SG11201407978WA - Source reagent-based delivery of fluid with high material flux for batch deposition - Google Patents
Source reagent-based delivery of fluid with high material flux for batch depositionInfo
- Publication number
- SG11201407978WA SG11201407978WA SG11201407978WA SG11201407978WA SG11201407978WA SG 11201407978W A SG11201407978W A SG 11201407978WA SG 11201407978W A SG11201407978W A SG 11201407978WA SG 11201407978W A SG11201407978W A SG 11201407978WA SG 11201407978W A SG11201407978W A SG 11201407978WA
- Authority
- SG
- Singapore
- Prior art keywords
- reagent support
- support trays
- international
- iii
- reagent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4402—Reduction of impurities in the source gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Vapour Deposition (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Complex Calculations (AREA)
Abstract
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date 5 December 2013 (05.12.2013) WIPOIPCT (10) International Publication Number WO 2013/181521 A3 (51) International Patent Classification: C23C16/44 (2006.01) C23C16/458 (2006.01) (21) International Application Number: PCT/US2013/043592 (22) International Filing Date: 31 May 2013 (31.05.2013) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 61/654,077 31 May 2012 (31.05.2012) US (71) Applicant: ADVANCED TECHNOLOGY MATERI ALS, INC. [US/US]; 7 Commerce Drive, Danbury, CT 06810-4131 (US). (72) Inventors: HENDRIX, Bryan, C.; 42 Kingswood Road, Danbury, CT 06811 (US). GREGG, John, N.; 100 5th Street, Marble Falls, TX 78654 (US). BATTLE, Scott, L.; 1702 Chinati Court, Cedar Park, TX 72613 (US). NAITO, Donn, K.; 1810 Lacy Drive, Marble Falls, TX 78654 (US). BARTOSH, Kyle; 1944 Linden Lane, Whitehall, PA 18052 (US). CLEARY, John, M.; 27 Bogus Hill Road, New Fairfield, CT 06812 (US). CHEON, Sebum; 8 Allis on Ln, New Milford, CT 06776 (US). (74) Agent: HULTQUIST, Steven, J.; Hultquist IP, PO Box 14329, Research Triangle Park, NC 27709 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available)'. AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available)'. ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [Continued on next page] (54) Title: SOURCE REAGENT-BASED DELIVERY OF FLUID WITH HIGH MATERIAL FLUX FOR BATCH DEPOSITION i-H CJ •H 00 (57) Abstract: Systems, reagent support trays, particle suppression devices, and methods are disclosed. In one aspect, a system includes a vaporizer vessel having one or more interior walls enclosing an interi or volume and a plurality of reagent support trays configured to be vertically stackable within the interior volume. Each of the plurality of reagent support trays is configured to be vertically stackable within the interior volume to form a stack of reagent support trays. One or more of the plurality of reagent support trays is configured to redirect a flow of a gas passing between adjacent reagent support trays in the stack of reagent support trays to cause the flow of gas to interact with the source reagent material in a particular reagent support tray before passing into a next of the plurality of reagent support trays in the stack of reagent support trays. 150 152 WO 2013/181521 A3 III lillll IIII III Hill lllll III III III 11 lllll 11 11 111 III lllllll llll III llll EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) (88) Date of publication of the international search report: 27 February 2014
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261654077P | 2012-05-31 | 2012-05-31 | |
PCT/US2013/043592 WO2013181521A2 (en) | 2012-05-31 | 2013-05-31 | Source reagent-based delivery of fluid with high material flux for batch deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
