SI20397A - Postopek priprave ogljikove anode za litijeve ionske akumulatorje - Google Patents
Postopek priprave ogljikove anode za litijeve ionske akumulatorje Download PDFInfo
- Publication number
- SI20397A SI20397A SI9900238A SI9900238A SI20397A SI 20397 A SI20397 A SI 20397A SI 9900238 A SI9900238 A SI 9900238A SI 9900238 A SI9900238 A SI 9900238A SI 20397 A SI20397 A SI 20397A
- Authority
- SI
- Slovenia
- Prior art keywords
- polyelectrolyte
- carbon particles
- anode
- carbon
- solution
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 37
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title abstract description 9
- 229910052744 lithium Inorganic materials 0.000 title abstract description 9
- 238000002360 preparation method Methods 0.000 title description 12
- 239000002245 particle Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 15
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 10
- 239000010439 graphite Substances 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 239000011889 copper foil Substances 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000001913 cellulose Substances 0.000 claims abstract description 4
- 229920002678 cellulose Polymers 0.000 claims abstract description 4
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 4
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 4
- 229920000867 polyelectrolyte Polymers 0.000 claims description 30
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 18
- 229910001416 lithium ion Inorganic materials 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 12
- 108010010803 Gelatin Proteins 0.000 claims description 11
- 239000008273 gelatin Substances 0.000 claims description 11
- 229920000159 gelatin Polymers 0.000 claims description 11
- 235000019322 gelatine Nutrition 0.000 claims description 11
- 235000011852 gelatine desserts Nutrition 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 230000003806 hair structure Effects 0.000 claims description 2
- 229920002521 macromolecule Polymers 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 abstract description 7
- 239000011521 glass Substances 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 description 7
- 239000010405 anode material Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 235000010489 acacia gum Nutrition 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920000084 Gum arabic Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000978776 Senegalia senegal Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000000205 acacia gum Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000000840 electrochemical analysis Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005184 irreversible process Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Po postopku pripravimo raztopino polielektrolita, ki je primeren za tvorbo lasaste strukture na površini ogljikovih delcev, z raztapljanjem 0.1 do 10 g polielektrolita, izbranega izmed proteinov, derivatov celuloze, gum, ali njihovih mešanic, v 1 litru deionizirane vode ob zmernem mešanju pri temperaturi 30 do 100 stopinj celzija, in v 1 litru tako dobljene raztopine, segrete na okoli sobno temperaturo in modificirane na pH 7 do 9, umešamo 1 do 10 g grafenske plasti vsebujočih ogljikovih delcev z dimenzijo 1 do 50 mikro metrov in s specifično površino 2 do 50 m2g-1, pustimo 2 do 30 minut, filtriramo skozi nučo, in črno pogačo z nuče nanesemo na bakreno folijo in dalje na običajen način predelamo v anodo za litijeve ionske akumulatorje. Po novem se izognemo uporabi klasičnih veziv in dobimo ogljikove anode, ki imajo zelo dobre karakteristike za uporabo v litijevih ionskih akumulatorjih.ŕ
Description
KEMIJSKI INŠTITUT
Postopek priprave ogljikove anode za litijeve ionske akumulatorje
1. Tehnično področje izuma
Predloženi izum je s področja kemijske tehnologije, specifično kemijskih izvorov električne energije. Nanaša se na nov postopek za pripravo ogljikove anode, ter na tako pripravljeno ogljikovo anodo, namenjeno za litijeve ionske akumulatorje tipa ogljik (anoda) / nevodni tekoči elektrolit / oksid prehodnega elementa (katoda).
2. Stanje tehnike
V podzvrsti litijevih ionskih akumulatorjev, ki dosegajo gostote toka od 1 pAcrri2 do 1 mAcm'2, je anoda običajno narejena iz ogljikovega prahu, katerega delci imajo tipične dimenzije 1-50 pm. Ogljikov prah ima lahko različen izvor, npr. koks, saje, naravni oziroma umetni grafiti ipd. ((1). J.R. Dahn, A.K. Sleigh, H. Shi, J.N. Reimers, Electrochimica Acta, 38 (1993) 1179-1191; (2) N. Takami, A. Satoh, M. Hara, T. Ohsaki, J. Electrochem. Soc., 142 (1995) 371-378; (3) T.D. Tran, J.H. Feikert, X. Song, K. Kinoshita, J. Electrochem. Soc., 142 (1995) 3297-3302). Pomembno je le, da vsebuje grafenske plasti, med katere se vgrajujejo (interkalirajo) litijevi ioni (N. Imanishi, Y. Takeda, O. Yamamoto, v; Lithium Ion Batteries, Fundamentals and Performance, ur. M. VVakihara, O. Yamamoto, Kodansha, Tokyo in Wiley-VCH, VVeinheim, 1998, str. 98-126).
