RU2781278C1 - Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы, допированных кальцием - Google Patents

Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы, допированных кальцием Download PDF

Info

Publication number
RU2781278C1
RU2781278C1 RU2021137392A RU2021137392A RU2781278C1 RU 2781278 C1 RU2781278 C1 RU 2781278C1 RU 2021137392 A RU2021137392 A RU 2021137392A RU 2021137392 A RU2021137392 A RU 2021137392A RU 2781278 C1 RU2781278 C1 RU 2781278C1
Authority
RU
Russia
Prior art keywords
calcium
melt
oxide
doped
cao
Prior art date
Application number
RU2021137392A
Other languages
English (en)
Inventor
Денис Олегович Чухванцев
Евгений Сергеевич Филатов
Николай Иванович Шуров
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН)
Application granted granted Critical
Publication of RU2781278C1 publication Critical patent/RU2781278C1/ru

Links

Images

Abstract

Изобретение относится к электрохимическому способу получения микродисперсных порошков гексаборидов металлов лантаноидной группы, допированных кальцием. Способ включает электролиз расплава CaCl2 с добавками оксида бора B2O3, оксида получаемого лантаноида Ln2O3 и оксида кальция CaO при суммарной концентрации оксидов В2О3, СаО, Ln2O3 в расплаве 8-10 масс.% от массы электролита, процесс осуществляют в атмосфере воздуха в интервале температур 820÷850 °С при катодной плотности тока 0,4-0,5 А/см2, в процессе электролиза концентрации оксидов В2О3, СаО, Ln2O3 поддерживают постоянными при соотношении мольных долей Ca/Ln не менее 1 и не более 16. Способ позволяет получить сложные гексабориды металлов лантаноидной группы, допированные кальцием. 3 ил., 3 пр.

