RU2794897C1 - Стабилизатор коллоидного раствора серебра - Google Patents
Стабилизатор коллоидного раствора серебра Download PDFInfo
- Publication number
- RU2794897C1 RU2794897C1 RU2022112719A RU2022112719A RU2794897C1 RU 2794897 C1 RU2794897 C1 RU 2794897C1 RU 2022112719 A RU2022112719 A RU 2022112719A RU 2022112719 A RU2022112719 A RU 2022112719A RU 2794897 C1 RU2794897 C1 RU 2794897C1
- Authority
- RU
- Russia
- Prior art keywords
- lignin
- solution
- silver
- colloidal
- sulfate
- Prior art date
Links
- 239000003381 stabilizer Substances 0.000 title claims abstract description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title abstract description 30
- 229920005610 lignin Polymers 0.000 claims abstract description 53
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 29
- 229910052709 silver Inorganic materials 0.000 claims abstract description 26
- 239000004332 silver Substances 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 25
- 238000012360 testing method Methods 0.000 description 15
- 238000003860 storage Methods 0.000 description 13
- 238000013517 stratification Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000006396 nitration reaction Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 229920001732 Lignosulfonate Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229920002521 macromolecule Polymers 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920005611 kraft lignin Polymers 0.000 description 3
- -1 methoxy, carbonyl Chemical group 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229910021653 sulphate ion Inorganic materials 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000410159 Matticnemis doi Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000007031 hydroxymethylation reaction Methods 0.000 description 2
- JCZMXVGQBBATMY-UHFFFAOYSA-N nitro acetate Chemical compound CC(=O)O[N+]([O-])=O JCZMXVGQBBATMY-UHFFFAOYSA-N 0.000 description 2
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 238000004537 pulping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 150000003385 sodium Chemical class 0.000 description 2
- 229920005552 sodium lignosulfonate Polymers 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241001571736 Lysimachia foenum-graecum Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 235000019357 lignosulphonate Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000000802 nitrating effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 230000009935 nitrosation Effects 0.000 description 1
- 238000007034 nitrosation reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Abstract
Изобретение относится к коллоидной химии и химии лигнина и касается применения нитрованного сульфатного лигнина следующего элементного состава, %: N - 2,4; С - 51,9; H - 4,3; S - 2,8; О - 38,5 в качестве стабилизатора коллоидного раствора серебра. Технический результат: повышение стабильности коллоидного раствора серебра. 1 табл., 12 пр.
Description
Предлагаемое изобретение относится к коллоидной химии и химии лигнина и касается использования нитрованного сульфатного лигнина в качестве стабилизатора коллоидного раствора серебра.
Из 70 млн. т технических лигнинов, образующихся при химической переработке растительного сырья, в качестве товарного продукта применяется менее 2 % [1], [2]. Сульфатный лигнин является техническим лигнином, который образуется при сульфатной варке целлюлозы из природного лигнина. Сульфатный способ получения целлюлозы является наиболее распространенным в мире.
Как правило, сульфатный лигнин сжигается для регенерации химикатов (гидроксида и сульфида натрия), выработки электроэнергии и технологического пара.
Сульфатный лигнин образуется из природного лигнина и является побочным продуктом сульфатной варки целлюлозы. Природные лигнины построены из фенилпропановых структурных единиц, связанных друг с другом простыми эфирными и углерод-углеродными связями. Лигнины как полимерные вещества обладают полидисперсностью. Для них характерно наличие различных функциональных групп (фенольных, метоксильных, карбонильных, спиртовых, карбоксильных). В отличие от целлюлозы структура макромолекул лигнинов является нерегулярной. В зависимости от технологического процесса технические лигнины обладают значительными различиями в функциональном составе, молекулярно-массовых характеристиках, физических, химических свойствах, а также в их составе имеются различные неорганические и органические примеси [3].
Основным направлением использования сульфатного лигнина является включение его в систему регенерации химикатов и производства электроэнергии и технологического пара.
Некоторое количество сульфатного лигнина без существенного влияния на систему регенерации химикатов может быть использовано в других сферах как в исходном виде, так и после целенаправленной модификации. Об этом свидетельствуют многочисленные публикации.