SG11201407978WA true SG11201407978WA (en) | 2015-01-29 |
Family
ID=49674075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG11201407978WA SG11201407978WA (en) | 2012-05-31 | 2013-05-31 | Source reagent-based delivery of fluid with high material flux for batch deposition |
Country Status (8)
Country | Link |
---|---|
US (1) | US10385452B2 (en) |
EP (1) | EP2855730B1 (en) |
JP (4) | JP2015519478A (en) |
KR (4) | KR20200124780A (en) |
CN (2) | CN104487608A (en) |
SG (1) | SG11201407978WA (en) |
TW (1) | TWI611040B (en) |
WO (1) | WO2013181521A2 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2855730B1 (en) | 2012-05-31 | 2020-08-12 | Entegris Inc. | Source reagent-based delivery of fluid with high material flux for batch deposition |
DE102014109195A1 (en) * | 2014-07-01 | 2016-01-07 | Aixtron Se | Apparatus and method for generating a vapor from multiple liquid or solid sources for a CVD or PVD device |
JP6354539B2 (en) * | 2014-11-25 | 2018-07-11 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, and storage medium |
WO2017033053A1 (en) | 2015-08-21 | 2017-03-02 | Flisom Ag | Homogeneous linear evaporation source |
TWI624554B (en) * | 2015-08-21 | 2018-05-21 | 弗里松股份有限公司 | Evaporation source |
EP3450588A4 (en) * | 2016-04-26 | 2020-05-27 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Precursor supply system and precursor supply method |
JP6595421B2 (en) * | 2016-08-24 | 2019-10-23 | 東芝メモリ株式会社 | Vaporization system |
US11946131B2 (en) * | 2017-05-26 | 2024-04-02 | Universal Display Corporation | Sublimation cell with time stability of output vapor pressure |
JP6324609B1 (en) * | 2017-06-21 | 2018-05-16 | 日本エア・リキード株式会社 | Solid material container and solid material product in which the solid material container is filled with solid material |
KR102344996B1 (en) | 2017-08-18 | 2021-12-30 | 삼성전자주식회사 | Unit for supplying precursor, substrate processing apparatus and method for manufacturing semiconductor device using the same |
JP6895372B2 (en) * | 2017-12-12 | 2021-06-30 | 東京エレクトロン株式会社 | Raw material container |
US20190186003A1 (en) * | 2017-12-14 | 2019-06-20 | Entegris, Inc. | Ampoule vaporizer and vessel |
KR20200073328A (en) * | 2018-12-13 | 2020-06-24 | (주)지오엘리먼트 | Vaporization system using canister with effective cell group |
JP6901153B2 (en) | 2019-02-07 | 2021-07-14 | 株式会社高純度化学研究所 | Solid vaporization supply system for metal halogen compounds for thin film formation. |
JP6887688B2 (en) * | 2019-02-07 | 2021-06-16 | 株式会社高純度化学研究所 | A container for evaporative raw materials and a solid vaporization supply system using the container for evaporative raw materials |
JP7419399B2 (en) * | 2019-04-26 | 2024-01-22 | インテグリス・インコーポレーテッド | Vaporization container and method |
US11834740B2 (en) * | 2020-11-10 | 2023-12-05 | Applied Materials, Inc. | Apparatus, system, and method for generating gas for use in a process chamber |
TWI812035B (en) * | 2021-02-26 | 2023-08-11 | 美商恩特葛瑞斯股份有限公司 | Solids vaporizer |
US12054825B2 (en) * | 2021-06-22 | 2024-08-06 | Applied Materials, Inc. | Bottom fed sublimation bed for high saturation efficiency in semiconductor applications |
US11584990B2 (en) | 2021-07-02 | 2023-02-21 | Applied Materials, Inc. | Bottom fed sublimation bed for high saturation efficiency in semiconductor applications |
CN113897593B (en) * | 2021-09-13 | 2023-08-11 | 浙江陶特容器科技股份有限公司 | Solid-state precursor source storage sublimator |
Family Cites Families (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1265863A (en) | 1915-01-13 | 1918-05-14 | William G Abbott Jr | Evaporator. |
US2447789A (en) | 1945-03-23 | 1948-08-24 | Polaroid Corp | Evaporating crucible for coating apparatus |
