RU2786446C1 - Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов - Google Patents
Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов Download PDFInfo
- Publication number
- RU2786446C1 RU2786446C1 RU2021135485A RU2021135485A RU2786446C1 RU 2786446 C1 RU2786446 C1 RU 2786446C1 RU 2021135485 A RU2021135485 A RU 2021135485A RU 2021135485 A RU2021135485 A RU 2021135485A RU 2786446 C1 RU2786446 C1 RU 2786446C1
- Authority
- RU
- Russia
- Prior art keywords
- sorbent
- chitosan
- distilled water
- solution
- sodium tripolyphosphate
- Prior art date
Links
- 239000002594 sorbent Substances 0.000 title claims abstract description 47
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 29
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 150000002500 ions Chemical class 0.000 title claims abstract description 22
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 15
- 238000000605 extraction Methods 0.000 title abstract description 11
- 229920001661 Chitosan Polymers 0.000 claims abstract description 53
- 239000000243 solution Substances 0.000 claims abstract description 43
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 36
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000004005 microsphere Substances 0.000 claims abstract description 30
- 238000003756 stirring Methods 0.000 claims abstract description 30
- -1 polymethylsiloxane Polymers 0.000 claims abstract description 28
- 235000019832 sodium triphosphate Nutrition 0.000 claims abstract description 27
- 239000012153 distilled water Substances 0.000 claims abstract description 26
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 claims abstract description 25
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 9
- GRYLNZFGIOXLOG-UHFFFAOYSA-N nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002612 dispersion media Substances 0.000 claims abstract description 8
- BRLQWZUYTZBJKN-UHFFFAOYSA-N epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011541 reaction mixture Substances 0.000 claims abstract description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 7
- 238000000926 separation method Methods 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 7
- 239000002071 nanotube Substances 0.000 claims abstract description 6
- 230000003647 oxidation Effects 0.000 claims abstract description 6
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 6
- 239000006185 dispersion Substances 0.000 claims abstract description 5
- 238000007792 addition Methods 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 238000005039 chemical industry Methods 0.000 abstract description 3
- 239000012528 membrane Substances 0.000 abstract description 2
- 239000002351 wastewater Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000008187 granular material Substances 0.000 description 10
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 7
- 229910001603 clinoptilolite Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229910000323 aluminium silicate Inorganic materials 0.000 description 5
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical class O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N Thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 210000004544 DC2 Anatomy 0.000 description 3
- 235000019749 Dry matter Nutrition 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- 239000004021 humic acid Substances 0.000 description 3
- 230000002530 ischemic preconditioning Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- 230000001264 neutralization Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000003014 reinforcing Effects 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 241000080590 Niso Species 0.000 description 1
- PPUSKXCVYQTPRH-UHFFFAOYSA-N [dihydroxy(methyl)silyl]oxy-dihydroxy-methylsilane Chemical compound C[Si](O)(O)O[Si](C)(O)O PPUSKXCVYQTPRH-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000010192 crystallographic characterization Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 101700059225 eat-2 Proteins 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000002209 hydrophobic Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001057 ionotropic Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- FXSGDOZPBLGOIN-UHFFFAOYSA-N trihydroxy(methoxy)silane Chemical compound CO[Si](O)(O)O FXSGDOZPBLGOIN-UHFFFAOYSA-N 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
Abstract
