oxide particles and method for producing the same
KR100500305B1 (en) Method for preparing nano-size anatase titania powder and sol by glycol process
Mahata et al. Hydrothermal synthesis of aqueous nano-TiO2 sols
FADIPE et al. One-step synthesis of WO3 nanoparticles using Spondias mombin aqueous extract: effect of solution pH and calcination temperature
KR20120122451A (en) Manafacturing method of titanium oxide nano particle using hydrothermal synthesis
TWI817927B (en) Process for reducing the sulphur content of anatase titania and the so-obtained product
KR100413720B1 (en) Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
Koliadima et al. Colloidal hydrolysis products of SbCl 3 in acidic solutions
Sedneva et al. Structure, morphology, and photocatalytic activity of titania modified by sulfate ions
KR20030026266A (en) A process for preparing an ultrafine particle of brookite-type titanium oxide, using titanium tetrachloride and aqueous hydrochloric acid
PL226986B1 (en) Method for producing the nanocrystalline titanium dioxide
KR20040032235A (en) Method for Preparing Brookite-type Titanium Dioxide Nano-powders

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20110616

KO00 Lapse of patent

Effective date: 20191105