SE535087C2 - En metod för att preparera en plan yta med en kontrollerad täthetsgradient av deponerade partiklar i nanostorlek - Google Patents
En metod för att preparera en plan yta med en kontrollerad täthetsgradient av deponerade partiklar i nanostorlek Download PDFInfo
- Publication number
- SE535087C2 SE535087C2 SE1050866A SE1050866A SE535087C2 SE 535087 C2 SE535087 C2 SE 535087C2 SE 1050866 A SE1050866 A SE 1050866A SE 1050866 A SE1050866 A SE 1050866A SE 535087 C2 SE535087 C2 SE 535087C2
- Authority
- SE
- Sweden
- Prior art keywords
- gradient
- particles
- nanoparticles
- solution
- gold
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000002245 particle Substances 0.000 title claims description 108
- 238000001179 sorption measurement Methods 0.000 claims abstract description 20
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- 239000010931 gold Substances 0.000 claims description 60
- 229910052737 gold Inorganic materials 0.000 claims description 58
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 57
- 239000011521 glass Substances 0.000 claims description 22
- 238000009792 diffusion process Methods 0.000 claims description 21
- 150000004662 dithiols Chemical class 0.000 claims description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 3
- 229910052751 metal Inorganic materials 0.000 claims 3
- 229910010293 ceramic material Inorganic materials 0.000 claims 2
- 239000002861 polymer material Substances 0.000 claims 2
- 230000001276 controlling effect Effects 0.000 claims 1
- 239000006185 dispersion Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 238000007431 microscopic evaluation Methods 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 abstract description 6
- 108090000623 proteins and genes Proteins 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 34
- 229920001223 polyethylene glycol Polymers 0.000 description 23
- 239000002202 Polyethylene glycol Substances 0.000 description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- 229910052710 silicon Inorganic materials 0.000 description 18
- 239000010703 silicon Substances 0.000 description 18
- 150000003573 thiols Chemical class 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 12
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 10
- 230000004044 response Effects 0.000 description 9
- 150000002343 gold Chemical class 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 239000003774 sulfhydryl reagent Substances 0.000 description 8
- 230000035587 bioadhesion Effects 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910000077 silane Inorganic materials 0.000 description 6
- 150000004756 silanes Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 239000007979 citrate buffer Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000005871 repellent Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 229920001222 biopolymer Polymers 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- WKVAXZCSIOTXBT-UHFFFAOYSA-N octane-1,1-dithiol Chemical compound CCCCCCCC(S)S WKVAXZCSIOTXBT-UHFFFAOYSA-N 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical class NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 238000001566 impedance spectroscopy Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- -1 thiol silanes Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N19/00—Investigating materials by mechanical methods
- G01N19/04—Measuring adhesive force between materials, e.g. of sealing tape, of coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/007—Processes for applying liquids or other fluent materials using an electrostatic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0061—Methods for manipulating nanostructures
- B82B3/0071—Sorting nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/86—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
- B05D1/20—Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/04—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a surface receptive to ink or other liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/745—Assays involving non-enzymic blood coagulation factors
- G01N2333/75—Fibrin; Fibrinogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/81—Of specified metal or metal alloy composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Public Health (AREA)
- Cell Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Food Science & Technology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
Abstract
Föreliggande uppfinning är avsedd att användas vid analys av adsorptions och adhesionsfenomen av t.ex. proteiner eller celler på plana ytor som modifierats med adsorberade nanopartiklar. Enligtuppfinningen tillverkas en ytbunden gradient av antalet deponerade nanopartiklar längs med en planyta vilket avsevärt minskar antalet preparerade ytor likväl som metodfelet vid analys av adsorptions-och adhesionsfenomen.
Description
535 087 I = »šícízf í=1 där ci och 2,- är den molära koncentrationen samt laddningen fór jon i i lösningen.
Debyc-längden och därmed den repulsiva potentialens utbredning minskar således med ökande jonkoncentration i partikellösningen 202. Detta medför att partiklarna kan binda närmare varandra på ytan då villkoret U(r)/kT = l/Ä där U(r) är parpotentialen, kT den terrniska energin och 7» är en konstant, uppfylls för mindre r.
Ytor preparerade med ditioler samt guldnanopartiklar såsom beskrivits ovan samt i [l, 8] har använts till biologiska försök. Vid dessa försök gjordes mellanrummen mellan partiklama protein avvisande med hjälp av konjugerade maleimidreagens som binder kovalent till tiolgrupper. Malemidema var konjugerade med polyetylenglykol (PEG) vilket resulterade i att mellanrummen mellan partiklarna blev avvisande för protein adsorption. Ytan på de adsorberade guldpartiklama kunde sedan modifieras med hjälp av tiolreagens, t.ex. tiol med metylgrupper rálket ger de adsorberade guldpartiklama hydrofoba egenskaper, se exempel 3-5. Ytor med guldpartiklar som tillverkas på detta sätt har en mycket fin grad av kontrollerad kemisk struktur och organisation i nanometerområdet vilket gör dessa ytor väl lämpade för adhesionsstudier av olika slag. Den beskrivna metoden är mycket flexiblel för adhesionsstudier på grund av att det fmns ett relativt stort antal kommersiella substanser med maleimidfunktioner, som kan binda mellan adsorberade partiklarna, och tiolreagenser som kan binda på de adsorberade guldpartilclarna.
Liknande experiment har genomförts där av polymerer stabiliserade guldnanopartiklar applicerats på kisel- och glasytor genom s.k. ”dip-coat” teknik [9]. Observera att denna metod ej utnyttjar elektrostatisk repulsion mellan partiklar för att kontrollera partikelspridningen på ytan, utan avståndet definieras av de polymerera strukturer som omger partiklarna i lösningen. Interaktionen mellan dessa partiklar och den adsorberande ytan är svag, varför partiklarna efter adsorption måste sintras fast i det underliggande substratet, en process i vilken även de runt partikeln organiserade polyrnererna försvinner från ytan. Ytan runt guldpartiklama utgörs då av det underliggande kiselsubstratet vilket kan modifieras med funktionella silaner, exempelvis PEG-modifierade silaner som gör denna yta resistent mot bioadhesion. Ytan på partiklama kan rnodificras med tiolreagcns, exempelvis tiolkonjugerade s.k. RGD-peptider, en aminosyrasekvens som medierar cellinteraktioner.
I experiment har även beskrivits att polymera partiklar i elektrostatisk stabiliserad lösning adsorberats till laddade mineralytor och att avståndet mellan de adsorberade partiklama reglerats med elektrostatisk repulsion enligt ovanstående beskrivning [l0]. De adsorberande ytorna har antingen en nativ nettoladdning eller har erhållit sin laddning genom kemisk modifikation, exempelvis med funktionella silaner. Bindingen mellan ytan och partiklama har då framförallt varit av elektrostatisk karaktär. Ytoma med adsorberade polymera partiklar har därefter använts som en litografisk mask med vars hjälp de av polymerpartiklar täckta delama av ytan transformerats till ”öar” av guld i storleksordningen 10-1000 nm omgivna av substratytans material. Den omgivande substratytan har sedan modifrerats, exempelvis med poly-L-lysin-PEG, en positivt laddad polymer som adsorberar till negativt laddade ytor och i förekommande fall gör dessa resistenta mot bioadhesion. Guldytoma kan därefter modifieras med tiolreagens, exempelvis linjära alkantioler vilka gör guldytoma hydrofoba.
