RU2798854C2 - Способ извлечения золота из упорных тонкоизмельченных сульфидных концентратов - Google Patents

Способ извлечения золота из упорных тонкоизмельченных сульфидных концентратов Download PDF

Info

Publication number
RU2798854C2
RU2798854C2 RU2021135314A RU2021135314A RU2798854C2 RU 2798854 C2 RU2798854 C2 RU 2798854C2 RU 2021135314 A RU2021135314 A RU 2021135314A RU 2021135314 A RU2021135314 A RU 2021135314A RU 2798854 C2 RU2798854 C2 RU 2798854C2
Authority
RU
Russia
Prior art keywords
stage
treatment
oxygen
gold
carried out
Prior art date
Application number
RU2021135314A
Other languages
English (en)
Other versions
RU2021135314A (ru
Inventor
Иван Александрович Сидоров
Ольга Давыдовна Хмельницкая
Александр Владимирович Бывальцев
Андрей Витальевич Евдокимов
Original Assignee
Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет"
Filing date
Publication date
Application filed by Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет" filed Critical Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет"
Publication of RU2021135314A publication Critical patent/RU2021135314A/ru
Application granted granted Critical
Publication of RU2798854C2 publication Critical patent/RU2798854C2/ru

Links

Abstract

Изобретение относится к металлургии благородных металлов для извлечения золота из упорных тонкоизмельченных сульфидных концентратов. Способ включает сверхтонкое измельчение, двухстадийную окислительную обработку измельченного продукта при атмосферном давлении, при этом на первой стадии проводят кислородную обработку, а на второй стадии – кислородно-известковую обработку, и цианирование окисленного продукта. Двухстадийную окислительную обработку проводят с промежуточной фильтрацией и с добавкой растворимого соединения двухвалентного свинца от 2,0 до 7 кг/т, первую стадию кислородной обработки проводят в течение 24 ч до pH 1,6, а вторую стадию окисления – кислородно-известковую обработку – в течение 24 ч до создания pH 11, после чего твердый остаток направляют на цианирование. Способ позволяет повысить извлечение золота при снижении расхода цианида натрия. 2 табл., 1 пр.