Выделенный из черного щелока с помощью диоксида углерода сульфатный лигнин доступен в качестве коммерческого продукта, который производится в США и Финляндии по процессу LignoBoost™ [4]. Объем производства оценивается в 75000 т сульфатного лигнина в год.
Химическая модификация лигнина может быть использована для улучшения совместимости полимеров с лигнином и для введения в макромолекулы лигнина новых реакционных центров. Свободные гидроксильные группы в макромолекуле лигнина являются реакционноспособными и способными к образованию водородных связей [5]. Модификация этих реакционноспособных центров приводит к эффективному изменению физико-химических свойств лигнина.
Основные направления модификации сульфатного лигнина: синтез простых и сложных эфиров [6], [7] сульфонирование [8], [9], гидроксиметилирование [10], [11], окисление [12], [13].
Нитрозирование и нитрование относятся к методам модификации лигнина в ходе которых в макромолекулах появляются нитрозо (NO) или нитро (NO2) группы. Обе группы являются сильными электроноакцепторными, которые усиливают кислотные свойства фенольных гидроксильных групп и способность к комплексообразованию.
В гомогенных условиях сульфатный лигнин нитруется ацетилнитратом при использовании в качестве растворителей ряда соединений, хорошо растворяющих сульфатный лигнин [14], [15], [16], [17].
Известен способ [18] получения растворимых продуктов нитрования лигнина, в соответствии с которым лигнин суспендируют в тетрахлорметане. К полученной суспензии при охлаждении добавляют концентрированную азотную кислоту и реакцию проводят в течение 2 ч. Продукт реакции отделяют, промывают CCl4. Недостатки этого способа заключаются в применении токсичного тетрахлорметана и большой продолжительности синтеза.
Известен способ нитрования щелочного лигнина нитрующей смесью из азотной и серной кислот, которую добавляют ступенчато маленькими порциями при различных температурах (первоначально при -5°С, а затем при 0°С) [19].
Для стабилизации коллоидных растворов серебра используют различные соединения, в том числе синтетические (поливинилпирролидон), природные и искусственные полимеры [20], [21], [22], [23].
Методов стабилизации коллоидного раствора серебра с помощью нитрованного сульфатного лигнина в научной и научно-технической литературе не обнаружено.
Из лигнинов при получении коллоидного раствора серебра используют лигносульфонаты [24], [25].
Известен многоступенчатый способ получения коллоидного раствора серебра путем проведения реакции восстановления катионов серебра(I) с помощью восстановителя, в котором используется модифицированные лигносульфонаты натрия [26] – прототип.
Известен способ получения коллоидного раствора серебра путем проведения реакции восстановления катионов серебра(I) с помощью восстановителя. При синтезе используются диоксид кремния и ряд органических растворителей [27].
Недостатком всех перечисленных способов является недостаточная стабильность получаемого коллоидного раствора серебра.
Задача предлагаемого изобретения заключается в повышении стабильности коллоидного раствора серебра.
Это достигается тем, что при получении коллоидного раствора серебра в качестве стабилизатора используют нитрованный сульфатный лигнин.
Для реализации задачи был проведен синтез коллоидного раствора серебра в присутствии нитрованного сульфатного лигнина и для сравнения в аналогичных условиях – синтез коллоидного раствора серебра в присутствии исходного сульфатного лигнина. Элементный состав нитрованного сульфатного лигнина, %: N – 2,4; С – 51,9; H – 4,3; S – 2,8; О – 38,5.
При получении коллоидного раствора серебра с использованием исходного сульфатного лигнина было отмечено, что при хранении раствора наблюдалось расслоение раствора на верхний более светлый и нижний – более темный слой.
Поэтому для сравнения эффективности применения исходного и нитрованного сульфатного лигнина полученные растворы хранили в течение длительного времени и фиксировали расслоение коллоидного раствора.
Синтез коллоидного раствора серебра проводили следующим образом. В мерной пробирке смешивали заданные объемы раствора нитрованного (НСЛ) для сравнения исходного сульфатного лигнина (СЛ), глюкозы, нитрата серебра и аммиачной воды. Реакционную смесь нагревали на кипящей водяной бане в течение заданного времени. После завершения реакции реакционную смесь охлаждали, объем раствора доводили до заданного дистиллированной водой и через заданное время фиксировали наличие расслоения коллоидного раствора и измеряли объем нижнего слоя.