Till dessa hydrofoba ytor kan sedan proteiner adsorberas, exempelvis proteinet laminin. Sådana ytor har sedan använts för att studera cellcrs utbredning och ytintcrktion.
Samtliga ovan beskrivna tekniker kan användas för att utröna betydelsen av ytans nanostruktur för adhesionsprocessen och kan utgöra plattform för design av material med önskade biologiska egenskaper. 535 G8? De flesta adhesionsstudier utförs vanligen på ytor som har en konstant kemi. När man vill man studera betydelsen av en viss typ av ytmodifikation brukar man vanligen använda flera ytpreparationcr och analysera adhesionsfenomenen var för sig. Detta förfarande är emellertid arbetskrävande beroende på att flera ytpreparationer måste göras i varje försöksserie och att de metodologiska mätfelen ofta är stora vilket medför att aspekter på flera viktiga adliesionsfeiiomen kan förbises.
En generell metod för att begränsa metodfelen och minska arbetetet med ytpreparationer är att göra gradienter i kemiska egenskaper längs med en yta. Ett exempel på en sådan metod är den s.k. vätbarhetsgradienteii, en yta som är hydrofob (vattenavstötande) i en ända och hydrofil (vattenälskande) i den andra [l l]. Mellan dessa ytterligheter finns sedan en kontrollerad och kontinuerlig gradient av kemiska egenskaper. Denna typ av gradientyta reducerar väsentligt såväl arbetsbelastning som metodfel och har kommit till flitig användning i den akademiska världen [12-l4].
Det finns flera principer för att göra kontinuerliga kemiska gradienter längs en yta och en av de tidigare kända är den s.k. diffusionsmetoden, figur 0. Itypfallet fungerar metoden på så sätt att ett reagens 001, t.ex. metylklorosilan blandas i ett lösningsmedel med hög specifik vikt 002 t.ex. trikloetylenacetat (tri). Blandningen skiktas sedan under ett annat lösningsmedel003, t.ex. xylol med låg densitet. Mellan dessa skikt finns den yta 004, t.ex. glas på vilken en gradient ska bildas. Med tiden börjar lösningsmedlen att diffundera in i det varandra varvid även reagenset 001 diffunderar och binder till ytan 004. Vid en viss diffusionstid har det uppstått en bunden gradient av hydrofoba metylgrupper till den hyrofila glasytan [l l]. Hur mycket reagens som binder till ytan vid en viss position och därmed grad av hydrofobicitet vid denna position bestäms av koncentrationen av reagenset 001 över ytan vid den positionen samt den tid under vilken ytan har kontakt med reagenslösningen. Detta innebär att den erhållna gradientens egenskaper bestäms genom kinetisk kontroll.
Att fabricera en jämn gradient i partikeltäthet med den ovan beskrivna metoden torde vara svårt, då inbindingen av nanopaitiklar från en elektrostatiskt stabiliserad lösning till en yta som binder dessa partiklar vanligen är en mycket snabb process relativt partiklarnas diffusionshastighet, vilken är långsam jämfört med små molekyler såsom exempelvis metylklorosilan. Försök att kontrollera avståndet mellan nanopartiklar på ytor, där iianopartiklama fått adsorbera på bindande ytor från elektrostatiskt stabiliserade lösningar, genom att variera partikelkoncentration och tid för inkubation har visat att det är svårt att kontrollera lägre täckningsgrader av partiklar samt att partiklarna inte uppvisar samma goda grad av organisation på ytan som vid elektrostatiskt kontrollerad adsorption som beskrivits ovan [6, l5].
Nyligen beskrevs en gradient i guldpartiklar på ett kiselsubstrat där struktureringen av de bundna partiklama var god [16]. Denna gradient beskriven i [16] tillverkades enligt en modifierad ”dip-coat”- procedur dock utan att utnyttja elektrostatisk kontroll eller diffusionsgradienter. Den erhållna gradienten hade begränsad dynamik och det minsta uppvisade partikelavståndet var ca 50 nm.
Gradienterna modifierades kemiskt med PEG mellan partiklarna och RGD-peptider ovanpå partiklama. Gradientytoma använde sedan i experiment för att undersöka cellulär adhesion. Denna publikation visar generellt att intresset för att göra ytbundna täthetsgradienter av guldpartiklar är mkt stortav skäl som angivits ovan. Den tekniska lösningen för att göra gradienter enligt [l 6] ä emellertid betydligt mer komplicerad än den innevarande uppfinningen.
Beskrivning av uppfinningen Uppfinningen beskriver en metod för att enkelt tillverka plana ytor av gradienter med adsorberade nanopartiklar på fasta ytor. I typfallet utföres metoden på följande sätt: l.Endimensionell diffusion, figur 4 _ _ Plana ytor 203 som har förmåga att binda elektriskt ytladdade nanopartiklar fran en elektrostatiskt stabiliserad partikellösning iföres i en kyvett 401. En saltfri eller nära saltfri losning 402 med 535 087 ytladdade partiklar 200 påföres sedan kyvetten. En saltlösning 403 med relativt hög densitet skitas försiktigt under lösningen 402 på så sätt att den gravitiationsbetingade fasgränsen mellan lösningen 403 och lösningen 402 kommer i nivå med nederdelen på ytan 203. Med tiden kommer lösningen 403 att diffundera upp i lösningen 402 och bilda en gradient av jonstyrka i densamma.
