RU2779443C1 - Способ приготовления катализатора второй стадии гидрокрекинга - Google Patents

Способ приготовления катализатора второй стадии гидрокрекинга Download PDF

Info

Publication number
RU2779443C1
RU2779443C1 RU2021137084A RU2021137084A RU2779443C1 RU 2779443 C1 RU2779443 C1 RU 2779443C1 RU 2021137084 A RU2021137084 A RU 2021137084A RU 2021137084 A RU2021137084 A RU 2021137084A RU 2779443 C1 RU2779443 C1 RU 2779443C1
Authority
RU
Russia
Prior art keywords
catalyst
zeolite
carrier
sio
hydrocracking
Prior art date
Application number
RU2021137084A
Other languages
English (en)
Inventor
Олег Владимирович Климов
Максим Олегович Казаков
Марина Юрьевна Смирнова
Ксения Александровна Надеина
Павел Петрович Дик
Александр Степанович Носков
Original Assignee
Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН)
Application granted granted Critical
Publication of RU2779443C1 publication Critical patent/RU2779443C1/ru

Links

Abstract

Изобретение относится к способу приготовления катализатора нефтепереработки, в частности к способу приготовления бифункционального катализатора гидрокрекинга, позволяющему из тяжёлых нефтяных фракций получать дизельное топливо с улучшенными низкотемпературными характеристиками. Катализатор готовят пропиткой по влагоёмкости водным раствором H2PtCl6 с концентрацией платины 3,75 – 7,06 г/л носителя, содержащего, мас.%: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем SiO2/Al2O3 = 48 – 10,0-20,0, ультрастабильный цеолит Y с силикатным модулем SiO2/Al2O3 = 80 – 10,0-15,0, связующее – γ-оксид алюминия – остальное, с последующими стадиями сушки и прокаливания. В результате получают катализатор, который содержит, мас.%: Pt – 0,3-0,6, носитель – остальное. При этом носитель содержит, мас.%: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем SiO2/Al2O3 = 48 – 10,0-20,0; ультрастабильный цеолит Y с силикатным модулем SiO2/Al2O3 = 80 – 10,0-15,0; связующее – γ-оксид алюминия – остальное. Катализатор имеет удельную поверхность не менее 330 м2/г, общий объём пор – не менее 0,60 см3/г, при этом объём микропор – не менее 0,015 см3/г. Технический результат – создание улучшенного способа приготовления катализатора второй стадии гидрокрекинга с высокой активностью и селективностью в целевых реакциях гидрокрекинга сырья, что обеспечивает более высокий выход целевой дизельной фракции, более низкие температуры помутнения, более высокое цетановое число. 7 з.п. ф-лы, 2 табл., 5 пр.

Description

Изобретение относится к способам приготовления катализаторов нефтепереработки, в частности, к способам приготовления бифункциональных катализаторов гидрокрекинга, позволяющим из тяжёлых нефтяных фракций получать дизельное топливо с улучшенными низкотемпературными характеристиками.
В настоящее время в Российской Федерации существует высокая потребность в низкозастывающих сортах дизельных топлив. На российских нефтеперерабатывающих заводах суммарное производство зимних и арктических марок дизельного топлива в 5 раз меньше, чем летнего, при этом потребность в низкозастывающем дизельном топливе составляет не менее 35% от общего потребления. Недостаток производства зимних марок топлив приводит к их дефициту на внутреннем рынке.
