RU2791730C1 - Способ получения монокристаллических плёнок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решётки плёнки и подложки - Google Patents

Способ получения монокристаллических плёнок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решётки плёнки и подложки Download PDF

Info

Publication number
RU2791730C1
RU2791730C1 RU2022130950A RU2022130950A RU2791730C1 RU 2791730 C1 RU2791730 C1 RU 2791730C1 RU 2022130950 A RU2022130950 A RU 2022130950A RU 2022130950 A RU2022130950 A RU 2022130950A RU 2791730 C1 RU2791730 C1 RU 2791730C1
Authority
RU
Russia
Prior art keywords
substrate
film
solution
melt
crystal
Prior art date
Application number
RU2022130950A
Other languages
English (en)
Inventor
Алексей Гениевич Шумилов
Андрей Александрович Федоренко
Александр Степанович Недвига
Евгений Юрьевич Семук
Игорь Анатольевич Наухацкий
Владимир Наумович Бержанский
Александр Николаевич Шапошников
Сергей Владимирович Томилин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского"
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского"
Application granted granted Critical
Publication of RU2791730C1 publication Critical patent/RU2791730C1/ru

Links

Images

Abstract

Изобретение относится к области магноники и СВЧ-техники, в частности, к созданию тонких монокристаллических магнитных пленок железо-иттриевого граната (ЖИГ) на подложке из немагнитного граната с наследованием пленкой кристаллической ориентации и структуры подложки с нулевым рассогласованием параметров кристаллической решетки пленки и подложки. Способ включает подготовку шихты, содержащей оксиды, входящие в состав феррита-граната иттрия Y3Fe5O15, и оксиды растворителя PbO и V2O5, нагрев шихты в платиновом тигле до температуры полного расплавления и растворения компонентов, гомогенизацию раствора-расплава при температуре выше точки насыщения раствора в течение 8-10 ч, снижение температуры раствора-расплава до точки насыщения, при этом используют подложки из гадолиний-галлиевого граната с ориентацией (111), в качестве легирующей примеси используют ионы La3+ в количестве 8·10-3% от общей массы раствора-расплава, эпитаксию осуществляют при поверхностном контакте подложки с раствором-расплавом с достижением кристаллографического рассогласования параметров решетки пленки и подложки менее 10-3 ангстрема. Наследование пленкой кристаллической ориентации и структуры подложки с нулевым рассогласованием параметров кристаллической решетки пленки и подложки приводит к повышению добротности резонансных свойств с шириной линии ферромагнитного резонанса менее 3 Э пленок ЖИГ в СВЧ-диапазоне как в сильных, так и в слабых магнитных полях, снижению значений константы кубической анизотропии и параметра релаксации спиновой прецессии Гильберта. 2 ил.