Изобретение относится к химической промышленности и может быть использовано для совершенствования мембранных и сорбционных технологий в водоподготовке, при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод различной природы. Представлен способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов, заключающийся в смешении раствора хитозана в 1% уксусной кислоте с дисперсией полиметилсилоксана полигидрата в дистиллированной воде при массовом отношении полиметилсилоксана полигидрата и хитозана 1:10-1:2, интенсивном перемешивании, постепенном добавлении эпихлоргидрина в качестве сшивающего агента и перемешивании до его полного включения в реакционную смесь, последующем капельном введении приготовленной смеси в водный раствор триполифосфата натрия с концентрацией 0,05 М при перемешивании, выдерживании в нем образовавшихся микросфер с последующим их отделением фильтрованием от дисперсионной среды и тщательной промывке дистиллированной водой от непрореагировавшего триполифосфата натрия, характеризующийся тем, что выдерживание композитных микросфер в водном растворе триполифосфата натрия осуществляют при комнатной температуре в течение 20-50 мин, после промывки микросферы модифицируют в растворе окисленных углеродных нанотрубок Таунит-М в толуоле в количестве 10-20% от массы сорбента при модуле толуол/сорбент 1-2 при комнатной температуре в течение 1-2 ч, затем готовый сорбент отделяют от толуола фильтрованием, промывают дистиллированной водой и высушивают, при этом окисление указанных углеродных нанотрубок Таунит-М проводят концентрированной азотной кислотой при модуле 50-100 при комнатной температуре в течение 60-90 мин, затем нанотрубки отделяют, промывают дистиллированной водой, высушивают. Изобретение обеспечивает повышение сорбционной емкости сорбента по отношению к ионам тяжелых металлов, упрощение процесса обработки композитных микросфер на основе хитозана и полиметилсилоксана полигидрата в водном растворе триполифосфата натрия при получении сорбентов. 1 табл., 3 пр.
Description
Изобретение относится к химической промышленности, а именно, к способам получения композиционных сорбентов, содержащих хитозан, предназначенных для извлечения ионов тяжелых металлов сорбцией из растворов различного состава, образующихся в результате проведения разнообразных технологических процессов, и может быть использовано для совершенствования мембранных и сорбционных технологий, в водоподготовке, при разработке технологий утилизации ионов тяжелых металлов из водных растворов и сточных вод различной природы.
Известен способ получения гранул сшитого хитозана, включающий стадию формирования гранул и сшивку полимера глутаровым альдегидом в кислом растворе, в котором сначала полимер сшивают, используя при этом раствор соляной кислоты, содержащий глутаровый альдегид, при мольном соотношении хитозан: соляная кислота: глутаровый альдегид 1:(0,5-1,0):(0,1-1,0), а затем экструзивно формуют гель в виде нитей, их механически нарезают на гранулы и сушат при температуре 40-70°C в течение 1-2 часов [Патент 2590982 Российская Федерация, МПК A61K 47/36 B01J 20/24 C08B 37/08. Способ получения гранул сшитого хитозана / Пестов А.В., Братская С.Ю.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук (RU), Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (RU). - №2015125829/15; заявл. 29.06.2015; опубл. 10.07.2016, Бюл. №19.].
Известен способ получения сорбента для очистки воды на основе природного алюмосиликата, модифицированного хитозаном, обработкой алюмосиликата раствором хитозана в разбавленной уксусной кислоте, в котором обработку осуществляют при массовом отношении алюмосиликата к раствору хитозана в разбавленной уксусной кислоте, равном 1:1, и конечном значении рН раствора над осадком, равном 8-9, затем сформировавшуюся массу гранулируют продавливанием через фильеры, полученные гранулы сушат, после чего обрабатывают раствором гуминовых кислот, взятых в количестве, обеспечивающем полное связывание аминогрупп хитозана, отделяют гранулы сорбента от раствора и отверждают образовавшийся полимерный слой на поверхности гранул, при этом: - в качестве природного алюмосиликата используют цеолит, вспученный вермикулит или их смесь; - обработку алюмосиликата осуществляют 2-4%-ным раствором хитозана в 3%-ной уксусной кислоте; - обработку гранул сорбента гуминовыми кислотами осуществляют 10%-ным раствором гуминовых кислот, содержащих 3,1 мг-экв/г СОН- групп и 6,0 мг-экв/г СООН- групп, при комнатной температуре в течение 3-4 ч; - отверждение полимерного слоя на поверхности гранул осуществляют выдерживанием гранул при комнатной температуре до сухого состояния или термообработкой при 120-150°С в течение 2-3 ч [Патент 2277013 Российская Федерация, МПК B 01 J 20/16, B 01 J 20/26, B 01 J 20/32. Способ получения сорбента для очистки воды / Шапкин Н.П., Постойкин В.В., Завьялов Б.Б., Нгуен Тинь Нгиа; заявитель и патентообладатель Шапкин Н.П., Постойкин В.В., Завьялов Б.Б., Нгуен Тинь Нгиа - №2004135113/15; заявл. 01.12.2004; опубл. 27.05.2006, Бюл. №15.].