В последние годы основным процессом, обеспечивающим повышение выпуска дизельного топлива по экологическому классу К5 по ГОСТ 32511-2013 является процесс гидрокрекинга вакуумного газойля. На большинстве современных производств используются двустадийные схемы гидрокрекинга, наиболее типичные варианты которых описаны в [US 6726832, C10G 65/10, 27.04.2004; CN 103781883 A, B01D 14/01, 23.03.2016; CN 1492918 A, C10G 65/12, 25.01.2006; US 6217746 B1, C10G 65/00, 17.04.2001; EP 3561024 A1, C10G 65/12, 30.10.2019]. При этом на каждой стадии гидрокрекинга используют различные типы катализаторов, приготовленные различными способами. На первой стадии, где для сырья характерно высокое содержание соединений серы и азота, чаще всего используют сульфидные катализаторы на основе соединений Co, Ni, Mo, W, и кислотного компонента - алюмосиликата или цеолита с высоким силикатным модулем. Катализаторы первой стадии сочетают высокую активность в гидрогенолизе гетероатомных соединений с умеренной активностью в гидрировании и крекинге. На второй стадии, сырьё которой уже подвергнуто гидроочистке и частично крекингу и гидрированию и не содержит заметных количеств являющихся каталитическими ядами гетероатомных соединений, используют катализаторы, приготовленные путём нанесения соединений благородных металлов, Pt и Pd, на носитель, содержащий цеолит, имеющий умеренную кислотность, что обеспечивает высокие выходы целевых дистиллятных фракций. Использование катализаторов гидрокрекинга на основе неблагородных металлов на первой стадии и благородных - на второй описано в [EP 3561024 A1, C10G 65/12, 30.10.2019; US 6174430 B1, C10G 47/04, 16.01.2001; CN 1938090 A, B01J 29/12, 28.03.2007; JP 5027391 B2; B01J 23/42, 19.09.2012].
Общим недостатком для вышеперечисленных известных решений являются неудовлетворительные низкотемпературные и химмотологические характеристики получаемых дизельных фракций - высокие значения температур застывания и предельной температуры фильтруемости, а также низкие цетановые числа.
Поскольку основным фактором, обуславливающим высокие температуры застывания и фильтруемости дизельных топлив, является неоправданно высокое содержание в них н-парафинов, то для улучшения низкотемпературных свойств получаемых дистиллятных фракций на второй стадии гидрокрекинга используют способы приготовления катализаторов, которые помимо гидрирующей способности имеют заметную активность в реакциях превращений н-парафинов - крекинга и изомеризации. Известные решения описаны в [US 10183282, B01J 29/12, 22.01.2019; US 6136181, C10G 45/00, 24.10. 2000; US 9598651B2, C10G 73/38, 21.03.2017; US 20100187155, C10G 73/02, 12.03.2013].
Основным недостатком приведенных известных решений являются относительно низкие выходы целевых среднедистиллятных фракций в случае катализаторов, приготовленных с использованием цеолитов Y или Бета, или относительно низкая активность, требующая повышения температуры процесса, для катализаторов, приготовленных с использованием цеолитов ZSM-22, -23, -48 и различных типов SAPO.
Для устранения этих недостатков возможно использование на второй стадии гидрокрекинга смесей или нескольких слоёв катализаторов на основе благородных металлов и различных цеолитов, один из которых обладает преимущественно крекирующими свойствами, а второй имеет повышенную активность в реакциях гидроизодепарафинизации [RU 2458969, C10G 45/60, 20.08.2012].
Наиболее близким к предлагаемому техническому решению является описанная в [RU 2565669, C10G 71/00, 20.10.2015] смесь двух катализаторов второй стадии гидрокрекинга, способ приготовления которых обеспечивает получение первого катализатора на основе цеолита ZSM-48, содержащего от 0,1 мас. % до 3,0 мас. % платины по отношению к массе ZSM-48, и второго катализатора на основе ультрастабильного цеолита USY с силикатным модулем (SiO2/Al2O3 не более 100), содержащего от 0,1 мас. % до 3,0 мас. % платины по отношению к массе USY, в объёмном соотношении 1 часть катализатора Pt-ZSM-48 на 1 часть катализатора Pt-USY. На смеси катализаторов, приготовленных известным способом, при проведении гидрокрекинга сырья, полученного на первой стадии гидрокрекинга, и характеризующегося температурами дистилляции 5, 50 и 95% объёма 342, 437 и 505°С, соответственно, для конверсии сырья в интервале 45-65% требуются температуры второй стадии гидрокрекинга в интервале 343-354°С. При этом выход дизельной фракции, кипящей в интервале 177-371°С, составляет 50 мас. %, а получаемая дизельная фракция имеет температуру помутнения в интервале (-11) - (-21)°С и цетановое число в интервале 65,5-65,9.