Description

Изобретение относится к электрохимическому способу получения порошков гексаборидов металлов лантаноидной группы, допированных кальцием, которые могут найти применение в качестве эмиттеров, нейтронных поглотителей, термоэлектронных катодов, легирующих элементов, раскислителей, абразива.
Известен способ электролитического получения порошока гексаборида лантана (RU 2477340 опубл. 10.03.2013 г.) [1], в котором электролиз ведут в расплавленном электролите - растворителе, основным компонентом которого является эквимольная смесь хлоридов натрия и калия (0,5NaCl-0,5KCl) с добавками безводного хлорида лантана (LaCl3) и тетрафторбората калия (KBF4) в количествах 2,5÷5,0 и 8,0÷11,0 % соответственно. Атмосфера над расплавленным электролитом состоит из осушенного и очищенного аргона. Рабочая температура процесса составляет 700±10 °С. Преимуществом данного способа получения гексаборида лантана является относительно низкая рабочая температура электросинтеза 700 °С, хорошая растворимость электролита в воде, что облегчает очистку от него целевого продукта и удовлетворительная чистота продукта. Данным способом получают ультрадисперсный порошок гексаборида лантана (LaB6), получить порошки гексаборидов лантаноидов сложного состава, данным способом, невозможно.
Известен способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы (RU 2722753 опубл. 03. 06. 2020 г.) [2]. В данном способе используют расплав состава (CaCl2 - CaO) с добавками оксида бора B2O3 и оксида получаемого лантаноида Ln2O3. В процессе электролиза концентрации B2O3 и Ln2O3 поддерживают постоянными в количествах, обеспечивающих атомное соотношение бора к лантаноиду B/Ln = 6 при их суммарной концентрации в расплаве 5-10 масс.% от массы электролита, при этом синтез гексаборидов лантаноидов осуществляют в атмосфере воздуха в интервале температур 800÷850 °С, при катодной плотности тока 0,3-0,5 А/см2.
Задачей изобретения является расширение возможностей получения микродисперсных порошков гексаборидов металлов лантаноидной группы путем их допирования кальцием.
Для этого предложен электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы, допированных кальцием. Способ включает электролиз расплава CaCl2 с добавками оксида бора B2O3, оксида получаемого лантаноида Ln2O3 и оксида кальция CaO при суммарной концентрации оксидов В2О3, СаО, Ln2O3 в расплаве 8-10 масс.% от массы электролита, процесс осуществляют в атмосфере воздуха в интервале температур 820÷850 °С при катодной плотности тока 0,4-0,5 А/см2, в процессе электролиза концентрации оксидов В2О3, СаО, Ln2O3 поддерживают постоянными при соотношении мольных долей Ca/Ln не менее 1 и не более 16.
В заявленном способе в начале процесса в электролизную ванну загружается обезвоженная соль CaCl2 с добавкой СаО. В присутствии оксида кальция растворимость оксида металла лантаноидной группы и добавки B2O3 многократно увеличивается в индивидуальном хлориде кальция с образованием диссоциированных соединений [Ca2+ + (B2O4)2-] и [Ln3+ + Ca2+ + (BO3)3-]. Первым на катоде согласно законам электрохимии, осаждается бор, затем идёт совместное электроосаждение бора, кальция и лантаноида с образованием смешанного гексаборида CaxLn1-xB6. Для осуществления этого процесса экспериментально подобраны концентрации компонентов расплава, а именно оксидов кальция, бора и лантаноида, от которых зависит состав конечного продукта.
Оптимальная с точки зрения выхода продукта по затраченному количеству электричества плотность тока для синтеза этого продукта варьируется от 0,4 до 0,5 А/см2, а применение температур электролиза от 820 до 850 °С вызвано необходимостью достаточно быстрого растворения в расплавленном электролите оксидов кальция, бора и лантаноида с одновременной диссоциацией на ионы.
При этом нижний предел температуры ограничен температурой плавления хлорида кальция, а верхний обусловлен тем, что при более высокой, чем 850 °С температуре быстро возрастает летучесть расплава с потерей CaCl2 в виде паров, а также ценного борсодержащего компонента в виде пара BOCl.
Технический результат, достигаемый изобретением, заключается в возможности получения порошков гексаборидов металлов лантаноидной группы, допированных кальцием.
Изобретение иллюстрируется чертежами, где на фиг. 1 приведена рентгеновская дифрактограмма катодного осадка полученного гексаборида европия, допированного кальцием CaxEu1-xB6 (x=0,99); на фиг. 2 - рентгеновская дифрактограмма катодного осадка полученного гексаборида самария, допированного кальцием CaxSm1-xB6 (x=0,5); фиг. 3 - рентгеновская дифрактограмма катодного осадка полученного гексаборида гадолиния, допированного кальцием CaxGd1-xB6 (где x=0,4).
Способ осуществляли следующим образом. В качестве компонентов электролита использовали:
- Хлорид кальция (CaCl2) технический, кальцинированный, гранулированный, ГОСТ 450 - 77;
- Оксид кальция (CaO) - ГОСТ 8677-76;
- Оксид самария - ТУ 48-4-523-89;
- Оксид гадолиния - ТУ 48-4-523-89;
- Оксид европия ТУ - 48-4-523-90;
- Борный ангидрид (B2O3) - ТУ 6-09-17-249-88.
Все соли предварительно просушены при 200 °С для удаления остатков связанной воды и переплавлены, хранились в плотно запечатанных банках.
Все эксперименты проводились в корундовом тигле в воздушной атмосфере.
Наплавление ванны осуществляли следующим образом. Соль CaCl2 наплавляли в тигле при 820-850 °С. Сверху на расплав насыпали малыми порциями оксид кальция, оксид металла лантаноидной группы, который растворяется в расплаве. Затем порциями насыпали гранулы B2O3, которые по мере нагревания растворялись в расплаве CaCl2. После полного растворения В2О3 солевой расплав обычно становится прозрачным. В процессе наплавления и в ходе всего электролиза поддерживали соотношение борного ангидрида к хлориду кальция 2±0,1 мас. %.
При проведении электролиза в качестве электродов использовали графитовый анод и молибденовый катод. Рабочую часть анода и катода опускали в расплав, выше уровня расплава их защищали от окисления воздухом алундовыми трубками. Фазовый состав порошков гексаборидов лантаноидной группы определяли с помощью рентгеновского дифрактометра Rigaku D/Max - 2000, гранулометрический состав исследовали на лазерном дифракционном анализаторе Malvern Mastersizer 2000.