Den elektrostatiskt betingade repulsionen mellan partiklarna minskar då jonstyrkan över ytan 203 ökar. Partiklama adsorberar därvid gradvis tätare till ytan med högst deponeringsgrad närmast den ursprungliga fasgränsen mellan lösningen 402 och lösningen 403. Lägst deponeringsgrad av partiklar finns överst i kyvetten där jonstyrkan över ytan 203 är låg och därmed den elektrostatiska repulsionen som störst. Efter avpassad diffusionstid töms kyvetten på vätska från undersidan genom samma rör 404 som användes vid skiktning av lösningen 403 under den partikelinnchållande lösningen 402 l frånvaro av konvektion samt att avståndet från ytans underkant x=0 mm till botten av kyvetten är tillräckligt stort samt att avståndet från ytans underkant x=0 min till ovanytair av lösningen 402 är tillräckligt stort samt att diffusionen inte får fortgå för lång tid så kan den graduella distributionen av saltkoncentration i lösningen ovan ytan 203 beskrivas med Ficks andra diffusionslag i en dimension: med den för ovan angivna villkoren lösningen JC zvíz där e är den molära saltkoncentrationen, x positionen i kyvetten relativt x=0 som sammanfaller med ytans 203 underkant, t är diffusionstiden, co är saltkoncentrationen i lösningen 403 vid t=0 och D är diffusionskonstanten för det aktuella saltet. c=å~c.<1~eff > Detta innebär att längden och lutningen på den erhållna partikelgradienten enkelt kan varieras genom att ändra den initiala saltkoncentrationen co och diffusionstiden t vilket ger en stor flexibilitet i fabrikationsmetoden. l en vidareutveckling av uppfinningen beskriven i figur 5 användes kyvetter 501 som tillåter att flera ytor kan användas vid samma diffusionsförfarande som beskrivits i figur 4. En fördel med denna metod är att samtliga ytor i kyvetten blir behandlade på samma sätt med avseende på lösningen av guldpartiklar, molariteten av den använda saltlösningen och diffusionstiden. Detta säkerställer att ytor kan prepareras med hög grad av likformighet i samma preparationsomgång Den i figur 0 beskrivna och publicerade [l 1] diffusionsmetoden har tekniska likheter med innevarande uppfinning men skiljer sig på avgörande principiella aspekter. De viktigaste skillnaderna är att den komponent, nanopartiklar, som ska binda till ytan finns i konstant koncentration och diffunderar ej som gradient, det salt som diffunderar binder ej till ytan samt att den gradientbildande principen (graderad elektrostatisk repulsion mellan nanopartiklar) äger rum i lösningen av nanopartiklarna och ej på ytan. 2. Tredimensionell diffiision.
Med den endimensionella diffusionsmetoden erhålls gradientytor i en dimension, d.v.s. hög täthet av deponerade partiklar i ena änden av gradienten och lägre täthet i den andra. Vi har även utvecklat en metod för att göra cirkulära gradienter av partiklar på en yta vilken beskrivs i figur 6: I botten på en petriskål 601 läggs en plan yta 203. En saltfri eller nära saltfri suspension 602 bestående av nanopartiklar och en matris som tillåter diffusion av nanopartiklar men som motverkar 535 D87 konvektionsströmmar, hålls sedan i petriskålen. En sådan susupension kan bestå av polysaccarider i vatteninnehållande partikelfonn t.ex. gelpartiklar som användes vi gelfiltrering t.ex. Sephadex G-25 eller något liknande material. Efter att fritt lösningsmedel, exempelvis vatten, sugits av det plana suspensionslagret, placeras en reservoar 603, exempelvis en rund skiva av läskpapper av tillräcklig tjocklek på suspensionen. Reservoaren 603 har dessförinnan blivit fylld med saltlösning 403 med hög molaritet, exempelvis genom att indränka ett läskpapperi sådan lösning. Systemet lämnas sedan för diffiision. Lösningen 403 kommer att diffiJndera in suspensionen 602 och den cirkulåra diffusionsfionten når efter ett tag ytan 203 och det uppstår slutligen en cirkulär yta med en radiell koncentrationsgradient av joner. Slutligen spolas suspensionen 602 bort med lösningsmedel, exempelvis vatten. Slutresultatet är en cirkulär yta av adsorberade partiklar, vars packningsdensitet är högst i mitten av ytan och lägst i perifcrin.
En viktig aspekt av innevarande uppfinning är den analytiska dynamiken, d.v.s. spannet mellan den del av gradientytan som har störst mängd adsorberade partiklar per ytenhet och den del som har minst mängd adsorberade partiklar per ytenhet. Ju större detta spann är, desto mer analytisk information erhålls vid adhesions- och adsorptionsförsök. En metodologisk osäkerhet. är att elektriskt laddade partiklar i låg koncentration i saltfritt löningsmedel såsom rent vatten har en benägenhet att deponera irreguljärt på ytorna i oförutsägbara mönster. Sådan mönsterbildning försvårar tolkningen av efterkommande adhesion och adsorptionsförsök. Vi vill därför även skydda en metod för att motverka uppkomsten av irreguljåra mönster, vilken illustreras i figur 6B. Metoden innefattar att de elektriskt laddade ytbindande partiklarna 200 blandas med elektriskt laddade partiklar 604 som ej binder till ytan 203. Funktionen hos de senare nämnda pariklarna är att bättre dispergera de laddade och bindande partiklama i lösningen så att bindningsmönstret ej blir irreguljärt.
Typiska försök och utvärderingsmetoder.
En gradientregion med deponerade partiklar är i normalfallet 1-10 mm. På denna yta kan adsorptionsfórsök med biopolymerer och adhesionsförsök med celler göras och resultatet av försöken kan sedan härledas till en kontinuerlig gradient av deponerade nanopartiklar/ytenhet. Vid enkla biopolymer adsorptionsförsök kan man använda ytkänsliga optiska metoder och för försök med hela celler kan man använda ljusmikroskopi för detaljstudier av cellerna samt fluorescensmikroskopi för ytterligare detaljstudier.
I en tillämpning av uppfinningen, figur 7, appliceras partikelgradienten på en yta 700 som försetts med en skalning för att underlätta undersökning i mikroskop. Skalstrecken kan vara vertikala 702, vågräta 703 eller radiella 704. Skalor respektive skalstreckmarkeringar kan göras på olika nivåer för att passa olika typ av undersökning, exempelvis på millimeternivå för okulär undersökning och på nivån 10-500 pm för undersökning med ljusmikroskop eller svepelektronmikroskop vilket illustreras i förstoringen 705. Skalstrecken kan bestå av försänkningar helt eller delvis genom den partikelbindande ytan, exempelvis en ditiolmodifierad guldyta, så att det underliggande substratet, exempelvis glas eller kisel kommer i dagen. Alternativt kan skalstreckcn bestå av upphöjningar, exempelvis av guld, på en partikelbindande yta, exempelvis tiolsilanmodifierad glas eller kiselyta. Den mönstrade ytan tillverkas lämpligen med fotolitografisk teknik.
I en tillämpning av uppfinningen, figur 8, finns en med nanopartikelgradient försedd yta 203 eller 700 närvarande på en yta 800, t.ex. ett objektglas tillsammans med ytterligare två ytor 801 och 802. Dessa två ytor modifieras kemiskt på så sätt att den ena av ytorna 802 erhåller samma ytkemi som ytan av nanopartiklarna och den andra ytan 801 erhåller samma ytkemi som den yta som omger partiklama i gradienten. När alla tre typytoma finns med i ett biologiskt försök, till exempel bakterieadsorption, kan operatören undersöka i mikroskop om bakterierna adsorberar i någon region till gradientytan.
