RU2366736C2 - Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы - Google Patents

Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы Download PDF

Info

Publication number
RU2366736C2
RU2366736C2 RU2007124425/02A RU2007124425A RU2366736C2 RU 2366736 C2 RU2366736 C2 RU 2366736C2 RU 2007124425/02 A RU2007124425/02 A RU 2007124425/02A RU 2007124425 A RU2007124425 A RU 2007124425A RU 2366736 C2 RU2366736 C2 RU 2366736C2
Authority
RU
Russia
Prior art keywords
pulp
solution
zinc
autoclave
separated
Prior art date
Application number
RU2007124425/02A
Other languages
English (en)
Other versions
RU2007124425A (ru
Inventor
Владимир Федорович Козырев (RU)
Владимир Федорович Козырев
Яков Михайлович Шнеерсон (RU)
Яков Михайлович Шнеерсон
Лев Владимирович Чугаев (RU)
Лев Владимирович Чугаев
Александр Юрьевич Лапин (RU)
Александр Юрьевич Лапин
Константин Анатольевич Плеханов (RU)
Константин Анатольевич Плеханов
Геннадий Вениаминович Скопов (RU)
Геннадий Вениаминович Скопов
Андрей Борисович Лебедь (RU)
Андрей Борисович Лебедь
Георгий Пантелеевич Харитиди (RU)
Георгий Пантелеевич Харитиди
Валерий Дмитриевич Шевелев (RU)
Валерий Дмитриевич Шевелев
Original Assignee
ООО "Институт Гипроникель"
ООО "УГМК-Холдинг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО "Институт Гипроникель", ООО "УГМК-Холдинг" filed Critical ООО "Институт Гипроникель"
Priority to RU2007124425/02A priority Critical patent/RU2366736C2/ru
Publication of RU2007124425A publication Critical patent/RU2007124425A/ru
Application granted granted Critical
Publication of RU2366736C2 publication Critical patent/RU2366736C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение может быть использовано в гидрометаллургии и относится к способу переработки медно-цинковых промпродуктов, содержащих благородные металлы. Способ включает окислительное автоклавное выщелачивание при температуре 160-200°С в сернокислой среде под давлением кислорода, нейтрализацию избыточной кислоты реагентом-нейтрализатором, гидротермальную обработку нейтрализованной пульпы в автоклаве при 160-200°С, отделение осадка от раствора с формированием обогащенного медного концентрата, содержащего благородные металлы, и цинкового раствора. При этом нейтрализацию избыточной кислоты ведут из предварительно отделенной от твердой фазы жидкой фазы пульпы окислительного автоклавного выщелачивания с выделением отвального гипсового кека. Отделенный от кека раствор смешивают с твердой фазой пульпы окислительного автоклавного выщелачивания с получением нейтрализованной пульпы. Полученную пульпу направляют на гидротермальную обработку. Техническим результатом является повышение извлечения благородных металлов, сокращение времени обработки. 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к цветной металлургии, в частности к гидрометаллургическим способам переработки сульфидного сырья, содержащего цветные металлы.
Известен способ переработки сульфидного медно-цинкового концентрата путем автоклавного окислительного выщелачивания (АОВ) измельченного сырья в сернокислых растворах с последующей гидротермальной обработкой (ГТО) пульпы в автоклаве при 130-160°С [С.С.Набойченко и др. Автоклавная гидрометаллургия цветных металлов. Екатеринбург: ГОУ УГТУ-УПИ, 2002, с.550-554]. Выщелачивание ведут при 140°С, что обуславливает высокую продолжительность автоклавного процесса (2 часа) и переход основного количества сульфидной серы в элементарную форму. Выделяющаяся при ГТО серная кислота не позволяет осадить из конечного раствора всю растворившуюся медь, что требует дополнительной операции по ее доосаждению известными методами. В конечном кеке - медном концентрате содержится 25-30% элементарной серы, что затрудняет дальнейшую переработку продукта традиционными пирометаллургическими методами. Для повышения качества конечного медного концентрата из него необходимо удалять серу дополнительными операциями, например флотацией.