Известен способ получения композитов на основе хитозана и клиноптилолита в виде микросфер с повышенной сорбционной емкостью к ионам меди путем встраивания (диспергирования) микрочастиц клиноптилолита в матрицу поперечно сшитого хитозана при массовом отношении клиноптилолита и хитозана 1:10 - 1:2, при этом в композите достигается одновременно «в тандеме» ионное/ковалентное связывание: ионное (ионотропное) взаимодействие (гелеобразование) хитозана осуществляется с триполифосфатом натрия, а в качестве ковалентно сшивающего агента по отношению к хитозану выступает эпихлоргидрин.
Максимальная сорбционная емкость композита по отношению к ионам меди составляет 9.04 ммоль/г при рН 5.
Получение микросфер композита осуществляют следующим образом: раствор хитозана с концентрацией 3 г/л получают путем растворения порошка хитозана в 1 об % уксусной кислоте при интенсивном перемешивании в течение не менее 48 ч. Необходимое количество порошка клиноптилолита смешивают с дистиллированной водой, причем объем воды составляет ½ объема раствора хитозана, и выдерживают при интенсивном перемешивании на магнитной мешалке в течение 1 ч.
Затем 20 г раствора хитозана в 1% уксусной кислоте смешивают с 10 мл дисперсии клиноптилолита в дистиллированной воде и после интенсивного перемешивания постепенно добавляют эпихлоргидрин в качестве сшивающего агента. Перемешивание продолжают до тех пор, пока эпихлоргидрин полностью включается в реакционную смесь. Затем приготовленную смесь с помощью шприца вводят в водный раствор триполифосфата натрия с концентрацией 0,05 М при перемешивании.
Композитные микросферы выдерживают при перемешивании в течение 5 ч при 37°С, отделяют от дисперсионной среды и тщательно промывают дистиллированной водой от непрореагировавшего триполифосфата натрия и высушивают в течение 24 ч при комнатной температуре и 48 ч под вакуумом при 40°С.Средний размер микросфер в сухом состоянии 800 мкм [Dragan E.S., Dinu M.V., Timpu D. Preparation and characterization of novel composites based on chitosan and clinoptilolite with enhanced adsorption properties for Cu2+// Bioresource Technology (2010) V. 101, P. 812-817].
Извлечение ионов металлов композитом хитозан/клиноптилолит из водных растворов проводят следующим образом. 0,25 г сухих микросфер композита помещают в колбу, приливают 25 мл водного раствора CuSO4, с концентрацией 0,07 моль/л и проводят контактирование в течение 24 ч.
Сорбционную емкость сорбента рассчитывают по формуле,
где С 0 - начальная концентрация ионов металла в растворе, мг/л;
С - равновесная концентрация ионов металла в растворе, мг/л;
m - масса навески сорбента (композита), г;
V - объем раствора, мл;
63,5 - атомная масса меди.
Однако недостатками данного способа являются: длительное время обработки сорбента (5 ч) в растворе триполифосфата натрия; - длительное время сушки (24 ч при комнатной температуре и 48 ч под вакуумом при 40°С); недостаточно высокая степень извлечения ионов тяжелых металлов из водных растворов (нет данных для металлов, кроме меди).