Operatören får även information om hur bakterien adsorberar till ytor som ej innehåller nanopartiklar utan endast oblandade ytkemier. På det sättet kan operatören avgöra om adhesionen av bakterierna år relaterade till närvaro av nanopartiklar eller ej, samt vilken täthetsgrad av partiklar som behövs för adsorption. De olika ytorna 203/700, 801 och 802 kan separeras på ytan 800 med barriärer 803 för att underlätta användningen samt fabrikationen av ytan. Barriärema kan bestå av nedsänkningar eller mellanrum mellan ytorna 203/700, 801 och 802 på ytan 800 så att det underliggande substratet 804 535 D87 kommer i dagen. Altemativt kan barriärema bestå av upphöjningar mellan ytorna 203/700, 801 och 802, särskilt i de fall partikelgradienten applicerats på underliggande substratet 804.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett objektglas med de tre typytoma enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en dítiolmodifierad guldyta varpå fria ditioler mellan partiklarna reagerats med maleimide-PEG samt ytan på partiklarna reagerats med en funktionell tiol, exempelvis metyltenninerad, aminterminerad, syraterminerad eller peptidterminerad, 2, en guldyta som modifierats med ditiol och maleimid-PEG, 3 en guldyta som modifierats med samma funktionella tiol som ytan på partiklarna.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett objektglas med de tre typytorna enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en ditiolmodifierad guldyta varpå fiia ditioler mellan partiklarna reagerats med maleimid-PEG, 2, en guldyta som modifierats med ditiol och maleimid-PEG, 3 en ren guldyta. Med denna produkt kan operatören själv välja vilket tiolreagens som ska användas. Det finns en stor mängd kommersiella tioler som har betydelse för adhesion, t.ex. tioler konjugerade med amingrupper, mono- och polysackarider.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett obj ektglas med de tre typytorna enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en ditiolmodifierad guldyta, 2, en guldyta som modifierats med ditiol, 3 en ren guldyta. Med denna produkt kan operatören själv välja både maleimidreagens som binder mellan partiklarna och tiolreagens, som binder på partiklarna. De experimentella möjligheterna for operatören ökar därmed ytterligare.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett objektglas med de tre typytorna enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en tiolsilanmodifierad glas eller kiselyta varpå fria tiolsilaner mellan partiklama reagerats med maleimid-PEG samt ytan på partiklarna reagerats med en fimktionell tiol, exempelvis metyltenninerad, aminterrninerad, syraterrninerad eller peptidterminerad, 2, en glas eller kiselyta som modifierats med tiolsilan och maleimid-PEG, 3 en guldyta som modifierats med samma fiinktionella tiol som ytan på partiklama.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett objektglas med de tre typytorna enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en tiolsilanmodifierad glas eller kiselyta varpå fria tiolsilaner mellan partiklama reagerats med rnaleirriid-PEG, 2, en glas eller kiselyta som modifierats med tiolsilan och maleimid-PEG, 3 en omodifierad guldyta. Med denna produkt kan operatören själv välja vilket tiolreagens som ska användas.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett objektglas med de tre typytorna enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en tiol- eller aminsilanmodifierad glas eller kiselyta varpå silanema under och mellan partiklarna tagits bort på sådant sätt, exempelvis genom plasmabehandling, att partiklama sintras fast i glas eller kiselytan varpå ytorna mellan partiklama reagerats med PEG-silan samt ytan på partiklarna reagerats med en funktionell tiol, exempelvis metyltenninerad, aminterrninerad, syraterrninerad eller peptidterminerad, 2, en glas eller kiselyta som modifierats med PEG-silan, 3 en guldyta som modifierats med samma funktionella tiol som ytan på partiklama.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett obj ektglas med de tre typytorna enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en tiol- eller aminsilanmodifierad glas eller kiselyta varpå silanerna under och mellan partiklarna tagits bort på sådant sätt, exempelvis genom plasmabehandling, att partiklama sintras fast i glas eller kiselytan varpå ytorna mellan partiklama reagerats med PEG-silan, 2, en glas eller kiselyta som 535 ÜB? modifierats med PEG-silan, 3 en omodifierad guldyta. Med denna produkt kan operatören själv välja vilket tiolreagens som ska användas.
En tillämpning av uppfinningen är en produkt bestående av en yta, exempelvis ett objektglas med de tre typytorna enlig ovan: 1, guldnanopartikelgradientyta där guldnanopartikelgradienten tillverkats på en tiol- eller aminsilanmodifierad glas eller kiselyta varpå silanerna under och mellan partiklama tagits bort på sådant sätt, exempelvis genom plasmabehandling, att partiklama sintras fast i glas eller kiselytan, 2, en glas eller kiselyta, 3 en omodifierad guldyta. Med denna produkt kan operatören själv välja ytkemi samt modifikationsmetod för de olika ytoma.
För ovan nämnda tillämpningar kan de tre typytoma vid fabrikation göras separat och sedan sättas samman på objektglaset med något adhesiv. Man kan också tänka sig att preparera typytorna direkt på objektglaset.
Vid enkla biopolymer adsorptionsförsök kan man använda ytkänsliga optiska metoder som ellipsometri och ytplasmon resonans (SPR). Ett specialfall av ytplasmonresonans är den s.k. avbildande iSPR-metoden som tillåter samtidig kvantifiering av såväl adsorberade nanopartiklar samt efterföljande bioadhesion i en hel gradient region (se exemplel). En uppställning fór iSPR analys av en gradientyta illustreras i figur 9A. En apparat 900 för avbildande SPR såsom den beskriven i [17], vanligen styrd av en dator 905, appliceras i kontakt med ett SPR-substrat vanligen bestående av en glasyta 901 på vilken en tunn guldfilm 902 applicerats. Ovan guldfilmen appliceras en kammare 904 innehållande vätska, exempelvis buffert på så sätt att guldfilmen kommer i kontakt med vätskan.
Kammaren 904 kan ha ett inlopp 907 och ett utlopp 908 och fungera som flödessystem för att transportera vätska och analyter till och från ytan. l en tillämpning av uppfinningen har guldytan 902 modifierats kemiskt med filrnen 903 för att binda nanopartiklar från lösning och en gradient av nanopartiklar har applieerats på ytan. Vid mätning kan SPR-responsen från olika positioner på gradientytan relateras till partikeldensiteten vid denna position.
Utifall bioadhesion, exempelvis protein-, trombocyt- eller bakterieadsorption sker till gradientytan kan också detta detekteras som en additiv respons, figur 9B.
På senare tid har elektrokemiska tekniker och då särskilt impedansmätning använts för studier av f.f.a. cellers interaktion med ytor [1 81. Elektrokemiska tekniker kan också användas för att uppskatta antalet nanopartiklar på en elektrodyta , detta gäller i synnerhet för ledande nanopartiklar t.ex. av guld [l9]. I en tillämpning av uppfinningen beskriven i figur 10 appliceras en nanopartikelgradient på en yta 1000 vilken består av n partikelbindande ytor 1001 av ett elektriskt ledande material exempelvis guld som modifierats med kemin 1003 för att binda nanopartiklar. Ytorna 1001 placeras på ett icke ledande substrat 1002 på sådant sätt att ytoma 1001 kan fungera som elektroder elektriskt isolerade från varandra. Nanopartikelgradienten fabriceras på sådant sätt att den partikelbindande elektrodytan 1 på ytan 1000 får en hög partikeldensitet medan partikelbindande elektrodytan n på ytan 1000 får låg partikeldensitet. Detta kan ske genom att använda ytan 1000 såsom yta 203 i figur 4 och låta position 0 på ytan 1000 sammanfalla med x=0 i figur 4.