Пример 1. В двух мерных пробирках вместимостью 25 мл смешивали 0,5 мл раствора нитрованного сульфатного лигнина (концентрация 10 мг/мл), 2 мл раствора глюкозы (концентрация 18,5 мг/мл), 0,5 мл раствора нитрата серебра (концентрация 10,8 мг Ag(I)/мл) и 1,5 мл аммиачной воды (концентрация 14,5 %). Реакционную смесь нагревали на кипящей водяной бане в течение 2 мин, после чего охлаждали, объем раствора доводили до 25 мл дистиллированной водой. Расслоения раствора в обеих пробирках не наблюдалось.
Пример 2. Способ получения коллоидного раствора серебра в условиях пример 1, отличающийся тем, что продолжительность хранения раствора составила 9 сут. Расслоения раствора в обеих пробирках не наблюдалось.
Пример 3. Способ получения коллоидного раствора серебра в условиях пример 1, отличающийся тем, что продолжительность хранения раствора составила 19 сут. Расслоения раствора в обеих пробирках не наблюдалось.
Пример 4. Способ получения коллоидного раствора серебра в условиях пример 1, отличающийся тем, что продолжительность хранения раствора составила 36 сут. Расслоения раствора в обеих пробирках не наблюдалось.
Пример 5. Способ получения коллоидного раствора серебра в условиях пример 1, отличающийся тем, что продолжительность хранения раствора составила 74 сут. Расслоения раствора в обеих пробирках не наблюдалось.
Пример 6. Способ получения коллоидного раствора серебра в условиях пример 1, отличающийся тем, что продолжительность хранения раствора составила 99 сут. Расслоения раствора в обеих пробирках не наблюдалось.
Пример 7. Способ получения коллоидного раствора серебра в условиях пример 1, отличающийся тем, что в качестве стабилизатора коллоидного раствора использовали раствор исходного сульфатного лигнина (концентрация 10 мг/мл), а продолжительность хранения раствора составила 0 сут. Расслоения раствора в обеих пробирках не наблюдалось.
Пример 9. Способ получения коллоидного раствора серебра в условиях пример 7, отличающийся тем, что продолжительность хранения раствора составила 19 сут. Наблюдалось расслоение раствора в обеих пробирках. Объем нижнего слоя в пробирках составил 23 и 23 мл. Среднее значение объема нижнего слоя 23 мл.
Пример 10. Способ получения коллоидного раствора серебра в условиях пример 7, отличающийся тем, что продолжительность хранения раствора составила 36 сут. Наблюдалось расслоение раствора в обеих пробирках. Объем нижнего слоя в пробирках составил 20 и 22 мл. Среднее значение объема нижнего слоя 21 мл.
Пример 11. Способ получения коллоидного раствора серебра в условиях пример 7, отличающийся тем, что продолжительность хранения раствора составила 74 сут. Наблюдалось расслоение раствора в обеих пробирках. Объем нижнего слоя в пробирках составил 16,6 и 14,8 мл. Среднее значение объема нижнего слоя 15,7 мл.
Пример 12. Способ получения коллоидного раствора серебра в условиях пример 7, отличающийся тем, что продолжительность хранения раствора составила 99 сут. Наблюдалось расслоение раствора в обеих пробирках. Объем нижнего слоя в пробирках составил 12,8 и 13,5 мл. Среднее значение объема нижнего слоя 13,2 мл.
Результаты примеров сведены в таблице, из которой следует, что результаты измерений хорошо воспроизводятся, а нитрованный сульфатный лигнин обладает высокой стабилизирующей способностью при получении коллоидного раствора серебра.