Наиболее близким по технической сущности и достигаемому результату, то есть прототипом, является способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов, заключающийся в смешении раствора хитозана в 1% уксусной кислоте с дисперсией армирующего материала в дистиллированной воде при массовом отношении армирующего дисперсного материала и хитозана 1:10 - 1:2, интенсивном перемешивании, постепенном добавлении эпихлоргидрина в качестве сшивающего агента и перемешивании до его полного включения в реакционную смесь, последующем капельном введении приготовленной смеси в водный раствор триполифосфата натрия с концентрацией 0,05 М при перемешивании, выдерживании в нем образовавшихся микросфер с последующим их отделением от дисперсионной среды и тщательной промывке дистиллированной водой от непрореагировавшего триполифосфата натрия, в котором в качестве армирующего дисперсного материала используют полиметилсилоксана полигидрат, а выдерживание композитных микросфер в водном растворе триполифосфата натрия осуществляют при микроволновом облучении мощностью 300 Вт с частотой 2,45 ГГц и температуре 25-40°С в течение 15-25 мин [Пат.2691050 РФ, МПК С 1 51, B 01 J 20/30, B 01 J 20/24. B 01 J 20/26, B 01 J 20/103. Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов [Текст] / Никифорова Т.Е., Козлов В.А., Липатова И.М., Натареев С. В., Кузьмина М.В.; заявитель и патентообладатель Иван. гос.хим-тех. ун-т.- №2018116841; заявл. 04.05.2018; опубл. 07.06.2019, Бюл. №16.].
Недостатками прототипа являются:
- недостаточно высокая сорбционная емкость сорбента при извлечении ионов тяжелых металлов;
- необходимость использования СВЧ- оборудования для обработки сорбентов.
Техническим результатом изобретения является повышение сорбционной емкости сорбента по отношению к ионам тяжелых металлов; упрощение процесса обработки композитных микросфер на основе хитозана и полиметилсилоксана полигидрата в водном растворе триполифосфата натрия при получении сорбентов.
Указанный результат достигается тем, что в способе получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов, заключающемся в смешении раствора хитозана в 1% уксусной кислоте с дисперсией полиметилсилоксана полигидрата в дистиллированной воде при массовом отношении полиметилсилоксана полигидрата и хитозана 1:10-1:2, интенсивном перемешивании, постепенном добавлении эпихлоргидрина в качестве сшивающего агента и перемешивании до его полного включения в реакционную смесь, последующем капельном введении приготовленной смеси в водный раствор триполифосфата натрия с концентрацией 0,05 М при перемешивании, выдерживании в нем образовавшихся микросфер с последующим их отделением фильтрованием от дисперсионной среды и тщательной промывке дистиллированной водой от непрореагировавшего триполифосфата натрия, согласно изобретению, выдерживание композитных микросфер в водном растворе триполифосфата натрия осуществляют при комнатной температуре в течение 20-50 мин, после промывки микросферы модифицируют в растворе окисленных углеродных нанотрубок Таунит М в толуоле в количестве 10-20% от массы сорбента при модуле толуол/сорбент 1-2 при комнатной температуре в течение 1-2 ч, затем готовый сорбент отделяют от толуола фильтрованием, промывают дистиллированной водой и высушивают,
окисление углеродных нанотрубок Таунит - М проводят концентрированной азотной кислотой при модуле 50-100 при комнатной температуре в течение 60-90 мин, затем нанотрубки отделяют, промывают дистиллированной водой, высушивают.
Для осуществления заявляемого изобретения используют следующие материалы и реагенты:
- Хитозан. ТУ 9289-067-00472124-03 «Хитозан пищевой»;
- Полиметилсилоксана полигидрат (гидрогель метилкремниевой кислоты): ТУ 2439-001-14662377-2004 - продукт нелинейной поликонденсации 1,1,3,3 - тетрагидрокси -1,3 - диметилдисилоксана полигидрат.Полиметилсилоксана полигидрат имеет пористую структуру кремнийорганической матрицы (молекулярная губка) гидрофобной природы; представляет собой массу белого цвета, состоящую из желеобразных комочков разного размера без запаха и вкуса. Практически нерастворим в воде.