Наиболее близким к предлагаемому является способ, включающий АОВ медно-цинкового промпродукта, содержащего благородные металлы, при температурах выше 160° и нейтрализацию избыточной кислоты непосредственно в пульпе [Я.М.Шнеерсон, Н.Ф.Иванова. Цветные металлы. 2003, № 7, с.63-67]. Нейтрализованная пульпа разделяется на твердую и жидкую составляющие; твердое подлежит флотации для отделения железогипсовых отвальных хвостов, а концентрат флотации объединяется с раствором и поступает на ГТО. После гидротермальной обработки получают цинковый раствор, почти не содержащий меди и медный концентрат.
При температурах АОВ выше 160° элементарная сера практически не образуется, а с отвальными хвостами удаляется значительная часть железа и серы, поэтому достигается высокая степень сокращения медного продукта: содержание меди в медном концентрате увеличивается в 1,5-2 раза по сравнению с исходным Cu-Zn промпродуктом. Недостатками схемы являются высокие потери благородных металлов (Au, Ag) с отвальными железогипсовыми хвостами. Удовлетворительная степень сокращения материала, а значит, и качество конечного медного концентрата достигаются только при дополнительном флотационном выделении железа и гипса из нейтрализованной пульпы. Кроме того, нейтрализация, проводимая в пульпе, сопровождается большим пенообразованием и требует увеличения времени процесса.
Задачей изобретения является гидрометаллургическое обогащение медно-цинкового промпродукта, содержащего благородные металлы. Техническим результатом, достигаемым при этом, является высокое (более 90%) извлечение благородных металлов в медный концентрат, а также высокие седиментационные характеристики пульп, образующихся после гидротермальной обработки. Высокое качество конечного медного концентрата достигается без дополнительной операции флотации и соответствует увеличению меди в нем в 1,6-1,8 раза.
Заявленный технический результат достигается тем, что в способе переработки медно-цинковых промпродуктов, содержащих благородные металлы, включающем окислительное автоклавное выщелачивание при температуре 160-200°С в сернокислой среде под давлением кислорода, нейтрализацию избыточной кислоты реагентом-нейтрализатором, гидротермальную обработку нейтрализованной пульпы в автоклаве - при 160-200°С, отделение медьсодержащего осадка от цинкового раствора, согласно изобретению нейтрализацию кислоты, содержащейся в жидкой фазе пульпы окислительного автоклавного выщелачивания, ведут в растворе, предварительно отделенном от твердого, из нейтрализованной пульпы отделяют отвальный гипсовый кек, раствор смешивают с твердой фазой пульпы автоклавного окислительного выщелачивания и смесь направляют на гидротермическую обработку.
В качестве реагента-нейтрализатора пульпы АОВ может быть использован полупродукт собственного производства, получаемый из конечного цинкового раствора осаждением известными методами в виде карбонатов и/или гидратов цинка. Этот прием сокращает затраты на используемые в технологии реагенты.
Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы, включает окислительное автоклавное выщелачивание при температуре 160-200°С в сернокислой среде под давлением кислорода, нейтрализацию избыточной кислоты реагентом нейтрализатором, гидротермальную обработку нейтрализованной пульпы, отделение осадка от раствора с формированием обогащенного медного концентрата, осаждение цинка из раствора с образованием цинкового полупродукта, заключается в том, что нейтрализацию избыточной кислоты осуществляют в растворе, предварительно отделенном от твердого сгущением и/или фильтрацией. Нейтрализованный раствор смешивают с твердой фазой и направляют на ГТО, которую проводят при температуре 160-200°С. Из раствора ГТО осаждают цинк путем дозирования к нему пульпы извести и/или известняка. В результате получают цинковый полупродукт, состоящий из гидратов и карбонатов цинка, которые хорошо растворяются в кислом электролите и могут быть переработаны до товарного цинка известными методами. Кислоторастворимый цинковый полупродукт может быть использован в качестве нейтрализатора избыточной кислотности в растворе после АОВ.
Процесс нейтрализации, проводимый в растворе, а не в пульпе АОВ, протекает гораздо интенсивнее. Образующаяся пена легко разрушается, и время нейтрализации сокращается в 1,5-2 раза. Отсутствие железоокисных хвостов в предлагаемой схеме обуславливает отсутствие потерь благородных металлов с этим продуктом. Единственным отвальным продуктом в предлагаемой технологии является гипсовый кек, осаждаемый из раствора. Попадание в него благородных металлов исключено, т.к. эти металлы в раствор на АОВ не переходят.