US2721064A (en) | 1951-10-03 | 1955-10-18 | Hugo O Reichardt | Carbonating device |
US2769624A (en) | 1953-07-16 | 1956-11-06 | Okey S Burnside | Air cleaner and moistener for carburetors |
US2902574A (en) | 1958-02-03 | 1959-09-01 | Hughes Aircraft Co | Source for vapor deposition |
US3405251A (en) | 1966-05-31 | 1968-10-08 | Trw Inc | Vacuum evaporation source |
US3647197A (en) | 1970-04-27 | 1972-03-07 | Ford Motor Co | Vacuum deposition |
US3740043A (en) | 1970-05-26 | 1973-06-19 | Republic Steel Corp | Apparatus for vaporizing molten metal |
US3834682A (en) | 1972-06-19 | 1974-09-10 | American Hospital Supply Corp | Mixing column for medical humidifier and method of humidifying inhalable gases |
US3920882A (en) | 1973-04-16 | 1975-11-18 | Owens Illinois Inc | N-type dopant source |
DE2536013A1 (en) | 1975-08-13 | 1977-03-03 | Bosch Gmbh Robert | PROCESS FOR IMPROVING THE DURABILITY OF PROTECTIVE COATINGS CONSISTING OF SILICON OXIDES |
GB1559978A (en) | 1976-12-01 | 1980-01-30 | Gen Electric Co Ltd | Chemical vapour deposition processes |
US4190965A (en) | 1979-01-15 | 1980-03-04 | Alternative Pioneering Systems, Inc. | Food dehydrator |
JPS55160424A (en) | 1979-05-31 | 1980-12-13 | Fujitsu Ltd | Vapor phase epitaxial device |
JPS58126973A (en) | 1982-01-22 | 1983-07-28 | Hitachi Ltd | Supplying device of source for thin film formation |
JPS6070176A (en) | 1983-09-27 | 1985-04-20 | Fujitsu Ltd | Evaporating cylinder for solid source |
JPH0817804B2 (en) | 1987-12-23 | 1996-02-28 | 雪印乳業株式会社 | Disinfectant vaporizer |
JPH0269389A (en) | 1988-08-31 | 1990-03-08 | Toyo Stauffer Chem Co | Formation of saturated vapor of solid organometallic compound in vapor growth method |
JP2711327B2 (en) | 1988-10-14 | 1998-02-10 | 住友電気工業株式会社 | Crust forming apparatus for vapor phase epitaxy growth |
JPH0372387A (en) | 1989-08-11 | 1991-03-27 | Brother Ind Ltd | Developing electrode cleaner |
US5104695A (en) | 1989-09-08 | 1992-04-14 | International Business Machines Corporation | Method and apparatus for vapor deposition of material onto a substrate |
DE3931189A1 (en) | 1989-09-19 | 1991-03-28 | Philips Patentverwaltung | Gas flow contg. vapour of low volatility powder for CVD - obtd. using device where process can be continuous and containers having little residual powder can be refilled without disturbing gas flow |
EP0420596B1 (en) | 1989-09-26 | 1996-06-19 | Canon Kabushiki Kaisha | Gas feeding device and deposition film forming apparatus employing the same |
US5020476A (en) | 1990-04-17 | 1991-06-04 | Ds Research, Inc. | Distributed source assembly |
JPH0436469A (en) | 1990-06-01 | 1992-02-06 | Sharp Corp | Method for feeding starting material for cvd and solid starting material usable therefor |
US5840897A (en) | 1990-07-06 | 1998-11-24 | Advanced Technology Materials, Inc. | Metal complex source reagents for chemical vapor deposition |
US5362328A (en) | 1990-07-06 | 1994-11-08 | Advanced Technology Materials, Inc. | Apparatus and method for delivering reagents in vapor form to a CVD reactor, incorporating a cleaning subsystem |
JPH04228562A (en) | 1990-12-27 | 1992-08-18 | Mitsubishi Electric Corp | Thin film forming device |
JP3174351B2 (en) | 1991-03-19 | 2001-06-11 | 三菱電線工業株式会社 | Gasification vessel for superconducting MOCVD |
JPH04333572A (en) | 1991-05-10 | 1992-11-20 | Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai | Method for gasifying mo stock for oxide superconductor |
JPH0598445A (en) | 1991-07-05 | 1993-04-20 | Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai | Starting material vessel for chemical vapor deposition of organometallic compound |
JP2885969B2 (en) | 1991-07-08 | 1999-04-26 | 富士写真フイルム株式会社 | Micro film reader |
