RU2784667C1 - Способ получения керамического композита на основе нитрид кремния-нитрид титана - Google Patents

Способ получения керамического композита на основе нитрид кремния-нитрид титана Download PDF

Info

Publication number
RU2784667C1
RU2784667C1 RU2022124454A RU2022124454A RU2784667C1 RU 2784667 C1 RU2784667 C1 RU 2784667C1 RU 2022124454 A RU2022124454 A RU 2022124454A RU 2022124454 A RU2022124454 A RU 2022124454A RU 2784667 C1 RU2784667 C1 RU 2784667C1
Authority
RU
Russia
Prior art keywords
titanium
silicon nitride
tin
nitride
temperature
Prior art date
Application number
RU2022124454A
Other languages
English (en)
Inventor
Константин Александрович Ким
Антон Сергеевич Лысенков
Юрий Федорович Каргин
Марианна Геннадьевна Фролова
Сергей Васильевич Федоров
Александр Юрьевич Иванников
Светлана Николаевна Ивичева
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Application granted granted Critical
Publication of RU2784667C1 publication Critical patent/RU2784667C1/ru

Links

Images

Abstract

Изобретение относится к способу получения керамического композита на основе нитрида кремния (Si3N4), содержащий нитрид титана (TiN), который может быть использован в производстве бронематериалов и изоляционных материалов. На первой стадии процесса смешивают нитрид кремния, нитрид титана и металлический титан в планетарной мельнице в присутствии изопропанола. Далее смесь высушивают при 90 °С и прессуют при давлении 100 МПа. Затем обжигают при 1600 °С в атмосфере азота в течение 1 часа. Металлический титан имеет размер зерна 1-10 мкм. Для спекания используют спекающую добавку CaO-Al2O3 с температурой эвтектики равной 1360 °С. Данный способ приводит к получению композита Si3N4-TiN с высокими значениями твердости и электропроводности. 2 ил., 1 табл., 4 пр.