Ytan 1000 appliceras i kontakt med elektrolyt, exempelvis buffert, i en elektrokemisk cell 1004 som också kan ha ett inlopp 1005 och utlopp 1006 för att underlätta transport av elektrolyt och analyt till ytan 1000. Utöver elektrodema l-n lokaliserade på ytan 1000 kan det för vissa tillämpningar behövas ytterligare en referenselektrod 1007 och en motelektrod 1008 appliccradc i clektrolyten. I vissa tillämpningar kan även elektroderna 1007 och/eller 1008 vara placerade på ytan 1000. Samtliga elektroder l-n på ytan 1000 samt i förekommande fall 1007 och 1008 kontakteras individuellt av ett system för elektrokemisk mätning 1009. Systemet 1009 kan vara ett system kapabelt till olika slags elektrokemiska mätningar exempelvis voltammetri, amperonietrí, eoulometri, impedansspektroskopi eller impedansbestämining. Alternativt kan systemet 1009 vara ett system avsett för endast viss slags elektrokemisk bestämning såsom impedansmätning. Den elektrokemiska responsen från de olika elektrodema på ytan 1000 kan mätas antingen mellan olika elektroder på ytan 1000 eller genom att använda sig av elektrodema 1007 och 1008 i en konventionell trelektroduppställning [20]. Vid 535 ÛB? mätning kan den elektrokemiska responsen från olika elektroder med olika positioner på ytan 1000 relateras till partikeldensiteten vid denna position. Utifall bioadhesion, exempelvis celladhesion sker till gradicntytan kan också detta detckteras som en additiv, vanligen negativ förändring av den elektrokemiska responsen. Utifall ett redox-aktivt ämne kommer i kontakt med ytan kan också detta detekteras som en additiv, vanligen positiv förändring av den elektrokemiska responsen.
Exempel l. Utvärdering av graduell partikeladsorntion med svepelektronmilgoskoni Guldytor med storleken 11x20 mm fabricerades genom förångning av först 5 nrn Cr och sedan 200 run Au på substrat av SiO2. Dessa tvättades och förseddes med monolager av ditiol enligt den procedur som beskrivits utförligt i [l, 8]. I korthet så inkubcrades de rena guldytorna i etanollösning av oktanditiol varpå de reaktiverades med ditiolthreitol (DTT). En elektrostatiskt stabiliscrad guldpartikellösning med guldpaitiklari storleksordningen 10 nm i diameter tillverkades enligt den procedur som beskrivs i detalj i [l , 8]. Guldlösningen centrifugerades vid 16000 g för att reducera jonstyrkan i lösningen samt öka partikelkoncentrationen. Efter ceiitrifugeringen späddes guldpartikelpelleten till en ungefärlig partikelkoncentration av 55 nM i rent vatten med en konduktivitet av 18,2 MQ*cm. Denna partikellösning hälldes i ett kärl avsett för gradienttillverkning enligt ñgur 5 varpå ett antal av de ditiolreparerade ytorna placerades i kärlet med ett visst avstånd till botten av detsamma. Därefter applieerades citratbuffert med koncentrationen l M och pH4.0 i botten av gradientkärlet så att utrymmet under ytorna fylldes med denna. Citratbufferten fick därefter ostört diffiindera upp över ytoma under 30 minuter varefter proceduren avbröts genom att all vätska i gradientkärlet tömdes underifrån. I annan tillämpning så applieerades citratbuffert med koncentrationen 50 mM under ytorna vilken sedan fick diffimdera under 90 minuter, vilket ger en längre gradient med svagare lutning relativt den som erhålls med 1 M buffert under 30 minuter.
Ytoma analyserades med svepelektronmikroskopi vid olika positioner på gradientytan. Ett urval av bilder presenteras i flgur 1 1.
Exempel 2. Utvärdering av graduell partikeladsorption med hiälp av iSPR Linjära gradienter med 10 nm guldnanopartiklar preparerades som beskrivits i exempel l med hjälp av ditiolkemi. Som substrat användes glasytor på vilka ett tunt lager Au, ca 50 nm, förångats. Dessa ytor är lämpliga för analys med ytplasmonresonans, SPR. Efter gradienttillverkningen så placerades ytorna i ett instrument för avbildande SPR, vilket finns utförligt beskrivet i [l 7]. Två olika gradienter analyserades, se figur 12. En gradient hade preparerats med 50 mM citratbuffert som fått diffiindera under 90 minuter (”lång” gradient) samt en gradient hade preparerats med lM eitratbufert under 30 minuter (”koit” gradient). Respektive partikelgradient hade också reagerats med maleimid-PEG för att minimera bioadhesion mellan de distribuerade partiklarna samt med oktantiol ovanpå partiklama vilket gjorde ytan på partiklama hydrofob vilket främjar bioadhesion. Ett område om ea lx5 mm analyserades för vaije gradientyta, inom vilket hela eller väsentliga delar av gradienten avbildades.
SPR-våglängden som presenteras i 3D-grafens z-axel är proportionell mot yttäckningen av guldnanopartiklar. I figur 13 presenteras ett linjescan över en ”kort” gradient tillsammans med linj escan för en positiv kontrollyta, i detta fall en yta modifierad med endast oktanditiol, samt en negativ kontrollyta, modifierad med oktanditiol och maleimid-PEG. Varje linjescan representerar ett medelvärde av samtliga scan över ytan nanopartikelgradienter med iSPR sai_nt fluorescensmikroskopi.
”Korta” gradienter med 10 nm guldnanopartiklar fabricerades på guldytor avsedda för SPR-analys samt modifierades med maleimid-PEG och oktaiitiol enligt exempel 2 ovan. Detta gav gradienter av hydrofoba partiklar mot en bakgrund av proteiiiavvisande PEG. Ytoma analyserades med iSPR.
Sekventiellt adsorberades först fibrinogen (0,5 mg/ml i PBS) under 5 minuter och därefter tromboeyter (väsentligen seiumfri preparation från frisk donator) under 30 minuter till ytor med gradienter, positiva kontrollytor (endast ditiol) samt negativa kontrollytor (ditiol modifierad med maleimid-PEG). l figur 14 presenteras responsen från fibrinogen- samt tromboytadsorption för en gradientyta samt en positiv kontrollyta. Blå kurva visar adsorptionen av fibrinogen, grön kurva det ackumulerade responsen från både fibrinogen samt trombocyter. Responsen från underliggande ytor, motsvarande det som visas. i figu- 13, har subtraherats från resultaten i figur 14. Observera att den positiva ytan adsorberar saval 535 UB? fibrinogen samt trombocyter homogent över ytan, medan gradientytan adsorberar såväl protein såsom trombocyter graduellt. De negativa kontrollytoma gav ingen väsentlig respons.
