JPH0436469A - Method for feeding starting material for cvd and solid starting material usable therefor - Google Patents

Method for feeding starting material for cvd and solid starting material usable therefor

Info

Publication number
JPH0436469A
JPH0436469A JP2144805A JP14480590A JPH0436469A JP H0436469 A JPH0436469 A JP H0436469A JP 2144805 A JP2144805 A JP 2144805A JP 14480590 A JP14480590 A JP 14480590A JP H0436469 A JPH0436469 A JP H0436469A
Authority
JP
Japan
Prior art keywords
raw material
starting material
solid raw
solid
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2144805A
Other languages
Japanese (ja)
Inventor
Katsuji Okibayashi
沖林 勝司
Akiyoshi Mikami
明義 三上
Kosuke Terada
幸祐 寺田
Koichi Tanaka
康一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2144805A priority Critical patent/JPH0436469A/en
Publication of JPH0436469A publication Critical patent/JPH0436469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the stability and reproducibility of feed of starting material for CVD by setting solid starting material formed into a plate shape at a starting material setting position, fitted with a heating means, and increasing the surface area of the solid starting material. CONSTITUTION:Substrates 2 are arranged in a thin film growing region 3 in the reaction tube 1 of a device for producing thin films by CVD. Solid starting material 4 formed into a plate shape is set at a starting material setting position 5 and vaporized by heating with an electric furnace 6 and this vaporized starting material is fed to the substrates 2, heated with an electric furnace 7, by the aid of hydrogen as a carrier gas. The solid starting material 4 is easily set in the device because of the plate shape, pieces of the starting material 4 can be vertically arranged and the vaporized starting material is transferred at a high speed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、固体原料を気相で供給する方法及びこれに用
いる固体原料に関し、固体原料を用いて安定かつ大量に
原料を供給することを可能にするものであり、例えばC
VD法によりEL素子を作製する場合等に用いられるも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for supplying a solid raw material in a gas phase and a solid raw material used therein, and relates to a method for supplying a solid raw material in a stable and large amount using a solid raw material. For example, C
This is used when manufacturing an EL element by the VD method.

〈従来の技術〉 固体原料を高温で気化させてキャリアガスにより供給す
る場合、一般に粒状の固体原料をボートに入れてこれを
原料設置場所に置いたり、粉末の固体原料を容器に詰め
てこれを原料設置場所に置いたりしてキャリアガスによ
る供給を行う。この際、キャリアガスにより供給される
原料の輸送速度は固体原料の表面積に影響されるため、
輸送速度を十分に制御したい場合には原料表面積の算出
が困難な粒状の固体原料よりも粉末の固体原料をその表
面積が一定に保たれるように充填率を高く、表面が滑ら
かになる様に容器中に詰めたものが用いられていた。
<Conventional technology> When solid raw materials are vaporized at high temperatures and supplied using a carrier gas, the granular solid raw materials are generally placed in a boat and placed at the raw material installation site, or the powdered solid raw materials are packed in containers and transported. It is placed at the raw material installation location and supplied with carrier gas. At this time, the transport speed of the raw material supplied by the carrier gas is affected by the surface area of the solid raw material, so
If you want to sufficiently control the transport speed, use a powder solid material with a high filling rate so that the surface area remains constant, and the surface is smooth, rather than a granular solid material whose surface area is difficult to calculate. It was used packed in a container.

〈発明が解決しようとする課題〉 しかしながら、上記容器中に詰めた固体原料を用いても
、固体原料の粉砕状態、充填作業のパラツキ、時間経過
に伴う表面の形状の変化、温度の不均一に伴う端・中央
部での蒸発速度の差、等の影響により、供給中の輸送速
度の安定性さらには同一固体原料を繰り返し使用する場
合の使用毎の再現性が十分に改善されないという問題が
あった。
<Problems to be Solved by the Invention> However, even if the solid raw material packed in the container is used, there are problems such as the pulverization state of the solid raw material, unevenness in the filling operation, changes in surface shape over time, and uneven temperature. Due to the accompanying difference in evaporation rate between the edges and the center, there is a problem that the stability of the transport speed during supply and the reproducibility of each use when the same solid raw material is used repeatedly cannot be sufficiently improved. Ta.