Description

Изобретение относится к области магноники и сверхвысокочастотной (СВЧ) техники, и, в частности, к созданию тонких монокристаллических магнитных пленок железо-иттриевого граната (ЖИГ) на подложке из немагнитного граната с наследованием пленкой кристаллической ориентации и структуры подложки с нулевым рассогласованием параметров кристаллической решетки пленки и подложки. Данное изобретение позволяет добиться высокого структурного совершенства тонких монокристаллических пленок ЖИГ, которое в свою очередь определяет сверхвысокодобротные резонансные свойства (ферромагнитный резонанс или ФМР) пленок в СВЧ диапазоне, малое значение константы кубической анизотропии и параметра релаксации спиновой прецессии Гильберта. Это позволяет использовать данные пленки ЖИГ для создания сверхвысокодобротных СВЧ резонаторов, генерации и регистрации магнитостатических волн, возбуждения когерентного состояния магнонов (Бозе-Эйнштейновский конденсат). Изобретение может быть использовано в области электроники и СВЧ-техники, в линиях связи, в наукоемких технологиях при создании высокочувствительных датчиков магнитного поля и т.д., а также при проведении комплексных лабораторных исследований.
Известен магнитооптический материал (Патент UA 45728 U МПК (2009) G01N 1/00, опубл. 25.11.2009, Бюл. №22), содержащий Bi(3-x)AxFe(5-y-z)MyPtzO12, где А - один или несколько редкоземельных элементов, включая иттрий и кальций, М - один или несколько элементов из группы Ga, Al, Ge, Sc, In, Si, Ti, Mg, Mn и Zr, который отличается тем, что дополнительно содержит от 0,01 до 0,09 атомов бериллия на формульную единицу граната.
Данная полезная модель относится к магнитооптическим материалам, предназначенным для использования в качестве преобразователей (активных материалов) в магнитооптических и волоконно-оптических приборах обработки и передачи информации.
Общим с заявляемым решением признаком является эпитаксиальное выращивание пленок феррит-гранатов методом жидкофазной эпитаксии из раствор-расплава на подложке гадолиний-галлиевого граната.
Недостатком технического решения является наличие большого количества примесей, что негативно отразиться на добротности резонансного возбуждения спиновой системы и факторе затухания.
Известен магнитооптический материал (Патент RU 2431205 С2 МПК G11B 5/708 (2006.01), G02F 1/09 (2006.01), опубл. 10.10.2011, Бюл. №28), представляющий собою эпитаксиальную монокристаллическую пленку феррита-граната состава (YBi)3(FeGa)5O12, нарощенную на подложке немагнитного граната с высоким значением параметра решетки а=12,380
Figure 00000001
-12,560
Figure 00000001
(например, (GdCa)3(GaMgZr)5O12, Ca3(Nb,Li)2Ga3O12, Ca3(Nb,Mg)2Ga3O12, Ca3(NbMg)2Ga3O12 или Ca3(Nb,Zr)5O12), отличающийся тем, что эпитаксиальная пленка содержит 0,1-0,4 формульных единиц ионов Са2+.
Данное изобретение относится к области магнитной микроэлектроники, в частности к прикладной магнитооптике, и может быть использовано для записи термомагнитооптическим способом информации как в цифровом, так и в аналоговом режимах.
Общим с заявляемым решением признаком является эпитаксиальное выращивание пленок феррит-гранатов на основе ЖИГ методом жидкофазной эпитаксии из раствор-расплава с примесями на подложке из немагнитного граната.
Недостатком технического решения является наличие катионного замещения на основе Bi, а также использование подложек с большим значением параметра решетки, что несомненно приведет к рассогласованию параметров решетки пленки и подложки и негативно отразиться на добротности резонансного возбуждения спиновой системы и факторе затухания.
Известна магнитооптическая тонкопленочная структура (Патент RU 2138069 С2 МПК G02F 1/09 (1995.01), опубл. 20.09.1999), содержащая подложку из диэлектрического материала со структурой граната, на которую нанесена пленка магнитного материала с вектором намагниченности, лежащим в плоскости пленки, причем в качестве магнитного материала пленки выбран висмутсодержащий галлиевый феррит-гранат, отличающаяся тем, что подложка выполнена из монокристалла гадолиний-галиевого граната, кристаллографическая ось [100] которого смещена относительно перепендикуляра к плоскости подложки со стороны упомянутой пленки магнитного материала на угол А, не превышающий величины отклонения до кристаллографической оси [210], при этом висмутсодержащий галлиевый феррит-гранат допирован редкоземельными элементами.
