RU2608481C2 - Способ кучного выщелачивания золота из минерального сырья - Google Patents

Способ кучного выщелачивания золота из минерального сырья Download PDF

Info

Publication number
RU2608481C2
RU2608481C2 RU2015120780A RU2015120780A RU2608481C2 RU 2608481 C2 RU2608481 C2 RU 2608481C2 RU 2015120780 A RU2015120780 A RU 2015120780A RU 2015120780 A RU2015120780 A RU 2015120780A RU 2608481 C2 RU2608481 C2 RU 2608481C2
Authority
RU
Russia
Prior art keywords
gold
peroxide
mineral
leaching
solution
Prior art date
Application number
RU2015120780A
Other languages
English (en)
Other versions
RU2015120780A (ru
Inventor
Артур Геннадиевич Секисов
Юрий Иванович Рубцов
Вячеслав Сергеевич Королев
Александр Юрьевич Лавров
Николай Васильевич Зыков
Татьяна Геннадьевна Конарева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ")
Priority to RU2015120780A priority Critical patent/RU2608481C2/ru
Publication of RU2015120780A publication Critical patent/RU2015120780A/ru
Application granted granted Critical
Publication of RU2608481C2 publication Critical patent/RU2608481C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение предназначено для кучного выщелачивания золота из минерального сырья. Фотоэлектроактивированный пероксидно-карбонатный и/или пероксидно-гидроксидный раствор используют для окомкования исходного сырья. Затем минеральную массу укладывают в штабели, выдерживают паузу и орошают до ее полного смачивания двумя видами активных растворов - с окислителями и комплексообразователем для золота, выдерживают вторую паузу. По завершении диффузионного выщелачивания золота орошают штабель раствором комплексообразователя, подготовленным на основе активированной воды и/или обеззолоченного маточного раствора, прошедших электрохимическую и/или фотоэлектрохимическую обработку, который непосредственно перед подачей на орошение штабелей смешивают с высококонцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором. Техническим результатом является повышение эффективности способа переработки техногенного минерального сырья за счет более полного вскрытия минеральных матриц. 3 табл., 1 пр.