また、CVD法により基板上に薄膜を作製する場合の大
量処理・高速処理のためには、輸送速度を大きくしなけ
ればならないが、従来の方法では十分に輸送速度を大き
くできないという問題があった。
Furthermore, in order to achieve mass and high-speed processing when producing thin films on substrates using the CVD method, the transport speed must be increased, but conventional methods have had the problem of not being able to increase the transport speed sufficiently. .

例えば、ZnSを気化して供給する場合、輸送速度Rと
固体原料温度T、輸送速度Rとキャリアガス流量F、輸
送速度Rと固体原料表面積Sとの関係は、それぞれ第7
.8.9図のようになることが実験により示されており
、 R==a @S * Fn* exp (−ΔE/kT
)a:比例定数、n=]/4〜115 なる式が成立している。この関係から輸送速度を大きく
するには、固体原料温度T1キャリアガス流量F1固体
原料表面積Sを大きくすれば良いことがわかるが、固体
原料温度は装置条件(ペルジャーの材質、温度制御法〕
及び原料物性(気化温度等)Kより制限され、特にZn
Sのような気化するのに高温(ZnSは通常900℃程
度に加熱される)を要する材料では装置の耐熱性等から
温度を上げるのが難しい。またキャリアガス流量は輸送
速度に及ぼす影響が小さい一方で膜質への影響が大きい
。このようなことから、輸送速度を大きくするには、固
体原料温度、キャリアガス流量を大きくするという方法
によらず固体原料表面積を大きくする方法によらなけれ
ばならない。しかしながら、従来の固体原料の形態では
その表面積を大きくするのに限界があり、また取扱いも
容易でなかった。このようなことは他の材料においても
同様である。
For example, when ZnS is vaporized and supplied, the relationships between the transport speed R and the solid raw material temperature T, the transport speed R and the carrier gas flow rate F, and the transport speed R and the solid raw material surface area S are as follows.
.. Experiments have shown that R==a @S * Fn * exp (-ΔE/kT
) a: proportionality constant, n=]/4 to 115. From this relationship, it can be seen that in order to increase the transport speed, it is necessary to increase the solid raw material temperature T1 carrier gas flow rate F1 solid raw material surface area S, but the solid raw material temperature depends on the equipment conditions (Pelger material, temperature control method)
and raw material properties (vaporization temperature, etc.), especially Zn.
It is difficult to raise the temperature of a material such as S, which requires a high temperature to vaporize (ZnS is usually heated to about 900° C.), due to the heat resistance of the device. Further, while the carrier gas flow rate has a small effect on the transport speed, it has a large effect on the film quality. For this reason, in order to increase the transport speed, it is necessary to increase the surface area of the solid material rather than increasing the solid material temperature and carrier gas flow rate. However, in the form of conventional solid raw materials, there is a limit to increasing the surface area, and handling is also not easy. This also applies to other materials.

以上に鑑み本発明は、固体原料表面積を大きくすること
により、原料供給の安定性・再現性を改善すると同時に
大きな輸送速度を達成することを目的とする。
In view of the above, an object of the present invention is to improve the stability and reproducibility of raw material supply and at the same time achieve a high transport speed by increasing the surface area of the solid raw material.

〈課題を解決するための手段〉 本発明は上記目的を達成するために、加熱手段を備えた
原料設置場所に固体原料を配置し、該固体原料を加熱す
ると同時に上記原料設置場所にキャリアガスを流通して
、該キャリアガスにより上記固体原料より気化した原料
を供給する原料供給方法であって、上記原料設置場所に
板状に加工された固体原料を設置することを特徴とする
CVD原料供給方法を提供する。そして、上記板状に加
工された固体原料を多数枚並べて配置することにより大
きな輸送速度を達成する。
<Means for Solving the Problems> In order to achieve the above object, the present invention arranges a solid raw material at a raw material installation location equipped with a heating means, heats the solid raw material, and at the same time supplies a carrier gas to the raw material installation location. A CVD raw material supply method for supplying a raw material vaporized from the solid raw material through the carrier gas, the CVD raw material supply method comprising: installing a solid raw material processed into a plate shape at the raw material installation location. I will provide a. A large transport speed is achieved by arranging a large number of solid raw materials processed into plate shapes.

