RU2787818C1 - Способ получения оксидного катализатора для дегидрирования органических веществ - Google Patents

Способ получения оксидного катализатора для дегидрирования органических веществ Download PDF

Info

Publication number
RU2787818C1
RU2787818C1 RU2021131815A RU2021131815A RU2787818C1 RU 2787818 C1 RU2787818 C1 RU 2787818C1 RU 2021131815 A RU2021131815 A RU 2021131815A RU 2021131815 A RU2021131815 A RU 2021131815A RU 2787818 C1 RU2787818 C1 RU 2787818C1
Authority
RU
Russia
Prior art keywords
zinc
temperature
catalyst
copper
solution
Prior art date
Application number
RU2021131815A
Other languages
English (en)
Inventor
Сергей Иванович Галанов
Ольга Ивановна Сидорова
Олег Валерьевич Магаев
Дарья Юрьевна Савенко
Сергей Тен
Ольга Владимировна Водянкина
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет»
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет» filed Critical Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет»
Application granted granted Critical
Publication of RU2787818C1 publication Critical patent/RU2787818C1/ru

Links

Images

Abstract

Настоящее изобретение относится к производству катализатора для процессов в нефтяной и химической промышленностях. Способ получения медь-цинк-алюминиевого оксидного катализатора для дегидрирования циклогексанола в циклогексанон, включает осаждение на предварительно осажденный ZnAl стабилизатор азотнокислых солей меди, цинка и алюминия из растворов нитратов меди, цинка и алюминия раствором карбоната натрия при заданных температуре и pH, с последующим выделением осадка, отмывку, сушку, прокаливание. Осаждение предварительно нагретого до 65°С раствора нитратов цинка и алюминия производят нагретым до 65°С раствором 10 мас.% раствором карбоната натрия при постоянном перемешивании при 65°С, с последующей выдержкой, фильтрованием и промывкой полученного осадка водой с температурой 45°С, с дальнейшим введением полученного стабилизатора в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании, осаждение полученной суспензии предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры, выдержкой при постоянном перемешивании и температуре в течение 1 часа, фильтрованием, промывкой осадка, сушкой при температуре 90-120°С и прокаливанием при температуре 300°С. Технический результат заключается в повышении качества промывки катализатора при уменьшенном расходе воды, что приводит к увеличению площади удельной поверхности катализатора на более чем 10%, относительно коммерческих аналогов, при сохранении высокой активности и термостабильности полученного катализатора. 1 ил., 1 табл.