Пример 1. В корундовом тигле при температуре 850 °С было наплавлено 400 г расплава хлорида кальция, на который сверху был засыпан оксид кальция(5%), оксид европия(1%), а затем оксид бора(2%) из расчёта их суммарной концентрации 8 мас.%, остальное - хлорид кальция. Соотношение мольных долей между Ca(0,94) и Eu(0,06) при загрузке составило 15,6. После 10 мин выдержки в расплав были опущены графитовый анод и молибденовый катод. Вначале проводили очистной электролиз расплава в течение 60 мин для удаления растворённой воды. Далее электролиз по получению гексаборида европия, допированного кальцием (CaxEu1-xB6) вели при температуре 820 °С, а затем при постоянной величине тока 8 А и плотности тока ik=0,40 А/см2 в течение 2 часов.
После окончания электролиза катод с осадком вынимали из расплава и после остывания до комнатной температуры помещали в стеклянный стакан с кипящей дистиллированной водой, в котором осадок отмывали от остатков соли методом декантации. Далее осадок смывали в воронку на бумажный фильтр и дополнительно промывали разбавленной соляной кислотой (10%), затем дистиллированной водой. После этого промытый осадок вместе с фильтром сушили в сушильном шкафу при температуре 80 °С. После снятия с фильтра получали мелкодисперсный порошок малинового цвета массой 5 г. На фиг. 1 приведена рентгеновская дифрактограмма полученного катодного осадка. Рентгенофазовый анализ показал, что порошок представляет собой гексаборид CaxEu1-xB6 (x=0,99). Согласно результатам гранулометрического исследования размер частиц полученного порошка варьируется от 0,6 до 300 мкм. Элементный химический анализ показал наличие примесей алюминия, меди и железа, суммарное содержание которых составляет 0,9 мас. %. Теоретическая масса CaxEu1-xB6, вычисленная по закону Фарадея, должна быть 5,07 г, а в действительности получено 5 г. Таким образом, выход продукта по затраченному количеству электричества 8 А*час равен 98,6%. Производительность процесса 2,5 г/час.
Пример 2. В корундовом тигле при температуре 850 °С было наплавлено 400 г расплава хлорида кальция, на который сверху был засыпан оксид кальция(3%), оксид самария(5%), а затем оксид бора(2%) из расчёта их суммарной концентрации 10 мас.%, остальное - хлорид кальция. Соотношение мольных долей между Ca(0,65) и Sm(0,35) при загрузке составило 1,86. После 10 мин выдержки в расплав были опущены графитовый анод и молибденовый катод. Вначале проводили очистной электролиз расплава в течение 30 мин для удаления растворённой воды. Далее электролиз по получению гексаборида самария, допированного кальцием (CaxSm1-xB6) вели при температуре 850 °С, а затем при постоянной величине тока 8 А и плотности тока ik=0,50 А/см2 в течение 2 часов.
После окончания электролиза катод с осадком вынимали из расплава и после остывания до комнатной температуры помещали в стеклянный стакан с кипящей дистиллированной водой, в котором осадок отмывали от остатков соли методом декантации. Далее осадок смывали в воронку на бумажный фильтр и дополнительно промывали разбавленной соляной кислотой (10%), затем дистиллированной водой. После этого промытый осадок вместе с фильтром сушили в сушильном шкафу при температуре 80 °С. После снятия с фильтра получали мелкодисперсный порошок черного цвета массой 5 г. На фиг. 2 приведена рентгеновская дифрактограмма полученного катодного осадка. Рентгенофазовый анализ показал, что порошок представляет собой гексаборид CaxSm1-xB6 (x=0,5). Согласно результатам гранулометрического исследования размер частиц полученного порошка варьируется от 3 до 400 мкм. Элементный химический анализ показал наличие примесей алюминия, меди и железа, суммарное содержание которых составляет 0,79 мас.%. Теоретическая масса CaxSm1-xB6, вычисленная по закону Фарадея, должна быть 6 г, а в действительности получено 2 г. Таким образом, выход продукта по затраченному количеству электричества 8 А*час равен 33%. Производительность процесса 1,25 г/час.
Пример 3. В корундовом тигле при температуре 850 °С было наплавлено 400 г расплава хлорида кальция, на который сверху был засыпан оксид кальция(2%), оксид гадолиния(5%), а затем оксид бора(2%) из расчёта их суммарной концентрации 9 мас. %, остальное - хлорид кальция. Соотношение мольных долей между Ca(0,56) и Gd(0,44) при загрузке составило 1,29. После 10 мин выдержки в расплав были опущены графитовый анод и молибденовый катод. Вначале проводили очистной электролиз расплава в течение 60 мин для удаления растворённой воды. Далее электролиз по получению гексаборида гадолиния, допированного кальцием (CaxGd1-xB6) вели при температуре 850 °С, а затем при постоянной величине тока 8 А и плотности тока ik=0,50 А/см2 в течение 5 часов.
После окончания электролиза катод с осадком вынимали из расплава и после остывания до комнатной температуры помещали в стеклянный стакан с кипящей дистиллированной водой, в котором осадок отмывали от остатков соли методом декантации. Далее осадок смывали в воронку на бумажный фильтр и дополнительно промывали разбавленной соляной кислотой (10%), затем дистиллированной водой. После этого промытый осадок вместе с фильтром сушили в сушильном шкафу при температуре 80 °С. После снятия с фильтра получали мелкодисперсный порошок синего цвета массой 6 г. На фиг. 3 приведена рентгеновская дифрактограмма полученного катодного осадка. Рентгенофазовый анализ показал, что порошок представляет собой смесь гексаборида CaxGd1-xB6 (где x=0,4) и GdB4. Согласно результатам гранулометрического исследования размер частиц полученного порошка варьируется от 1 до 350 мкм. Элементный химический анализ показал наличие примесей алюминия, магния и железа, суммарное содержание которых составляет 0,45 мас.%. Теоретическая масса смеси гексаборида CaxGd1-xB6 (где x=0,4) и GdB4, вычисленная по закону Фарадея, должна быть 8,4 г, а в действительности получено 6 г. Таким образом, выход продукта по затраченному количеству электричества 8 А*час равен 71%. Производительность процесса 1,2 г/час.
Таким образом, получены порошки гексаборидов металлов лантаноидной группы, допированных кальцием.