また、上記板状に加工された固体原料として、板状支持
体上に固体原料が形成されてなるものを提供する。板状
に加工された固体原料は、薄い方が良く10μm〜51
11I+が適轟である。また板状支持体としては、固体
原料を加熱した際の温度に耐え、原料中への不純物の混
入を生じないものが良い。例えば供給条件、固体原料に
より変わるが、セラミック基板、ガラス基板、金属基板
等を用いることが可能であり、キャリアガスの反応性が
弱く、温度が低い程、利用できる基板の種類も増える。
Further, as the solid raw material processed into a plate shape, a solid raw material formed on a plate-shaped support is provided. The thinner the solid raw material processed into a plate is, the better.
11I+ is suitable. The plate-like support is preferably one that can withstand the temperature when the solid raw material is heated and does not cause impurities to be mixed into the raw material. For example, it is possible to use a ceramic substrate, a glass substrate, a metal substrate, etc., although it varies depending on supply conditions and solid raw materials, and the weaker the reactivity of the carrier gas and the lower the temperature, the more types of substrates that can be used increase.

く作 用〉 板状に加工された固体原料は、−枚当りの表面積の特定
が容易であり、扱いやすぐ、配置する枚数により容易に
全固体原料表面積を調節できる。
Function> The surface area of a solid raw material processed into a plate shape can be easily specified, and the total surface area of the solid raw material can be easily adjusted by handling and the number of plates to be arranged.

このような固体原料を多数枚並べると、全固体原料表面
積が従来に比べて著しく大きくなり、一定量の原料を供
給するのに必要となる一枚の固体原料の面積当りの原料
の量が少なくなる。さらに、固体原料を薄い板状とする
ことで供給に伴う厚さ方向の形状変化が小さくなり、ま
た一定の空間に多数枚の配置が可能となる。これにより
、従来と比べて、所定量の原料の供給を行った前後での
固体原料の形状変化は小さくなり、供給中の輸送速度は
安定し、同じ原料を繰り返し使用した場合の使用毎の再
現性も向上する。さらに、輸送速度の増大も達成される
When a large number of such solid raw materials are lined up, the total solid raw material surface area becomes significantly larger than before, and the amount of raw material per area of one solid raw material required to supply a certain amount of raw material is reduced. Become. Furthermore, by forming the solid raw material into a thin plate shape, changes in shape in the thickness direction due to supply are reduced, and a large number of sheets can be arranged in a certain space. As a result, compared to conventional methods, the change in the shape of the solid raw material before and after supplying a predetermined amount of raw material is small, the transportation speed during supply is stable, and the reproducibility of each use when the same raw material is repeatedly used Sexuality also improves. Furthermore, increased transport speeds are also achieved.

また、板状支持体上に形成された固体原料は、CVD法
等により支持体上の両面または片面に形成され、板状支
持体が固体原料の強度を保ち、その製造が容易でありか
つ取扱いが簡便である。
In addition, the solid raw material formed on the plate-shaped support is formed on both sides or one side of the support by CVD method etc., and the plate-shaped support maintains the strength of the solid raw material, making it easy to manufacture and easy to handle. is simple.

〈実施例〉 以下実施例により本発明をさらに詳細に説明する。<Example> The present invention will be explained in more detail with reference to Examples below.

実施例1 第1図に本実施例で用いるCVD薄膜製造装置の概略図
を示す。反応管1(内径10cIn)内の薄膜成長領域
3内に基板2が置かれ、原料設置場所5に板状に加工さ
れた固体原料4が置かれる。固体原料4は電気炉6によ
り加熱されて気化され、水素からなるキャリアガス8の
助けにより電気炉7により加熱された基板2へ供給され
る。
Example 1 FIG. 1 shows a schematic diagram of a CVD thin film manufacturing apparatus used in this example. A substrate 2 is placed in a thin film growth region 3 in a reaction tube 1 (inner diameter 10 cIn), and a solid raw material 4 processed into a plate shape is placed in a raw material installation location 5. The solid raw material 4 is heated and vaporized in an electric furnace 6, and is supplied to the heated substrate 2 in an electric furnace 7 with the help of a carrier gas 8 made of hydrogen.