- Эпихлоргидрин. ГОСТ 12844-74 Эпихлоргидрин технический. Технические условия;
- Триполифосфат натрия. ГОСТ 13493-86. Натрия триполифосфат. Технические условия.
- Углеродные нанотрубки «Таунит - М» (ТУ 2166-001-02069289-2006, ООО «НаноТехЦентр».
Углеродный наноматериал «Таунит» представляет собой одномерные наномасштабные нитевидные образования поликристаллического графита длиной более 2 мкм с наружными диаметрами от 15 до 40 нм в виде сыпучего порошка черного цвета.
- Азотная кислота НNО3. ГОСТ 4461-77 Кислота азотная. Технические условия.
Изобретение осуществляют следующим образом.
Пример 1
Получение микросфер на основе хитозана и полиметилсилоксана.
Для приготовления 20 г 3% - го раствора хитозана взвешивают навеску хитозана массой 0,6 г, растворяют в 19,4 мл 1% уксусной кислоты и интенсивно перемешивают в течение 48 ч до образования густого однородного геля, смешивают с 10 мл водной суспензии, содержащей 0,15 г полиметилсилоксана полигидрата, перемешивают на магнитной мешалке в течение 0,5 ч, затем в смесь постепенно добавляют 0,54 мл сшивающего агента - эпихлоргидрина и продолжают перемешивание до полного включения реагента в реакционную смесь (массовое соотношение полиметилсилоксана полигидрат / хитозан 1:4), приготовленную смесь вводят капельным способом в 180 мл раствора триполифосфата натрия концентрацией 0,05 М при постоянном перемешивании до образования микросфер и выдерживают их при комнатной температуре в течение 35 мин с последующим их отделением фильтрованием от дисперсионной среды и тщательно промывают дистиллированной водой от непрореагировавшего триполифосфата натрия до нейтрального рН.
Окисление УНТ. 2 г УНТ Таунит М заливают 100 мл концентрированной азотной кислоты (модуль 50) и проводят их окисление при комнатной температуре в течение 60 мин. Затем азотную кислоту отделяют от нанотрубок фильтрованием, УНТ промывают дистиллированной водой и высушивают.
Модификация микросфер на основе хитозана и полиметилсилоксана окисленными УНТ. 2 г окисленных УНТ (20% от массы сорбента) помещают в стакан, содержащий 20 мл толуола, и растворяют при перемешивании. Затем в полученный раствор вводят 10 г микросфер (модуль толуол/сорбент 2) и выдерживают 1 ч при комнатной температуре. Готовый сорбент отделяют фильтрованием от толуола, промывают дистиллированной водой и высушивают.
Извлечение ионов металлов композитом хитозан / полиметилсилоксана полигидрат из водных растворов: 0,25 г модифицированного сорбента в пересчете на сухое вещество помещают в колбу, приливают 25 мл водного раствора CuSO4 (модуль раствор / сорбент 100) с концентрацией 0,7 моль/л при pH 5 и проводят контактирование. Через 24 ч раствор отфильтровывают и в фильтрате определяют содержание ионов Cu(II) методом атомно-абсорбционной спектроскопии.
Концентрация ионов меди в растворе после контактирования с сорбентом составила 0,602 моль/л. Сорбционная емкость, определенная по формуле (1), составила 9,8 ммоль/г.
Пример 2
Получение микросфер на основе хитозана и полиметилсилоксана.