Изложенное подтверждается следующими примерами.
Эксперименты по реализации способа прототипа и предлагаемого способа проводили на пробе медно-цинкового промпродукта, содержащего Cu 12.3%, Zn 7,0%, S 44%, Au 2,1 г/т, Ag 77,5 г/т. Пробу материала массой 600 г загружали в 3-литровый автоклав, туда же загружали 1,8 л раствора, содержащего 9 г/л серной кислоты и столько же меди в виде CuSO4. Опыты по АОВ проводили при температуре 180°С и парциальном давлении кислорода 0,4 МПа. Выщелачивание проводили в режиме, обеспечивающем максимальное разложение сфалерита (95-98%), 45-55% разложение халькопирита и 20-30% разложение пирита. Такие показатели обеспечивали полное осаждение меди из раствора на операции ГТО
Степень разложения минералов контролировали по расходу кислорода, который измеряли специальным прибором. Предварительно было установлено, что в указанных условиях для достижения принятой степени разложения минералов необходимо 140-150 л технического кислорода, дозируемого из баллона.
В опытах по прототипу пульпу АОВ подвергали нейтрализации при температуре 65-70°С. Процесс осуществляли порционной подачей реагента нейтрализатора до достижения рН пульпы 1,7-2,3. Скорость подачи нейтрализатора и время всего процесса определялось интенсивностью ценообразования и скоростью разрушения пены. В качестве нейтрализатора использовали известняк, содержащий СаО 47%, который задавали в процесс в виде пульпы с ж:т 1:1. Нейтрализованную пульпу разделяли на жидкую и твердую составляющие фильтрацией. Кек распульповывали водой и подвергали флотации в лабораторной флотомашине в 3 операции: основная, контрольная, перечистка. В качестве реагентов использовали раствор Na2SO4 (20 кг/т), бутиловый ксантогенат (600 г/т), МИБК (100 г/т). Отфильтрованный концентрат флотации вместе с раствором после нейтрализации направляли на гидротермальную обработку.
В опытах по предлагаемому способу нейтрализации подвергали жидкую фазу пульпы АОВ, которую предварительно выделяли при отстаивании пульпы в цилиндре до достижения значения ж:т в сгущенном продукте 1:1. В некоторых опытах нейтрализацию вели цинковым полупродуктом, который предварительно получали путем осаждения из сульфатного цинкового раствора известняком. Содержание Zn в таком реагенте составляло 41%. После нейтрализации раствор отделяли от осадка фильтрацией и вместе со сгущенным продуктом пульпы АОВ направляли на ГТО.
Гидротермальную обработку во всех опытах (по прототипу и предлагаемому) проводили в лабораторном автоклаве в одинаковых условиях: температура 180°С, продолжительность 1 час. Скорость сгущения конечной пульпы определяли экспериментами в литровом цилиндре по скорости перемещения границы раздела фаз на «активном» участке, т.е. в зоне свободного осаждения частиц. Сгущение проводили при комнатной температуре без добавления флокулянтов.
Конечные твердые продукты анализировали на содержание металлов. По результатам анализа продуктов рассчитывали показатели извлечения в конечный медный концентрат меди, золота и серебра. Результаты проведенных экспериментов представлены в таблице.
Данные показывают, что предлагаемый способ характеризуется высокими извлечениями благородных металлов в конечный продукт - медный концентрат. Извлечение золота возрастает на 6,5-8%, серебра более чем на 40% абс. За счет менее устойчивой пены при нейтрализации кислоты в растворе (а не в пульпе) продолжительность процесса может быть сокращена как минимум в 1,5 раза. При этом степень сокращения материала не уменьшается, а даже несколько возрастает, содержание меди в медном концентрате увеличивается на 1,2-1,5% абс.
Figure 00000001
Предлагаемый способ обеспечивает высокие показатели обезвоживания конечных пульп, поскольку в пульпе, поступающей на гидротермальную обработку, отсутствует мелкодисперсный гипс, образовавшийся на нейтрализации. Скорость осаждения частиц при сгущении увеличивается в 6-7 раз.