Изобретение откосится к магнитооптическим структурам, предназначенным для использования в системах оптической обработки информации, и может быть использовано при создании датчиков, преобразователей магнитных полей и других устройств аналогичного назначения.
Общим с заявляемым решением признаком является эпитаксиальное выращивание пленок феррит-гранатов на основе ЖИГ методом жидкофазной эпитаксии из раствор-расплава с примесями на подложке из гадолиний-галлиевого граната.
Недостатком технического решения является наличие катионного замещения на основе Bi, а также использование подложек с ориентацией [111], в том числе с отклонением от нормали на угол до 6 градусов, что негативно отразиться на добротности резонансного возбуждения спиновой системы и факторе затухания.
Известен способ выращивания ферритовых пленок методом жидкофазной эпитаксии (Патент UA 47929А МПК С30В 19/00 А, опубл. 15.07.2002), включающий подготовку шихты, гомогенизацию раствор-расплава, наращивание на подложке пленки, освобождение ее от остатков расплава, который отличается тем, что применяется сушка компонентов шихты в сушильной СВЧ-установке в течение 30-60 мин., а эпитаксиальный процесс проводится при касании рабочей поверхности подложки раствор-расплава.
Изобретение откосится к технологии выращивания монокристаллических ферритовых пленок и может быть применен в магнитооптике при создании устройств обработки информации.
Общим с заявляемым решением признаком является эпитаксиальное выращивание пленок феррит-гранатов методом жидкофазной эпитаксии из раствор-расплава с примесями на подложке из гадолиний-галлиевого граната при касании рабочей поверхности подложки раствор-расплава.
Недостатком технического решения является наличие катионного замещения большим количеством донорных примесей, что приведет к рассогласованию параметров решетки пленки и подложки, возникновению упругих напряжений и негативно отразиться на добротности резонансного возбуждения спиновой системы и факторе затухания.
В качестве прототипа выбрана эпитаксиальная феррит-гранатовая структура (Патент RU 2061112 C1, МПК С30В 19/02 (1995.01), С30В 29/28 (1995.01), Конвенционный приоритет: 29.01.1992 RU 925034904), содержащая подложку из гадолиний-галлиевого граната ориентации (100) и эпитаксиально осажденную на нее пленку на основе железо-иттриевого граната, отличающаяся тем, что последнюю берут с содержанием Ga, La и/или Sc, а структура разориентирована от плоскости (100) к плоскости (110) на угол 0-15°.
Изобретение относится к монокристаллическим материалам, в частности к эпитаксиальным феррит-гранатовым структурам (ЭФГС) на основе железо-иттриевого граната (ЖИГ), и может быть использовано при разработке и изготовлении малогабаритных планарных сверхвысокочастотных (СВЧ) приборов на поверхностных магнитостатических волнах (ПМСВ). Предлагаемая структура обеспечивает термостабильность частот возбуждения ПМСВ в интервале от -70 до +85°С
Недостатком технического решения является разориентирование кристаллографической ориентации пленки ЖИГ относительно подложки, что в сочетании с высоким содержанием примесей (Sc и La - 0-0,5 ат/форм. ед., Ga - 0-1,6 ат/форм. ед) может привести к сильному рассогласованию на интерфейсе «пленка-подложка» и возникновению механических напряжений. Данные факторы негативно скажутся на добротности ферромагнитного резонанса.
Техническим результатом заявляемого изобретения является получение тонких монокристаллических магнитных пленок железо-иттриевого граната (ЖИГ) на подложке из немагнитного гадолиний-галлиевого граната с наследованием пленкой кристаллической ориентации и структуры подложки с нулевым рассогласованием параметров кристаллической решетки пленки и подложки, что приводит к повышению добротности резонансных свойств (ФМР) пленок ЖИГ в СВЧ диапазоне, как в сильных, так и в слабых магнитных полях, снижению значений константы кубической анизотропии и параметра релаксации спиновой прецессии Гильберта.