Description

Настоящее изобретение относится к производству катализатора и может быть использован в нефтяной и химической промышленностях.
Известен способ получения катализатора дегидрирования циклогексанола представляющий собой смесь оксидов меди, цинка и алюминия в различных соотношениях с оксидом натрия в качестве промотирующей добавки (Патент РФ № 2101083, B01J23/80, опубл. 10.01.1998). Сущность изобретения: катализатор для процесса дегидрировании циклогексанола в циклогексанон на основе медь-цинк-алюминия и/или хромоксидной системы, промотированной щелочными металлами, получают путем соосаждения из растворов солей раствором карбоната щелочного металла с последующей термообработкой. Щелочной металл вводят в катализатор на стадии осаждения путем неполной отмывки осадка от иона щелочного металла. Недостатками данного метода являются:
а) ввод добавки щелочного металла осуществляется методом неполной отмывки, что приводит к сложности контроля количества промотирующей добавки. Данный факт приводит снижению технологичности процесса и понижению качества получаемого продукта;
б) отсутствует регламент отстаивания суспензии в процессе синтеза, что приводит невоспроизводимому процессу старения осадка, что приводит к непостоянству фазового состава полученного катализатора;
в) Сливание маточного раствора приводит потери мелкой фракции продукта, которая находится в виде взвеси в маточном растворе, что приводит к увеличению себестоимости итогового катализатора;
г) отсутствие стабилизатора в процессе осаждения приводит к низкой термической стабильности итогового катализатора.
Известен способ получения катализатора синтеза метанола представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях (Патент РФ 2100069, опубл. 27.12.1997, B01J23/80). В данном патенте предлагается способ получения катализатора путем осаждения азотнокислых солей меди, цинка и алюминия карбонатом натрия при 50-80°C, pH равном 6,0-8,0 и времени осаждения от 3 до 60 мин. Осаждение медь-цинкового или медь-цинк-алюминиевого соединения проводят на предварительно осажденный цинк-алюминиевый стабилизатор. Кроме того, осаждение проводят при непрерывной подаче растворов в реакторную систему, состоящую из одного или нескольких реакторов, и непрерывном отводе суспензии из системы, причем среднее врем пребывания медь-цинк-алюминиевого соединения в реакционной зоне составляет не более 60 мин. Предлагаемый непрерывный способ приготовления катализатора позволяет получать высокоактивный и термостабильный катализатор.
Недостатками данного способа являются:
а) сливание холодных растворов нитратов меди, цинка и алюминия и карбоната натрия в реакторе с поддержанием заданной температуры (50-80°С), что приводит к формированию большого количества локальных областей перегрева и переохлаждения раствора. Данный факт приводит к плохой воспроизводимости фазового состава итогового катализатора;
б) промывка суспензии осуществляется холодной водой, что снижает эффективность промывки за счет более низкой растворимости нитрата натрия, образующегося в ходе синтеза, в холодной воде.
Из источника (патент SU №1524920 B01J 37/04, 1987 г.) известен способ получения катализатора для процесса конверсии СО, представляющего собой смесь оксидов меди, цинка и алюминия в различном соотношении. Данный катализатор получают синтезируют путем смешивания оксида или гидроксида алюминия, оксида цинка и аммиачно-карбонатным комплексом меди. Далее образец подвергают сушке, прокаливанию катализаторной массы и формованием. Оксид алюминия перед смешиванием диспергируют в водном растворе NH3 до образования гидроксида алюминия, затем смешивают с другими компонентами и добавляют молибдат аммония. Полученную смесь диспергируют до полного удаления аммиака, 5-15 мас. % полученной каталитической массы перемешивают с водным раствором ПВС и порошком, полученным прокаливанием остального количества каталитической массы. Основным недостатком данного метода является низкая активность полученного катализатора.
Из источника (патент РФ 2281162, B01J23/80, опубл. 10.08.2006 г.) известен способ получения катализатора конверсии оксида углерода, представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях. Данный катализатор получают путем смешения аммиачно-карбонатного комплекса меди (МАКР), аммиачно-карбонатного комплекса цинка (ЦАКР) и оксида или гидроксида алюминия в реакторе с мешалкой и обогревом. Полученную суспензию нагревают до 40-50°С и выдерживают при заданной температуре 1-2 часа. Затем увеличивают температуру смеси до 85-97°С и подают продувочный газ (азот или углекислоту). Полученный осадок отделяют, сушат при температуре 90-110°С и прокалдивают при температуре 270-400°С. Полученную прокаленную массу гранулируют и таблетируют с добавлением стабилизатора (хромовая, азотная, щавелевая кислоты или карбамид) и графита (1-1,5 мас.%.)
Недостатками данного метода являются:
а) использования токсичных реагентов (азотная и хромовая кислоты, аммиачно-карбонатные комплексы цинка и меди);
б) нагревание уже смеси непосредственно в реакторе, что приводит к формированию локальных перегревов у стенок реактора, что влечет формирование неоднородного фазового состава катализатора.
Из источника (патент РФ 2491119, B01J 23/80, опубл. 27.08.2013 г.) известен способ получения катализатора конверсии водяного газа низкой температуры, представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях. Данный катализатор получают путем получение дисперсии оксида алюминия со структурами бимита/спевдобимита с помощью пептизации оксида алюминия в кислотном растворе при рН 2-5 (предпочтительно 3). Полученную суспензию добавляют к раствору, содержащему соли цинка и меди (нитраты, ацетаты или их комбинации) при перемешивании в течение 30-60 мин при рН=3. Образовавшуюся суспензию смешивают с раствором карбоната щелочного металла с поддержанием температуры 35-90°С при поддержке рН=7. После сливания смесь выдерживают при температуре 35-90°С в течение 15-180 минут поддерживая рН в интервале 7-9. Полученный осадок фильтруют, промывают, и сушат при 80°С. Далее осадок вымывают так, чтобы уровень оксида натри в образце бел нижу 0,2 мас.%. Высушенный порошок может быть кальцинирован при 200-600°С в течение 30-300 минут.
Недостатками данного метода являются:
а) широкий интервал температур (35-90°С) при выдержке взвеси катализатора приводит к формированию неоднородного фазового состава полученного катализатора, что негативно влияет на его активность и селективность.
б) вымывание порошка катализатора проводят без подогревания промывной воды, что снижает эффективность промывки и повышает расход воды.
в) отсутствие графита (или др. прессовочной добавки, например талюма) в составе конечного катализатора приводит к менее технологичному формованию конечного катализатора.
Максимально близким (прототип) по технологическому результату является катализатор для синтеза метанола и конверсии монооксида углерода, представляющего собой смесь оксидов меди, цинка и алюминия в различных соотношениях, описанный в источнике (патент RU 2500470, B01J 37/03, опубл. 10.12.2013). Данный катализатор получают путем предварительного осаджения нитратов меди, цинка и алюминия раствором карбоната щелочного металла при рН 5-6. Далее полученную суспензию вносят в реактор с добавлением растворов нитратов меди, цинка и алюминия и раствора щелочного металла с температурой в реакционной зоне равной 50-80°С. Скорость подачи реагентов выбирают таким образом, чтобы поддерживать определенную величину рН=6-8. Время пребывания суспензии в реакционной зоне составляет 30-120 минут. Далее суспензию катализаторной массы фильтруют, отмывают водой, сушат при температуре 90-130°С и прокаливают при температуре 150-300°С. далее в прокаленную массу добавляют укрепляющие добавки: талюм и/или графит. Полученный катализатор формуют методом таблетирования. Данный способ позволяет получать активный и термостабильный катализатор.
Недостатками данного метода является:
а) большой интервал температур в реакционной зоне, что приводит к формированию неоднородного фазового состава катализаторной массы;
б) отмывание катализатора холодной водой снижает эффективность отмывки, что приводит к большему расходу воды;
в) отсутствие оперативного контроля качества промывки катализатора.
Задачей изобретения является оптимизация методики синтеза катализаторов дегидрирования циклогексанола, представляющих собой смесь оксидов меди, цинка и алюминия, с сохранением их активности и термической стабильности.
Технический результат заключается в повышении качества промывки катализатора при уменьшенном расходе воды, что приводит к увеличению площади удельной поверхности катализатора на более чем 10%, относительно коммерческих аналогов, при сохранении высокой активности и термостабильности полученного катализатора.
Технический результат достигается путем приготовления цинк-алюминиевого стабилизатора путем осаждения предварительно нагретого до 65°С раствора нитратов цинка и алюминия нагретым до 65°С раствором 10 мас.% раствором осадителя (карбонат натрия) при постоянном перемешивании и температуре 65°С. Скорость подачи реагентов выбирают таким образом, чтобы поддерживать рН в реакционной среде около 7. Выдерживают полученную суспензию в данных условиях в течении в течение 30 минут. Далее полученный осадок фильтруют и промывают дистиллированной водой с температурой 45°С. Полученную на данном этапе пасту вносят в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании. Далее производят осаждение полученной суспензии предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры. Скорости подачи реагентов выбирают таким образом, чтобы обеспечить постоянный рН в реакционной среде равный 7. Полученную суспензию выдерживают при постоянном перемешивании и температуре в течение 1 часа. Образовавшийся осадок фильтруют и промывают предварительно нагретой до 40-45°С водой с постоянным контролем электропроводности смывных вод. При достижении электропроводности смывных вод промывку останавливают. Полученную промытую массу сушат при температуре 90-120°С и прокаливают при температуре 300-500°С.