Description

Изобретение относится к гидрометаллургии благородных металлов и, в частности, может быть использовано для извлечения золота из упорных тонкоизмельченных сульфидных концентратов.
В последнее десятилетие проблема вовлечения в переработку упорных золотосодержащих руд и концентратов все более остро встает перед золотодобывающей отраслью. Значительная часть минерально-сырьевых золотых запасов находится в «упорных» рудах, характеризующихся наличием тонковкрапленного золота, ассоциированного с пиритом и арсенопиритом, что затрудняет возможность прямого цианирования продуктов обогащения. Для переработки такого типа сырья предложены различные технологические схемы, основанные на операциях предварительного термохимического, автоклавного и бактериального вскрытия с последующим цианированием продуктов обработки. Разработанные технологии используются за рубежом и на ряде предприятий золотодобывающей промышленности РФ и стран СНГ (Олимпиада, Суздальское, Амурский ГМК, Кокпатас и др.). Однако в ряде случаев эти технологии являются экономически малоэффективными из-за высоких расходов реагентов и электроэнергии, значительной продолжительности процесса и т.д.
В настоящее время ведется разработка альтернативных технологий для извлечения золота из упорных сульфидных продуктов, основанных на применении сверхтонкого помола.
Весьма перспективными технологиями по переработке упорных сульфидных золотосодержащих руд и концентратов являются технологии Albion и Leachox, основанные на применении сверхтонкого помола продуктов обогащения и атмосферного окисления (кислородно-известковая обработка) с последующим цианированием.
Указанные технологии испытаны в лабораторном и пилотном масштабах для переработки упорных сульфидных концентратов, а также внедрены на ряде золотодобывающих предприятий. По результатам испытаний отмечено повышение извлечения золота из данного типа сырья при умеренном расходе цианистого натрия.
Albion-process основан на сверхтонком измельчении упорного сырья до крупности 80% класса минус 8-12 мкм, окислительном выщелачивании пульпы плотностью 25-30% твердого в щелочной среде при температуре выше 70°С и последующем цианировании. Стадия окислительного выщелачивания осуществляется при атмосферном давлении в присутствии кислорода. В качестве щелочного реагента используют известняк и известь. Процесс предварительной щелочной обработки ведут при рН выше 4 с целью создания условий для образования гетита FeOOH, который не растворяется в цианистых растворах, тем самым снижается расход NaCN при цианировании (сайт www.albionprocess.com).
Известен способ, предусматривающий извлечение благородных металлов из упорного материала, включающий тонкое измельчение материала до крупности 80% класса менее 20 мкм, выщелачивание в щелочной среде в присутствии кислорода при поддержании рН на уровне 5-7 и температуре 60-85°С с использованием в качестве щелочных реагентов известняка и извести с окислением сульфидов вплоть до 95% и дальнейшее цианирование окисленного материала для извлечения золота и серебра (патент AU 9900795, 21.09.1998).
Известен способ-прототип, который заключается в том, что концентрат подвергают сверхтонкому измельчению в бисерной мельнице до крупности 95% класса менее 10 мкм, предварительной двухстадиальной кислородно-известковой обработке и цианированию. Предварительную обработку ведут в две стадии последовательно при температуре 75-85°С. Вначале пульпу окисляют кислородом до рН - 2-3 в течение 3-6 ч и далее проводят известково-кислородную обработку до рН - 10,5-11,0 в течение 3-6 ч (до степени окисления сульфидов 45-50%) и цианируют в сорбционном режиме (патент RU 2598742 С2, 24.12.2014).
Недостатком известных способов является осаждение гипсо-железистых продуктов окисления сульфидов, которые покрывают поверхность окисляемых сульфидов и золота, из-за чего снижается эффективность как самого процесса окисления, так и последующего цианирования. Кроме того, известные способы характеризуются повышенным расходом цианида натрия из-за его нецелевого взаимодействия с продуктами неполного окисления серы.
Задачей предлагаемого изобретения является повышение извлечения золота из минерального сырья по технологии сверхтонкого измельчения, окисления кислородом при атмосферном давлении и цианирования, а также снижение расхода цианида натрия при цианировании, и, как следствие, сокращение расхода реагентов на обезвреживание цианистых отходов. Технический результат достигается путем создания особых условий предварительной подготовки концентрата к цианированию после сверхтонкого измельчения.
