RU2790573C1 - Способ локальной лазерно-индуцированной металлизации поверхности диэлектрика - Google Patents

Способ локальной лазерно-индуцированной металлизации поверхности диэлектрика Download PDF

Info

Publication number
RU2790573C1
RU2790573C1 RU2022112439A RU2022112439A RU2790573C1 RU 2790573 C1 RU2790573 C1 RU 2790573C1 RU 2022112439 A RU2022112439 A RU 2022112439A RU 2022112439 A RU2022112439 A RU 2022112439A RU 2790573 C1 RU2790573 C1 RU 2790573C1
Authority
RU
Russia
Prior art keywords
dielectric
glass
substrate
laser
solution
Prior art date
Application number
RU2022112439A
Other languages
English (en)
Inventor
Татьяна Олеговна Липатьева
Алексей Сергеевич Липатьев
Сергей Викторович Лотарев
Сергей Сергеевич Федотов
Семен Иванович Стопкин
Владимир Николаевич Сигаев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Application granted granted Critical
Publication of RU2790573C1 publication Critical patent/RU2790573C1/ru

Links

Images

Abstract

Изобретение относится к области электротехники, в частности к технологии локального лазерно-индуцированного осаждения металлических структур на поверхность стекла и может быть использовано для создания токопроводящих контактов, микронагревателей и катализаторов в лабораториях на чипе, биомолекулярных сенсоров и миниатюрных датчиков поверхностно-усиленной рамановской спектроскопии. Технический результат - формирование золотых проводящих структур на стеклянной подложке непосредственно из раствора соли металла. Технический результат достигается тем, что способ локальной лазерно-индуцированной металлизации поверхности диэлектрика включает фокусировку лазерного излучения на границу раздела подложка-электролит стеклянной подложки, погруженной в кювету с раствором электролита. При этом используют излучение фемтосекундного лазера на длине волны 1030 нм, с длительностью импульсов 180÷600 фс, энергией импульсов 200÷800 нДж, частотой следования импульсов 200÷500 кГц, пучок которого пропускают через пространственный фильтр с двумя отверстиями ϕ=130° и θ=23° и фокусируют с помощью объектива с числовой апертурой 0,45÷0,65 снизу вверх на верхнюю поверхность диэлектрика и перемещают в плоскости поверхности подложки со скоростью 0,01÷1 мм/с однократно или с количеством проходов 2-100 с заглублением фокуса под поверхность подложки с шагом в 1÷5 мкм для каждого последующего прохода. В качестве раствора электролита применяют 4 М водный раствор HAuCl4, а в качестве диэлектрика - предметное стекло состава (масс. %) 72,2 SiO2, 14,3 Na2O, 1,2 K2O, 6,4 СаО, 4,3 MgO, 1,2 Al2O3, 0,03 Fe2O3, 0,3 SO3. 3 ил.