本実施例ではZnS粉末を6X20crnの石英製板状
支持体9の全面KCVD法によりZns膜10を約0.
5−の厚さでコートした全体の厚みが2,0■のものを
用い、第2図の(、)側面図、(b)正面図に示すよう
に原料設置場所5に4m+間隔で縦に12枚並べて配置
する。従来は第3図に示すように石英製容器3厘にZn
S粉末32を詰めた固体原料を用い、これを横にして4
m間隔で3個配置していた。石英製容器31の大きさは
6X2(lIynで厚さは1.6 cmであり、図では
わかりやすぐするためにZnS粉末32が盛り上がって
いるが、実際には石英製容器31中に表面が滑らかにな
るように緻密に充填されている。本実施例と従来例とを
比べると、本実施例では、固体原料が板状に加工された
ものを用いているので、装置内への原料の設置が容易で
あり、また固体原料を縦にして並べることが可能となり
、上から落ちてくるゴミ等の問題がなくなっている。尚
、従来の場合は脱落の可能性があるために、縦にして並
べることができなかった。
In this example, ZnS powder is deposited on a 6×20 crn quartz plate support 9 by KCVD over the entire surface to form a Zns film 10 of approximately 0.
Using a material with a total thickness of 2.0 cm coated with a thickness of 5-, it was placed vertically at 4 m+ intervals at the raw material installation location 5 as shown in (,) side view and (b) front view in Figure 2. Arrange 12 pieces in a row. Conventionally, as shown in Figure 3, Zn was added to three quartz containers.
Using a solid raw material packed with S powder 32, lay it on its side and
Three were placed at m intervals. The size of the quartz container 31 is 6 x 2 (lIyn) and the thickness is 1.6 cm. In the diagram, the ZnS powder 32 is raised for easy understanding, but in reality, the surface inside the quartz container 31 is 1.6 cm thick. It is densely packed so that it is smooth.Comparing this example with the conventional example, in this example, the solid raw material is processed into a plate shape, so the raw material is not easily filled into the equipment. It is easy to install, and solid raw materials can be arranged vertically, eliminating problems such as debris falling from above. I couldn't line them up.

上記装置により基板2上にZnS薄膜を形成する場合に
ついて、本実施例と従来例それぞれの固体原料の配置方
法によって同一の条件でZnS原料を供給した際の供給
量と輸送速度との関係を第4図に示す。同図より、輸送
速度は共に供給量の増加に伴い増加するが、その変化幅
は本実施例の方が小さく、一定の厚さの膜を形成する際
の成長中の輸送速度の安定性が良い事がわかる。
In the case of forming a ZnS thin film on the substrate 2 using the above apparatus, the relationship between the supply amount and the transport speed when the ZnS raw material is supplied under the same conditions according to the solid raw material arrangement method of this embodiment and the conventional example is as follows. Shown in Figure 4. From the same figure, the transport speed increases as the supply amount increases, but the width of the change is smaller in this example, and the stability of the transport speed during growth when forming a film with a constant thickness is I know it's good.

表1に同一の固体原料を用いた場合の成長毎の平均輸送
速度の相対値を示す(数値は5試作の平均値でノーマラ
イズ)。この表より本発明の方が成長毎の輸送速度の変
化が小さいことがわかる。
Table 1 shows the relative values of the average transport speed for each growth when using the same solid raw material (values are normalized by the average value of 5 trial productions). From this table, it can be seen that the change in transport rate with each growth is smaller in the present invention.

表1 以上の結果は、本実施例では従来例に比べて固体原料の
全表面積が8倍になっているために、同一の供給量に対
して固体原料の表面積あたりの減少量が−となっている
ことと、従来では供給に伴い第6図(b)概略図に示す
ようic Z n S粉末32からなる固体原料の中央
部に窪みが生じていたのが、本実施例での固体原料では
同図(b)概略図に示すようにこのような形状変化が生
じないことに起因している。
Table 1 The above results show that in this example, the total surface area of the solid raw material is eight times larger than in the conventional example, so the amount of decrease per surface area of the solid raw material is - for the same supply amount. In addition, conventionally, as shown in the schematic diagram in FIG. 6(b), a depression was formed in the center of the solid raw material made of ic Z n S powder 32 as it was supplied, but in this example, the solid raw material This is due to the fact that such a shape change does not occur, as shown in the schematic diagram of FIG.