Поставленная задача решается тем, что способ получения монокристаллических пленок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решетки пленки и подложки включает подготовку шихты, содержащей оксиды, входящие в состав феррита-граната иттрия Y3Fe5O12, и оксиды растворителя PbO и V2O5, нагрев шихты в платиновом тигле до температуры полного расплавления и растворения компонент, гомогенизацию раствор-расплава при температуре выше точки насыщения раствора в течение 8-10 часов, снижение температуры раствор-расплава до точки насыщения, опускание подготовленной и очищенной подложки из монокристалла гадолиний-галлиевого граната GcbGa5O12 (ГГГ) с ориентацией поверхности (111), закрепленной в платиновом держателе, до соприкосновения поверхности подложки с поверхностью раствор-расплава, эпитаксиальное наращивание пленки ЖИГ при постоянном вращении подложки в течение времени, необходимого для роста пленки требуемой толщины, время определяется как отношение требуемой толщины пленки к скорости роста пленки, скорость роста определяется посредством предварительной калибровки на образце свидетеле, удаление подложки с пленкой из раствор-расплава, центрифугирование подложки с пленкой для удаления с поверхности остатков раствор-расплава, при этом корректировка параметра решетки, намагниченности насыщения и констант анизотропии осуществляется посредством введения в состав раствор-расплава, и как следствие в состав эпитаксиальных пленок ЖИГ концентраций диамагнитных ионов примеси La3+ в количестве 8 10-3% от общей массы раствор-расплава.
Общим с заявляемым решением признаком является эпитаксиальное выращивание пленок ЖИГ методом жидкофазной эпитаксии из раствор-расплава на основе PbO с примесями на подложке гадолиний-галлиевого граната.
Отличительными признаками изобретения являются:
- использование подложек гадолиний-галлиевого граната с ориентацией (111);
- вторым компонентом растворителя является V2O5;
- легирующая примесь La3+, добавляется в количестве 8 10-3% от общей массы раствор-расплава;
- эпитаксия производится при поверхностном контакте подложки с раствор-расплавом.
Совокупность отличительных и ограничительных признаков обеспечивает изобретательский уровень заявленного технического решения.
В заявляемом способе используют принцип наследования пленкой ЖИГ кристаллической ориентации и структуры подложки ГГГ при эпитаксиальном синтезе методом жидкофазной эпитаксии из раствор-расплава с нулевым рассогласованием параметров кристаллической решетки пленки и подложки, которое достигается посредством введения в состав раствор-расплава, и как следствие в состав эпитаксиальных пленок ЖИГ диамагнитных ионов примеси La3+. Это позволяет получать тонкие монокристаллические пленки ЖИГ высокого структурного совершенства за счет создания гетероперехода с нулевым рассогласованием параметров кристаллической решетки пленки и подложки.
Данный способ имеет ряд преимуществ:
- подбор состава шихты, типа примеси и ее количества позволяет добиться нулевого рассогласования параметров кристаллической решетки пленки и подложки;
- использование подложек ГГГ из монокристалла с ориентацией поверхности (111) позволяет осуществлять эпитаксиальный рост пленок в плоскостях с максимальной упаковкой, что способствует снижению дефектности пленки;
- использование в качестве легирующей примеси диамагнитных ионов La3+ позволяет корректировать намагниченность насыщения и константы анизотропии;
- эпитаксиальное выращивание пленок ЖИГ при поверхностном контакте подложки с расплавом позволяет вырастить пленку лишь на рабочей стороне подложки, что исключает необходимость удаления пленки с нерабочей стороны (как в случае полного погружения подложки в расплав) и, как следствие, исключает возникновение напряженных дефектов в основной пленке на рабочей стороне.
В основу заявляемого изобретения положен принцип выращивания монокристаллов (в данном изобретение монокристаллических пленок) из пересыщенного раствор-расплава на монокристаллической затравке (в данном изобретение монокристаллической подложке). Изобретение базируется на экспериментально подтвержденном факте создания гетероперехода на границе раздела пленки ЖИГ и подложки ГГГ с нулевым рассогласованием параметров решетки пленки и подложки. Заявляемый способ получения монокристаллических пленок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решетки пленки и подложки позволяет создавать высококачественные эпитаксиальные пленки ЖИГ на подложке ГГГ, обладающие сверхвысокодобротными резонансными свойствами (ширина резонансной линии ФМР менее 3 эрстед), имеющие малые значения константы кубической анизотропии и параметра затухания Гильберта. Это позволяет использовать данные пленки ЖИГ для создания сверхвысокодобротных СВЧ резонаторов, генерации и регистрации магнитостатических волн, возбуждения когерентного состояния магнонов (Бозе-Эйнштейновский конденсат).