Description

Изобретение относится к области электротехники, в частности к технологии локального лазерно-индуцированного осаждения металлических структур на поверхность стекла. Изобретение позволяет с высоким пространственным разрешением осаждать с помощью фемтосекундного лазерного пучка золотые микроструктуры на поверхности стекла. Полученный результат может быть использован для создания токопроводящих контактов, микронагревателей и катализаторов в лабораториях на чипе, биомолекулярных сенсоров и миниатюрных датчиков поверхностно-усиленной рамановской спектроскопии.
Известен способ формирования золотых микроэлектродов на стеклянной подложке методом химического осаждения с помощью фемтосекундного лазерного излучения [Song J. et al. Fabrication of gold microelectrodes on a glass substrate by femtosecond-laser-assisted electroless plating //Journal of Laser Micro Nanoengineering. - 2012. - T. 7. - №. 3. - C. 334], заключающийся в том, что поверхность стекла аблируют фемтосекундными лазерными импульсами, обрабатывают раствором AgNO3, с помощью сфокусированного лазерного пучка локально высаживают на аблированной поверхности стекла зародыши серебра, на которых впоследствии реализуют химическое осаждение золота. Для улучшения адгезии образец стекла с золотыми микроэлектродами дополнительно подвергают термической обработке при 300°С в течение часа.
Главным недостатком способа является многостадийность и длительность процесса металлизации.
Известен способ лазерно-индуцированного осаждения благородных металлов из раствора на поверхность диэлектриков [Патент ЕР0357124А2 Method of selectively providing a metal from the liquid phase on a substrate by means of a laser], заключающийся в локальном сканировании поверхности материала, покрытой раствором соли металла, пучком аргонового лазера, сфокусированного в эллиптическое пятно 20×100 мкм.
Недостатком способа является низкая локализация процесса металлизации, так способ позволяет формировать протяженные металлические треки шириной от 20 мкм.
Известен способ лазерного нанесения металлических покрытий и проводников на диэлектрики путем лазерно-индуцированного осаждения металла из раствора, заключающийся в помещении поверхности диэлектрика на поверхность раствора, включающего фотоактивные гетерометаллические металлорганические комплексы Au-Cu или Au-Ag, и сканирование по поверхности диэлектрика пучком гелий-кадмиевого лазера.
Недостатком способа является сложность и трудоемкость синтеза и дороговизна используемых фотоактивных гетерометаллических металлорганических комплексов.
Наиболее близким аналогом к заявляемому изобретению по технической сущности и достигаемому результату является способ одностадийного лазерного осаждения меди из раствора электролита на поверхность диэлектрика [Патент RU 2323553С1 Способ лазерного осаждения меди из раствора электролита на поверхность диэлектрика], выбранный в качестве прототипа и включающий подготовку раствора электролита, содержащего 0,1 М CuCl2, 0,2 М KNa-тартрат (KNaC4H4O6⋅4H2O), 0,125 М NaOH и 6 М НСОН (формальдегид), промывку подложки, подогрев раствора электролита до температуры от 30 до 60°С, фокусирование со стороны подложки и сканирование пучком лазера по границе подложка-электролит. В качестве источника лазерного излучения использован аргоновый лазер мощностью 10÷50 мВт, до 400 мВт. Способ предусматривает однократное сканирование со скоростью 0,01÷0,04 мм/с, или трех-пятикратное сканирование по одной и той же осажденной структуре при скорости 0,06÷0,1 мм/с.
Недостатками способа являются многокомпонентность (необходимость наличия в составе компонента-восстановителя) раствора электролита и необходимость его подогрева, которая усложняет конструкцию системы металлизации стекла. Кроме этого, вследствие того, что фокусировка проводится на нижнюю поверхность подложки, образующиеся в процессе реакции пузырьки газов могут накапливаться в зоне воздействия лазерного излучения, агломерироваться и снижать эффективность процесса осаждения металла.
Техническим результатом изобретения является формирование золотых проводящих структур на стеклянной подложке непосредственно из раствора соли металла.
Указанный технический результат достигается способом локальной лазерно-индуцированной металлизации поверхности диэлектрика, включающим фокусировку лазерного излучения на границу раздела подложка-электролит стеклянной подложки, погруженной в кювету с раствором электролита, при этом используют излучение фемтосекундного лазера на длине волны 1030 нм, с длительность импульсов 180÷600 фс, энергией импульсов 200÷800 нДж, частотой следования импульсов 200÷500 кГц, пучок которого пропускают через пространственный фильтр с двумя отверстиями ϕ=130° и θ=23° и фокусируют с помощью объектива с числовой апертурой 0,45÷0,65 снизу вверх на верхнюю поверхность диэлектрика и перемещают в плоскости поверхности подложки со скоростью 0,01÷1 мм/с однократно или с количеством проходов 2-100 с заглублением фокуса под поверхность подложки с шагом в 1÷5 мкм для каждого последующего прохода, в качестве раствора электролита применяют 4 М водный раствор HAuCl4, а в качестве диэлектрика - предметное стекло состава (масс. %) 72,2 SiO2, 14,3 Na2O, 1,2 K2O, 6,4 СаО, 4,3 MgO, 1,2 Al2O3, 0,03 Fe2O3, 0,3 SO3.