本実施例では、固体原料の全表面積が8倍になっている
ために、原料の輸送速度もほぼ8倍になっており、従来
に比べて大幅な輸送速度の増大が達成されている。この
輸送速度は固体原料をさらに薄くすれば、さらに多くの
固体原料を配置することができて一層の増大を図ること
ができる。また、本実施例では支持体の両面に固体原料
を形成したものを用いているが、片面だけに形成したも
のを用いても良い。これらをあわせて用いれば、板状の
原料の設置枚数を1枚〜12枚まで変えることで原料の
輸送速度を従来の一〜8倍までの24段階に自由に容易
に変えることができる。
In this example, since the total surface area of the solid raw material is 8 times as large, the transport speed of the raw material is also approximately 8 times as high, and a significant increase in transport speed is achieved compared to the conventional method. This transport speed can be further increased by making the solid material thinner, allowing more solid materials to be placed. Further, in this example, a support in which the solid raw material is formed on both sides is used, but a support in which the solid raw material is formed on only one side may also be used. If these are used together, by changing the number of plate-shaped raw material installed from 1 to 12, the raw material transport speed can be freely and easily changed in 24 steps from 1 to 8 times the conventional rate.

さらに、本実施例において、固体原料温度を少し下げる
と従来と同じ輸送速度を保つこともできる。
Furthermore, in this example, if the temperature of the solid raw material is lowered a little, the same transport speed as before can be maintained.

実施例2 本実施例では、MnCl2を石英製板状支持体上に0.
3mの厚さでコートした固体原料を用いた。
Example 2 In this example, MnCl2 was deposited on a quartz plate-shaped support at 0.00%.
A solid raw material coated to a thickness of 3 m was used.

上記固体原料は有機溶媒にM n Ct 2を溶かしだ
ものを支持体上に塗布して作製した。尚、CVD法によ
っても作製できる。
The solid raw material was prepared by dissolving M n Ct 2 in an organic solvent and coating it on a support. Incidentally, it can also be produced by a CVD method.

この固体原料を実施例!と同様の装置で用いた場合の輸
送速度と供給量との関係全第5図に示す。
Example of this solid raw material! The relationship between transport speed and supply amount when used in a similar device is shown in Figure 5.

また、表2に同一の固体原料を繰り返し用いた場合の成
長毎の平均輸送速度の相対値を示す(数値は5試作の平
均値をノー7ライズ)。尚、キャリアガスには水素を用
い、本実施例、従来例共に固体原料の配置方法、固体原
料の大きさは実施例1と同じである。″またキャリアガ
ス流量、固体原料温度は実施例と従来例で同一とした。
Further, Table 2 shows the relative values of the average transport speed for each growth when the same solid raw material is repeatedly used (the numerical values are the average values of 5 trial productions, no 7 rises). Note that hydrogen is used as the carrier gas, and the method of arranging the solid raw materials and the size of the solid raw materials in both this example and the conventional example are the same as in Example 1. ``Also, the carrier gas flow rate and solid raw material temperature were the same in the example and the conventional example.

表2 これらの結果から、実施例1と同様、本発明による実施
例の方が成長中、成長毎共に輸送速度が安定しているこ
とがわかる。
Table 2 These results show that, similar to Example 1, the transport rate in the Example according to the present invention is more stable during and after each growth.

尚、本実施例のM n CL 2の固体原料は実施例1
のZnSの固体原料とあわせて用いれば、ZnSの固体
原料により母体層を形成し、MnCl2の固体原料によ
り発光中心を形成してZnS:Mn からなるEL用発
光層の作製に用いることができる。
The solid raw material for M n CL 2 in this example was Example 1.
When used in conjunction with the solid raw material of ZnS, the solid raw material of ZnS forms a base layer, the solid raw material of MnCl2 forms a luminescent center, and it can be used to produce a light emitting layer for EL made of ZnS:Mn.

類元素又はMn若しくは希土類元素の塩化物、酸化物、
フッ素化物を本発明により固体原料として用いることが
できる。
Chlorides, oxides of Mn or rare earth elements,
Fluorides can be used as solid raw materials according to the invention.