Efter trombocytadsorption så skölj des ytorna med PBS-buffert samt fixerades under 15 minuter med 2% glutaraldehyd. Ytoma fárgades (infargning av aktinskelett) enligt sedvanliga protokoll samt analyserades med fluorescensmikroskopi vid olika positioner på ytoma. Figur 15 visar representativa trombocyter vid positioner med hög (A) respektive låg (B) partikeltäckniiig.
Exempel 4. Utvärdering av mikrobiell adhesion till hydrofoba nanopartikelgradienter ”Långa” gradienter med 10 nm guldnanopartiklar fabricerades på guldytor modifierades med maleirnid-PEG och oktantiol enligt exempel 2 ovan. Detta gav gradientcr av hydrofoba partiklar mot en bakgrund av proteinavvisande PEG. Fimbrierade E-coli adsorberades till ytorna under statiska förhållanden samt utsattes för kontrollerad sköljning under tio minuter. Kvarvarande bakterier fargades med accredineorange samt DAPI varpå ytorna analyserades med lupp samt fluorescensmikroskop. Figur 16 visar en sektion av en gradientyta med adsorberade E-coli färgade med accredineorange vid låg förstoring samt en positiv kontrollyta (oktantiol) samt en negativ kontrollyta (ditiol modifierad med maleimid-PEG). Yttäckningen av nanopartiklar vid olika positioner i gradienten bestämdes med SEM, den relativa yttäckningen anges i respektive bild. Den infällda bilden visar två stycken bakterier färgade med DAPI vid större förstoring. Notera att utbredningen av bakterier förändras kraftigt vid 20% yttäckning. 535 ÜB? 10 Referenser l. 10. ll. 12. 13. 14. 15. 16. 17. 18. 19. 20.
Lundgren A. O., et al., Selj-Arrangement Among Charge-Stabilized Gold Nanoparticles on a Dithíothreitol Reactivated Octanedithiol Monolayer. Nano Letters 2008. 8(11): p. 3989-3992.
Adamczyk Z., et al., Structure and ordering in localized adsorption of particles.
Journal of Colloid and Interface Science, 1990. 140(1).
Hanarp P., et al., Control of nanoparticle film structure for colloidal líthography.
Colloids and Surfaces A: Physicochemical and Engineering aspects, 2003. 214: p. 23- 36.
Johnson C. A. and Lenhoff A. M., Adsorption of charged latex particles on Mica studied by atomic force microscopy. Journal of Co lloid and Interface Science, 1996. 179: p. 587-599.
Semmlcr M., ct al., Diflusional deposition of charged latex particles on water-solid interfaces at low íonic strength. Langmuir, 1998. 14: p. 5127-5132.
Kooij E. Stefan, et al., Ionic strength rnediated self-organisation ofgold nanocrystals: an AFM study. Langmuir, 2002. 18: p. 7677-7682.
Verwey E.J.W. and Overbeek J.Th.G., Theory of the stability of lyophobic colloidsz 1948, Amsterdam: Elsevier Publishing Company Inc.
Lundgren A. O., PCT/SE2009/051060. 2009.
Arnold M., et al., Activation of integrin function by nanopatterned adhesive intelfaces.
ChemPhysChem, 2004. 5: p. 383-388.
Michel R., et al., A novel approach to produce bíologically relevant chemical patterns at the nanometer scale: selectíve molecular assembly patterning combined with colloidal lithography. Langmuir, 2002. 18: p. 8580-8586.
Elwing H., et al., A wettabilíty gradient-method for studies of macromolecular interactions at the liquid solid interface. Joumal of Colloid and Interface Science, 1987. 119(1): p. 203-210.
Kim M.S., Khang G., and Lee H.B., Gradient polymer suifaces for biomedícal applications. Progress in polymcr science, 2008. 33(1): p. 138-164.
Morgenthaler S., Zink C., and Spencer ND., Surface-chemical and -morphological gradients. SOFT MATTER, 2008. 4(3)2 p. 419-434.
Liedbcrg B. and Tengvall P., Molecular gradients of omega-substituted alkanethiols on gold - preparation and chracterization. Langmuir, 1995. 11( 10): p. 3821-3827.
Grabar Katherine C., et al., Kinetic control of interparticle spacing in Au colloíd- based suifaces: Rational nanometer-Scale Architecture. Journal of the American Chemical Society, 1996. 118: p. 1148-1153.
Arnold M., et al., Inductíon of cell polarization and migration by a gradient of nanoscale variations in adhesíve ligand spacing. Nano Letters, 2008. 8(7): p. 2063- 2069.
Andersson 0., et al., Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study. Biomacromolecules, 2009. 10: p. 142-148.
K'oWino I. O. and Sadik O. A., Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis, 2005. 17(23): p. 2101-21 13.
Zhao J. J., et al., Nanoparticle-mediated electron transfer across ultrathin self- assembledfilms. Journal of Physical Chemistry B, 2005. 109(48): p. 22985-22994.
Bard A. J. and Faulkner L. R., Electrochemical Methods. 2:nd ed. 2001: John Wiley & Sons Inc. 9
Claims (12)
1. l. En metod för att preparera en kontinuerlig gradient av deponerade och elektriskt laddade nanopartiklar (200), 1-1000 nm, längs med en plan fast yta som innefattar att mängden deponerade partiklar/ytenhet är relativt hög på den ena sidan av gradientytan och relativt låg på den motsatta sidan och som också innefattas av att avståndet mellan de deponerade partiklarna regleras med hjälp av elektrostatisk repulsion av partiklar i lösning vid deponeringstillfallet, kännetecknad av att en plan fast yta (203) placeras i en saltfri eller nära saltfri lösning (402) med ytladdade nanopartiklar (200); en saltlösning (403) skiktas under lösningen (402) och tillåts diffundera in i lösningen (402); så att graden av elektrostatisk repulsion mellan deponerade partiklar åstadkommes genom avpassad diffusion av en saltlösning (403) in i lösning (402) innehållande nanopartiklar (200).
2. Metod enligt krav 1, samt att diffusionen av saltlösningen åstadkommes genom att en saltlösning med relativt hög densitet och koncentration skiktas under saltfri lösning i en särskild anordning och att den gradvisa deponeringstätheten av mängd nanopartiklarna på den sagda ytan regleras genom diffusionstiden och koncentrationen av salt i saltlösningen.
3. Metod enligt krav 1 samt att diffusionen av saltlösningen görs från en avgränsad behållare som anbringas på en plan matris som också innehåller nanopartiklar och vars bottenyta helt eller delvis har kontakt med den sagda plana ytan.
4. Metod enligt något av kraven 1-3 samt att nanopartiklarna utgöres av metall, keramiskt material inklusive glas eller polymennaterial.