В отличие от прототипа, где ведущую роль в механизме лазерного осаждения металла играет термически-индуцированная химическая реакция, в заявляемом способе восстановление золота происходит за счет свободных электронов, образующихся в результате многофотонного поглощения энергии фемтосекундных импульсов. При этом аблирование поверхности стекла в зоне контакта с раствором, на которую воздействует лазерное излучение, благоприятствует адгезии осаждаемого металла к стеклу. Фокусировка лазерного излучения снизу-вверх через стеклянную пластину на ее верхнюю поверхность не только предотвращает влияние образующихся газовых пузырьков на перетяжку лазерного пучка, но и облегчает их унос из зоны осаждения металла за счет гравитационных сил.
На Фиг. 1 приведена схема установки лазерно-индуцированной металлизации стекла. В качестве источника фемтосекундных лазерных импульсов (1) использовался лазер с длиной волны 1030 нм. Лазерный луч через ослабитель мощности (2), состоящий из полуволновой пластины и призмы Глана-Тейлора и позволяющий прецизионно задавать энергию импульсов, заводился с помощью системы зеркал (3) через пространственный фильтр с двумя отверстиями (ϕ=130° и θ=23°) (4) в фокусирующий объектив (5). Энергия импульсов контролируется с помощью измерителя (6) после объектива. Далее лазерный пучок фокусируется, проходя снизу через дно кварцевой кюветы (7) с раствором хлорного золота (8), на верхней поверхности стеклянной пластины (9) из предметного стекла состава (масс. %) 72,2 SiO2, 14,3 Na2O, 1,2 K2O, 6,4 СаО, 4,3 MgO, 1,2 Al2O3, 0,03 Fe2O3; 0,3 SO3. Кварцевая кювета установлена на моторизованную трехкоординатную платформу (10), движение которой синхронизировано с генерацией лазерных импульсов. Источник света (11) и фотокамера (12) позволяют визуализировать на персональном компьютере (13) процесс осаждения металла в реальном времени.
Достижение заявляемого технического результата подтверждается следующими примерами.
Пример 1: Сформирована серия золотых треков длиной 7 мм на поверхности пластины предметного стекла с использованием сфокусированного лазерного излучения на длине волны 1030 нм, с длительностью импульсов 180 фс, частотой следования 500 кГц, энергией импульсов 500 нДж. Лазерный пучок фокусировали на верхнюю поверхность стеклянной пластины, соприкасающуюся с раствором 4М HAuCl4 с помощью объектива с числовой апертурой 0,45 и перемещали со скоростью 1 мм/с с количеством проходов 100 с заглублением фокуса под поверхность подложки с шагом в 1 мкм для каждого последующего прохода. В результате сформированы треки с надповерхностной частью шириной около 35 мкм (Фиг. 2а) и подповерхностной частью шириной и глубиной около 5 мкм (Фиг. 2b).
Пример 2: Сформирована площадка 1×1 мм, содержащая 100 прямолинейных золотых треков длиной 1 мм с шагом 10 мкм на поверхности пластины предметного стекла с использованием сфокусированного лазерного излучения на длине волны 1030 нм, с длительностью импульсов 600 фс, частотой следования 200 кГц, энергией импульсов 800 нДж. Лазерный пучок фокусировали на верхнюю поверхность стеклянной пластины, соприкасающуюся с раствором 4М HAuCl4 с помощью объектива с числовой апертурой 0,45 и однократно перемещали со скоростью 0,1 мм/с. Для сформированной площадки зарегистрирована рентгенограмма (Фиг. 3), подтверждающая успешное осаждение металлического золота на стеклянной пластине. По оси абсцисс рентгенограммы лежат углы отражения 2÷0, по оси ординат - относительная интенсивность Брегговских отражений.
Пример 3: Сформирована серия золотых треков длиной 0,5 мм на поверхности пластины предметного стекла с использованием сфокусированного лазерного излучения на длине волны 1030 нм, с длительностью импульсов 180 фс, частотой следования 500 кГц, энергией импульсов 200 нДж. Лазерный пучок фокусировали на верхнюю поверхность стеклянной пластины, соприкасающуюся с раствором 4М HAuCl4 с помощью объектива с числовой апертурой 0,65 и перемещали со скоростью 0,01 мм/с с количеством проходов 10 с заглублением фокуса под поверхность подложки с шагом в 5 мкм для каждого последующего прохода. В результате сформированы треки с надповерхностной частью шириной около 10 мкм и подповерхностной частью шириной около 5 мкм и глубиной около 3 мкм. Удельное сопротивление сформированных треков составило ~60±20 мкОм*см, разброс обусловлен точностью вычисления площади торцов полученных проводящих треков и существенным разбросом значений площади на разных участках трека.
Таким образом, заявляемые концентрации раствора HAuCl4, конфигурация оптической схемы и параметры лазерного облучения обеспечивают формирование золотых структур на стеклянной подложке, которые могут быть использованы для разработки устройств микроэлектроники, лабораторий на чипе и датчиков поверхностно-усиленной рамановской спектроскопии. Выход за пределы заявляемых значений по скорости сканирования, длительности, энергии и частоте следования импульсов не позволяет сформировать сплошные металлические структуры с вышеописанными характеристиками.