Description

Изобретение относится к гидрометаллургии благородных металлов, а именно к гидрометаллургической переработке золотосодержащего минерального сырья и предназначено для извлечения золота и сопутствующих промышленно ценных металлов.
Известен способ переработки хвостов флотации полиметаллических руд, согласно которому хвосты флотации подвергают гидравлической классификации на пески и шламы. Пески обогащают на концентрационных столах с перечистками, хвосты гравитационного обогащения доизмельчают, флотируют и получают сульфидные концентраты, из которых извлекают продуктивные компоненты (см. заявку RU 93046294, МПК6 B03B 7/00, опубл. 20.05.1996).
Недостатком данного способа является невысокая эффективность за счет невозможности извлечения дисперсного золота, составляющего основную долю запасов месторождений упорных руд и техногенных образований, что связано с недостаточным доступом комплексообразователей к частицам наноразмерного золота.
Наиболее близким к заявляемому является способ кучного выщелачивания золота из минерального сырья, включающий агломерацию минеральной массы исходного сырья, формирование из агломерированного сырья штабеля и выщелачивание золота путем подачи в штабель раствора выщелачивающего реагента, рециркуляцию рабочих растворов, сбор продуктивных растворов с последующим выделением из них золота (см. патент RU №2461637, МПК C22B 11/00, 7/00, 3/04, опубл. 20.09.2012).
Эффективность данного способа также недостаточно велика из-за неполного вскрытия минеральных матриц, содержащих инкапсулированное и дисперсное золото, а также высокого расхода основного комплексообразующего реагента, используемого для выщелачивания золота, вследствие его побочных реакций с рудообразующими элементами и компонентами активного содового раствора.
Техническим результатом предлагаемого изобретения является повышение эффективности способа переработки техногенного минерального сырья за счет более полного вскрытия минеральных матриц, содержащих инкапсулированное и дисперсное золото, а также снижения удельного расхода реагентов, используемых для его извлечения.
Указанный технический результат достигается тем, что способ кучного выщелачивания золота из минерального сырья, включающий агломерацию минеральной массы исходного сырья, формирование из агломерированного сырья штабеля и выщелачивание золота путем подачи в штабель раствора выщелачивающего реагента, рециркуляцию рабочих растворов, сбор продуктивных растворов с последующим выделением из них золота, отличающийся тем, что агломерацию сырья осуществляют с добавлением активного концентрированного пероксидно-карбонатного и/или пероксидно-гидроксидного раствора, приготовленных из водных растворов, соответственно, карбонатов щелочных металлов или их гидроксидов с добавлением в них перекиси водорода с последующей электрохимической и/или фотоэлектрохимической обработкой, а после формирования из агломерированного сырья штабеля выдерживают паузу, после которой минеральную массу одновременно орошают, до ее полного смачивания, двумя видами растворов: активным выщелачивающим с комплексообразователем для золота, подготовленным путем его растворения в воде, прошедшей электрохимическую и/или фотоэлектрохимическую обработку, и низкоконцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором, приготовленным аналогично растворам для агломерации, по завершении смачивания минеральной массы выдерживают паузу для осуществления диффузионного выщелачивания золота, по завершении которого орошают минеральную массу раствором комплексообразователя, подготовленным на основе активированной воды и/или обеззолоченного маточного раствора, прошедших электрохимическую и/или фотоэлектрохимическую обработку, который непосредственно перед подачей на орошение штабелей смешивают с высококонцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором.
Отличительными признаками предлагаемого способа является то, что агломерацию сырья осуществляют с добавлением активного концентрированного пероксидно-карбонатного и/или пероксидно-гидроксидного раствора, приготовленных из водных растворов, соответственно, карбонатов щелочных металлов или их гидроксидов с добавлением в них перекиси водорода и последующей электрохимической и/или фотоэлектрохимической обработкой, а после формирования из агломерированного сырья штабеля выдерживают паузу, после которой минеральную массу одновременно орошают, до ее полного смачивания, двумя видами растворов: активным выщелачивающим с комплексообразователем для золота, подготовленным путем его растворения в воде, прошедшей электрохимическую и/или фотоэлектрохимическую обработку, и низкоконцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором, приготовленных из водных растворов, соответственно, карбонатов щелочных металлов или их гидроксидов с добавлением в них перекиси водорода и последующей электрохимической и/или фотоэлектрохимической обработкой, по завершении смачивания минеральной массы выдерживают паузу для осуществления диффузионного выщелачивания золота, по завершении которого орошают минеральную массу раствором комплексообразователя, подготовленным на основе активированной воды и/или обеззолоченного маточного раствора, прошедших электрохимическую и/или фотоэлектрохимическую обработку, который непосредственно перед подачей на орошение штабелей смешивают с высококонцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором.