Для приготовления 20 г 3% -го раствора хитозана взвешивают навеску хитозана массой 0,6 г, растворяют в 19,4 мл 1% уксусной кислоты и интенсивно перемешивают в течение 48 ч до образования густого однородного геля, смешивают с 10 мл водной суспензии, содержащей 0,06 г полиметилсилоксана полигидрата, перемешивают на магнитной мешалке в течение 1 ч, затем в смесь постепенно добавляют 0,54 мл сшивающего агента - эпихлоргидрина и продолжают перемешивание до полного включения реагента в реакционную смесь (массовое соотношение полиметилсилоксана полигидрат / хитозан 1:10), приготовленную смесь вводят капельным способом в 180 мл раствора триполифосфата натрия концентрацией 0,05 М при постоянном перемешивании до образования микросфер и выдерживают их при комнатной температуре в течение 20 мин с последующим их отделением фильтрованием от дисперсионной среды и тщательно промывают от непрореагировавшего триполифосфата натрия дистиллированной водой до нейтрального рН.
Окисление УНТ. 2 г УНТ Таунит М заливают 100 мл концентрированной азотной кислоты (модуль 50) и проводят их окисление при комнатной температуре в течение 90 мин. Затем раствор отделяют от нанотрубок декантацией (или фильтрованием), УНТ промывают дистиллированной водой и высушивают.
Модификация микросфер на основе хитозана и полиметилсилоксана окисленными УНТ. 2 г УНТ (20% от массы сорбента), окисленных и обработанных тионилхлоридом, помещают в стакан, содержащий 10 мл толуола, и растворяют при перемешивании. Затем в полученный раствор вводят 10 г микросфер (модуль толуол/сорбент 1) и выдерживают 2 ч при комнатной температуре. Готовый сорбент отделяют фильтрованием от толуола, промывают дистиллированной водой и высушивают.
Извлечение ионов металлов композитом хитозан / полиметилсилоксана полигидрат из водных растворов: 0,25 г композита хитозан / полиметилсилоксана полигидрат в пересчете на сухое вещество помещают в колбу, приливают 12,5 мл водного раствора NiSO4 (модуль раствор / сорбент 50) с концентрацией 0,7 моль/л при pH 5 и проводят контактирование. Через 20 ч раствор отфильтровывают и в фильтрате определяют содержание ионов Ni(II) методом атомно-абсорбционной спектроскопии.
Концентрация ионов никеля в растворе после контактирования с сорбентом составила 0,512 моль/л. Сорбционная емкость, определенная по формуле (1), составила 9,4 ммоль/г:
Пример 3
Получение микросфер на основе хитозана и полиметилсилоксана
Для приготовления 20 г 3% -го раствора хитозана взвешивают навеску хитозана массой 0,6 г, растворяют в 19,4 мл 1% уксусной кислоты и интенсивно перемешивают в течение 48 ч до образования густого однородного геля, смешивают с 10 мл водной суспензии, содержащей 0,10 г полиметилсилоксана полигидрата, перемешивают на магнитной мешалке в течение 1 ч, затем в смесь постепенно добавляют 0,54 мл сшивающего агента - эпихлоргидрина и продолжают перемешивание до полного включения реагента в реакционную смесь (массовое соотношение / полиметилсилоксана полигидрат / хитозан 1:2), приготовленную смесь вводят капельным способом в 180 мл раствора триполифосфата натрия концентрацией 0,05 М при постоянном перемешивании до образования микросфер и выдерживают их при комнатной температуре в течение 50 мин с последующим их отделением фильтрованием от дисперсионной среды и тщательно промывают дистиллированной водой от непрореагировавшего триполифосфата натрия до нейтрального рН.
Окисление УНТ. 1 г УНТ Таунит М заливают 100 мл концентрированной азотной кислоты (модуль 100) и проводят их окисление при комнатной температуре в течение 75 мин. Затем азотную кислоту отделяют от нанотрубок фильтрованием, УНТ промывают дистиллированной водой и высушивают.