Пример | Стабилизатор | Продолжительность хранения, сут |
Объем нижнего слоя при хранении коллоидного раствора серебра, мл | ||
V1 | V2 | Vср | |||
1 | НСЛ | 0 | 25 | 25 | 25 |
2 | НСЛ | 9 | 25 | 25 | 25 |
3 | НСЛ | 19 | 25 | 25 | 25 |
4 | НСЛ | 36 | 25 | 25 | 25 |
5 | НСЛ | 74 | 25 | 25 | 25 |
6 | НСЛ | 99 | 25 | 25 | 25 |
7 | СЛ | 0 | 25 | 25 | 25 |
8 | СЛ | 9 | 24 | 24 | 24 |
9 | СЛ | 19 | 23 | 23 | 23 |
10 | СЛ | 36 | 20 | 22 | 21 |
11 | СЛ | 74 | 16,6 | 14,8 | 16 |
12 | СЛ | 99 | 12,8 | 13,5 | 13 |
СПИСОК ИСТОЧНИКОВ
[1] Agarwal K., Prasad M., Sharma R., Setua D.K. Novel biodegradable lignin reinforced NBR composites // Int. J. Energy Eng. – 2014. – Vol. 4, N 2. – P. 47-62.
[2] Cateto C.A., Barreiro M.F., Ottati C., Lopretti M., Rodrigues A.E., Belgacem M.N. Lignin-based rigid polyurethane // Journal of Cellular Plastics. – 2014. – Vol. 50, N 1. – P. 81-95. DOI: 10.1177/0021955X13504774.
[3] Vishtal A., Kraslawski A. Challenges in industrial applications of technical lignins // BioResources. – 2011. – Vol. 6, N 3. – P. 3547-3568. DOI: 10.15376/biores.6.3.3547-3568.
[4] Tomani P. The lignoboost process // Cellul. Chem. Technol. – 2010. – Vol. 44, N 1-3. – P. 53-58.
[5] Marton J. In Lignins: Occurrence, Formation, Structure and Reactions. – New York: Wiley-Interscience, 1971. – P. 639-694.
[6] Meister J.J. Polymer Modification: Principles, Techniques and Applications. – New York: CRC Press, 2000. – 936 p.
[7] Hoyt C.H.; Goheen D.W. In Lignins: Occurrence, Formation, Structure and Reactions. – New York: Wiley-Interscience, 1971. – P. 833-865.
[8] Gao W., Inwood J.P.W., Fatehi P. Sulfonation of phenolated kraft lignin to produce water soluble prod-ucts // Journal of Wood Chemistry and Technology. – 2019. – Vol. 39, N 4. – P. 225-241. DOI: 10.1080/02773813.2019.1565866.
[9] Aro T., Fatehi P. Production and application of lignosulfonates and sulfonated lignin // ChemSusChem. – 2017. – Vol. 10, N 9. – P. 1861-1877. DOI: 10.1002/cssc.201700082.
[10] Paananen H., Alvila L., Pakkanen T. T. Hydroxymethylation of softwood kraft lignin and phenol with paraformaldehyde // Sustainable Chemistry and Pharmacy. – 2021. – Vol. 20. – Art. Num. 100376. DOI: 10.1016/j.scp.2021.100376.
[11] Mohamad Aini N.A., Othman N., Hussin M.H., Sahakaro K., Hayeemasae N. Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites // Processes. – 2019. – Vol. 7, N 5. – Art. Num. 315. DOI: 10.3390/pr7050315.
[12] He W., Gao W., Fatehi P. Oxidation of kraft lignin with hydrogen peroxide and its application as a dis-persant for kaolin suspensions // ACS Sustainable Chemistry & Engineering. – 2017. – Vol. 5, N 11. – P. 10597-10605. DOI: 10.1021/acssuschemeng.7b02582.
[13] Di Marino D., Aniko V., Stocco A., Kriescher S., Wessling M. Emulsion electro-oxidation of kraft lignin // Green Chemistry. – 2017. – Vol. 19, N 20. – P. 4778-4784. DOI: 10.1039/C7GC02115A.
[14] Хабаров Ю.Г., Кузяков Н.Ю., Вешняков В.А., Комарова Г.В., Гаркотин А.Ю. Исследование нитрования сульфатного лигнина в гомогенных условиях с помощью электронной спектроскопии // Изв. АН, Сер. хим. – 2016. – № 12 – С. 2925-2931.
[15] Хабаров Ю.Г., Гаркотин А.Ю., Вешняков В.А. Исследование нитрования сульфатного лигнина ацетилнитратом в апротонных растворителях // Изв. вузов. Лесн. журн. – 2022. – № 2. DOI: 10.37482/0536-1036-2022-2.