US5336324A (en) | 1991-12-04 | 1994-08-09 | Emcore Corporation | Apparatus for depositing a coating on a substrate |
ES2115048T3 (en) | 1991-12-13 | 1998-06-16 | Advanced Tech Materials | APPARATUS AND PROCEDURE FOR THE DOWNLOAD OF NON-VOLATILE REAGENTS. |
ATE201721T1 (en) | 1993-03-18 | 2001-06-15 | Advanced Tech Materials | METHOD AND DEVICE FOR FEEDING REAGENTS IN VAPOR FORM INTO A CVD REACTOR |
US5377429A (en) | 1993-04-19 | 1995-01-03 | Micron Semiconductor, Inc. | Method and appartus for subliming precursors |
US5607002A (en) | 1993-04-28 | 1997-03-04 | Advanced Delivery & Chemical Systems, Inc. | Chemical refill system for high purity chemicals |
KR960010901A (en) | 1994-09-30 | 1996-04-20 | 김광호 | Bubble Organic Device for Solid Organic Compound |
FR2727322B1 (en) | 1994-11-30 | 1996-12-27 | Kodak Pathe | METHOD FOR SUBLIMATING A SOLID MATERIAL AND DEVICE FOR CARRYING OUT THE METHOD |
US5553188A (en) | 1995-02-24 | 1996-09-03 | Mks Instruments, Inc. | Vaporizer and liquid delivery system using same |
JPH0940489A (en) | 1995-03-30 | 1997-02-10 | Pioneer Electron Corp | Method for supplying solid raw material of mocvd and supplying device therefor |
JPH08279497A (en) | 1995-04-07 | 1996-10-22 | Hitachi Ltd | Semiconductor and production system thereof |
US5553395A (en) | 1995-05-31 | 1996-09-10 | Hughes Aircraft Company | Bubbler for solid metal organic source material and method of producing saturated carrying gas |
US5764849A (en) | 1996-03-27 | 1998-06-09 | Micron Technology, Inc. | Solid precursor injector apparatus and method |
JPH1025576A (en) | 1996-04-05 | 1998-01-27 | Dowa Mining Co Ltd | Sublimation method of raw material compound in cvd film formation method |
US5917140A (en) | 1996-05-21 | 1999-06-29 | Advanced Technology Materials, Inc. | Sorbent-based fluid storage and dispensing vessel with enhanced heat transfer means |
DE19638100C1 (en) | 1996-09-18 | 1998-03-05 | Fraunhofer Ges Forschung | Apparatus to produce vaporous reaction product from solid particles |
US6130160A (en) | 1996-10-02 | 2000-10-10 | Micron Technology, Inc. | Methods, complexes and system for forming metal-containing films |
US5874131A (en) | 1996-10-02 | 1999-02-23 | Micron Technology, Inc. | CVD method for forming metal-containing films |
US6413476B1 (en) | 1996-12-05 | 2002-07-02 | Mary F. Barnhart | Aromatic diffuser with replaceable cartridge |
JP3645682B2 (en) | 1997-03-18 | 2005-05-11 | 三菱電機株式会社 | CVD equipment for Cu film formation |
US6409839B1 (en) | 1997-06-02 | 2002-06-25 | Msp Corporation | Method and apparatus for vapor generation and film deposition |
WO1999004061A1 (en) | 1997-07-18 | 1999-01-28 | Advanced Technology Materials, Inc. | Liquid delivery system comprising upstream pressure control means |
US6143191A (en) | 1997-11-10 | 2000-11-07 | Advanced Technology Materials, Inc. | Method for etch fabrication of iridium-based electrode structures |
US6018065A (en) | 1997-11-10 | 2000-01-25 | Advanced Technology Materials, Inc. | Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor |
JP3967455B2 (en) | 1998-03-30 | 2007-08-29 | Dowaホールディングス株式会社 | Potassium-containing thin film and method for producing the same |
US6136725A (en) | 1998-04-14 | 2000-10-24 | Cvd Systems, Inc. | Method for chemical vapor deposition of a material on a substrate |
US6620256B1 (en) | 1998-04-28 | 2003-09-16 | Advanced Technology Materials, Inc. | Non-plasma in-situ cleaning of processing chambers using static flow methods |
US6107634A (en) | 1998-04-30 | 2000-08-22 | Eaton Corporation | Decaborane vaporizer |
JP2000012218A (en) | 1998-06-23 | 2000-01-14 | Tdk Corp | Manufacturing device for organic el element and its manufacture |