Модификация микросфер на основе хитозана и полиметилсилоксана окисленными УНТ. 1 г УНТ (10% от массы сорбента), окисленных и обработанных тионилхлоридом, помещают в стакан, содержащий 20 мл толуола, и растворяют при перемешивании. Затем в полученный раствор вводят 10 г микросфер (модуль толуол/сорбент 2), и выдерживают 1 ч при комнатной температуре. Готовый сорбент отделяют фильтрованием от толуола, промывают дистиллированной водой и высушивают.
Извлечение ионов металлов композитом хитозан/ полиметилсилоксана полигидрат из водных растворов: 0,25 г композита хитозан / полиметилсилоксана полигидрат в пересчете на сухое вещество помещают в колбу, приливают 50 мл водного раствора ZnSO4 (модуль раствор / сорбент 200) с концентрацией 0,7 моль/л и проводят контактирование в течение 22 ч.
Концентрация ионов цинка в растворе после контактирования с сорбентом составила 0,6525 моль/л. Сорбционная емкость, определенная по формуле (1), составила 9,5 ммоль/г:
Результаты исследований по извлечению ионов тяжелых металлов из растворов с концентрацией 0,7 моль/л по прототипу и по заявляемому изобретению представлены в таблице.
Таблица
примеры | Сорбционная емкость, ммоль/г |
Использование СВЧ оборудования | ||
Cu2+ | Ni2+ | Zn2+ | ||
1 | 9,8 | - | - | - |
2 | - | 9,4 | - | - |
3 | - | - | 9,5 | - |
Прототип | ||||
1 | 9,3 | есть | ||
2 | 9,1 | есть | ||
3 | 9,2 | есть |
Таким образом, из приведенных в таблице данных следует, что предлагаемый способ позволяет решить поставленную задачу, а именно, повысить сорбционную емкость сорбента при извлечении ионов тяжелых металлов из растворов (примерно на 3-5%), упростить процесс обработки композитных микросфер на основе хитозана и полиметилсилоксана полигидрата в водном растворе триполифосфата натрия при получении сорбентов.
Claims (1)
- Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов, заключающийся в смешении раствора хитозана в 1% уксусной кислоте с дисперсией полиметилсилоксана полигидрата в дистиллированной воде при массовом отношении полиметилсилоксана полигидрата и хитозана 1:10-1:2, интенсивном перемешивании, постепенном добавлении эпихлоргидрина в качестве сшивающего агента и перемешивании до его полного включения в реакционную смесь, последующем капельном введении приготовленной смеси в водный раствор триполифосфата натрия с концентрацией 0,05 М при перемешивании, выдерживании в нем образовавшихся микросфер с последующими отделением фильтрованием от дисперсионной среды и тщательной промывке дистиллированной водой от непрореагировавшего триполифосфата натрия, отличающийся тем, что выдерживание композитных микросфер в водном растворе триполифосфата натрия осуществляют при комнатной температуре в течение 20-50 мин, после промывки микросферы модифицируют в растворе окисленных углеродных нанотрубок Таунит-М в толуоле в количестве 10-20% от массы сорбента при модуле толуол/сорбент 1-2 при комнатной температуре в течение 1-2 ч, затем готовый сорбент отделяют от толуола фильтрованием, промывают дистиллированной водой и высушивают, при этом окисление указанных углеродных нанотрубок Таунит-М проводят концентрированной азотной кислотой при модуле 50-100 при комнатной температуре в течение 60-90 мин, затем нанотрубки отделяют, промывают дистиллированной водой, высушивают.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2786446C1 true RU2786446C1 (ru) | 2022-12-21 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2813588C1 (ru) * | 2023-05-29 | 2024-02-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" | Способ модифицирования сорбентов для извлечения ионов тяжелых металлов из водных растворов |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2277013C1 (ru) * | 2004-12-01 | 2006-05-27 | Николай Павлович Шапкин | Способ получения сорбентов для очистки воды |