Princip klasične izdelave anode je naslednji: suspenzijo ogljikovega prahu zmešajo s suspenzijo veziva na osnovi teflona (PTFE) ali polivinilidendifluorida (PVDF) in končno zmes nanesejo na kolektor toka (baker, aluminij, grafitna ploščica ipd.). Pred uporabo nanos več ur sušijo v inertni amosferi pri temperaturi okoli 100-140 °C. ((1) T.D. Tran, J.H. Feikert, X. Song, K. Kinoshita, J. Electrochem. Soc., 142 (1995) 3297-3302; (2) N. Imanishi, Y. Takeda, O. Yamamoto, v: Lithium Ion Batteries, Fundamentals and Performance, ur. M. VVakihara, O. Yamamoto, Kodansha, Tokyo in Wiley-VCH, VVeinheim, 1998, str. 98-126; (3) I. Tamura, M. Nagasima, Y. Ikezavva, and T. Takamura, Denki Kagaku, 60 (1992) 926).
Klasična priprava anode za litijeve ionske akumulatorje:
Elektrokemijsko aktivni anodni material je običajno ogljikov prah na osnovi koksa, saj, grafita, piroliziranih polimerov, ogljikovih vlaken ali mešanice teh materialov ((1) (2) N. Takami, A. Satoh, M. Hara, T. Ohsaki, J. Electrochem. Soc., 142 (1995) 371-378; (3) T.D. Tran, J.H. Feikert, X. Song, K. Kinoshita, , J. Electrochem. Soc., 142 (1995) 3297-3302; (4) N. Imanishi, Y. Takeda, O. Yamamoto, v: Lithium Ion Batteries, Fundamentals and Performance, ur. M. VVakihara, O. Yamamoto, Kodansha, Tokyo in Wiley-VCH, VVeinheim, 1998, str. 98-126).
Navedene materiale pridobivajo s temperaturno obdelavo izhodnih spojin pri temperaturah od 1000 °C do 3000 °C (J.R. Dahn, A.K. Sleigh, H. Shi, J.N. Reimers, Electrochimica Acta, 38 (1993) 1179-1191). Tipične dimenzije ogljikovih delcev znašajo1-50 pm, njihova površina pa 2-50 m2g'1. Prah dispergirajo bodisi v etanolu, metanolu, acetonu ipd. Disperziji dodajo 5-10 mas. % PTFE ali PVDF ((1) T.D. Tran, J.H. Feikert, X. Song, K. Kinoshita, , J. Electrochem. Soc., 142 (1995) 3297-3302; (2) N. Imanishi, Y. Takeda, O. Yamamoto, v: Lithium Ion Batteries, Fundamentals and Performance, ur. M. VVakihara, O. Yamamoto, Kodansha, Tokyo in Wiley-VCH, VVeinheim, 1998, str. 98-126; (3) I. Tamura, M. Nagasima, Y. Ikezavva, and T. Takamura, Denki Kagaku, 60 (1992) 926 ), v obliki disperzije ali v obliki prahu. Dobljeno disperzijo dobro premešajo in jo nanesejo na bakreno folijo ali grafitno ploščico. Tako pripravljeno elektrodo stisnejo v stiskalnici pri tlaku 500-2000 kPa. Končna debelina nanosa znaša od 50-200 pm. Elektrodo sušijo v vakuumu 10-14 h pri temperaturi 100-140 °C.