Claims (2)

1. Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы, включающий окислительное автоклавное выщелачивание при температуре 160-200°С в серно-кислой среде под давлением кислорода, нейтрализацию избыточной кислоты реагентом нейтрализатором, гидротермальную обработку нейтрализованной пульпы в автоклаве при 160-200°С, отделение осадка от раствора с формированием обогащенного медного концентрата, содержащего благородные металлы, и цинкового раствора, отличающийся тем, что нейтрализацию избыточной кислоты ведут из предварительно отделенной от твердой фазы жидкой фазы пульпы окислительного автоклавного выщелачивания с выделением отвального гипсового кека, отделенный от отвального гипсового кека раствор смешивают с твердой фазой пульпы окислительного автоклавного выщелачивания с получением нейтрализованной пульпы, которую направляют на гидротермальную обработку.
2. Способ по п.1, отличающийся тем, что в качестве реагента нейтрализатора используют цинксодержащий полупродукт, полученный из цинкового раствора осаждением.
RU2007124425/02A 2007-06-28 2007-06-28 Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы RU2366736C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007124425/02A RU2366736C2 (ru) 2007-06-28 2007-06-28 Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007124425/02A RU2366736C2 (ru) 2007-06-28 2007-06-28 Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы

Publications (2)

Publication Number Publication Date
RU2007124425A RU2007124425A (ru) 2009-01-10
RU2366736C2 true RU2366736C2 (ru) 2009-09-10

Family

ID=40373722

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007124425/02A RU2366736C2 (ru) 2007-06-28 2007-06-28 Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы

Country Status (1)

Country Link
RU (1) RU2366736C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496892C1 (ru) * 2012-03-01 2013-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ флотации серебра из кислых кеков цинкового производства
RU2578881C2 (ru) * 2013-12-12 2016-03-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ переработки цинковых кеков
CN111270084A (zh) * 2020-03-20 2020-06-12 长沙有色冶金设计研究院有限公司 一种提高硫化铜精矿氧压浸出过程中氧气利用率的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ШНЕЕРСОН Я.М., ИВАНОВА Н.Ф. Цветные металлы, 2003, №7, с.63-67. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496892C1 (ru) * 2012-03-01 2013-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ флотации серебра из кислых кеков цинкового производства
RU2578881C2 (ru) * 2013-12-12 2016-03-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ переработки цинковых кеков
CN111270084A (zh) * 2020-03-20 2020-06-12 长沙有色冶金设计研究院有限公司 一种提高硫化铜精矿氧压浸出过程中氧气利用率的方法

Also Published As

Publication number Publication date
RU2007124425A (ru) 2009-01-10

Similar Documents

Publication Publication Date Title
CA2349940C (en) Method for treating precious metal bearing minerals
RU2023728C1 (ru) Способ извлечения цинка, меди, свинца и серебра из цинкжелезосодержащего сульфидного сырья
RU2483127C1 (ru) Способ переработки упорной золотосодержащей пирротин-арсенопиритной руды
JPH08505902A (ja) 複合鉱石から金属の湿式冶金回収方法
MX2012009361A (es) Auxiliar de flotacion de sulfuro.
JPH0530887B2 (ru)
CA2765926C (en) Method for leaching chalcopyrite concentrate
CN101120108A (zh) 含铜材料的处理方法
AU2017402487B2 (en) Beneficiation method for mixed copper ore with low oxidation rate and high binding rate
US20190256950A1 (en) Process for metal recovery in flotation operations
MXPA04006156A (es) Oxidacion por presion de alta temperatura de minerales y concentrados de minerales que contienen plata usando la precipitacion controlada de especies de sulfato.
EA031994B1 (ru) Выщелачивание минералов
CN104010962B (zh) 用于在酸性洗涤溶液中分离砷和重金属的方法
RU2366736C2 (ru) Способ переработки медно-цинковых промпродуктов, содержащих благородные металлы
RU2592656C1 (ru) Способ переработки упорных пирит-арсенопирит-пирротин-антимонитовых золотосодержащих руд (варианты)
JP6430330B2 (ja) 選鉱方法
AU2004257842B2 (en) Method for smelting copper concentrates
RU2578881C2 (ru) Способ переработки цинковых кеков
RU2336343C1 (ru) Способ извлечения металлов из комплексных руд, содержащих благородные металлы
KR101113631B1 (ko) 정광의 제조방법
JPS5845339A (ja) 亜鉛浸出鉱滓およびそれからの二次浸出残渣の処理方法
KR101603003B1 (ko) 니켈 저함량 재료로부터 니켈을 분리하는 방법
RU2798854C2 (ru) Способ извлечения золота из упорных тонкоизмельченных сульфидных концентратов
EA037155B1 (ru) Способ переработки руд, низкосортных концентратов и техногенных отходов меди
CN115430516B (zh) 一种含金银铜的硫铁矿焙烧渣水洗液处理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090629