US6210485B1 (en) | 1998-07-21 | 2001-04-03 | Applied Materials, Inc. | Chemical vapor deposition vaporizer |
US20010003603A1 (en) | 1998-07-28 | 2001-06-14 | Kabushiki Kaisha Toshiba | Cvd film formation method and apparatus using molded solid body and the molded solid body |
JP2000104172A (en) | 1998-07-28 | 2000-04-11 | Toshiba Corp | Coating film forming method, coating film forming apparatus and solid raw material |
US6225237B1 (en) | 1998-09-01 | 2001-05-01 | Micron Technology, Inc. | Method for forming metal-containing films using metal complexes with chelating O- and/or N-donor ligands |
US6281124B1 (en) | 1998-09-02 | 2001-08-28 | Micron Technology, Inc. | Methods and systems for forming metal-containing films on substrates |
US6454860B2 (en) | 1998-10-27 | 2002-09-24 | Applied Materials, Inc. | Deposition reactor having vaporizing, mixing and cleaning capabilities |
US20030101938A1 (en) | 1998-10-27 | 2003-06-05 | Applied Materials, Inc. | Apparatus for the deposition of high dielectric constant films |
US6202591B1 (en) | 1998-11-12 | 2001-03-20 | Flex Products, Inc. | Linear aperture deposition apparatus and coating process |
WO2000065127A1 (en) | 1999-04-27 | 2000-11-02 | Tokyo Electron Limited | Apparatus and method for delivery of vapor to a cvd chamber |
US6184403B1 (en) | 1999-05-19 | 2001-02-06 | Research Foundation Of State University Of New York | MOCVD precursors based on organometalloid ligands |
JP2000345345A (en) | 1999-06-04 | 2000-12-12 | Mitsubishi Electric Corp | Cvd device and vaporizer for cvd device |
US6206972B1 (en) | 1999-07-08 | 2001-03-27 | Genus, Inc. | Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes |
JP3909792B2 (en) * | 1999-08-20 | 2007-04-25 | パイオニア株式会社 | Raw material supply apparatus and raw material supply method in chemical vapor deposition |
JP2001059161A (en) | 1999-08-20 | 2001-03-06 | Tdk Corp | Device for producing organic thin film and its production |
US6288403B1 (en) | 1999-10-11 | 2001-09-11 | Axcelis Technologies, Inc. | Decaborane ionizer |
US6473564B1 (en) | 2000-01-07 | 2002-10-29 | Nihon Shinku Gijutsu Kabushiki Kaisha | Method of manufacturing thin organic film |
DE10005820C1 (en) | 2000-02-10 | 2001-08-02 | Schott Glas | Gas supply device for precursors of low vapor pressure |
DE10007059A1 (en) | 2000-02-16 | 2001-08-23 | Aixtron Ag | Method and device for producing coated substrates by means of condensation coating |
US6237529B1 (en) | 2000-03-03 | 2001-05-29 | Eastman Kodak Company | Source for thermal physical vapor deposition of organic electroluminescent layers |
WO2001083084A1 (en) | 2000-05-03 | 2001-11-08 | Advanced Technology Materials, Inc. | Gas cabinet assembly comprising sorbent-based gas storage and delivery system |
EP1160355B1 (en) | 2000-05-31 | 2004-10-27 | Shipley Company LLC | Bubbler |
US6581915B2 (en) | 2000-07-27 | 2003-06-24 | The Procter & Gamble Company | Dispensing device for dispensing scents |
US6887337B2 (en) | 2000-09-19 | 2005-05-03 | Xactix, Inc. | Apparatus for etching semiconductor samples and a source for providing a gas by sublimation thereto |
US6443435B1 (en) | 2000-10-23 | 2002-09-03 | Applied Materials, Inc. | Vaporization of precursors at point of use |
JP2002270523A (en) | 2001-03-13 | 2002-09-20 | Ricoh Co Ltd | Device and method for supplying nitrogen compound and deposition device |
US6561498B2 (en) | 2001-04-09 | 2003-05-13 | Lorex Industries, Inc. | Bubbler for use in vapor generation systems |
DE10118130A1 (en) | 2001-04-11 | 2002-10-17 | Aixtron Ag | Device for depositing crystalline layers on crystalline substrates in the gas phase comprises a heated reaction chamber with substrate holders arranged in a circular manner on a support, heated sources, and a hydride feed line |