Adsorpcija polielektrolitov na delce:
Adsorpcijo polielektrolitov (na primer želatine) proučujejo in izkoriščajo v prehrambeni industriji (A.G. Ward, A. Courts, v »The Science and Technology of Gelatin«, Academic Press, London, 1977), fotografiji (C.E. Mees, C.E. Kenneth, v »The Theory of Photographic Process«, Macmillan, New York, 1966), elektrokemiji (G.M. Brown, G.A. Hope, J. Electroanal. Chem., 397 (1995) 293), biologiji, medicini itd. Polielektroliti se uporabljajo kot stabilizatorji tako v suspenzijah ((1) T.J. Maternaghan, O.B. Banghan, R.H. Ottevvill, J. Photogr. Sci. 28 (1980); (2) V.V. Rodin, V. Izmailova, Polym. Sci., 272 (1994) 433), kot v emulzijah (H.J. Muller, H. Hermel, Colloid Polym. Sci, 272 (1994) 433). V prvem primeru stabilizacijo dosežejo s sterično bariero, ki jo po adsorpciji na substrat predstavljajo molekule polielektrolita (lasasta struktura), emulzije pa postanejo stabilne zaradi spremembe lastnosti medsloja.
3. Tehnični problem
Tipični problemi zgoraj opisanih, doslej znanih postopkov in z njimi pripravljenih anod so:
a) Med prvo interkalacijo (prvim polnjenjem akumulatorja) znaten delež, namreč 20-40 %, litijevih ionov kemijsko zreagira z elektrolitom, produkti pa se v obliki pasivnega filma izločijo na površini ogljikovih delcev ((1). M.Jean, A. Tranchant, R. Messina, J. Electrochem. Soc., 143 (1996) 391-394, Reactivity of lithium intercalated into petroleum čoke in carbonate electrolytes;
(2) K. Kanamura, S. Toriyama, S. Shiraishi, and Z. Takehara, J. Electrochem. Soc., 142 (1995) 1383-1389; (3) D. Aurbach, A. Zaban, Y. EinEli, I.VVeissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot, 8th Int. Meet. Lithium Batteries, Nagoya, Japan, 1996, Extended Abstracts, p.77-80; (4) W. Xing, J.R. Dahn, J. Electrochemical Soc., 144 (1997) 1195-1201). Tvorba pasivnega filma je ireverzibilen proces, zato litija, porabljenega pri tem procesu, ne morejo izkoristiti za naslednja praznjenja in polnjenja akumulatorja.
b) Ker je vsebnost veziva le okoli 5-10 masnih %, je pri pripravi anode težko doseči optimalno povezanost ogljikovih delcev. Zaradi velikih volumskih sprememb (30 - 200 %) (J. O. Besenhard, M. VVinter, J. Power Sources, 54 (1995) 228., med interkalacijo in deinterkalacijo, posamezni ogljikovi delci postopoma izgubljajo fizični in s tem električni kontakt z drugimi delci v anodi. To je eden glavnih vzrokov za degradacijo litijevih akumulatorjev med cikliranjem.
c) PTFE in PVDF sta električna izolatorja, zato njuna prisotnost v anodi zelo poslabša lokalno prevodnost.
d) PTFE in PVDF sta elektrokemijsko neaktivna materiala. Njuna prisotnost pomeni neposredno zmanjšanje energijske gostote litijevih akumulatorjev.
4. Opis rešitve problema z izvedbenimi primeri
Predlagamo nov postopek izdelave ogljikove anode, pri katerem se izognemo uporabi klasičnih veziv. Namesto tega površino ogljikovih delcev pred izdelavo anode obdelamo s polielektrolitom. V literaturi doslej še ni bila opisana uporaba polielektrolitov pri pripravi anod za litijeve ionske akumulatorje.
Z novim postopkom znatno zmanjšamo tehnične probleme, naštete pod točkami a) - d), in dobimo ogljikove anode, ki imajo zelo dobre karakteristike za uporabo v litijevi ionskih akumulatorjih.
Ogljikove delce, ki jih nameravamo uporabiti kot elektrokemijsko aktivni anodni material, izpostavimo raztopini polielektrolita. Polielektrolit se adsorbira na površino vsakega ogljikovega delca in modificira njene fizikalne in kemijske lastnosti. Modifikacija površine ogljikovih delcev je bistvo izuma in vodi do naslednjih nepričakovanih, prednostnih karakteristik postopka in produkta: Ireverzibilna izguba litija zaradi pasivacije se zmanjša na največ 15 %.
A) Adsorbirani polielektrolit služi hkrati kot vezivo med ogljikovimi delci, zato ni potreben dodatek PVDF ali PFTE.
B) Masni odstotek polielektrolita v anodnem materialu ne presega 1 %. S tem je energijska gostota anodnega materiala večja kot pri uporabi klasičnih veziv.