5. Metod enligt något av kraven 1-4 samt att sagda yta utgöres av metall, keramiskt material inklusive glas eller polymennaterial.
6. Metod enligt något av kraven 1-5 samt att bindningskrafter mellan nanopartiklar och sagda yta helt eller delvis består av kovalent bindning, metallbindning, van der Waals-bindning, vätebindning, dipol-dipolbindning eller jon- dipolbindning. l0 15 20 535 087 12
7. Metod enligt något av kraven 1-2 samt att den sagda plana ytan utgöres av en guldyta som fått binda ditiolreagens och att guldpartiklar kovalent också binder till tiol grupper på ditiolguldytan.
8. Metod enligt något av kraven 1-2 samt att negativt laddade, men ej ytbindande, nanopartiklar blandas med ytbindande nanopartiklar vid deponeringstillfállet i avsikt att förbättra spridningsgrad, och förhindra klusterbildning av ytbindande deponerade partiklar.
9. Metod enligt något av kraven I-6 samt att en ytpreparation, avsedd för analys av adsorptionsfenomen, tillverkas så att ytpreparationen innehåller tre separata ytor varav en yta har samma ytkemi som partíkelytan, en yta har samma ytkemi som den sagda ytan samt en yta som utgöres av sagd gradient yta.
10. Metod enligt något av kraven 1-3 eller 9, samt att positioner markeras på den sagda gradientytan så att mikroskopisk analys av adhesionsförsök underlättas.
11. 1 1. Metod enligt något av kraven 1-3 eller 9, samt att utvärderingsmetoden vid adsorptionstörsök på sagd gradientyta utgöres av iSPR.
12. Metod enligt något av kraven l-3 eller 9, samt att utvärderingsmetoden vid adsorptionsßrsök på gradientyta utgöres av elektrokemisk metodik på en för ändamålet avsedd gradientyta med närliggande elektriskt isolerade avsnitt.
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1050866A SE535087C2 (sv) | 2010-08-24 | 2010-08-24 | En metod för att preparera en plan yta med en kontrollerad täthetsgradient av deponerade partiklar i nanostorlek |
| US13/818,541 US9566604B2 (en) | 2010-08-24 | 2011-08-24 | Method for preparing a surface with a controlled coverage of nanograde particles |
| CN201180051333.1A CN103180055B (zh) | 2010-08-24 | 2011-08-24 | 制备具有受控的纳米级粒子覆盖率的表面的方法 |
| JP2013525302A JP6114192B2 (ja) | 2010-08-24 | 2011-08-24 | ナノグレード粒子の制御された被覆率を有する表面を調製する方法 |
| EP11757205.7A EP2608896B1 (en) | 2010-08-24 | 2011-08-24 | A method for preparing a surface with a controlled coverage of nanograde particles |
| ES11757205.7T ES2663833T3 (es) | 2010-08-24 | 2011-08-24 | Un método para preparar una superficie con una cobertura controlada de partículas de calibre nanométrico |
| DK11757205.7T DK2608896T3 (en) | 2010-08-24 | 2011-08-24 | A PROCEDURE FOR THE PREPARATION OF A SURFACE WITH A CONTROLLED COATING OF NANOPARTICLES |
| PCT/EP2011/064582 WO2012025576A1 (en) | 2010-08-24 | 2011-08-24 | A method for preparing a surface with a controlled coverage of nanograde particles |
| US15/394,140 US10274415B2 (en) | 2010-08-24 | 2016-12-29 | Method for preparing a surface with a controlled coverage of nanograde particles |
| JP2017048302A JP6462746B2 (ja) | 2010-08-24 | 2017-03-14 | 帯電したナノ粒子の連続勾配を有する表面、接着現象の分析用の装置、ならびに表面および装置の使用 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1050866A SE535087C2 (sv) | 2010-08-24 | 2010-08-24 | En metod för att preparera en plan yta med en kontrollerad täthetsgradient av deponerade partiklar i nanostorlek |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| SE1050866A1 SE1050866A1 (sv) | 2012-02-25 |
| SE535087C2 true SE535087C2 (sv) | 2012-04-10 |
Family
ID=44651681
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SE1050866A SE535087C2 (sv) | 2010-08-24 | 2010-08-24 | En metod för att preparera en plan yta med en kontrollerad täthetsgradient av deponerade partiklar i nanostorlek |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US9566604B2 (sv) |
| EP (1) | EP2608896B1 (sv) |
| JP (2) | JP6114192B2 (sv) |
| CN (1) | CN103180055B (sv) |
| DK (1) | DK2608896T3 (sv) |
| ES (1) | ES2663833T3 (sv) |
| SE (1) | SE535087C2 (sv) |
| WO (1) | WO2012025576A1 (sv) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB201204579D0 (en) * | 2012-03-15 | 2012-05-02 | Univ Nottingham Trent | Coating metal oxide particles |
| EP3091347A1 (en) * | 2015-05-04 | 2016-11-09 | The European Union, represented by the European Commission | Screening of nanoparticle properties |
| EP3872168A1 (en) | 2020-02-28 | 2021-09-01 | Cline Scientific AB | Chondrocyte differentiation |
| EP4056271A1 (en) | 2021-03-10 | 2022-09-14 | Cline Scientific AB | Quantification of cell migration and metastatic potential of tumor cells |
| CN116251951B (zh) * | 2023-03-10 | 2023-11-10 | 清华大学 | 一种基于界面张力梯度-静电引力复合制备金属纳米颗粒自组装层的方法及其应用 |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6025202A (en) | 1995-02-09 | 2000-02-15 | The Penn State Research Foundation | Self-assembled metal colloid monolayers and detection methods therewith |
| US5609907A (en) | 1995-02-09 | 1997-03-11 | The Penn State Research Foundation | Self-assembled metal colloid monolayers |
| US6242264B1 (en) | 1996-09-04 | 2001-06-05 | The Penn State Research Foundation | Self-assembled metal colloid monolayers having size and density gradients |
| DE10144252A1 (de) | 2001-08-31 | 2003-03-27 | Fraunhofer Ges Forschung | Nanopartikel mit daran immobilisiertem biologisch aktivem TNF |
| FI118061B (sv) | 2001-09-24 | 2007-06-15 | Beanor Oy | Förfarande och biogivare för analys |
| DE10200648A1 (de) | 2002-01-10 | 2003-07-24 | Inst Neue Mat Gemein Gmbh | Verfahren zur Herstellung Optischer Elemente mit Gradientenstruktur |
| US6972155B2 (en) | 2002-01-18 | 2005-12-06 | North Carolina State University | Gradient fabrication to direct transport on a surface |
| KR20040105839A (ko) | 2002-04-03 | 2004-12-16 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | 폴리에틸렌글리콜화 나노 입자를 담지하는 바이오센서 칩표면 |
| WO2005015792A2 (en) | 2003-08-06 | 2005-02-17 | Purdue Research Foundation | Fabrication of nanoparticle arrays |