〈発明の効果〉 本発明の方法によれば、固体原料を用いる原料供給の安
定性、再現性が向上し、また大きな原料輸送速度が達成
される。これによって、例えば均一性に優れたEL素子
をロフト間のバラツキを小さくして作製することが可能
となり、また大量枚数処理、高速成長による量産性の向
上が可能となる。
<Effects of the Invention> According to the method of the present invention, the stability and reproducibility of raw material supply using solid raw materials are improved, and a high raw material transport rate is achieved. This makes it possible to manufacture, for example, an EL element with excellent uniformity with less variation between lofts, and it also becomes possible to improve mass productivity by processing a large number of devices and growing at high speed.

また、本発明の固体原料は容易に作製でき、薄くて頑丈
にすることが出来るので、取り扱いが容易であり本発明
の方法に最適に用いることが出来る。
Further, the solid raw material of the present invention can be easily produced and made thin and strong, so it is easy to handle and can be optimally used in the method of the present invention.

さらに本発明によれば、固体原料温度、キャリアガス流
量によらず、固体原料の設置枚数を変えるだけで容易に
原料の輸送速度を調節できる。
Further, according to the present invention, the transportation speed of the raw material can be easily adjusted by simply changing the number of solid raw materials installed, regardless of the solid raw material temperature or carrier gas flow rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いるCVD薄膜製造装置概
略図、 第2図は本発明の実施例1の固体原料の配置を示す図、 第3図は従来の固体原料の配置図、 第4図は実施例1の供給量と輸送速度の関係を示す図、 第5図は実施例2の供給量と輸送速度の関係を示す図、 第6図は固体原料の形状変化を説明する図、第7図は輸
送速度と固体原料温度の関係図、第8図は輸送速度とキ
ャリアガス流量の関係図、第9図は輸送速度と固体原料
表面積の関係図である。 4・・・固体原料 5・・・原料設置場所 9・・・石
英製板状支持体 10・・・ZnS膜 81・・・石英
製容器32・・・ZnS粉末 代理人 弁理士 梅 1) 勝(他2名)@1図 (a)  イ則面図 (b)正面口 @2図 @4図 檻締伯 べ父線 111K6図 10DD          B(H)配aS′J+鷹
qcc> @7図
Fig. 1 is a schematic diagram of a CVD thin film production apparatus used in an embodiment of the present invention, Fig. 2 is a diagram showing the arrangement of solid raw materials in Embodiment 1 of the present invention, Fig. 3 is a diagram showing the arrangement of conventional solid raw materials, Figure 4 is a diagram showing the relationship between the supply amount and transport speed in Example 1, Figure 5 is a diagram showing the relationship between the supply volume and transport speed in Example 2, and Figure 6 is a diagram explaining the shape change of the solid raw material. , FIG. 7 is a diagram showing the relationship between transport speed and solid raw material temperature, FIG. 8 is a diagram showing the relationship between transport speed and carrier gas flow rate, and FIG. 9 is a diagram showing the relationship between transport speed and solid raw material surface area. 4... Solid raw material 5... Raw material installation location 9... Quartz plate-shaped support 10... ZnS film 81... Quartz container 32... ZnS powder agent Patent attorney Ume 1) Katsu (2 others) @Diagram 1 (a) Ruled surface diagram (b) Front entrance @Diagram 2@Diagram 4 Cage tightening base line 111K6 Diagram 10DD B (H) Arrangement aS'J+Hawk qcc> @Diagram 7

Claims (1)