US6431118B1 (en) | 2001-05-21 | 2002-08-13 | Imagine Gold, L.L.C. | Apparatus and method for providing humidified air to a terrarium |
TW539822B (en) | 2001-07-03 | 2003-07-01 | Asm Inc | Source chemical container assembly |
US6718126B2 (en) | 2001-09-14 | 2004-04-06 | Applied Materials, Inc. | Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition |
US6701066B2 (en) | 2001-10-11 | 2004-03-02 | Micron Technology, Inc. | Delivery of solid chemical precursors |
US7780785B2 (en) | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
TW200300701A (en) | 2001-11-30 | 2003-06-16 | Asml Us Inc | High flow rate bubbler system and method |
US20030111014A1 (en) | 2001-12-18 | 2003-06-19 | Donatucci Matthew B. | Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds |
US6620225B2 (en) | 2002-01-10 | 2003-09-16 | Advanced Technology Materials, Inc. | Adsorbents for low vapor pressure fluid storage and delivery |
US7601225B2 (en) | 2002-06-17 | 2009-10-13 | Asm International N.V. | System for controlling the sublimation of reactants |
JP3945455B2 (en) | 2002-07-17 | 2007-07-18 | 株式会社豊田中央研究所 | Powder molded body, powder molding method, sintered metal body and method for producing the same |
US7524374B2 (en) | 2002-07-17 | 2009-04-28 | Applied Materials, Inc. | Method and apparatus for generating a precursor for a semiconductor processing system |
US7186385B2 (en) | 2002-07-17 | 2007-03-06 | Applied Materials, Inc. | Apparatus for providing gas to a processing chamber |
CN101905126B (en) * | 2002-07-23 | 2013-01-23 | 高级技术材料公司 | Method and apparatus to help promote contact of gas with vaporized material |
US7300038B2 (en) | 2002-07-23 | 2007-11-27 | Advanced Technology Materials, Inc. | Method and apparatus to help promote contact of gas with vaporized material |
US6921062B2 (en) | 2002-07-23 | 2005-07-26 | Advanced Technology Materials, Inc. | Vaporizer delivery ampoule |
US6915592B2 (en) * | 2002-07-29 | 2005-07-12 | Applied Materials, Inc. | Method and apparatus for generating gas to a processing chamber |
US7122085B2 (en) | 2002-07-30 | 2006-10-17 | Asm America, Inc. | Sublimation bed employing carrier gas guidance structures |
US6797337B2 (en) | 2002-08-19 | 2004-09-28 | Micron Technology, Inc. | Method for delivering precursors |
US6841141B2 (en) | 2002-09-26 | 2005-01-11 | Advanced Technology Materials, Inc. | System for in-situ generation of fluorine radicals and/or fluorine-containing interhalogen (XFn) compounds for use in cleaning semiconductor processing chambers |
US6779378B2 (en) | 2002-10-30 | 2004-08-24 | Asm International N.V. | Method of monitoring evaporation rate of source material in a container |
US6863021B2 (en) | 2002-11-14 | 2005-03-08 | Genus, Inc. | Method and apparatus for providing and integrating a general metal delivery source (GMDS) with atomic layer deposition (ALD) |
US6991671B2 (en) | 2002-12-09 | 2006-01-31 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US7018940B2 (en) | 2002-12-30 | 2006-03-28 | Genus, Inc. | Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes |
KR20050004379A (en) | 2003-07-02 | 2005-01-12 | 삼성전자주식회사 | Gas supplying apparatus for atomic layer deposition |
US6837939B1 (en) | 2003-07-22 | 2005-01-04 | Eastman Kodak Company | Thermal physical vapor deposition source using pellets of organic material for making OLED displays |
US6909839B2 (en) | 2003-07-23 | 2005-06-21 | Advanced Technology Materials, Inc. | Delivery systems for efficient vaporization of precursor source material |
US7261118B2 (en) | 2003-08-19 | 2007-08-28 | Air Products And Chemicals, Inc. | Method and vessel for the delivery of precursor materials |