Сопоставительный анализ прототипа и заявленного способа приготовления катализатора показывает, что является осаждение на предварительно осадженный стабилизатор нитратов меди, цинка и алюминия раствором карбоната натрия при заданных температуре и рН с последующими выделением, промывкой, сушкой и прокалкой катализатора.
Отличительными чертами являются использование предварительно нагретых растворов нитратов металлов и карбоната натрия, использование предварительно нагретой до 40-45°С воды для промывания катализатора, использование контроля электропроводности промывочных вод для проверки качества промывки в процессе синтеза катализаторов.
Предлагаемый способ приготовления осуществляется следующим образом: предварительно отмеренные навески нитратов цинка и алюминия (масса нитрата цинка равна 5-6% от общей массы нитрата цинка, необходимого для синтеза катализатора, масса нитрата алюминия равна 55-56 от общей массы нитрата алюминия, необходимого для синтеза катализатора) растворяют в подогретой до 65°С дистиллированной воде в термостойком химическом стакане или другой химически и термически стойкой ёмкости подходящего объема при постоянном перемешивании. Во втором термостойком химическом стакане или другой химически и термически стойкой ёмкости подходящего объема растворяют карбонат натрия, концентрация полученного раствора должна составлять 10 мас.%. Полученный раствор нагревают до 65°С. Далее растворы нитратов цинка, алюминия и карбоната натрия сливают при постоянном перемешивании и температуре 65°С в термостойком химическом стакане или другой химически и термически стойкой ёмкости подходящего объема. Скорости подачи реагентов подбирают таким образом, чтобы рН среды после сливания растворов нитратов металлов и карбоната натрия был равен 7. Полученный твердый осадок промывают подогретой до 45°С водой и фильтруют. Полученную на данном этапе пасту вносят в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании и поддержании температуры 65°С. Далее производят сливание полученной суспензии с предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры. Скорости подачи реагентов выбирают таким образом, чтобы обеспечить постоянный рН в реакционной среде равный 7. Полученную суспензию выдерживают при постоянном перемешивании и температуре в течение 1 часа. Образовавшийся осадок фильтруют и промывают предварительно нагретой до 40-45°С водой с постоянным контролем электропроводности смывных вод. При достижении электропроводности смывных вод постоянного значения промывку останавливают. Полученную промытую массу сушат при температуре 90-120°С и прокаливают при температуре 300°С.
В таблице 1 представлен Химический состав и текстурные характеристики Cu-Zn-Al - катализаторов дегидрирования циклогексанола
Таблица - Химический состав и текстурные характеристики Cu-Zn-Al - катализаторов дегидрирования циклогексанола
Образец Состав, мас.% Удельная поверхность, м2 Объем пор, см3 Размер пор, нм
CuO ZnO Al2O3 Me2O
CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,2 0,69 0,11 - 134 0.75 20.0
Li2O(0.005)-CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,198 0,688 0,108 Li2O 0.005 64 0.48 28.1
Na2O(0.005)-CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,198 0,688 0,108 Na2O 0.005 81 0.65 29.2
K2O(0.005)-CuO(0.2)-ZnO(0.69)-Al2O3(0.11) 0,198 0,688 0,108 K2O 0.005 102 0.79 28.4
CuO(0.45)-ZnO(0.44)-Al2O3(0.11) 0,45 0,44 0,11 - 110 0,64 20,3
Образец сравнения 1 0,20 - SiO2 0,76 Na2O 0,014 127 0,73 19,0
Согласно полученным экспериментальным данным, приведенным на фигуре 1 «Сравнение каталитических свойств синтезированных образцов катализаторов и образцов сравнения», для образцов сравнения после 20-30 часов работы при Т=250 0С наблюдается монотонное снижение выхода целевого продукта.
Отмечено, что для образцов катализаторов состава CuO - 20,0, ZnO - 69,0, Al2O3 - 11,0 масс. %, промотированных щелочными металлами, не наблюдается снижения выхода целевого продукта за все время работы при Т= 250°С, а для системы, промотированной 0,5 масс. % K2O наблюдается увеличение значения выхода целевого продукта циклогексанона после 40 часов эксплуатации.
Таким образом, стабильность при рабочих температурах эксплуатации, промотированных оксидами щелочных металлов образцов катализаторов состава CuO - 20,0, ZnO - 69,0, Al2O3 - 11,0 мас.% и высокое значение выхода целевого продукта по сравнению с используемыми в промышленности образцами сравнения позволяют считать образец CuO - 20,0, ZnO - 69,0, Al2O3 - 11,0 0,5 % Na2O наиболее перспективным для применения в промышленности.