Claims (1)

  1. Способ локальной лазерно-индуцированной металлизации поверхности диэлектрика, включающий фокусировку лазерного излучения на границе раздела диэлектрик-электролит стеклянной подложки, погруженной в кювету с раствором электролита, отличающийся тем, что используют излучение фемтосекундного лазера на длине волны 1030 нм, с длительностью импульсов 180÷600 фс, энергией импульсов 200÷800 нДж, частотой следования импульсов 200÷500 кГц, пучок которого пропускают через пространственный фильтр с двумя отверстиями ϕ=130° и θ=23° и фокусируют с помощью объектива с числовой апертурой 0,45÷0,65 снизу вверх на верхнюю поверхность диэлектрика и перемещают в плоскости поверхности подложки со скоростью 0,01÷1 мм/с однократно или с количеством проходов 2-100 с заглублением фокуса под поверхность подложки с шагом в 1÷5 мкм для каждого последующего прохода, в качестве раствора электролита применяют 4 М водный раствор HAuCl4, а в качестве диэлектрика - предметное стекло состава (масс. %) 72,2 SiO2, 14,3 Na2O, 1,2 K2O, 6,4 СаО, 4,3 MgO, 1,2 Al2O3, 0,03 Fe2O3, 0,3 SO3.
RU2022112439A 2022-05-06 Способ локальной лазерно-индуцированной металлизации поверхности диэлектрика RU2790573C1 (ru)

Publications (1)

Publication Number Publication Date
RU2790573C1 true RU2790573C1 (ru) 2023-02-27

Family

ID=

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681774A (en) * 1986-01-17 1987-07-21 Halliwell Michael J Laser induced selective electroless plating
US5059449A (en) * 1988-08-18 1991-10-22 U.S. Philips Corporation Method of selectively providing a metal from the liquid phase on a substrate by means of a laser
US5378508A (en) * 1992-04-01 1995-01-03 Akzo Nobel N.V. Laser direct writing
RU2323553C1 (ru) * 2007-01-09 2008-04-27 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет (СПбГУ) Способ лазерного осаждения меди из раствора электролита на поверхность диэлектрика
RU2444161C1 (ru) * 2010-07-15 2012-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет Способ лазерного нанесения металлических покрытий и проводников на диэлектрики
RU2466515C1 (ru) * 2011-10-11 2012-11-10 Леонид Геннадьевич Менчиков Способ лазерного осаждения меди на поверхность диэлектрика
RU2468548C1 (ru) * 2011-10-11 2012-11-27 Леонид Геннадьевич Менчиков Способ лазерного осаждения меди из раствора электролита на поверхность диэлектрика
RU2640606C1 (ru) * 2016-11-25 2018-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования - Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Способ локальной нанокристаллизации бариевотитаносиликатных стекол