【特許請求の範囲】 1、加熱手段を備えた原料設置場所に固体原料を配置し
、該固体原料を加熱すると同時に上記原料設置場所にキ
ャリアガスを流通して、該キャリアガスにより上記固体
原料より気化した原料を供給する原料供給方法であって
、上記原料設置場所に板状に加工された固体原料を設置
することを特徴とするCVD原料供給方法。 2、板状に加工された固体原料を多数枚並べて設置する
ことを特徴とする請求項1記載のCVD原料供給方法。 3、板状支持体上に固体原料が形成されてなる、請求項
1記載のCVD原料供給方法において用いる板状に加工
された固体原料。
[Claims] 1. A solid raw material is placed in a raw material installation location equipped with a heating means, and at the same time as the solid raw material is heated, a carrier gas is passed through the raw material installation location, and the solid raw material is heated by the carrier gas. A CVD raw material supply method for supplying a vaporized raw material, characterized in that a solid raw material processed into a plate shape is installed at the raw material installation location. 2. The CVD raw material supply method according to claim 1, characterized in that a large number of solid raw materials processed into plate shapes are placed side by side. 3. A solid raw material processed into a plate shape used in the CVD raw material supply method according to claim 1, wherein the solid raw material is formed on a plate-shaped support.
JP2144805A 1990-06-01 1990-06-01 Method for feeding starting material for cvd and solid starting material usable therefor Pending JPH0436469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2144805A JPH0436469A (en) 1990-06-01 1990-06-01 Method for feeding starting material for cvd and solid starting material usable therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2144805A JPH0436469A (en) 1990-06-01 1990-06-01 Method for feeding starting material for cvd and solid starting material usable therefor

Publications (1)

Publication Number Publication Date
JPH0436469A true JPH0436469A (en) 1992-02-06

Family

ID=15370876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2144805A Pending JPH0436469A (en) 1990-06-01 1990-06-01 Method for feeding starting material for cvd and solid starting material usable therefor

Country Status (1)

Country Link
JP (1) JPH0436469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111842A (en) * 2002-07-23 2014-06-19 Advanced Technology Materials Inc Vaporizer delivery ampoule
US10385452B2 (en) 2012-05-31 2019-08-20 Entegris, Inc. Source reagent-based delivery of fluid with high material flux for batch deposition
WO2020255619A1 (en) * 2019-06-19 2020-12-24 東京エレクトロン株式会社 Processing method and substrate processing system
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111842A (en) * 2002-07-23 2014-06-19 Advanced Technology Materials Inc Vaporizer delivery ampoule
US9469898B2 (en) 2002-07-23 2016-10-18 Entegris, Inc. Method and apparatus to help promote contact of gas with vaporized material
US10465286B2 (en) 2002-07-23 2019-11-05 Entegris, Inc. Method and apparatus to help promote contact of gas with vaporized material
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology
US10385452B2 (en) 2012-05-31 2019-08-20 Entegris, Inc. Source reagent-based delivery of fluid with high material flux for batch deposition
WO2020255619A1 (en) * 2019-06-19 2020-12-24 東京エレクトロン株式会社 Processing method and substrate processing system
CN114008243A (en) * 2019-06-19 2022-02-01 东京毅力科创株式会社 Processing method and substrate processing system

Similar Documents

Publication Publication Date Title
US5334250A (en) Vapor deposition apparatus for using solid starting materials
JP3504613B2 (en) Apparatus and method for depositing semiconductor material
US5945163A (en) Apparatus and method for depositing a material on a substrate
EP1386981B1 (en) A thin film-forming apparatus
DE69929971T2 (en) SPRAYING METHOD FOR MAKING A THICK METAL OXIDE COATING
EP3491164B1 (en) Evaporator, evaporation coating apparatus and evaporation coating method
US6086945A (en) Method of forming polycrystalline silicon thin layer
JP2556621B2 (en) Method for forming silicon carbide film
JPH0610144A (en) Low vapor pressure material supply device
JPH0436469A (en) Method for feeding starting material for cvd and solid starting material usable therefor
JP2011068916A (en) Film deposition method and film deposition apparatus
JPH0421780A (en) Vapor growth device
TW594853B (en) The manufacturing method of diamond film and diamond film
JPH0793194B2 (en) Method for manufacturing electroluminescent thin film
EP0437355B1 (en) Process and apparatus for preparing a thin film electroluminescent device
CN111020492B (en) Crucible system for close-space sublimation deposition equipment
TWI310058B (en)
US6129951A (en) Apparatus and method for matrix coating fibres with metal vapour
CN107532282A (en) Manufacture the method and its equipment of the layer stacking for display manufacturing
JPS5881437A (en) Vapor phase growth apparatus
US3804664A (en) Process for chemical vapor deposition of zirconium carbide
JPH02152191A (en) Vapor deposition method of electroluminescent luminous membrane
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same
JPH0437691A (en) Production of thin film
JP2780100B2 (en) Chemical vapor deposition method and apparatus mixed with magnetic minute objects