[16] Пат. 2566503 РФ. МПК C07G 1/00 (2011.01), C08H 7/00 (2011.01). Способ нитрозирования сульфатного лигнина / Ю.Г. Хабаров, И.М. Бабкин, А.А. Рекун, О.В. Максименко // Бюл. – 2015. – № 30.
[17] Патент 2608145 РФ. Реагент для гомогенного нитрования сульфатного лигнина. Заявка на патент № 2015150582 от 25.11.2015 / Ю.Г. Хабаров, Н.Ю. Кузяков, В.А. Вешняков, Г.В. Комарова // Бюл. – 2017. – № 2.
[18] Pat 866968 GB. ICl C01g. A method of producing sol-uble nitration production of lignin. – Publ. May 3, 1961.
[19] Фукс В. Химия лигнина. Пер. с нем. А.С. Берилло, С.И. Богдано-ва, В.А. Грабовского, М.Ф. Мартынова. – Л.: ОНТИ-Химтеорет. – 1936. – 368 с.
[20] Chartarrayawadee W., Charoensin P., Saenma J., Rin T., Khamai P., Nasomjai P., Too C.O. Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity // Processing and Synthesis. – 2020. – Vol. 9, N 1. – P. 107-118. DOI: 10.1515/gps-2020-0012.
[21] Chakraborty S., Panigrahi P. K. Stability of nanofluid: A review // Applied Thermal Engineering. – 2020. – Vol. 174. – Art. N 115259. – 26 p. DOI: 10.1016/j.applthermaleng.2020.115259.
[22] Hoang V.T., Mai M., Le Tam T., Vu N.P., Tien Khi N., Dinh Tam P., Tran V.H. Functionalized-AgNPs for long-term stability and its applicability in the detection of manganese ions //Advances in Polymer Technology. – 2020. – Art. ID 9437108. – 9 p. DOI: 10.1155/2020/9437108.
[23] Caldera-Villalobos M., Martins-Alho M., Herrera González A.M., García-Serrano J. Stabilization of colloidal metallic nano-particles using polymers and hexa-substituted compounds with 1, 3, 4-oxadiazole pendant groups // Colloid and Polymer Science. – 2019. – Vol. 297, N 7. – P. 933-946. DOI: 10.1007/s00396-019-04516-3.
[24] Пат. 2756226 РФ. МПК C22B 11/00 (2006.01), C01G 5/00 (2006.01), B22F 9/24 (2006.01), B01J 13/00 (2006.01). Способ получения раствора коллоидного серебра / В.А. Плахин, Ю.Г Хабаров., В.А. Вешняков // БИ. – 2021. – № 28.
[25] Плахин В.А., Хабаров Ю.Г., Вешняков В.А. Синтез коллоидного серебра с использованием лигносульфонатов // Изв. вузов. Лесн. журн. – 2021. – № 6. – С. 184–195. DOI: 10.37482/0536-1036-2021-6-184-195.
[26] Xiang Y., Xu W., Zhan Y., Xia X., Xiong Y., Xiong Y., Chen L. Preparation of modified sodium lignosulfonate hydrogel–silver nanocomposites // Polymer Composites. – 2013. – Vol. 34, N 6. – P. 860-866. DOI: 10.1002/pc.22490.
[27] Milczarek G., Motylenko M., Modrzejewska-Sikorska A., Klapiszewski Ł., Wysokowski M., Bazhenov V.V., Piasecki A., Konował E., Ehrlichd H., Jesionowski T. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate // RSC Advances. – 2014. – Vol. 4, N 94. – P. 52476-52484. DOI: 10.1039/c4ra08418g.