Claims (1)

  1. Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы, допированных кальцием, включающий электролиз расплава CaCl2 с добавками оксида бора B2O3, оксида получаемого лантаноида Ln2O3 и оксида кальция CaO при суммарной концентрации оксидов В2О3, СаО, Ln2O3 в расплаве 8-10 масс.% от массы электролита, процесс осуществляют в атмосфере воздуха в интервале температур 820÷850 °С при катодной плотности тока 0,4-0,5 А/см2, в процессе электролиза концентрации оксидов В2О3, СаО, Ln2O3 поддерживают постоянными при соотношении мольных долей Ca/Ln не менее 1 и не более 16.
RU2021137392A 2021-12-17 Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы, допированных кальцием RU2781278C1 (ru)

Publications (1)

Publication Number Publication Date
RU2781278C1 true RU2781278C1 (ru) 2022-10-11

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477340C2 (ru) * 2011-05-13 2013-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" Электролитический способ получения ультрадисперсного порошка гексаборида лантана
RU2015118692A (ru) * 2015-05-19 2016-12-10 Сергей Георгиевич Паршин Сварочная композиционная проволока для дуговой сварки трубных и криптоустойчивых сталей
RU2722753C1 (ru) * 2019-12-25 2020-06-03 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477340C2 (ru) * 2011-05-13 2013-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" Электролитический способ получения ультрадисперсного порошка гексаборида лантана
RU2015118692A (ru) * 2015-05-19 2016-12-10 Сергей Георгиевич Паршин Сварочная композиционная проволока для дуговой сварки трубных и криптоустойчивых сталей
RU2722753C1 (ru) * 2019-12-25 2020-06-03 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы

Similar Documents

Publication Publication Date Title
US4828658A (en) Process for the preparation of mother alloys of iron and neodymium by electrolysis of oxygen-bearing salts in a medium of molten fluorides
EP0286175A1 (en) Process for the electrolytic production of metals
US9238873B2 (en) Eco-friendly smelting process for reactor-grade zirconium using raw ore metal reduction and electrolytic refining integrated process
US3855087A (en) Method for producing rare earth metal-containing alloys
Daane et al. Preparation of yttrium and some heavy rare earth metals
DE112010004425T5 (de) Verfahren zur Herstellung von gereinigtem Metall oder Halbmetall
CN108138343A (zh) 利用电解还原和电解精炼工序的金属精炼方法
US2961387A (en) Electrolysis of rare-earth elements and yttrium
CN107190282A (zh) 一类室温熔融盐及其制备方法和应用
Cvetković et al. Study of Nd deposition onto W and Mo cathodes from molten oxide-fluoride electrolyte
RU2722753C1 (ru) Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы
CN104213154B (zh) 利用氧化镁为原料电解制备镁合金的方法
RU2781278C1 (ru) Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы, допированных кальцием
RU2539593C1 (ru) Электрохимический способ получения порошка гексаборида кальция
Ono et al. Design, test and theoretical assessments for reduction of titanium oxide to produce titanium in molten salt
Bosenko et al. Electrochemical reduction of tungsten (VI) oxide from a eutectic melt CaCl2–NaCl under potentiostatic conditions
CN112921360A (zh) 一种熔盐电解制备稀土金属的方法
CN113279022B (zh) 一种还原性熔盐介质及其制备方法
US2909473A (en) Process for producing titanium group metals
Murakami et al. Rare Earth Silicide Formation on Si Electrode in LiCl-KCl Melt to Establish a Novel Used Salt Treatment Process
CN110144598B (zh) 一种三氯化铀的制备方法及其应用
RU2658835C1 (ru) Электрохимический способ получения порошков гексаборидов стронция и бария
US3330646A (en) Method for producing molybdenum from molybdenite
US3589987A (en) Method for the electrolytic preparation of tungsten carbide
KR920007932B1 (ko) 희토류-철 합금의 제조방법