4.1 Priprava raztopine polielektrolita
Raztopino smo pripravili z raztapljanjem vodotopnega polielektrolita v deionizirani vodi. Uporabili smo polielektrolite, ki tvorijo lasasto strukturo na meji med delcem in elektrolitom (na primer proteine, derivate celuloze, gume ipd.). Lasasta struktura pomeni, da po adsorpciji repi oziroma zanke polielektrolita štrlijo s površine delca v notranjost raztopine.
Pred adsorpcijo smo predhodno pripravljeno raztopino polielektrolita modificirali s spremembo pH vrednosti raztopine oziroma z dodatkom ustrezne ionskopovršinsko aktivne snovi. S tem smo spremenili gostoto naboja na polielektrolitu, tako da smo dobili maksimalno adsorpcijo.
4.2 Obdelava ogljikovih delcev v raztopini polielektrolita
S polielektrolitom, modificiranim po točki 4.1, smo površinsko obdelali ogljikove delce, ki smo jih kasneje uporabili kot elektrokemijsko aktivni anodni material. Znano količino ogljikovih delcev smo ob mešanju dodali v ustrezno količino raztopine modificiranega polielektrolita. Po 2-30 minutah smo obdelane delce odfiitrirali s pomočjo nuče. Dobljeno pogačo smo uporabili pri pripravi anode.
4.3. Priprava anode iz površinsko obdelanih ogljikovih delcev
Delce z adsorbiranim polielektrolitom odfiltriramo iz raztopine in dobljeni material nanesemo na bakreno folijo. Nanos stisnemo pod tlakom 100-5000 kPa ter sušimo več ur v vakuumu ali inertni atmosferi. Končna debelina nanosa znaša od 50 - 200 pm. Posušeno elektrodo prenesemo v suho komoro, kjer izvedemo elektrokemijske teste.
Postopek priprave ogljikove anode za litijeve ionske akumulatorje po predmetnem izumu izvedemo tako, da
a) pripravimo raztopino polielektrolita, ki je primeren za tvorbo lasaste strukture na površini ogljikovih delcev, z raztapljanjem 0.1 do 10 g polielektrolita, izbranega izmed proteinov, derivatov celuloze, gum, ali njihovih mešanic, v 1 I deionizirane vode ob zmernem mešanju pri temperaturi 30 do 100 °C,
b) v 1 liter zgoraj dobljene raztopine, segrete na okoli sobno temperaturo in modificirane na pH 7 do 9, umešamo 1 do 10 g grafenske plasti vsebujočih ogljikovih delcev z dimenzijo 1 do 50 pm in s specifično površino 2 do 50 m2g'1, pustimo 2 do 30 minut, filtriramo skozi nučo, in
c) črno pogačo z nuče nanesemo na bakreno folijo in dalje na običajen način predelamo v anodo za litijeve ionske akumulatorje.
Kot polielektrolit prednostno uporabimo želatino ali gumi arabico.
Mešamo prednostno pri okoli 200 obr/min.
Kot ogljikove delce prednostno uporabimo grafit.
Prednostno modificiramo pH modificiramo z dodatkom kisline ali baze, da dosežemo minimalno množino naboja na makromolekuli.
Nadaljnji predmet izuma je ogljikova anoda za litijeve ionske akumulatorje, ki je narejena po enem izmed zahtevkov 1 do 5.
Izvedbeni primer A: Priprava raztopine želatine
Pri eksperimentalnem delu smo uporabili 0.01 - 1 % raztopino želatine št. 48722 proizvajalca Fluka. Raztopino smo pripravili z raztapljanjem 0.1-10 g želatine v 1 litru deionizirane vode pri 30-100 °C ob zmernem mešanju z magnetnim mešalom s cca. 200 obr/min. Pred uporabo smo jo vedno temperirali na sobno temperaturo.
Pred adsorpcijo smo predhodno pripravljeno raztopino želatine modificirali z ustrezno količino 0.1 M NaOH, da smo dobili pH vrednost med 7 in 9.
Izvedbeni primer B: Priprava raztopine gumi arabice
Pri eksperimentalnem delu smo uporabili 0.01 - 1 % raztopino gumi arabice spraygum irx št. 28830 proizvajalca Coloides Naturels International, Francija. Raztopino smo pripravili z raztapljanjem 0.1-10 g gumi arabice v 1 litru deionizirane vode pri 30-100 °C ob zmernem mešanju z magnetnim mešalom s cca. 200 obr/min. Pred uporabo smo jo vedno temperirali na sobno temperaturo.