Способ осуществляется следующим образом.
В фотоэлектрохимическом реакторе готовят концентрированный (с содержанием исходного компонента 5-30 г/л) активный пероксидно-карбонатный и/или пероксидно-гидроксидный раствор путем барботажа воздухом исходного водного раствора соды (и/или поташа) и/или щелочи (гидроксида натрия и/или калия), после чего осуществляют его электролиз, в процессе которого, постоянно или периодически, вводят перекись водорода или пероксиды щелочных металлов, а на завершающей стадии смешанный активный раствор (водно-газовую эмульсию) облучают УФ-светом в диапазоне 180-300 нанометров. Таким образом получают, соответственно, пероксидно-карбонатный и/или пероксидно-гидроксидный растворы, содержащие полученные в ходе электрохимических и фотохимических реакций гидратированные гидроксил-радикалы и гидроксил-ионы. Ввод перекиси водорода (или пероксидов щелочных металлов), в процессе фотоэлектрохимической обработки содового или щелочного раствора, позволяет, за счет высокой гидратационной активности перекисных соединений, формировать в растворе активные кластеры - гидратные комплексы, состоящие из активных (в том числе ионизированных) молекул воды, продуктов ее электродиссоциации и фотолиза (в том числе ионов гидроксония, гидроксил-ионов и гидроксил-радикалов). Эти растворы используют при агломерации (окомковании) золотосодержащей минеральной массы. В случае высокого (более 3% по массе руды) содержания сложноокисляемых сульфидных минералов - пирита и пирротина, при подготовке активного раствора перекись водорода вводят дважды: перед электрохимической обработкой и перед фотоэлектрохимической обработкой исходного раствора соды и/или щелочи. Золотосодержащую минеральную массу, обработанную таким высокоактивным раствором, укладывают в штабели и выдерживают паузу продолжительностью 1-5 суток для интенсивного диффузионного выщелачивания железа и марганца гидрокарбонатами, окисления серы гидратированными формами активного кислорода, гидролитической трансформации частиц золотосодержащего кварца-халцедона, набухания глинистых золотосодержащих минералов, что обеспечивает повышение их проницаемости для компонентов выщелачивающих растворов.
После выдерживания этой паузы минеральную массу, до ее полного смачивания, орошают одновременно двумя видами растворов: активным выщелачивающим с комплексообразователем для золота, например, цианидом натрия, подготовленным путем его растворения в воде, прошедшей электрохимическую и/или фотоэлектрохимическую обработку, и низкоконцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором, приготовленным на базе водных растворов, соответственно, карбонатов щелочных металлов или их гидроксидов с добавлением в них перекиси водорода и последующей электрохимической и/или фотоэлектрохимической обработкой. Далее опять выдерживают паузу для осуществления диффузионного выщелачивания золота с одновременным доокислением минеральных матриц, содержащих его дисперсные формы. По завершении диффузионного выщелачивания минеральную массу орошают раствором комплексообразователя, подготовленным на основе активированной воды и/или обеззолоченного маточного раствора, прошедших электрохимическую и/или фотоэлектрохимическую обработку, который непосредственно перед подачей на орошение штабелей смешивают с высококонцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором.
Пример конкретного осуществления способа
Лежалые хвосты обогащения руд месторождения Новинка Карийского рудного поля, расположенного в пределах золото-молибден-вольфрамового пояса. Руды этого месторождения характеризуются 3-мя продуктивными минеральными парагенезисами: с магнетитом (5-ти генераций), кварцем и актинолитом, висмутином. В исходных рудах золото представлено преимущественно самородной формой зерна размерами 0.3-1.2 до 2-3 мм, более мелкие золотины группируются в скопления размером до 3 мм. Кроме того, мелкое и «тонкое» (менее 0.1 мм) золото локализовано, соответственно, в виде интерстиций в агрегатах магнетита и его отдельных зернах. Дисперсное золото в рудах месторождения не исследовалось и не оценивалось, но учитывая наличие в рудах акцессорных пирита (2-х генераций), арсенопирита, частично замещаемого скородитом, можно предположить и наличие в них, а соответственно, и в хвостах обогащения, и такой его формы. Кроме того, в частицах кварца и актинолита может находиться субмикронное инкапсулированное золото. Хвосты обогащения руд месторождений Карийского рудного поля были уложены более 10 лет назад, поэтому золотосодержащий магнетит частично трансформирован в гематит, гетит и гидрогетит, преимущественно в области микротрещин. В кварце и актинолите помимо генетических микротрещин могла появиться система дополнительных гипергенных микротрещин, индуцированных воздействиями солнечной радиации, воздуха и пленочной воды. Таким образом, внутрикристаллическое тонкое и инкапсулированное золото могло частично вскрыться и стать доступным для реагентов, используемых в процессах его кучного, скважинного или кюветного выщелачивания. Руда - золотосодержащие метасоматиты переменного состава с золотосодержащими сульфидными минералами и высоким содержанием продуктивного кварца.
