SG11201609713SA - A method of forming iii-v channel - Google Patents

A method of forming iii-v channel

Info

Publication number
SG11201609713SA
SG11201609713SA SG11201609713SA SG11201609713SA SG11201609713SA SG 11201609713S A SG11201609713S A SG 11201609713SA SG 11201609713S A SG11201609713S A SG 11201609713SA SG 11201609713S A SG11201609713S A SG 11201609713SA SG 11201609713S A SG11201609713S A SG 11201609713SA
Authority
SG
Singapore
Prior art keywords
channel
forming iii
iii
forming
Prior art date
Application number
SG11201609713SA
Inventor
Xinyu Bao
Errol Antonio C Sanchez
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of SG11201609713SA publication Critical patent/SG11201609713SA/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
SG11201609713SA 2014-06-24 2015-05-26 A method of forming iii-v channel SG11201609713SA (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/313,086 US9293523B2 (en) 2014-06-24 2014-06-24 Method of forming III-V channel
PCT/US2015/032452 WO2015199862A1 (en) 2014-06-24 2015-05-26 A method of forming iii-v channel

Publications (1)

Publication Number Publication Date
SG11201609713SA true SG11201609713SA (en) 2017-01-27

Family

ID=54870403

Family Applications (1)

Application Number Title Priority Date Filing Date
SG11201609713SA SG11201609713SA (en) 2014-06-24 2015-05-26 A method of forming iii-v channel

Country Status (7)

Country Link
US (1) US9293523B2 (en)
JP (1) JP6621426B2 (en)
KR (1) KR20170026507A (en)
CN (1) CN106463410B (en)
SG (1) SG11201609713SA (en)
TW (1) TWI592983B (en)
WO (1) WO2015199862A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812323B2 (en) 2014-09-08 2017-11-07 Internaitonal Business Machines Corporation Low external resistance channels in III-V semiconductor devices
EP3021352B1 (en) * 2014-11-13 2020-10-07 IMEC vzw Method for reducing contact resistance in a transistor
CN104766802B (en) * 2015-03-26 2019-05-03 深圳市华星光电技术有限公司 The manufacturing method of liquid crystal display panel, array substrate and its thin film transistor (TFT)
US9620605B2 (en) 2015-05-15 2017-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device structure and method
KR102577628B1 (en) * 2016-01-05 2023-09-13 어플라이드 머티어리얼스, 인코포레이티드 Method for fabricating nanowires for horizontal gate all-around devices for semiconductor applications
US10297704B2 (en) * 2016-03-15 2019-05-21 Teledyne Scientific & Imaging, Llc Low noise detectors for astronomy
CN116110941A (en) 2016-04-25 2023-05-12 应用材料公司 Forming horizontal surrounding gate element nanowire air gap spacing
TWI622171B (en) * 2016-06-24 2018-04-21 財團法人國家實驗研究院 Heterogeneous integration semiconductor device and manucacturing method thereof
US10504795B2 (en) 2018-03-27 2019-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method for patterning a lanthanum containing layer
US10468532B1 (en) * 2018-05-07 2019-11-05 International Business Machines Corporation Nanosheet substrate isolation scheme by lattice matched wide bandgap semiconductor
US10756216B2 (en) * 2018-08-09 2020-08-25 International Business Machines Corporation Nanosheet mosfet with isolated source/drain epitaxy and close junction proximity
US11501999B2 (en) * 2018-09-28 2022-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. Cobalt fill for gate structures
SE543442C2 (en) 2019-02-01 2021-02-16 Ionautics Ab A method and apparatus for chemical vapour deposition and a Fin field-effect transistor
US11245022B2 (en) * 2019-05-24 2022-02-08 Applied Materials, Inc. Integrated dipole flow for transistor
US11315785B2 (en) * 2019-09-17 2022-04-26 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial blocking layer for multi-gate devices and fabrication methods thereof
CN113823992B (en) * 2021-09-14 2022-11-11 苏州长瑞光电有限公司 Semiconductor device manufacturing method and semiconductor device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481209B1 (en) * 2002-10-01 2005-04-08 삼성전자주식회사 MOS Transistor having multiple channels and method of manufacturing the same
KR100594327B1 (en) * 2005-03-24 2006-06-30 삼성전자주식회사 Semiconductor device comprising nanowire having rounded section and method for manufacturing the same
US8324660B2 (en) * 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
KR100713915B1 (en) 2005-10-06 2007-05-07 주식회사 하이닉스반도체 Fin Transistor and method for forming thereof
FR2895835B1 (en) * 2005-12-30 2008-05-09 Commissariat Energie Atomique ACHIEVING A MULTI-BRANCH CHANNEL STRUCTURE OF A TRANSISTOR GRID AND MEANS FOR ISOLATING THIS GRID FROM THE SOURCE AND DRAIN REGIONS
US7700461B2 (en) 2006-03-17 2010-04-20 Samsung Electronics Co., Ltd. Methods of laterally forming single crystalline thin film regions from seed layers
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
KR100958826B1 (en) 2007-10-24 2010-05-24 재단법인서울대학교산학협력재단 Poly Crystalline Silicon Thin Film Transistor Having Bottom Gate Structure Using Metal Induced Lateral Crystallization and Method for Fabricating the Same
US20090224291A1 (en) 2008-03-04 2009-09-10 Dsm Solutions, Inc. Method for self aligned sharp and shallow doping depth profiles
US7759142B1 (en) 2008-12-31 2010-07-20 Intel Corporation Quantum well MOSFET channels having uni-axial strain caused by metal source/drains, and conformal regrowth source/drains
US7902541B2 (en) * 2009-04-03 2011-03-08 International Business Machines Corporation Semiconductor nanowire with built-in stress
US9768305B2 (en) * 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
JP2011029503A (en) * 2009-07-28 2011-02-10 Toshiba Corp Semiconductor device
CN103026491B (en) * 2010-07-06 2016-03-02 香港科技大学 Normal turn-off type III-nitride metal-two-dimensional electron gas tunnel junctions field-effect transistor
WO2012005030A1 (en) 2010-07-07 2012-01-12 シャープ株式会社 Thin film transistor, method for manufacturing same, and display device
CN102214596B (en) 2011-05-26 2012-08-29 北京大学 Manufacturing method of fence silicon nanowire transistor with air as side wall
US8445971B2 (en) 2011-09-20 2013-05-21 International Business Machines Corporation Field effect transistor device with raised active regions
US8637930B2 (en) 2011-10-13 2014-01-28 International Business Machines Company FinFET parasitic capacitance reduction using air gap
US8624326B2 (en) 2011-10-20 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
US8815712B2 (en) * 2011-12-28 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method for epitaxial re-growth of semiconductor region
US9748338B2 (en) 2012-06-29 2017-08-29 Intel Corporation Preventing isolation leakage in III-V devices
US20140091279A1 (en) * 2012-09-28 2014-04-03 Jessica S. Kachian Non-planar semiconductor device having germanium-based active region with release etch-passivation surface
US9385198B2 (en) * 2013-03-12 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Heterostructures for semiconductor devices and methods of forming the same