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681774A (en) * 1986-01-17 1987-07-21 Halliwell Michael J Laser induced selective electroless plating
US5059449A (en) * 1988-08-18 1991-10-22 U.S. Philips Corporation Method of selectively providing a metal from the liquid phase on a substrate by means of a laser
US5378508A (en) * 1992-04-01 1995-01-03 Akzo Nobel N.V. Laser direct writing
RU2323553C1 (ru) * 2007-01-09 2008-04-27 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет (СПбГУ) Способ лазерного осаждения меди из раствора электролита на поверхность диэлектрика
RU2444161C1 (ru) * 2010-07-15 2012-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет Способ лазерного нанесения металлических покрытий и проводников на диэлектрики
RU2466515C1 (ru) * 2011-10-11 2012-11-10 Леонид Геннадьевич Менчиков Способ лазерного осаждения меди на поверхность диэлектрика
RU2468548C1 (ru) * 2011-10-11 2012-11-27 Леонид Геннадьевич Менчиков Способ лазерного осаждения меди из раствора электролита на поверхность диэлектрика
RU2640606C1 (ru) * 2016-11-25 2018-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования - Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Способ локальной нанокристаллизации бариевотитаносиликатных стекол

Similar Documents

Publication Publication Date Title
US7252699B2 (en) Method for patterning metal using nanoparticle containing precursors
US4981715A (en) Method of patterning electroless plated metal on a polymer substrate
US4432855A (en) Automated system for laser mask definition for laser enhanced and conventional plating and etching
US5059449A (en) Method of selectively providing a metal from the liquid phase on a substrate by means of a laser
LT6518B (lt) Būdas, skirtas elektrai laidžioms sritims ant polimerinio gaminio paviršiaus formuoti
RU2790573C1 (ru) Способ локальной лазерно-индуцированной металлизации поверхности диэлектрика
Broadhead et al. Fabrication of gold–silicon nanostructured surfaces with reactive laser ablation in liquid
NL8105633A (nl) Werkwijze voor de vervaardiging van metaalbeelden of patronen op en/of onder het oppervlak van een substraat met een halfgeleidende lichtgevoelige verbinding.
Khairullina et al. High rate fabrication of copper and copper–gold electrodes by laser-induced selective electroless plating for enzyme-free glucose sensing
Wu et al. Cu patterns with high adhesion strength and fine resolution directly fabricated on ceramic boards by ultrafast laser modification assisted metallization
Shishov et al. Laser-induced deposition of copper from deep eutectic solvents: optimization of chemical and physical parameters
RU2468548C1 (ru) Способ лазерного осаждения меди из раствора электролита на поверхность диэлектрика
RU2444161C1 (ru) Способ лазерного нанесения металлических покрытий и проводников на диэлектрики
JP2005209817A (ja) 金属配線形成方法および金属配線形成装置
JP3742872B2 (ja) 光固定された微粒子を触媒とする無電解メッキ法
RU2807689C1 (ru) Способ лазерного создания токопроводящих медных структур на поверхности диэлектрика
RU2466515C1 (ru) Способ лазерного осаждения меди на поверхность диэлектрика
RU2492599C1 (ru) Способ лазерного осаждения меди из раствора электролита на поверхность диэлектрика
JPS60149783A (ja) 選択的メツキ方法
WO2009007712A1 (en) Optical structures
Han et al. Department of Mechanical and Aerospace Engineering, 2 Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65409-0040, USA
Williams et al. The patterning of fine-pitch electrical interconnections on non-planar substrates: a comparison between methods utilising laser ablation and electro-deposited photoresist
RU2474095C1 (ru) Способ лазерного осаждения меди на поверхность диэлектрика
서재민 Fabrication of Embedded Copper Wire on Glass by Laser-Induced Chemical Liquid Phase Deposition with Ytterbium Fiber Laser
JPH05272000A (ja) 微細加工装置