После проведения входного анализа на содержание золота в навесках пробы хвостов были получены следующие результаты (см таблицу 1):
Figure 00000001
После смешивания проб-НК-1, НК-2, НК-3, НК-5, НК-6, НК-7, НК-8, НК-10, НК-11, была получена вторичная усредненная проба, анализ навесок этой пробы позволил получить следующий результат (см. таблицу 2):
Figure 00000002
Технологическая проба хвостов была усреднена и разделена на навески массой по 5 кг. Навески были смешаны перед окомкованием с цементом (НК(СП)) 3 г/кг=15 г. Во вторую навеску была добавлена окись кальция (НК(СП1)) 0.2 г/кг=1 г. Обе навески при окомковании были обработаны активным раствором, полученным в электрохимическом реакторе при электрохимической обработке содового раствора концентрацией 10 г/л, в ходе которой в раствор добавлялась 32%-я перекись водорода с интенсивностью 10 мл/л*час. Агломерированный (окомкованный) с использованием этого раствора материал помещался в пластиковые колонны диаметром 150 мм и выстаивался 2.5 суток для реализации процесса капиллярного насыщения им минеральной массы. При этом осуществлялись начальное окисление и гидратация золотосодержащих минеральных матриц.
После этого в колонну в течение 1 часа был подан активный пероксидно-цианидный раствор в количестве 200 мл и активный карбонатно-пероксидный раствор в количестве 50 мл до достижения полного их поглощения минеральной массой. Пероксидно-цианидный раствор готовился по следующей технологии. В воду добавлялся гидроксид натрия (концентрация 1.3 г/л), полученный первичный раствор проходил обработку в фотоэлектрохимическом реакторе, в ходе которой, на стадии электрохимической активации, в раствор разово добавлялась перекись водорода, исходя из расхода 0.05 мл/л*час. После электролиза раствор облучался УФ-лампой ДРТ-240. В полученный активный пероксидно-гидроксидный раствор, перед подачей его в колонну, добавлялся порошковый цианид натрия до достижения его концентрации в растворе 3 г/л. Обработанный материал выстаивался в колонне в течение 5-ти суток для обеспечения выщелачивания золота в диффузионном режиме. После чего осуществлялась капельная подача цианидного раствора концентрацией 0.3 г/л, подготовленного на основе активной воды из фотоэлектрохимического реактора в количестве 300 мл/сутки, в который непосредственно перед орошением добавляли пероксидно-карбонатный раствор в пропорции 1:10, что обеспечивало инфильтрационный гидродинамический режим движения рабочего раствора в колонне, формирование новых активных кластерных цианидно-гидроксильных комплексов и вывод растворенного золота из области диффузионного слоя пленочной воды в формируемый продуктивный раствор. Параллельно, (начиная с 5.5 суток), осуществлялся выпуск продуктивных растворов из колонн и их анализ на золото, серебро, медь, кальций и магний, содержание цианидов, а также измерение pH. Жидкие пробы отбирались и передавались на анализ через каждые 12 часов. Анализы на золото (Au), серебро (Ag), медь (Cu) проводились на атомно-абсорбционном спектрофотометре. Методом титрования определяли кальций (Ca), магний (Mg) и содержание NaCN в продуктивном растворе, pH замеряли на анализаторе Анион. Первый слив из колонн имел высокие содержания золота (3.36 и 3.93 мг/л соответственно). В последующие сутки наблюдалось резкое снижение содержания золота (Au) до 0.05 мг/л. Продуктивные растворы пропускались через колонку с активированным углем, полученные обеззолоченные маточные растворы реактивировались в электрохимическом реакторе, и в них вводился цианид натрия до концентрации 0.3 г/л. В полученный раствор добавлялся пероксидно-карбонатный раствор в соотношении 1:10.
На тринадцатые сутки, вследствие предельно малых концентраций золота в продуктивных растворах обеих колонн, материал из них был извлечен. Пробы материала высушили и истерли до фракции 0,071 мкм, после чего провели исследование на остаточное содержание золота после выщелачивания.
Результаты анализа после выщелачивания (см. таблицу 3):
Figure 00000003
Таким образом, по данным анализов твердой фазы, предлагаемый способ обеспечил извлечение из параллельных проб 86% и 93% соответственно (ранее проведенные эксперименты по классической цианидной схеме показали извлечение не выше 50%).