Also Published As

Publication number Publication date
CN106463410A (en) 2017-02-22
KR20170026507A (en) 2017-03-08
US20150372097A1 (en) 2015-12-24
CN106463410B (en) 2020-11-27
US9293523B2 (en) 2016-03-22
TWI592983B (en) 2017-07-21
JP6621426B2 (en) 2019-12-18
JP2017520123A (en) 2017-07-20
WO2015199862A1 (en) 2015-12-30
TW201604929A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
SG11201609713SA (en) A method of forming iii-v channel
SG10201509454YA (en) Wafer producing method
SG10201509475VA (en) Wafer producing method
SG10201509471YA (en) Wafer producing method
SG11201701863VA (en) Method for producing methionine
PL3227023T3 (en) Method for producing drops
EP3116671C0 (en) Method of forming a compound roll
IL249868A0 (en) A method
GB2522719B (en) Method of manufacture
SG10201509458RA (en) Wafer producing method
IL252173A0 (en) Method for producing methyl-dichloro-phosphane
GB201403470D0 (en) Method
SG11201701326YA (en) Method for producing oligosilane
GB2522663B (en) A method of selecting a region of interest
PL3138556T3 (en) Method for producing liposomes
SG11201605112TA (en) Method for forming polysilicon
GB2522716B (en) Method of manufacture
ZA201606570B (en) A method of forming concrete
GB201416350D0 (en) A method of fitting
SI2937159T1 (en) Method of making a spanner
GB201701115D0 (en) A method of forming an integral manifold
PL3105029T3 (en) Method for producing parts
GB201401612D0 (en) Synthetic method
ZA201604816B (en) Method for producing a component
GB2543449B (en) Method of completing a well