Description

Изобретение относится к способу получения керамических композитов на основе нитрида кремния (Si3N4), содержащих нитрид титана (TiN). Данные композиты сочетают в себе совокупность свойств, таких как высокая износостойкость, высокие предел прочности и твердость, а также низкий коэффициент теплового расширения. Благодаря таким характеристикам керамический композит нитрид кремния, армированный нитридом титана, может использоваться в качестве конструкционного материала для работы в агрессивных средах, в условиях высоких механических нагрузок и высоких температур. Изобретение относится к способу получения композитной керамики на основе нитрида кремния, армированной нитридом титана.
Изобретение относится к технологии получения композитных керамических материалов на основе Si3N4-TiN.
Нитридкремниевая керамика широко используется для изготовления бронематериалов, технических конструкционных изделий (подшипников скольжения и качения), а также электроизоляционных материалов. Твердость по Виккерсу горячепрессованной керамики Si3N4 составляет до 20 ГПа, что позволяет использовать данный материал в качестве режущих инструментов для обработки металлов.
Известен способ получения керамического композита Si3N4-TiN (Кондратьева Л.А., Керсон И.А., Бичуров Г.В. Композиция Si3N4-TiN, синтезированная в системе «Si-NaN3-Na2TiF6» в режиме самораспространяющегося высокотемпературного синтеза. Тенденции развития науки и образования, 2016, №. 16-2, с. 30-32). Способ изготовления композита Si3N4-TiN заключался в азидной технологии СВС получения нитридного композита Si3N4-TiN из смеси твердофазных компонентов «Si+NaN3+Na2TiF6». В качестве азида был взят азид натрия, а в качестве галоидной соли использовали соль азотируемого элемента - гексафтортитанат аммония. Недостатком метода получения керамического композита Si3N4-TiN является сложная технология получения композита из смеси твердофазных компонентов и использование дорогостоящей технологии самораспространяющегося высокотемпературного синтеза (СВС).
Известен способ получения керамического композита Si3N4-TiN (Manyuan Zhou, Don Rodrigo, Yi-Bing Cheng. Effects of the electric current on conductive Si3N4/TiN composites in spark plasma sintering. Journal of Alloys and Compounds, 2013, том 547, с 51-58). Способ изготовления композита Si3N4-TiN заключался в использовании порошков TiN и Si3N4 с дальнейшим спеканием методом искрового плазменного спекания в графитовой пресс-форме. Недостатком метода получения керамического композита Si3N4-TiN является использование дорогостоящего метода обжига искрового плазменного спекания.
Известен способ получения керамического композита Si3N4-TiN, в котором предварительно синтезировали TiN из нановолокон TiO2 с помощью гидротермальной обработки в среде NH3 при температуре 1200°С. Полученные порошки TiN смешивались с порошками Si3N4 и подвергались горячему прессованию в среде азота при температуре 1850°С и давлении 24 МПа (Hajime Kiyono, Yuho Miyake, Yusuke Nihei, Tomoki Tumura, Shiro Shimada. Fabrication of Si3N4-based composite containing needle-like TiN synthesized using NH3 nitridation of TiO2 nanofiber. Journal of the European Ceramic Society, 2013, том 32, с. 1413-1417). Недостатком метода получения керамического композита Si3N4-TiN является дороговизна и сложность предварительного получения нитрида титана из нановолокон диоксида титана.
Наиболее близким является способ получения композита, описанный в патенте RU №2697987 опубликованный 21.08.2019 С04В 35/593, С04В 35/645, С04В 35/65, «Способ изготовления керамики на основе композита нитрид кремния - нитрид титана». Способ изготовления керамики на основе нитрида кремния - нитрида титана включает смешивание порошков нитрида кремния, спекающей добавки СаО-Al2O3 с температурой эвтектики 1600°С и порошка металлического титана в среде изопропанола в планетарной мельнице. Далее полученную смесь высушивают при 120°С, добавляют 3 мас. % водного 10% раствора поливинилпирролидона и спекают методом горячего прессования в среде азота при температуре 1650°С при давлении 30 МПа в течение 60 минут.
Недостатками метода являются использование высокотемпературной спекающей добавки СаО-Al2O3 эвтектического состава и металлического титана с крупным размером зерен 25-30 мкм. Применение крупного порошка титана негативно влияет на равномерность распределения титана в объеме керамики, в следствие чего материал с 30 мас. % Ti обладает низким значением удельной электропроводности 3 Ом*см. К недостаткам относится и использование спекающей добавки СаО-Al2O3 с температурой эвтектики близкой к температуре обжига керамики 1600°С.
Задачей заявляемого изобретения является создание керамического композита на основе Si3N4-TiN в одну стадию обжига методом горячего прессования без предварительного получения TiN.
Техническим результатом заявляемого изобретения является получение керамического композита на основе Si3N4-TiN с высокими значениями физико-механических характеристик и высокой электропроводностью.
Технический результат достигается за счет смешения порошка нитрида кремния, порошка металлического титана и спекающей добавки СаО-Al2O3 в планетарной мельнице в среде изопропанола, сушки порошковой смеси при 90°С, предварительного формования при удельном давлении 100 МПа и спекания методом горячего прессования при температуре 1600°С в атмосфере азота, давлении 30 МПа и изотермической выдержке 1 час.