Способ реализуют следующим образом. Пленки железо-иттриевого граната Y3Fe5O12 (ЖИГ) выращивались методом жидкофазной эпитаксии (ЖФЭ). Метод ЖФЭ включает в себя следующие этапы: подготовку шихты (отжиг, взвешивание, смешивание, заплавка), содержащей окислы растворителя и гранатообразующие окислы в количестве PbO (93,153%) - V2O5 (1,248%) - Y2O3 (0,249%) - Fe2O3 (5,342%) - La2O3 (0,008%), подготовку раствора-расплава (нагрев, выдержка, охлаждение до температуры роста), опускание подложки на уровень расплава, выдержку вращающейся подложки (≈100 об/мин) над поверхностью расплава для выравнивания температуры подложки, погружение подложки в раствор-расплав на время роста пленки, подъем подложки с пленкой со скоростью около 50 мм/мин, а также вращение подложки с пленкой 400-1000 об/мин после подъема из раствора-расплава для центробежного удаления его остатков с поверхности пленки.
Если раствор-расплав переохлажден на величину ΔT-Ts-Tg (Ts - температура насыщения раствора-расплава, Tg - температура роста пленки ЖИГ), то при погружении в него соответствующей монокристаллической подложки происходит рост пленки. Скорость роста линейно зависит от приведенного параметра переохлаждения.
Тигель с раствором-расплавом располагается в вертикальной открытой печи с омическим нагревом. Диаметр и высота платинового тигля больше диаметра подложки примерно в 1,6 раза. В рабочей зоне установки эпитаксиального выращивания (в объеме тигля) обеспечивается однородность и стабильность температуры не хуже ±0,5 К; максимальная температура составляет не менее 1420 К. Основа печи и шток, на котором крепится держатель подложек, выполнены из алундовой керамики (Al2O3).
Технология эпитаксиального выращивания включает отжиг окислов, входящих в состав шихты (при температурах около 80% от температуры плавления, но не выше 1270 К), взвешивание, перемешивание и заплавку шихты в муфельной печи, нагрев расплава до температуры около 1420 К в течение 3-4 ч, гомогенизацию при этой температуре в течение 8-10 ч, из них 2-4 ч с перемешиванием платиновой мешалкой, снижение температуры до значения Ts в течение 2-2,5 ч.
Отмытая и высушенная подложка загружается в держатель, который закрепляется на алундовом штоке. Опускание подложки в печь (с выдержкой над расплавом в течение 3-5 мин) проводится в течение 15-20 мин. Цикл роста пленки занимает 2-8 мин. Скорость вращения подложки, как правило, составляет 6-10 рад/с. Для улучшения однородности параметров по площади пленки и выравнивания их значений на верхней и нижней сторонах подложки применяют реверсирование направления вращения подложки через каждые 10-15 секунд. После сброса капель расплава при ускоренном вращении в течение 1-3 мин подложку удаляют из печи за 10-12 мин. Остатки капель расплава удаляют травлением в горячей (50-70°С) 10% уксусной или азотной кислоте с последующей промывкой в деионизованной воде.
Пример реализации способа.
Синтез пленки (YLa)3FesO12 проводился из раствор-расплава на основе растворителей PDO-V2O5 и состава ЖИГ Y3Fe5O12. Корректировка параметра решетки, намагниченности насыщения и констант анизотропии осуществлялась введением в состав раствор-расплава (и как результат в состав пленки ЖИГ) диамагнитных ионов примеси La3+ в количестве 8 10-3% от общей массы раствор-расплава. Таким образом, раствор-расплав при синтезе ЖИГ состава (YLa)3Fe5O12 был приготовлен с использованием шихты, содержащей оксидные компоненты в массовом количестве PbO (926±0,005 г) - V2O5 (12,4±0,005 г) - Y2O3 (2,48±0,005 г) - Fe2O3 (53,1±0,005 г) - La2O3 (0,08±0,005 г). Все используемые оксиды имели степень очистки ОСЧ по классификации ГОСТ 13867-68. Температура синтеза Tg=905°С, скорость роста - 0,3 мкм/мин, толщина выращенной пленки - 0,5 мкм, параметр рассогласования кристаллических решеток пленки и подложки (рентгеновский дифрактометр ДРОН-3) составляет Δа=6⋅10-4 ангстрема (фиг. 1), ширина резонансной линии ФМР на частоте 9.4 ГГц (ЭПР-спектрометр SpinscanX) составляет ΔH=1.8 Э при направлении магнитного поля ортогонально плоскости пленки θH=0° (перпендикулярный резонанс) (фиг. 2-а) и ΔH=2.5 Э при направлении магнитного поля параллельно плоскости пленки θН=90° (параллельный резонанс) (фиг. 2-6).