Claims (1)

  1. Способ получения медь-цинк-алюминиевого оксидного катализатора для дегидрирования циклогексанола в циклогексанон, включающий осаждение на предварительно осажденный ZnAl стабилизатор азотнокислых солей меди, цинка и алюминия из растворов нитратов меди, цинка и алюминия раствором карбоната натрия при заданных температуре и рН, с последующим выделением осадка, отмывку, сушку, прокаливание, отличающийся тем, что осаждение предварительно нагретого до 65°С раствора нитратов цинка и алюминия производят нагретым до 65°С раствором 10 мас.% раствором карбоната натрия при постоянном перемешивании при 65°С, с последующей выдержкой, фильтрованием и промывкой полученного осадка водой с температурой 45°С, с дальнейшим введением полученного стабилизатора в предварительно нагретый до 65°С раствор нитратов меди, цинка и алюминия при постоянном перемешивании, осаждение полученной суспензии предварительно нагретым раствором карбоната натрия путем сливания двух растворов в реактор с постоянным перемешиванием и поддержанием заданной температуры, выдержкой при постоянном перемешивании и температуре в течение 1 часа, фильтрованием, промывкой осадка, сушкой при температуре 90-120°С и прокаливанием при температуре 300°С.
RU2021131815A 2021-10-29 Способ получения оксидного катализатора для дегидрирования органических веществ RU2787818C1 (ru)

Publications (1)

Publication Number Publication Date
RU2787818C1 true RU2787818C1 (ru) 2023-01-12

Family

ID=

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1126205A3 (ru) * 1978-07-15 1984-11-23 Институт Ценжкей Сынтэзы Органиинэй "Бляховня" (Инопредприятие) Способ получени катализатора дл синтеза метанола
UA3395U (uk) * 2004-02-10 2004-11-15 Український Державний Інститут Скла Ванна до пристрою для виготовлення листового скла
UA51462C2 (en) * 2002-04-05 2006-09-15 Alvigo Ks Res And Production C Process for production of catalyst
RU2500470C1 (ru) * 2012-11-20 2013-12-10 Открытое акционерное общество "Ангарский завод катализаторов и органического синтеза" (ОАО "АЗКиОС") Способ приготовления катализатора для синтеза метанола и конверсии монооксида углерода
CN103506127A (zh) * 2012-06-30 2014-01-15 中国石油化工股份有限公司 低钠含量铜锌铝加氢催化剂的制备方法
CN111215084A (zh) * 2018-11-25 2020-06-02 中国科学院大连化学物理研究所 一种用于二氧化碳加氢制甲醇铜基催化剂及制备和应用
CN112221509A (zh) * 2020-10-16 2021-01-15 西南化工研究设计院有限公司 一种高稳定性甲醇合成催化剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1126205A3 (ru) * 1978-07-15 1984-11-23 Институт Ценжкей Сынтэзы Органиинэй "Бляховня" (Инопредприятие) Способ получени катализатора дл синтеза метанола
UA51462C2 (en) * 2002-04-05 2006-09-15 Alvigo Ks Res And Production C Process for production of catalyst
UA3395U (uk) * 2004-02-10 2004-11-15 Український Державний Інститут Скла Ванна до пристрою для виготовлення листового скла
CN103506127A (zh) * 2012-06-30 2014-01-15 中国石油化工股份有限公司 低钠含量铜锌铝加氢催化剂的制备方法
RU2500470C1 (ru) * 2012-11-20 2013-12-10 Открытое акционерное общество "Ангарский завод катализаторов и органического синтеза" (ОАО "АЗКиОС") Способ приготовления катализатора для синтеза метанола и конверсии монооксида углерода
CN111215084A (zh) * 2018-11-25 2020-06-02 中国科学院大连化学物理研究所 一种用于二氧化碳加氢制甲醇铜基催化剂及制备和应用
CN112221509A (zh) * 2020-10-16 2021-01-15 西南化工研究设计院有限公司 一种高稳定性甲醇合成催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Технология катализаторов / И.П. Мухленов, Е.И. Добкина, В.И. Дерюжкина, В.Е. Сороко; Под ред. Проф. И. П. Мухленова, 3-е изд., перераб. - Л.: Химия, 1989 - 272 с. Кемер О.В. Методика решения задач по курсу общей химии: учебно-метод. пособие/ О.В. Кемер, Т.А. Антипова.- Ульяновск: УВАУ ГА, 2007.- 65с. *