Izvedbeni primer C; Obdelava ogljikovih delcev v raztopini polielektrolita
Z želatino oziroma gumi arabico modificirano po točki 4.1, smo površinsko obdelali ogljikove delce, ki smo jih kasneje uporabili kot elektrokemijsko aktivni anodni material. V 100 ml modificiranega polielektrolita smo dodali 1 - 10 g Timrex SFG44 ob istočasnem mešanju. Po 2-30 minutah smo obdelane delce SFG44 odfiltrirali s pomočjo nuče. Dobljeno pogačo smo uporabili pri pripravi anode.
Izvedbeni primer D: Priprava anode iz površinsko obdelanih ogljikovih delcev
Delce z adsorbiranim polielektrolitom smo odfiltrirali iz raztopine in dobljeni material nanesli na bakreno folijo. Nanos smo stisnili pod tlakom 1000 kPa ter sušili 10h v vakuumu pri 100° C. Končna debelina nanosa je znašala okoli 50 pm. Posušeno elektrodo smo prenesli v suho komoro, kjer smo izvedli elektrokemijske teste.
Izum pojasnjujemo s priloženimi Skicami 1 - 4.
Na Skici 1 je prikazano prvo polnjenje/praznjenje anode, izdelane iz grafita Timrex SFG44, obdelanega z želatino Fluka št. 48722.
Na Skici 2 je prikazano prvo polnjenje/praznjenje anode, izdelane iz grafita Timrex SFG44, z uporabo 5 mas.% TEFLON-a (Aldrich 44, 509-6) kot veziva. Na Skici 3 je prikazana odvisnost reverzibilne kapacitete od števila ciklov za anodo iz grafita SFP44, obdelanega z želatino.
Na Skici 4 je prikazana odvisnost reverzibilne kapacitete od števila ciklov za anodo iz grafita SFP44 in 5% TEFLON-a.
Claims (7)
- PATENTNI ZAHTEVKI1. Postopek priprave ogljikove anode za litijeve ionske akumulatorje značilen po tem, daa) pripravimo raztopino polielektrolita, ki je primeren za tvorbo lasaste strukture na površini ogljikovih delcev, z raztapljanjem 0.1 do 10 g polielektrolita, izbranega izmed proteinov, derivatov celuloze, gum, ali njihovih mešanic, v 1 litru deionizirane vode ob zmernem mešanju pri temperaturi 30 do 100 °C,b) v 1 litru zgoraj dobljene raztopine, segrete na okoli sobno temperaturo in modificirane na pH 7 do 9, umešamo 1 do 10 g grafenske plasti vsebujočih ogljikovih delcev z dimenzijo 1 do 50 pm in s specifično površino 2 do 50 m2g'1, pustimo 2 do 30 minut, filtriramo skozi nučo, inc) črno pogačo z nuče nanesemo na bakreno folijo in dalje na običajen način predelamo v anodo za za litijeve ionske akumulatorje.
- 2. Postopek po zahtevku 1a, značilen po tem, da kot polielektrolit uporabimo želatino.
- 3. Postopek po zahtevku 1a, značilen po tem, da kot polielektrolit uporabimo gumi arabico.
- 4. Postopek po zahtevku 1a, značilen po tem, da mešamo pri okoli 200 obr/min.
- 5. Postopek po zahtevku 1b, značilen po tem, da kot ogljikove delce uporabimo grafit.
- 6. Postopek po zahtevku 1 b, značilen po tem, da pH modificiramo z dodatkom kisline ali baze, da dosežemo minimalno množino naboja na makromolekuli.