Claims (1)
- Применение нитрованного сульфатного лигнина следующего элементного состава, %: N - 2,4; С - 51,9; H - 4,3; S - 2,8; О - 38,5 в качестве стабилизатора коллоидного раствора серебра.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2794897C1 true RU2794897C1 (ru) | 2023-04-25 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2837787C1 (ru) * | 2024-09-02 | 2025-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" | Стабилизатор раствора коллоидного серебра |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2566503C1 (ru) * | 2014-04-22 | 2015-10-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) | Способ нитрозирования сульфатного лигнина |
RU2600761C1 (ru) * | 2015-08-03 | 2016-10-27 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения водного коллоидного раствора наночастиц сульфида серебра |
RU2608145C1 (ru) * | 2015-11-25 | 2017-01-16 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) | Реагент для гомогенного нитрования сульфатного лигнина |
RU2753533C1 (ru) * | 2020-12-02 | 2021-08-17 | Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» | Способ модификации сульфатного лигнина |
RU2756226C1 (ru) * | 2020-12-02 | 2021-09-28 | Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» | Способ получения раствора коллоидного серебра |
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2566503C1 (ru) * | 2014-04-22 | 2015-10-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) | Способ нитрозирования сульфатного лигнина |
RU2600761C1 (ru) * | 2015-08-03 | 2016-10-27 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения водного коллоидного раствора наночастиц сульфида серебра |
RU2608145C1 (ru) * | 2015-11-25 | 2017-01-16 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) | Реагент для гомогенного нитрования сульфатного лигнина |
RU2753533C1 (ru) * | 2020-12-02 | 2021-08-17 | Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» | Способ модификации сульфатного лигнина |
RU2756226C1 (ru) * | 2020-12-02 | 2021-09-28 | Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» | Способ получения раствора коллоидного серебра |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2837787C1 (ru) * | 2024-09-02 | 2025-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" | Стабилизатор раствора коллоидного серебра |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104248980B (zh) | 球形硅藻土介孔复合材料和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法 | |
Dacrory et al. | Functionalization and cross-linking of carboxymethyl cellulose in aqueous media | |
US2831022A (en) | Aromatic hydroxy sulfonate derivatives and products and processes of making the same | |
CN109880294A (zh) | 一种单宁酸改性氧化石墨烯的环氧纳米复合材料 | |
CN105149011A (zh) | 绿泥石介孔复合材料和负载型催化剂及其制备方法和应用以及环己酮甘油缩酮的制备方法 | |
RU2794897C1 (ru) | Стабилизатор коллоидного раствора серебра | |
CN111821981B (zh) | 一种二甘醇法制备吗啉用催化剂及其制备方法 | |
CN105214734A (zh) | 伊利石介孔复合材料和负载型催化剂及其制备方法和应用以及环己酮甘油缩酮的制备方法 | |
Paredes et al. | Protic ionic liquids based on anionic clusters ([Hmim][(HSO4)(H2SO4] x) with (x= 0, 1, and 2), to produce nanocellulose (CNC) | |
CN109734722B (zh) | 一种山梨醇脱水制备异山梨醇的方法 | |
CN111634901B (zh) | 锆掺杂磷酸氧铌催化剂在由木质素制备碳量子点中的应用及碳量子点的制备方法、碳量子点 | |
FR2518551A1 (fr) | Procede de preparation de sels de metal alcalin de la carboxymethylcellulose | |
CN102989499A (zh) | 一种用于制备对叔丁基苯甲醛的催化剂及制备方法 | |
CN113086981A (zh) | 一种改性椰壳活性炭及其在医药级盐酸胍制备中的用途 | |
Luo et al. | Fabrication and characterization of copper nanoparticles in PVA/PAAm IPNs and swelling of the resulting nanocomposites | |
CN112409228A (zh) | 一种手性硫氮共掺杂石墨烯量子点的制备方法 | |
CN104861077B (zh) | 一种纤维素纳米晶表面炔基官能化的方法 | |
CN116876262A (zh) | 一种表面负载Ag的聚多巴胺-聚乙二醇接枝纤维素抗菌纸的制备及应用 | |
Kim et al. | Development of lignin-based polycarboxylates as a plasticizer for cement paste via peracetic acid oxidation | |
CN101429284A (zh) | 一种单分散聚合物/碳酸钙复合微粒的制备方法 | |
RU2742654C1 (ru) | Способ получения гидрогелей лигнина | |
CN1222175A (zh) | 颗粒态隐色还原染料制剂 | |
Du et al. | Controllable and large-scale supramolecular vesicle aggregation: orthogonal light-responsive host–guest and metal–ligand interactions | |
FR2550539A1 (fr) | Nouveau procede de fabrication de cellulose glycolate de calcium | |
CN111269196A (zh) | 一种uhp氧化制备ns的方法 |