Claims (1)

  1. Способ кучного выщелачивания золота из минерального сырья, включающий агломерацию минеральной массы исходного сырья, формирование из агломерированного сырья штабеля и выщелачивание золота путем подачи орошением в штабель раствора выщелачивающего реагента, рециркуляцию рабочих растворов, сбор продуктивных растворов с последующим выделением из них золота, отличающийся тем, что агломерацию исходного сырья осуществляют с добавлением активного концентрированного пероксидно-карбонатного и/или пероксидно-гидроксидного растворов, приготовленных из водных растворов, соответственно, карбонатов щелочных металлов или их гидроксидов, с добавлением в них перекиси водорода с последующей электрохимической и/или фотоэлектрохимической обработкой, при этом после формирования из агломерированного сырья штабеля выдерживают паузу, после которой минеральную массу одновременно орошают до ее полного смачивания двумя видами растворов в виде активного выщелачивающего с комплексообразователем для золота, подготовленного путем его растворения в воде, прошедшей электрохимическую и/или фотоэлектрохимическую обработку, и низкоконцентрированного пероксидно-карбонатного и/или пероксидно-гидроксидного раствора, приготовленного аналогично растворам, используемым при агломерации, по завершении смачивания минеральной массы исходного сырья выдерживают паузу для диффузионного выщелачивания золота, по завершении которого ведут выщелачивание золота орошением упомянутой минеральной массы раствором комплексообразователя, подготовленным на основе активированной воды и/или обеззолоченного маточного раствора, прошедшего электрохимическую и/или фотоэлектрохимическую обработку, который непосредственно перед подачей на орошение штабелей смешивают с высококонцентрированным пероксидно-карбонатным и/или пероксидно-гидроксидным раствором.
RU2015120780A 2015-06-01 2015-06-01 Способ кучного выщелачивания золота из минерального сырья RU2608481C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015120780A RU2608481C2 (ru) 2015-06-01 2015-06-01 Способ кучного выщелачивания золота из минерального сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015120780A RU2608481C2 (ru) 2015-06-01 2015-06-01 Способ кучного выщелачивания золота из минерального сырья

Publications (2)

Publication Number Publication Date
RU2015120780A RU2015120780A (ru) 2016-12-20
RU2608481C2 true RU2608481C2 (ru) 2017-01-18

Family

ID=57759075

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120780A RU2608481C2 (ru) 2015-06-01 2015-06-01 Способ кучного выщелачивания золота из минерального сырья

Country Status (1)

Country Link
RU (1) RU2608481C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680120C1 (ru) * 2017-12-21 2019-02-15 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ кучного выщелачивания золота
RU2698167C1 (ru) * 2019-03-21 2019-08-22 Федеральное государственное бюджетное учреждение науки Институт горного дела Дальневосточного отделения Российской академии наук Способ кучного выщелачивания из золото-медно-порфировых руд
RU2700893C1 (ru) * 2018-06-25 2019-09-23 Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет" Способ извлечения золота кучным и перколяционным выщелачиванием из упорных углистых руд, обладающих сорбционной активностью
RU2707459C1 (ru) * 2019-06-04 2019-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Забайкальский государственный университет" (ФГБОУ ВО "ЗабГУ") Способ кучного выщелачивания золота из техногенного минерального сырья

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501721A (en) * 1983-06-10 1985-02-26 Kamyr, Inc. Leaching and washing a flocculated slurry having a fiber content
EP0177291A2 (en) * 1984-09-27 1986-04-09 Sherritt Gordon Limited Recovery of gold from auriferous refractory iron-containing sulphidic ore
US5229085A (en) * 1985-05-10 1993-07-20 Kamyr, Inc. Utilization of oxygen in leaching and/or recovery procedures employing carbon
RU2112061C1 (ru) * 1996-02-12 1998-05-27 Инженерно-технический центр "Силовые импульсные системы" при Московской государственной геологоразведочной академии Способ отработки техногенных золотосодержащих россыпей
EP1171641A1 (en) * 1998-09-21 2002-01-16 Mim Holdings Limited Method for treating precious metal bearing minerals
WO2002022899A2 (en) * 2000-09-13 2002-03-21 Ge Betz, Inc. Removal of base metals during cyanide/cip processing of gold and silver ores
RU2461637C1 (ru) * 2011-03-11 2012-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет (ФГБОУ ВПО "ЗабГУ") Способ переработки техногенного минерального сырья с извлечением промышленно ценных и/или токсичных компонентов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501721A (en) * 1983-06-10 1985-02-26 Kamyr, Inc. Leaching and washing a flocculated slurry having a fiber content
EP0177291A2 (en) * 1984-09-27 1986-04-09 Sherritt Gordon Limited Recovery of gold from auriferous refractory iron-containing sulphidic ore
US5229085A (en) * 1985-05-10 1993-07-20 Kamyr, Inc. Utilization of oxygen in leaching and/or recovery procedures employing carbon
RU2112061C1 (ru) * 1996-02-12 1998-05-27 Инженерно-технический центр "Силовые импульсные системы" при Московской государственной геологоразведочной академии Способ отработки техногенных золотосодержащих россыпей
EP1171641A1 (en) * 1998-09-21 2002-01-16 Mim Holdings Limited Method for treating precious metal bearing minerals
WO2002022899A2 (en) * 2000-09-13 2002-03-21 Ge Betz, Inc. Removal of base metals during cyanide/cip processing of gold and silver ores
RU2461637C1 (ru) * 2011-03-11 2012-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет (ФГБОУ ВПО "ЗабГУ") Способ переработки техногенного минерального сырья с извлечением промышленно ценных и/или токсичных компонентов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680120C1 (ru) * 2017-12-21 2019-02-15 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ кучного выщелачивания золота
RU2700893C1 (ru) * 2018-06-25 2019-09-23 Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет" Способ извлечения золота кучным и перколяционным выщелачиванием из упорных углистых руд, обладающих сорбционной активностью
RU2698167C1 (ru) * 2019-03-21 2019-08-22 Федеральное государственное бюджетное учреждение науки Институт горного дела Дальневосточного отделения Российской академии наук Способ кучного выщелачивания из золото-медно-порфировых руд
RU2707459C1 (ru) * 2019-06-04 2019-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Забайкальский государственный университет" (ФГБОУ ВО "ЗабГУ") Способ кучного выщелачивания золота из техногенного минерального сырья