- 7. Ogljikova anoda za litijeve ionske akumulatorje, značilna po tem, da je narejena po enem izmed zahtevkov 1 do 5.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SI9900238A SI20397A (sl) | 1999-10-19 | 1999-10-19 | Postopek priprave ogljikove anode za litijeve ionske akumulatorje |
| PCT/SI2000/000020 WO2001029916A1 (sl) | 1999-10-19 | 2000-10-06 | Method for preparing a carbon anode for lithium batteries |
| AU75692/00A AU7569200A (en) | 1999-10-19 | 2000-10-06 | A method for preparing a carbon anode for lithium ion batteries |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SI9900238A SI20397A (sl) | 1999-10-19 | 1999-10-19 | Postopek priprave ogljikove anode za litijeve ionske akumulatorje |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SI20397A true SI20397A (sl) | 2001-04-30 |
Family
ID=20432547
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SI9900238A SI20397A (sl) | 1999-10-19 | 1999-10-19 | Postopek priprave ogljikove anode za litijeve ionske akumulatorje |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU7569200A (sl) |
| SI (1) | SI20397A (sl) |
| WO (1) | WO2001029916A1 (sl) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SI20777A (sl) * | 2000-11-28 | 2002-06-30 | Kemijski inštitut | Postopek priprave katode za litijeve ionske akumulatorje |
| US20060175704A1 (en) * | 2003-07-15 | 2006-08-10 | Tatsuo Shimizu | Current collecting structure and electrode structure |
| US9153819B2 (en) * | 2011-02-27 | 2015-10-06 | GM Global Technology Operations LLC | Negative electrode for a lithium ion battery |
| US11430979B2 (en) | 2013-03-15 | 2022-08-30 | Ppg Industries Ohio, Inc. | Lithium ion battery anodes including graphenic carbon particles |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5378560A (en) * | 1993-01-21 | 1995-01-03 | Fuji Photo Film Co., Ltd. | Nonaqueous secondary battery |
| JPH07192722A (ja) * | 1993-12-24 | 1995-07-28 | Sanyo Electric Co Ltd | リチウム二次電池 |
-
1999
- 1999-10-19 SI SI9900238A patent/SI20397A/sl unknown
-
2000
- 2000-10-06 WO PCT/SI2000/000020 patent/WO2001029916A1/sl not_active Ceased
- 2000-10-06 AU AU75692/00A patent/AU7569200A/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| AU7569200A (en) | 2001-04-30 |
| WO2001029916A1 (sl) | 2001-04-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210399289A1 (en) | Silicon-carbon composite anode material | |
| CN113223860B (zh) | 干式储能装置电极及其制造方法 | |
| TW523944B (en) | Secondary battery of proton conductive polymer | |
| CN101772856B (zh) | 用于制造电极的新的组合物以及包含该组合物的电极和电池 | |
| US20160118684A1 (en) | Electrophoretic deposition of thin film batteries | |
| Zeng et al. | Strategies of constructing stable and high sulfur loading cathodes based on the blade-casting technique | |
| US12142766B2 (en) | Silicon-based composite anodes for high energy density, high cycle life solid-state lithium-ion battery | |
| US11289699B2 (en) | Conductive coatings for active electrochemical materials | |
| FR3010236A1 (fr) | Additifs pour ameliorer la conductivite ionique des electrodes de batteries li-ion | |
| US20210194053A1 (en) | Energy storage devices with polymer electrolytes and fillers | |
| CN115295765A (zh) | 二次电池及用电设备 | |
| CN112467194B (zh) | 一种有机-无机复合准固态电解质以及准固态锂电池 | |
| US12002927B1 (en) | Electrolytes, electrodes, electrolytes and electrodes materials, and manufacturing thereof | |
| KR102754015B1 (ko) | 음극의 제조방법 및 이에 의해 제조된 음극을 포함하는 이차전지 | |
| Wang et al. | Toward high-performance ionic liquid-based quasi-solid-state electrolytes: Tunable electrochemical properties by introducing suitable diluents | |
| SI20397A (sl) | Postopek priprave ogljikove anode za litijeve ionske akumulatorje | |
| CN114447405A (zh) | 一种无机陶瓷离子导体基复合固态电解质薄膜及其制备方法 | |
| Zheng et al. | Circumferential Li metal deposition at high rates enabled by the synergistic effect of a lithiophilic and ionic conductive network | |
| CN110165164A (zh) | 一种硅-层状碳化钛负极材料及其制备方法 | |
| WO2002047188A1 (en) | Method for the preparation of a cathode for lithium ion batteries | |
| JP3226027B2 (ja) | 電池用電極およびそれを用いた二次電池 | |
| CN119029160B (zh) | 一种具有高首效、长循环的黑磷基储钠负极片的制备方法及应用 | |
| Song et al. | Enabling a scalable composite solid electrolyte via cathode-supported scale-up processing | |
| CN118800909B (zh) | 一种复合导电剂及其制备方法与应用 | |
| CN116742107B (zh) | 一种用于锂金属负极的复合固态电解质膜及其制备方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| IF | Valid on the prs date |