US7109113B2 (en) | 2004-01-30 | 2006-09-19 | Micron Technology, Inc. | Solid source precursor delivery system |
WO2006009872A1 (en) | 2004-06-22 | 2006-01-26 | Arkema Inc. | Direct injection chemical vapor deposition method |
US20060037540A1 (en) | 2004-08-20 | 2006-02-23 | Rohm And Haas Electronic Materials Llc | Delivery system |
US7708835B2 (en) * | 2004-11-29 | 2010-05-04 | Tokyo Electron Limited | Film precursor tray for use in a film precursor evaporation system and method of using |
US7484315B2 (en) | 2004-11-29 | 2009-02-03 | Tokyo Electron Limited | Replaceable precursor tray for use in a multi-tray solid precursor delivery system |
US7638002B2 (en) | 2004-11-29 | 2009-12-29 | Tokyo Electron Limited | Multi-tray film precursor evaporation system and thin film deposition system incorporating same |
US20060185597A1 (en) | 2004-11-29 | 2006-08-24 | Kenji Suzuki | Film precursor evaporation system and method of using |
US7488512B2 (en) | 2004-11-29 | 2009-02-10 | Tokyo Electron Limited | Method for preparing solid precursor tray for use in solid precursor evaporation system |
US7722720B2 (en) | 2004-12-08 | 2010-05-25 | Rohm And Haas Electronic Materials Llc | Delivery device |
DE102004062552A1 (en) | 2004-12-24 | 2006-07-06 | Aixtron Ag | Apparatus for vaporizing condensed substances |
US20070042119A1 (en) | 2005-02-10 | 2007-02-22 | Larry Matthysse | Vaporizer for atomic layer deposition system |
SG160401A1 (en) | 2005-03-16 | 2010-04-29 | Advanced Tech Materials | System for delivery of reagents from solid sources thereof |
US7651570B2 (en) | 2005-03-31 | 2010-01-26 | Tokyo Electron Limited | Solid precursor vaporization system for use in chemical vapor deposition |
US7485338B2 (en) | 2005-03-31 | 2009-02-03 | Tokyo Electron Limited | Method for precursor delivery |
US20070194470A1 (en) | 2006-02-17 | 2007-08-23 | Aviza Technology, Inc. | Direct liquid injector device |
JP5209899B2 (en) | 2006-05-22 | 2013-06-12 | ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. | Delivery device |
US20080241805A1 (en) * | 2006-08-31 | 2008-10-02 | Q-Track Corporation | System and method for simulated dosimetry using a real time locating system |
US8986456B2 (en) * | 2006-10-10 | 2015-03-24 | Asm America, Inc. | Precursor delivery system |
KR101480971B1 (en) * | 2006-10-10 | 2015-01-09 | 에이에스엠 아메리카, 인코포레이티드 | Precursor delivery system |
US9109287B2 (en) | 2006-10-19 | 2015-08-18 | Air Products And Chemicals, Inc. | Solid source container with inlet plenum |
US8708320B2 (en) | 2006-12-15 | 2014-04-29 | Air Products And Chemicals, Inc. | Splashguard and inlet diffuser for high vacuum, high flow bubbler vessel |
US7846256B2 (en) | 2007-02-23 | 2010-12-07 | Tokyo Electron Limited | Ampule tray for and method of precursor surface area |
US9034105B2 (en) * | 2008-01-10 | 2015-05-19 | American Air Liquide, Inc. | Solid precursor sublimator |
US8146896B2 (en) * | 2008-10-31 | 2012-04-03 | Applied Materials, Inc. | Chemical precursor ampoule for vapor deposition processes |
EP2855730B1 (en) | 2012-05-31 | 2020-08-12 | Entegris Inc. | Source reagent-based delivery of fluid with high material flux for batch deposition |
-
2013
- 2013-05-31 EP EP13796903.6A patent/EP2855730B1/en active Active
- 2013-05-31 WO PCT/US2013/043592 patent/WO2013181521A2/en active Application Filing
- 2013-05-31 KR KR1020207030995A patent/KR20200124780A/en not_active IP Right Cessation
- 2013-05-31 KR KR1020217035412A patent/KR20210135341A/en not_active Application Discontinuation
- 2013-05-31 KR KR1020237017927A patent/KR20230080495A/en not_active Application Discontinuation
- 2013-05-31 KR KR20147036818A patent/KR20150020624A/en active Application Filing