| US7750352B2 (en) | 2004-08-10 | 2010-07-06 | Pinion Technologies, Inc. | Light strips for lighting and backlighting applications |
| EP1846421A4 (en) | 2005-01-20 | 2009-10-28 | Agency Science Tech & Res | WATER-SOLUBLE NANOPARTICLE WITH FUNCTIONALIZED SURFACE FOR BIOCONJUGATION BY UNIVERSAL SILANE COUPLING |
| DE102005026485A1 (de) | 2005-06-09 | 2006-12-14 | Bayer Technology Services Gmbh | Hydrophile Nanoteilchen mit funktionellen Oberflächengruppen, deren Herstellung und Verwendung |
| US20070127164A1 (en) | 2005-11-21 | 2007-06-07 | Physical Logic Ag | Nanoscale Sensor |
| FR2893934B1 (fr) | 2005-11-25 | 2008-11-14 | Commissariat Energie Atomique | Dispositif nanostructure |
| EP2007514A2 (en) | 2006-03-28 | 2008-12-31 | Inanovate, Inc. | Nano-particle biochip substrates |
| KR100900955B1 (ko) * | 2006-12-06 | 2009-06-08 | 한국전자통신연구원 | 자기조립된 분자의 커버리지 분석용 기판 및 이를 이용하여자기조립된 분자의 커버리지를 분석하는 방법 |
| US8084087B2 (en) * | 2007-02-14 | 2011-12-27 | The Board Of Trustees Of The Leland Stanford Junior University | Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition |
| US20090098366A1 (en) | 2007-09-07 | 2009-04-16 | Northwestern University | Methods of coating surfaces with nanoparticles and nanoparticle coated surfaces |
| US20110245528A1 (en) | 2008-09-23 | 2011-10-06 | Schwartz C Eric | Therapeutic compounds |
| US8267681B2 (en) * | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
| CN101993467B (zh) | 2009-08-24 | 2015-12-09 | 香港科技大学 | 在纳米颗粒表面控制功能分子密度的方法 |
-
2010
- 2010-08-24 SE SE1050866A patent/SE535087C2/sv not_active IP Right Cessation
-
2011
- 2011-08-24 JP JP2013525302A patent/JP6114192B2/ja active Active
- 2011-08-24 EP EP11757205.7A patent/EP2608896B1/en active Active
- 2011-08-24 ES ES11757205.7T patent/ES2663833T3/es active Active
- 2011-08-24 CN CN201180051333.1A patent/CN103180055B/zh active Active
- 2011-08-24 US US13/818,541 patent/US9566604B2/en active Active
- 2011-08-24 DK DK11757205.7T patent/DK2608896T3/en active
- 2011-08-24 WO PCT/EP2011/064582 patent/WO2012025576A1/en active Application Filing
-
2016
- 2016-12-29 US US15/394,140 patent/US10274415B2/en active Active
-
2017
- 2017-03-14 JP JP2017048302A patent/JP6462746B2/ja not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012025576A1 (en) | 2012-03-01 |
| JP6462746B2 (ja) | 2019-01-30 |
| JP2013541410A (ja) | 2013-11-14 |
| EP2608896A1 (en) | 2013-07-03 |
| CN103180055B (zh) | 2014-12-31 |
| JP2017189764A (ja) | 2017-10-19 |
| US9566604B2 (en) | 2017-02-14 |
| EP2608896B1 (en) | 2017-12-27 |
| DK2608896T3 (en) | 2018-03-26 |
| SE1050866A1 (sv) | 2012-02-25 |
| US20170241896A1 (en) | 2017-08-24 |
| US20130180326A1 (en) | 2013-07-18 |
| JP6114192B2 (ja) | 2017-04-12 |
| US10274415B2 (en) | 2019-04-30 |
| ES2663833T3 (es) | 2018-04-17 |
| CN103180055A (zh) | 2013-06-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Li et al. | Superamphiphilic TiO2 composite surface for protein antifouling | |
| Valsesia et al. | Direct quantification of nanoparticle surface hydrophobicity | |
| Wanunu et al. | Coordination-based gold nanoparticle layers | |
| Rozlosnik et al. | Effect of solvents and concentration on the formation of a self-assembled monolayer of octadecylsiloxane on silicon (001) | |
| Zheng et al. | Imparting biomimetic ion-gating recognition properties to electrodes with a hydrogen-bonding structured core− shell nanoparticle network | |
| Kooij et al. | Ionic strength mediated self-organization of gold nanocrystals: An AFM study | |
| Lü et al. | Kelvin probe force microscopy on surfaces: investigation of the surface potential of self-assembled monolayers on gold | |
| JP6462746B2 (ja) | 帯電したナノ粒子の連続勾配を有する表面、接着現象の分析用の装置、ならびに表面および装置の使用 | |
| Yun et al. | The biomolecular corona in 2D and reverse: patterning metal–phenolic networks on proteins, lipids, nucleic acids, polysaccharides, and fingerprints | |
| Kovalchuk et al. | Interactions between nanoparticles in nanosuspension | |
| Cant et al. | Surface functionalisation for the self-assembly of nanoparticle/polymer multilayer films | |
| Wargacki et al. | Fabrication of 2D ordered films of tobacco mosaic virus (TMV): processing morphology correlations for convective assembly | |
| Wang et al. | The effect of gold nanoparticles on the impedance of microcapsules visualized by scanning photo-induced impedance microscopy | |
| Giraud et al. | Amino-functionalized monolayers covalently grafted to silica-based substrates as a robust primer anchorage in aqueous media | |
| Zhu et al. | Monolayer arrays of nanoparticles on block copolymer brush films | |
| Fan et al. | Size-selective deposition and sorting of lyophilic colloidal particles on surfaces of patterned wettability | |
| Beurer et al. | Protein and nanoparticle adsorption on orthogonal, charge-density-versus-net-charge surface-chemical gradients | |
| Bouffier et al. | Modulation of wetting gradients by tuning the interplay between surface structuration and anisotropic molecular layers with bipolar electrochemistry | |
| Wang et al. | pH-responsive SERS substrates based on AgNP-polyMETAC composites on patterned self-assembled monolayers | |
| Huwiler et al. | Self-assembly of functionalized spherical nanoparticles on chemically patternedmicrostructures | |
| US20100015718A1 (en) | Substrate for analyzing coverage of self-assembled molecules and analyzing method using the same | |
| Sopoušek et al. | Thick nanoporous matrices of polystyrene nanoparticles and their potential for electrochemical biosensing | |
| US7752931B2 (en) | Nanopatterned surfaces and related methods for selective adhesion, sensing and separation | |
| Vikholm-Lundin et al. | Assembly of citrate gold nanoparticles on hydrophilic monolayers | |
| Lin et al. | Ordered 2D Gold Nanoparticle Films for Sensing of Toluene and Ethanol Gases |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| NUG | Patent has lapsed |