Сущность предлагаемого способа заключается в том, что окисление тонкоизмельченного сырья кислородом при атмосферном давлении ведут в кислой среде без добавки защелачивающих реагентов (СаО, СаСО3 или др.). Затем кислые растворы, содержащие растворенные продукты окисления сульфидов (в основном серную кислоту и сульфаты железа) отделяют от твердого остатка и утилизируют отдельно. Благодаря тому, что процесс окисления ведется в кислой среде, и осаждение продуктов реакции на окисляемые сульфиды сведено к минимуму - наблюдается увеличение эффективности процесса окисления. А благодаря тому, что железо и сера были отделены от концентрата в растворенном виде, и минимизировано образование осадков на поверхности золота - его извлечение при последующем цианировании увеличивается.
С целью минимизации расхода NaCN в предлагаемом способе цианистую переработку окисленного продукта ведут с добавками растворимых соединений свинца, который связывает цианисиды, входящие в состав жидкой и твердой фаз питания цианирования - в первую очередь сульфиды. Благодаря пассивации основных потребителей цианида, его общий расход на процесс снижается.
В предлагаемом способе предусмотрена возможность дополнительного усиления положительных эффектов благодаря возможности использования кислорода при защелачивании продукта окисления. При этом, с одной стороны, продолжается процесс окисления сульфидов и увеличивается доля золота, вскрытого окислением, а, с другой стороны, окисляются промежуточные формы окисления серы (твердые и растворимые сульфиды, полисульфиды, политионаты, тиосульфаты, проявляющие явные цианисидные свойства), благодаря чему снижается расход NaCN при последующем цианировании.
Предлагаемый способ иллюстрирует следующий пример.
Исследованию подвергали сульфидный флотоконцентрат, крупностью 95.0% класса минус 71 мкм, содержащий 32,1 г/т золота. По минеральному составу указанный продукт на 36,2% представлен сульфидами, из которых 17.1% приходится на пирит, 19,1% - на арсенопирит.
Исследования были направлены на определение оптимальных условий предварительной обработки пульпы и их влияние на показатели извлечения золота при цианировании, расход реагента-растворителя и концентрацию SCN в хвостах сорбции.
Определяли оптимальную крупность измельчения, продолжительность двухстадиальной кислородно-известковой обработки с промежуточной фильтрацией.
Концентрат измельчали в бисерной мельнице до крупности 30, 20, 10 и 5 мкм. Затем пульпу планировали при отношении Ж:Т=3:1, концентрации NaCN - 2,0 г/л в течение 24 ч для определения оптимальной крупности измельчения, которая составила 93% класса минус 10 мкм, т.к. более тонкий помол приводит к определенным трудностям при дальнейшей переработке тонкоизмельченного сырья (заиливание дренажей; повышенное Ж:Т при цианировании, ввиду высокой вязкости продукта; повышенный расход NaCN при цианировании и др.). Результаты представлены в таблице 1.
Figure 00000001
Пульпу, полученную при оптимальной крупности измельчения 93% класса минус 10 мкм, подвергали предварительной двухстадиальной кислородно-известковой обработке с промежуточной фильтрацией. Пульпу нагревали до температуры 75-85°С и через диспергатор подавали кислород. Изменяли продолжительность первой и второй стадии кислородно-известковой обработки от 4 до 24 ч, контролируя рН пульпы. По окончании каждого эксперимента пульпу охлаждали до температуры 25°С и проводили сорбционное цианирование при отношении Ж:Т=3:1, концентрации NaCN -2,0 г/л в течение 24 ч в присутствии активного угля.
При оптимальной продолжительности двухстадиальной кислородно-известковой обработки с промежуточной фильтрацией кислых растворов, проводили процесс при различной загрузке Рb(NO3)2 от 2,0 до 7,0 кг/т
Результаты представлены в таблице 2.
Анализ полученных данных показывает, что оптимальной продолжительностью первой стадии кислородной обработки является 24 ч до рН - 1,6, после чего проводится фильтрация кислых растворов и кек направляется на вторую стадию кислородно-известковой обработки продолжительностью - 24 ч при которой создается рН пульпы 11, при температуре процесса - 75-85°С и оптимальной загрузкой Pb(NO3)2 - 5 кг/т. В указанных условиях происходит окисление сульфидов на 72-78%. Извлечение золота при цианировании составляет 87,5%, что на 47,6% больше в сравнении с необработанным концентратом (39,9%). Расход цианида натрия на 1 т концентрата в результате предварительной обработки снижается с 38,7 до 19,0 кг, при расходе извести - 170,0 кг/т. Концентрация роданид-ионов в результате добавления Рb(NO3)2 в процесс предварительной кислородно-известковой обработки, снижается в хвостах цианирования с 1268 до 288 мг/л.
Рассмотренный пример показывает, что предлагаемый способ позволил повысить извлечение золота по схеме измельчения, окисления и цианирования концентрата с 72,2% (по способу-прототипу) до 87,5% при снижении расхода NaCN с 22,8 (по способу-прототипу) до 17,0 кг/т.
Figure 00000002