Similar Documents

Publication Publication Date Title
CN101687661B (zh) 铈和其他稀土元素的高比表面积混合氧化物、制备方法和在催化中的应用
RU2372987C2 (ru) ПОЛУЧЕНИЕ Cu/Zn/Al-КАТАЛИЗАТОРОВ ФОРМИАТНЫМ СПОСОБОМ
RU2600565C2 (ru) СОДЕРЖАЩЕЕ МЕДЬ МОЛЕКУЛЯРНОЕ СИТО ИЗ ЛЕВИНА ДЛЯ СЕЛЕКТИВНОГО ВОССТАНОВЛЕНИЯ NOx
KR100373895B1 (ko) 프로판 또는 이소부탄으로부터 아크릴로니트릴 또는메트아크릴로니트릴을 제조하는데 사용하기 위한 산화물촉매의 제조 방법
US4302357A (en) Catalyst for production of ethylene from ethanol
CN111960434A (zh) 一种cha型菱沸石分子筛及其合成方法与应用
JPH07116518A (ja) 銅触媒
JPH02194839A (ja) エチレンオキシド製造用銀触媒およびその製造方法
US4613585A (en) Process of preparing alumina for use in catalyst carrier
CN1113695C (zh) 用于氨基醇脱氢制备氨基羧酸或乙二醇(衍生物)脱氢制备含氧羧酸的催化剂及其制备方法和用途
JPS6313727B2 (ru)
WO2020135714A1 (zh) 一种拟薄水铝石、其制造方法及其应用
RU2787818C1 (ru) Способ получения оксидного катализатора для дегидрирования органических веществ
CN112221509B (zh) 一种高稳定性甲醇合成催化剂的制备方法
JPS6212614A (ja) 大形孔隙を有するアルミナの製造方法
JPS63123445A (ja) ヒドロゲルから作成した水添処理触媒の製造方法および製造された触媒
CN110844919B (zh) NaY分子筛的制备方法及其制备的NaY分子筛
CN108430629B (zh) 氢化催化剂及其制备方法
JPS62286542A (ja) 安定化マグネシアおよび接触法におけるその使用
JPH0938494A (ja) アルミナを結合材とする触媒成型方法
RU2307709C1 (ru) Способ получения платинового катализатора для очистки выхлопных газов двигателей внутренного сгорания
RU2800947C1 (ru) Способ приготовления катализатора для получения изопропилового спирта
JP2000135437A (ja) 水素化処理触媒およびその製造方法
US20210205794A1 (en) Zeolite having improved heat resistance and catalyst composite using same
RU2100069C1 (ru) Способ приготовления катализатора