Основным недостатком известного способа приготовления является то, что получаемые катализаторы имеют неоптимальный химический состав, обуславливающий их низкую активность и селективность в целевых реакциях гидрокрекинга сырья, более тяжёлого, чем дизельная фракция, и реакциях гидроизомеризации н-парафинов, входящих в состав дизельной фракции, что приводит к необходимости проводить вторую стадию гидрокрекинга при повышенной температуре. Следствием этого являются недостаточно высокие выходы целевой дизельной фракции 180-360°С, получение продуктов с недостаточно низкими температурами помутнения и низким цетановым числом. Причиной неоптимальных каталитических свойств смесевого катализатора, приготовленного известным способом, является то, что на частицах катализатора Pt-USY преобладают реакции гидрирования и крекинга, обуславливающие снижение выхода целевой фракции без значительного улучшения её низкотемпературных свойств, а на частицах приготовленного известным способом катализатора Pt-ZSM-48, напротив, преимущественно идут реакции изомеризации тяжёлых н-парафинов без крекинга. Соответственно, образовавшиеся на Pt-ZSM-48 тяжёлые изопарафины не попадают в интервал кипения целевой дизельной фракции, что также не приводит к улучшению её низкотемпературных свойств. Контакт лёгких парафинов, образовавшихся на катализаторе Pt-USY с катализатором Pt-ZSM-48, или же контакт тяжёлых изопарафинов, образовавшихся на катализаторе Pt-ZSM-48 с катализатором Pt-USY, приводит к преимущественному образованию лёгких изопарафинов, выходящих за интервал кипения целевой фракции 180-360°С, что приводит к снижению её выхода.
Задачей изобретения является создание улучшенного способа приготовления катализатора второй стадии гидрокрекинга, лишённого недостатков способа-прототипа, и характеризующегося:
1. Оптимальным химическим составом получаемого катализатора, а именно тем, что частицы катализатора содержат мас. %: Pt - 0,3-0,6, носитель - остальное, причём носитель содержит одновременно два различных цеолита, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 10,0-20,0; , ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) 10,0-15,0; связующее - γ-оксид алюминия - остальное.
2. Оптимальными размерами кристаллов цеолитов, входящих в состав получаемого заявляемым способом катализатора, где ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
3. Оптимальной локализацией платины в составе получаемого катализатора преимущественно на частицах γ-Al2O3, что оставляет поверхность и каналы цеолитов свободными для протекания реакций крекинга и изомеризации.
4. Оптимальными текстурными характеристиками получаемого катализатора: высокой удельной поверхностью (не менее 330 м2/г), способствующей хорошему диспергированию нанесённой платины; высоким общим объёмом пор (не менее 0,60 см3/г), способствующим хорошему доступу подлежащих превращениям молекул сырья к кислотным центрам и атомам платины; объёмом микропор (не менее 0,015 см3/г) в составе цеолитных компонентов, обеспечивающим оптимальное содержание в катализаторе центров крекинга и изомеризации.
5. Оптимальными размерами и формой гранул получаемого катализатора, обеспечивающими необходимую диффузию сырья по всему сечению гранул при минимальном перепаде давления по слою катализатора.
Задача решается способом приготовления бицеолитного катализатора второй стадии гидрокрекинга, включающего в свой состав соединения платины и носитель, содержащий два различных цеолита, при этом получаемый катализатор содержит, мас. %: Pt- 0,3-0,6, носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 10,0-20,0; , ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) 10,0-15,0; связующее - γ-оксид алюминия - остальное. Входящий в состав получаемого катализатора ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
Катализатор имеет удельную поверхность не менее 330 м2/г, общий объём пор не менее 0,60 см3/г, при этом объём микропор не менее 0,015 см3/г, и представляет собой гранулы с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм и длиной не более 15 мм. Содержащаяся в катализаторе платина преимущественно локализована на частицах γ-Al2O3, что оставляет поверхность и каналы цеолитов свободными для протекания реакций крекинга и изомеризации.
Основным отличительным признаком предлагаемого способа приготовления по сравнению с прототипом является химический состав получаемого катализатора, а именно, то, что катализатор готовят пропиткой по влагоёмкости водным раствором H2PtCl6 с концентрацией платины 3,75 - 7,06 г/л носителя, содержащего, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 10,0-20,0; ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) 10,0-15,0; связующее - γ-оксид алюминия - остальное, что обеспечивает получение катализатора, который содержит, мас. %: Pt - 0,3-0,6, носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 10,0-20,0; , ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) 10,0-15,0; связующее - γ-оксид алюминия - остальное.