Claims (1)

  1. Способ извлечения благородных металлов из упорного сульфидного сырья, включающий сверхтонкое измельчение, двухстадийную окислительную обработку измельченного продукта при атмосферном давлении, при этом на первой стадии проводят кислородную обработку, а на второй стадии – кислородно-известковую обработку, и цианирование окисленного продукта, отличающийся тем, что двухстадийную окислительную обработку проводят с промежуточной фильтрацией и с добавкой растворимого соединения двухвалентного свинца от 2,0 до 7 кг/т, первую стадию кислородной обработки проводят в течение 24 ч до pH 1,6, а вторую стадию окисления – кислородно-известковую обработку – в течение 24 ч до создания pH 11, после чего твердый остаток направляют на цианирование.
RU2021135314A 2021-11-29 Способ извлечения золота из упорных тонкоизмельченных сульфидных концентратов RU2798854C2 (ru)

Publications (2)

Publication Number Publication Date
RU2021135314A RU2021135314A (ru) 2023-05-29
RU2798854C2 true RU2798854C2 (ru) 2023-06-28

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255286A (zh) * 2013-05-17 2013-08-21 招金矿业股份有限公司金翅岭金矿 一种抑制原生硫化铜在金精矿氰化过程中溶解的方法
RU2598742C2 (ru) * 2014-12-24 2016-09-27 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ извлечения благородных металлов из упорного сульфидсодержащего сырья

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255286A (zh) * 2013-05-17 2013-08-21 招金矿业股份有限公司金翅岭金矿 一种抑制原生硫化铜在金精矿氰化过程中溶解的方法
RU2598742C2 (ru) * 2014-12-24 2016-09-27 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ извлечения благородных металлов из упорного сульфидсодержащего сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОЛОЖЕНКИН П.М. и др. Влияние соединений свинца (II) на скорость цианидного растворения золота. Журнал общей химии, 2007, т. 77, вып. 1, с.3-12. DESCHENES G. et al., Effect of lead nitrate on cyanidation of gold ores: progress on the study of the mechanisms. Minerals Engineering, 2000, Volume 13, Issue 12, pp.1270. *

Similar Documents

Publication Publication Date Title
AU2011318686B2 (en) A process of gold and copper recovery from mixed oxide - sulfide copper ores
US4738718A (en) Method for the recovery of gold using autoclaving
AU2017402487B2 (en) Beneficiation method for mixed copper ore with low oxidation rate and high binding rate
BG61110B1 (bg) Метод за окисляване на метални сулфиди с помощта на термоустой- чиви бактерии
US20190256950A1 (en) Process for metal recovery in flotation operations
González-Anaya et al. Gold recovery optimization of a refractory concentrate by ultrafine grinding—A laboratory study
CN106269290B (zh) 从高品位硫精矿中除铜铅锌的浮选方法
Koizhanova et al. Hydrometallurgical studies on the leaching of copper from man-made mineral formations
RU2608481C2 (ru) Способ кучного выщелачивания золота из минерального сырья
RU2398903C1 (ru) Способ переработки упорных урановых содержащих пирит и благородные металлы материалов для извлечения урана и получения концентрата благородных металлов
RU2798854C2 (ru) Способ извлечения золота из упорных тонкоизмельченных сульфидных концентратов
JP2010229542A (ja) 含銅物からの黄鉄鉱の分離方法
RU2366736C2 (ru) Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы
US20230193418A1 (en) Sulphide oxidation in leaching of minerals
CN114632630A (zh) 一种从含锌铜精矿中回收铜锌的方法
Bazhko et al. Evaluation of ozonation technology for gold recovery and cyanide management during processing of a double refractory gold ore
Gül et al. Use of non-toxic depressants in the selective flotation of copper-lead-zinc ores
RU2339456C2 (ru) Способ обогащения золотосодержащих руд
RU2598742C2 (ru) Способ извлечения благородных металлов из упорного сульфидсодержащего сырья
RU2754726C1 (ru) Способ извлечения золота из упорных руд
Abubakriev et al. Leaching of gold-containing ores with application of oxidation activators
Lin Characterization and flotation of sulfur from chalcopyrite concentrate leaching residue
RU2819012C1 (ru) Способ извлечения золота из углисто-сульфидного сырья двойной упорности
Borisov et al. Occurrence and Mobility of Gold in Old Milltailings
Gudkov et al. Evaluation of autoclave oxidation of sulfide concentrates as applied to the subsequent sulfite-thiosulfate leaching of noble metals