Способ изготовления композитной керамики на основе нитрида кремния, армированной нитридом титана, включает в себя смешение исходных порошков нитрида кремния, спекающей добавки на основе соединений алюминатов кальция СаО-Al2O3 эвтектического состава с температурой плавления 1360°С и порошка металлического титана с размером зерна 1-10 мкм. Способ изготовления отличается тем, что для получения армированной керамики используется тонкодисперсный порошок нитрида кремния с размером зерна 70-250 нм, порошок металлического титана с размером зерна 1-10 мкм и более легкоплавкая спекающая добавка на основе СаО-Al2O3. При обжиге керамики проходят процесс азотирования титана с образованием нитрида титана в объеме керамики и взаимодействие спекающей добавки СаО-Al2O3 с нитридом кремния с образованием соединения Ca-α-SiAlON. Нитрид титана является износостойким, твердым и прочным материалом, а также устойчивым к агрессивным средам и высоким температурам. Помимо высоких физико-механических характеристик, нитрид титана обладает высокой электропроводностью. Таким образом, образование нитрида титана в структуре нитридкремниевой керамики способствует повышению эксплуатационных характеристик, кроме того, позволит обрабатывать материал методом электроэрозионной резки и получать изделия сложных форм. Образование соединения Са-α-SiAlON не снижает физико-механические свойства керамики, поскольку SiAlON является изоструктурным соединением нитрида кремния и так же обладает высокими механическими характеристиками и стойкостью к окислению.
Отличие от прототипа заключается в использовании легкоплавкой спекающей добавки СаО-Al2O3 с температурой эвтектики 1360°С и порошков с меньшими размерами частиц: порошок нитрида кремния 70-250 нм, порошок металлического титана 1-10 мкм. Применение более легкоплавкой спекающей добавки позволит получать плотные керамические образцы при температуре 1600°С, что на 50°С ниже температуры обжига прототипа. К отличиям относятся и более высокие значения электропроводности заявляемого изобретения, за счет использования порошка металлического титана с меньшим размером частиц 1-10 мкм. Данный порошок не имеет недостатков прототипа, связанных с неравномерностью распределения зерен титана в объеме керамики из-за чего невозможно добиться высокой электропроводности.
Изделия из предложенного керамического материала получают следующим образом:
В качестве исходных материалов использовали следующие компоненты: коммерческий порошок нитрида кремния (Ube Industries, Токио, Япония, марка SN-E10) с содержанием α-Si3N4 не менее 95%, размер зерен 70-250 нм (рис. 1), спекающую добавку СаО-Al2O3 эвтектического состава с температурой плавления 1360°С, порошок металлического титана, полученного методом плазмохимического синтеза в Институте металлургии и материаловедения им. А.А. Байкова (ИМЕТ РАН). Размер частиц порошка металлического титана 1-10 мкм (рис. 2). Используемые порошки смешивают в необходимых количествах в планетарной мельнице в среде изопропанола в течение 30 минут. Далее полученную суспензию высушивают при температуре 90°С до полного удаления изопропанола. Высушенные порошки гранулируют протиранием через сито, затем предварительно формуют одноосным прессованием в стальной пресс-форме при удельным давлении 100 МПа. Полученные порошковые заготовки обжигают методом горячего прессования при температуре 1600°С в атмосфере азота под давлением 30 МПа и изотермической выдержке 1 час.
Пример 1. Готовят шихту с добавлением порошков нитрида кремния, металлического титана, спекающей добавки в количестве 80 мас. %, 5 мас % и 15 мас. % соответственно. Порошки смешивают в планетарной мельнице с добавлением изопропанолав течение 30 минут, далее порошковую суспензию высушивают при температуре 90°С до полного испарения изопропанола. Порошковую смесь предварительно формуют с удельным давлением 100 МПа в стальной пресс-форме, затем обжигают методом горячего прессования при температуре 1600°С, давлении 30 МПа, в атмосфере азота. Изотермическая выдержка составляет 1 час. Полученный керамический материал Si3N4-TiN имеет следующие свойства: плотность 3,18 г/см3, микротвердость по Виккерсу 17,9±0,6 ГПа.
Пример 2. Готовят шихту с добавлением порошков нитрида кремния, металлического титана, спекающей добавки в количестве 70 мас. %, 15 мас % и 15 мас. % соответственно. Порошки смешивают в планетарной мельнице с добавлением изопропанола в течение 30 минут, далее порошковую суспензию высушивают при температуре 90°С до полного испарения изопропанола. Порошковую смесь предварительно формуют с удельным давлением 100 МПа в стальной пресс-форме, затем обжигают методом горячего прессования при температуре 1600°С, давлении 30 МПа, в атмосфере азота. Изотермическая выдержка составляет 1 час. Полученный керамический материал Si3N4-TiN имеет следующие свойства: плотность 3,34 г/см3, микротвердость по Виккерсу 18,7±0,5 ГПа.
Пример 3. Готовят шихту с добавлением порошков нитрида кремния, металлического титана, спекающей добавки в количестве 55 мас. %, 30 мас % и 15 мас. % соответственно. Порошки смешивают в планетарной мельнице с добавлением изопропанолав течение 30 минут, далее порошковую суспензию высушивают при температуре 90°С до полного испарения изопропанола. Порошковую смесь предварительно формуют с удельным давлением 100 МПа в стальной пресс-форме, затем обжигают методом горячего прессования при температуре 1600°С, давлении 30 МПа, в атмосфере азота. Изотермическая выдержка составляет 1 час. Полученный керамический материал Si3N4-TiN имеет следующие свойства: плотность 3,38 г/см3, микротвердость по Виккерсу 16,1±0,7 ГПа, удельное электросопротивление 7,56 мОм/см.
Пример 4. Готовят шихту с добавлением порошков нитрида кремния, металлического титана, спекающей добавки в количестве 45 мас. %, 40 мас % и 15 мас. % соответственно. Порошки смешивают в планетарной мельнице с добавлением изопропанолав течение 30 минут, далее порошковую суспензию высушивают при температуре 90°С до полного испарения изопропанола. Порошковую смесь предварительно формуют с удельным давлением 100 МПа в стальной пресс-форме, затем обжигают методом горячего прессования при температуре 1600°С, давлении 30 МПа, в атмосфере азота. Изотермическая выдержка составляет 1 час. Полученный керамический материал Si3N4-TiN имеет следующие свойства: плотность 3,90 г/см3, микротвердость по Виккерсу 14,2±0,4 ГПа, удельное электросопротивление 2,23 мОм/см.
В таблице 1 представлены свойства керамических композитов Si3N4-TiN. Заметно, что с увеличением содержания нитрида титана происходит рост плотности керамики. Удельное электросопротивление, при добавлении 30 мас. % титана, составляет 7,56 мОм*см и уменьшается до 1,79 мОм*см при добавлении 50 мас. % титана.
Figure 00000001