Вторым отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что входящий в состав получаемого катализатора ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
Третьим отличительным признаком предлагаемого способа приготовления по сравнению с прототипом является то, что при приготовлении носителя количество гидроксида алюминия AlOOH и порошков цеолитов берут с учетом того, чтобы массовое содержание цеолита ZSM-23 в готовом носителе составляло 10-20%, а ультрастабильного цеолита Y - 10,0-15,0 мас. %., при этом количество воды, добавляемой для приготовления пасты составляло 0,8-1,3 мл/г, а кислотный модуль азотной кислоты на Al2O3 составлял от 0,05 до 0,15., далее в смесителе с Z-образными лопастями перемешивание компонентов продолжают в течение 60-120 минут до образования пластичной массы, после чего готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм, сушку экструдатов носителя осуществляют при температуре 110°С в течение 2-4 ч, а прокалку при температуре 550°С в течение 4ч, что в дальнейшем обеспечивает получение катализатора, имеющего удельную поверхность не менее 330 м2/г, общий объём пор не менее 0,60 см3/г, при этом объём микропор не менее 0,015 см3/г, и представляющего собой гранулы с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм и длиной не более 15 мм.
Четвёртым отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что пропитку носителя раствором H2PtCl6 проводят при температуре 25-50°С в течение 30-90 мин. при периодическом перемешивании, затем катализатор сушат на воздухе при температуре 110-150°С в течение 2-4 ч, затем прокаливают при температуре 400°С в течение 4ч, что приводит к тому, что входящая в состав получаемого катализатора платина по данным энергодисперсионной рентгеновской спектроскопии (ЭРС), преимущественно локализована на частицах γ-Al2O3, что оставляет поверхность и каналы цеолитов свободными для протекания реакций крекинга и изомеризации.
Технический результат - способ приготовления катализатора второй стадии гидрокрекинга, имеющего максимальную активность в целевых реакциях крекинга различных углеводородов, гидрирования ненасыщенных и ароматических соединений, изомеризации н-парафинов, протекающих на второй стадии гидрокрекинга вакуумного газойля, ориентированного на преимущественное получение низкозастывающего дизельного топлива.
Технический результат складывается из следующих составляющих:
1. Заявляемый способ приготовления носителя для катализатора: смешение в смесителе с Z-образными лопастями порошков гидроксида алюминия AlOOH и цеолитов ZSM-23 и ультрастабильного цеолита Y, взятых в количествах, обеспечивающих массовое содержание цеолита ZSM-23 в готовом носителе 10-20 мас. %, а ультрастабильного цеолита Y - 10,0-15,0 мас. %, с последующим добавлением водного раствора азотной кислоты с количество воды, добавляемой для приготовления пасты 0,8-1,3 мл/г порошков, и кислотным модулем азотной кислоты на Al2O3, составляющим от 0,05 до 0,15, с перемешиванием компонентов в течение 60-120 мин, продавливанием образовавшейся массы через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм, сушкой экструдатов носителя при температуре 110°С в течение 2-4 ч, прокалкой при температуре 550°С в течение 4ч, что в дальнейшем обеспечивает получение катализатора, имеющего удельную поверхность не менее 330 м2/г, общий объём пор не менее 0,60 см3/г, при этом объём микропор не менее 0,015 см3/г, и представляющего собой гранулы с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм и длиной не более 15 мм.
2. Заявляемый способ приготовления катализатора: пропитка носителя по влагоёмкости водным раствором H2PtCl6 с концентрацией платины 3,75 - 7,06 г/л при температуре 25-50°С в течение 30-90 мин при периодическом перемешивании, сушка на воздухе при температуре 110-150°С в течение 2-4 ч, прокалка при температуре 400°С в течение 4ч, что обеспечивает получение катализатора, имеющего следующий химический состав, мас. %: Pt - 0,3-0,6, носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 10,0-20,0; ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) 10,0-15,0; связующее - γ-оксид алюминия - остальное, при этом входящая в состав получаемого катализатора платина по данным энергодисперсионной рентгеновской спектроскопии (ЭРС), преимущественно локализована на частицах γ-Al2O3, что оставляет поверхность и каналы цеолитов свободными для протекания реакций крекинга и изомеризации.