Also Published As

Publication number Publication date
RU2015120780A (ru) 2016-12-20

Similar Documents

Publication Publication Date Title
RU2086682C1 (ru) Гидрометаллургический способ извлечения благородных металлов из упорной сульфидной руды
Fleming Hydrometallurgy of precious metals recovery
CA2693271C (en) Precious metal recovery using thiocyanate lixiviant
RU2461637C1 (ru) Способ переработки техногенного минерального сырья с извлечением промышленно ценных и/или токсичных компонентов
Lv et al. Comprehensive recovery of metals from cyanidation tailing
RU2608481C2 (ru) Способ кучного выщелачивания золота из минерального сырья
RU2385959C1 (ru) Способ получения золота из сульфидных золотосодержащих руд
Ivanik Flotation extraction of elemental sulfur from gold-bearing cakes
RU2432407C1 (ru) Способ переработки сурьмяно-мышьяковых сульфидных золотосодержащих руд
Guo et al. Selective removal of antimony from refractory gold ores by ultrasound
JP2015214731A (ja) 金の回収方法
Yessengarayev et al. Ore treatment hydrogen peroxide during heap leaching of gold
Kasaini et al. Enhanced leachability of gold and silver in cyanide media: Effect of alkaline pre-treatment of jarosite minerals
CA3164573A1 (en) Methods for recovering a precious metal from refractory ores by near-ambient alkaline pre-oxidation and complexation
Ahlatci et al. Sulphide precipitation of gold and silver from thiosulphate leach solutions
US6143259A (en) Treatment of pyrite and arsenophrite containing material with ferric ions and sulfur dioxide/oxygen mixture to improve extraction of valuable metals therefrom
RU2585593C1 (ru) Способ кучного выщелачивания золота из упорных руд и техногенного минерального сырья
Gurman et al. Gold and arsenic recovery from calcinates of rebellious pyrite–arsenopyrite concentrates
RU2361937C1 (ru) Способ подготовки упорных сульфидных руд и концентратов к выщелачиванию
RU2749310C2 (ru) Способ переработки сульфидного золотомедного флотоконцентрата
Bazhko et al. Evaluation of ozonation technology for gold recovery and cyanide management during processing of a double refractory gold ore
RU2635582C1 (ru) Способ выщелачивания металлов из упорных углистых руд (варианты)
RU2023734C1 (ru) Способ переработки золото- и серебросодержащих руд
CN114761586A (zh) 经优化以提高在酸-氯化物介质中从矿石和/或精矿溶解金属的固-液-固湿法冶金方法
Rusalev et al. Investigation of complex treatment of the gold-bearing antimony flotation concentrate

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190602