- 2013-05-31 TW TW102119394A patent/TWI611040B/en active
- 2013-05-31 SG SG11201407978WA patent/SG11201407978WA/en unknown
- 2013-05-31 US US14/404,633 patent/US10385452B2/en active Active
- 2013-05-31 JP JP2015515233A patent/JP2015519478A/en active Pending
- 2013-05-31 CN CN201380038921.0A patent/CN104487608A/en active Pending
- 2013-05-31 CN CN201811632470.4A patent/CN109972119A/en active Pending
-
2019
- 2019-05-13 JP JP2019090352A patent/JP2019167626A/en active Pending
-
2021
- 2021-02-08 JP JP2021018137A patent/JP2021098896A/en active Pending
-
2023
- 2023-01-10 JP JP2023001726A patent/JP2023055706A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI611040B (en) | 2018-01-11 |
EP2855730A2 (en) | 2015-04-08 |
KR20210135341A (en) | 2021-11-12 |
US20150191819A1 (en) | 2015-07-09 |
EP2855730B1 (en) | 2020-08-12 |
WO2013181521A9 (en) | 2014-04-17 |
JP2023055706A (en) | 2023-04-18 |
CN104487608A (en) | 2015-04-01 |
CN109972119A (en) | 2019-07-05 |
JP2019167626A (en) | 2019-10-03 |
KR20230080495A (en) | 2023-06-07 |
TW201404923A (en) | 2014-02-01 |
JP2021098896A (en) | 2021-07-01 |
US10385452B2 (en) | 2019-08-20 |
KR20150020624A (en) | 2015-02-26 |
JP2015519478A (en) | 2015-07-09 |
KR20200124780A (en) | 2020-11-03 |
EP2855730A4 (en) | 2016-01-27 |
WO2013181521A3 (en) | 2014-02-27 |
WO2013181521A2 (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SG11201407978WA (en) | Source reagent-based delivery of fluid with high material flux for batch deposition | |
SG11201804372PA (en) | Tracking and manipulating cellular rna via nuclear delivery of crispr/cas9 | |
SG11201408807YA (en) | Tm-enhanced blocking oligonucleotides and baits for improved target enrichment and reduced off-target selection | |
SG11201807188VA (en) | Modified cells for immunotherapy | |
SG11201407710VA (en) | Compositions comprising short-acting benzodiazepines | |
SG11201408780XA (en) | Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof | |
SG11201807401RA (en) | Therapeutic membrane vesicles | |
SG11201804541PA (en) | Card handling devices and related assemblies and components | |
SG11201404936YA (en) | Channel plate heat transfer system | |
SG11201407800SA (en) | Selective binding of biological targets to solid phase ureides | |
SG11201808125RA (en) | Methods for solid tumor treatment | |
SG11201806630QA (en) | Self-propelled personal transportation device | |
SG11201803920TA (en) | Compounds and compositions useful for treating disorders related to ntrk | |
SG11201407702XA (en) | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription | |
SG11201406448UA (en) | Printed chemical mechanical polishing pad | |
SG11201408561YA (en) | Tunable materials | |
SG11201408769QA (en) | Methods of reducing the risk of a cardiovascular event in a subject on statin therapy | |
SG11201407802WA (en) | Methods for engineering allogeneic and immunosuppressive resistant t cell for immunotherapy | |
SG11201402502RA (en) | Populations of hematopoietic progenitors and methods of enriching stem cells therefor | |
SG11201804674UA (en) | Heteroarylhydroxypyrimidinones as agonists of the apj receptor | |
SG11201408303WA (en) | Adhesive compositions of propylene-based and ethylene-based polymers | |
SG11201408652SA (en) | Mass-spectral method for selection, and de-selection, of cancer patients for treatment with immune response generating therapies | |
SG11201408292YA (en) | Dry powder for inhalation formulation comprising salmeterol xinafoate, fluticasone propionate and tiotropium bromide, and method for preparing same | |
SG11201908075UA (en) | A microneedle device | |
SG11201407506SA (en) | Fluid handling containers, systems, and related methods |