RU2352388C1 (ru) * | 2007-11-07 | 2009-04-20 | Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) | Способ получения сорбента для очистки воды |
RU2691050C1 (ru) * | 2018-05-04 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) | Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов |
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2277013C1 (ru) * | 2004-12-01 | 2006-05-27 | Николай Павлович Шапкин | Способ получения сорбентов для очистки воды |
RU2352388C1 (ru) * | 2007-11-07 | 2009-04-20 | Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) | Способ получения сорбента для очистки воды |
RU2691050C1 (ru) * | 2018-05-04 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) | Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов |
Non-Patent Citations (1)
Title |
---|
DRAGAN E. S. et al. Preparation and characterization of novel composites based on chitosan and clinoptilolite with enhanced adsorption properties for Cu2+. Bioresource Technology, 2010, Vol. 101, No. 2, P. 812-817. КНУНЯНЦ И.Л. Химический энциклопедический словарь. Советская энциклопедия, 1983, С. 275. НЕКИПЕЛОВ А. Д. Новая российская энциклопедия. Энциклопедия, 2011, Т.VIII (2), С. 311. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2813588C1 (ru) * | 2023-05-29 | 2024-02-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" | Способ модифицирования сорбентов для извлечения ионов тяжелых металлов из водных растворов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2687465C1 (ru) | Способ получения сорбента для извлечения ионов тяжелых металлов из водных растворов | |
RU2691050C1 (ru) | Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов | |
Merakchi et al. | Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution | |
CN102430391B (zh) | 一种金属离子印迹壳聚糖交联膜吸附剂的制备方法及应用 | |
Nguyen et al. | Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions | |
Wang et al. | Adsorption of cationic dye on N, O-carboxymethyl-chitosan from aqueous solutions: equilibrium, kinetics, and adsorption mechanism | |
CN110665486B (zh) | 一种磁性四氧化三铁-pamam-抗体复合体及其制备方法和应用 | |
CN111068632A (zh) | 一种铅离子复合吸附剂及其制备方法 | |
CN109261138A (zh) | 一种用于重金属离子吸附的超支化聚酰胺改性海藻酸钠微球及其制备方法 | |
CN112934189B (zh) | 花生壳木质纤维素/β-环糊精复合水凝胶吸附剂及制备方法与应用 | |
RU2760265C1 (ru) | Способ получения модифицированного сорбента для извлечения ионов тяжелых металлов из водных растворов | |
CN113000037B (zh) | 一种用于稀土矿区氨氮和重金属复合污染废水处理的复合微球吸附剂及其制备方法和应用 | |
CN109134890A (zh) | 一种纤维素微球载体的制备方法及应用 | |
CN109107539B (zh) | 具有阳离子选择性吸附的磁性纤维素微球及其制备方法 | |
CN109627765A (zh) | 一种可生物降解型复合水凝胶及其制备方法和应用 | |
CN110066512A (zh) | 抗菌及重金属去除用聚苯胺复合物的制备方法及通过该方法制备的聚苯胺复合物 | |
RU2786446C1 (ru) | Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов | |
CN114735795A (zh) | 一种海藻酸钠-硅藻土复合磁性絮凝剂及其制备方法 | |
JPS5857401A (ja) | 粉粒状多孔質キトサンの製造方法 | |
RU2786447C1 (ru) | Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов | |
Menye et al. | Alginate/Hyphaene thebaica fruit shell biocomposite as environmentally friendly and low-cost biosorbent for heavy metals uptake from aqueous solution: batch equilibrium and kinetic studies | |
RU2768585C1 (ru) | Способ получения модифицированного сорбента для извлечения ионов тяжелых металлов из водных растворов | |
CN112315976B (zh) | 一种载银凹凸棒交联的可注射型抗菌复合水凝胶及其制备方法和应用 | |
RU2750034C1 (ru) | Способ получения композиционного сорбента для извлечения ионов тяжелых металлов из водных растворов | |
JPH0651114B2 (ja) | キトサン―磁性体複合粒子とその製造方法 |