Claims (1)

  1. Способ получения керамического композита на основе нитрид кремния - нитрид титана, включающий смешивание порошков нитрида кремния, металлического титана и спекающей добавки в планетарной мельнице в среде изопропанола, сушку порошковой суспензии при температуре 90 °С, одностороннем прессовании при удельном давлении 100 МПа, обжиг методом горячего прессования при температуре 1600 °С в атмосфере азота, при давлении 30 МПа и изотермической выдержкой 1 час, отличающийся тем, что для получения керамического композита используют порошок металлического титана с размерами зерен 1-10 мкм и легкоплавкую спекающую добавку СаО-Al2O3 с температурой эвтектики Тэвт = 1360 °С.
RU2022124454A 2022-09-15 Способ получения керамического композита на основе нитрид кремния-нитрид титана RU2784667C1 (ru)

Publications (1)

Publication Number Publication Date
RU2784667C1 true RU2784667C1 (ru) 2022-11-29

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697987C1 (ru) * 2018-11-01 2019-08-21 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ изготовления керамики на основе композита нитрид кремния - нитрид титана

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697987C1 (ru) * 2018-11-01 2019-08-21 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ изготовления керамики на основе композита нитрид кремния - нитрид титана

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUCCIOTTI, FRANCESCO, MAURO MAZZOCCHI, AND ALIDA BELLOSI. "PERSPECTIVES OF THE SI3N4-TIN CERAMIC COMPOSITE AS A BIOMATERIAL AND MANUFACTURING OF COMPLEX-SHAPED IMPLANTABLE DEVICES BY ELECTRICAL DISCHARGE MACHINING (EDM)." JOURNAL OF APPLIED BIOMATERIALS AND BIOMECHANICS 8.1 (2010): 28-32. VIVEKANANTHAN, M., ET AL. "A PRIMARY STUDY OF DENSITY AND COMPRESSIVE STRENGTH OF THE SILICON NITRIDE AND TITANIUM NITRIDE CERAMIC COMPOSITE." MATERIALS TODAY: PROCEEDINGS 33 (2020): 2741-2745. *

Similar Documents

Publication Publication Date Title
US8877099B2 (en) Ti3SiC2 based material, electrode, spark plug and manufacturing method thereof
JP2005330178A (ja) 高熱伝導率・高強度窒化ケイ素セラミックス及びその製造方法
CN109592984B (zh) 一种高热导、高电阻液相烧结碳化硅陶瓷及其制备方法
TW201829304A (zh) 氮化矽粉末及氮化矽燒結體之製造方法
Lan et al. Mechanical properties and thermal conductivity of dense β-SiAlON ceramics fabricated by two-stage spark plasma sintering with Al2O3-AlN-Y2O3 additives
He et al. Microstructure and mechanical properties of short-carbon-fiber/Ti 3 SiC 2 composites
WO2015019992A1 (ja) 炭化ホウ素セラミックス及びその作製法
Toksoy et al. Densification and characterization of rapid carbothermal synthesized boron carbide
RU2784667C1 (ru) Способ получения керамического композита на основе нитрид кремния-нитрид титана
KR102081622B1 (ko) 고온에서 높은 비저항을 갖는 질화알루미늄 소결체 및 그 제조방법
Yang et al. Titanium-doped copper-diamond composites fabricated by hot-forging of powder mixtures or cold-pressed powder preforms
Hu et al. Rapid sintering of TiB2 ceramics using Co as sintering aid under high pressure condition
JP2642184B2 (ja) 窒化アルミニウム―六方晶窒化ほう素系焼結体の製造方法
RU2697987C1 (ru) Способ изготовления керамики на основе композита нитрид кремния - нитрид титана
KR102565344B1 (ko) 질화 알루미늄 세라믹스 조성물 및 그의 제조방법
Smirnov β-SiAlON-TiN/TiB 2-BN composites by infiltration-mediated SHS under high pressure of nitrogen gas
JP2004169064A (ja) 銅−タングステン合金およびその製造方法
JP7116234B1 (ja) 複合セラミックスの製造方法
JP4820097B2 (ja) 窒化アルミニウム系焼結体およびその製造方法
JP4565954B2 (ja) 導電性窒化ケイ素材料とその製造方法
JP2008297161A (ja) サイアロンセラミックスおよびその製造方法
JP2778783B2 (ja) 異方性を有するBN−AlN系焼結体の製造方法
RU2681332C1 (ru) Способ получения композиционного материала SiC-TiN
JP4296251B2 (ja) アルミナ−窒化ホウ素系複合材料の製造方法
JP2000515481A (ja) セラミック複合構造体からなる成形体の製造法