Claims (1)

  1. Способ получения монокристаллических пленок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решетки пленки и подложки, включающий подготовку шихты, содержащей оксиды, входящие в состав феррита-граната иттрия Y3Fe5O15, и оксиды растворителя PbO и V2O5, нагрев шихты в платиновом тигле до температуры полного расплавления и растворения компонентов, гомогенизацию раствора-расплава при температуре выше точки насыщения раствора в течение 8-10 ч, снижение температуры раствора-расплава до точки насыщения, отличающийся тем, что используют подложки из гадолиний-галлиевого граната с ориентацией (111), в качестве легирующей примеси используют ионы La3+ в количестве 8·10-3% от общей массы раствора-расплава, эпитаксию осуществляют при поверхностном контакте подложки с раствором-расплавом с достижением кристаллографического рассогласования параметров решетки пленки и подложки менее 10-3 ангстрема и ширины линии ферромагнитного резонанса менее 3 Э.
RU2022130950A 2022-11-28 Способ получения монокристаллических плёнок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решётки плёнки и подложки RU2791730C1 (ru)

Publications (1)

Publication Number Publication Date
RU2791730C1 true RU2791730C1 (ru) 2023-03-13

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1585737A (en) * 1977-01-28 1981-03-11 Allied Chem Trivalent lanthanum doped yttrium iron garnet discs on gadolinium gallium substrates for microwave applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1585737A (en) * 1977-01-28 1981-03-11 Allied Chem Trivalent lanthanum doped yttrium iron garnet discs on gadolinium gallium substrates for microwave applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГАЧКОВСКАЯ Е. В. и др. Рентгеноструктурное определение рассогласования параметров решетки эпитаксиальной пленки и подложки, "Двадцать третья Всероссийская научная конференция студентов-физиков и молодых учёных. ВНКСФ-23", Екатеринбург, 2017, Издательство АСФ России, 2017, стр. 414-415. ZHANG H. et al. Properties and Applications of Single‐Crystal Ferrite Films Grown by Liquid‐Phase Epitaxy "Modern Ferrites: Basic Principles, Processing and Properties", 28 October 2022, Vol.1, pp. 413-455. *

Similar Documents

Publication Publication Date Title
US4624901A (en) Intermediary layers for epitaxial hexagonal ferrite films
US4968954A (en) Epitaxial layer-bearing wafer of rare earth gallium garnet for MSW device
Glass et al. Growth and characterization of LPE hexagonal ferrites
Henry et al. Ferromagnetic resonance properties of LPE YIG films
CN111910252A (zh) 大尺寸掺杂yig单晶薄膜材料及制备方法
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
Stognij et al. Growth of Y 3 Fe 5 O 12 films on Si with AlO x and SiO 2 buffer layers by ion beam sputtering
RU2791730C1 (ru) Способ получения монокристаллических плёнок железо-иттриевого граната с нулевым рассогласованием параметров кристаллической решётки плёнки и подложки
US5466388A (en) Material for magnetostatic-wave devices
Zhang et al. Microwave/millimeter-wave garnet films
Algra et al. A FMR study on horizontally dipped LPE grown (La, Ga): YIG films
CN113463196B (zh) 液相外延法制备的超厚石榴石单晶膜及其制备方法
JPH06236814A (ja) 静磁波素子用ガーネット磁性酸化物単結晶とその製造方法および静磁波素子
JPH09202697A (ja) Bi置換型ガーネットの製造方法
US20240003042A1 (en) Single crystal yig nanofilm fabricated by a metal organic decomposition epitaxial growth process
Syvorotka et al. Growth peculiarities and magnetic properties of (LuBi) 3Fe5O12 films by LPE method
Giess Growth of Single‐Crystal MgGa2O4 Spinel from Molten PbO‐PbF2 Solutions
Yushchuk et al. Growing of thick single-crystalline La-substituted yttrium-iron garnet films with reproducible parameters
CN115094511B (zh) 一种同质外延生长石榴石型铁氧体单晶厚膜的方法
Glass et al. LPE growth of lithium ferrite on spinel substrate crystals
JP3389671B2 (ja) 磁性ガーネット単結晶膜の製造方法
JP3089742B2 (ja) 静磁波デバイス用材料
JPH06260322A (ja) 静磁波素子用材料
JP2818343B2 (ja) 単結晶成長用基板ホルダー
JPH09208393A (ja) マイクロ波素子材料の製造方法