3. Заявляемые размеры кристаллов цеолитов ZSM-23 и ультрастабильного цеолита Y обеспечивают время пребывание молекул сырья в каналах цеолитов, оптимальное для протекания целевых реакций крекинга с преимущественным образованием углеводородов, по температуре кипения укладывающихся в интервал кипения дизельного топлива - 180-360°С и изомеризации этих углеводородов, но недостаточное для протекания более глубоких форм крекинга, приводящих к образованию продуктов, более лёгких, чем дизельное топливо.
4. Заявляемые текстурные характеристики катализатора, приготовленного заявленным способом, обеспечивают хороший доступ подлежащих превращениям молекул сырья к активным компонентам - кислотному, представляющему собой цеолиты ZSM-23 и ультрастабильный цеолит Y, и гидрирующе-дегидрирующему, представляющему собой частицы платины, локализованные на поверхности частиц -Al2O3.
5. Заявляемые размеры и форма гранул катализатора, приготовленного заявленным способом, обеспечивают необходимую диффузию сырья по всему сечению гранулы.
Описание предлагаемого технического решения.
Сначала готовят носитель, содержащий γ-оксид алюминия, цеолит ZSM-23, и ультрастабильный цеолит Y. К навеске порошка гидроксида алюминия AlOOH, имеющего структуру бемита или псевдобемита, при непрерывном перемешивании в смесителе с Z-образными лопастями последовательно добавляют расчетное количество порошка цеолита ZSM-23 и ультрастабильного цеолита Y. Далее к смеси порошков добавляют водный раствор азотной кислоты и продолжают перемешивание.
Количество гидроксида алюминия и порошков цеолитов берут с учетом того, чтобы массовое содержание цеолит ZSM-23 в готовом носителе составляло 10-20%, а ультрастабильного цеолита Y - 10-15%. Количество воды, добавляемой для приготовления пасты, зависит от влажности исходных порошков и составляет приблизительно 0,8-1,3 мл/г. Количество азотной кислоты рассчитывают в зависимости от количества γ-Al2O3 так, чтобы кислотный модуль составлял от 0,05 до 0,15. Перемешивание продолжают до образования пластичной массы, как правило, суммарное время перемешивания влажной пасты составляет 60-120 мин.
Готовую пластичную массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм.
Затем проводят термообработку экструдатов, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°С в течение 2-4 ч. Термическую обработку проводят в муфельной печи с подачей сжатого воздуха в печь. Экструдаты в фарфоровой чашке помещают в печь и прокаливают при температуре 550°С в течение 4ч. В результате получают однородный носитель белого цвета, представляющий собой гранулы с поперечным с сечением в виде трилистника или четырехлистника с диаметром описанной окружности не более 1,6 мм и длиной не более 15 мм.
Полученные экструдаты пропитывают по влагоёмкости водным раствором H2PtCl6, концентрация которого такова, чтобы обеспечить массовое содержание платины в готовом катализаторе 0,3-0,6%. Пропитку проводят при температуре 25-50°С в течение 30-90 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 110-150°С в течение 2-4 ч, затем прокаливают при температуре 400°С в течение 4ч. В результате получают катализатор, все характеристики которого полностью соответствуют заявляемым интервалам.
Далее катализатор испытывают во второй стадии гидрокрекинга - гидрокрекинге сырья, полученного в результате первой стадии гидрокрекинга. Сырьё содержит не более 1 ppm серы и не более 5 ppm азота, и характеризуется температурами дистилляции 5, 50 и 95% объёма 344, 423 и 517°С, соответственно. Сырьё содержит 4 мас. % ароматических соединений и имеет плотность при 20°С 0,8397 г/см3. Процесс второй стадии гидрокрекинга проводят при температуре 320-340°С, давлении 6,0 МПа, объемном расходе сырья 1.5 ч-1, объемном соотношение водород/сырье 1000 нм33. Перед испытаниями катализаторы прогревают 4 ч при 400°С в токе водорода с объёмным расходом 500 ч-1.
Сущность изобретения иллюстрируется следующими примерами:
Пример 1.
Готовят носитель, содержащий 20 мас. % цеолита ZSM-23 и 10 мас. % ультрастабильного цеолита Y. В смесителе с Z-образными лопастями в течение 15 мин. перемешивают 93,3 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита, 22,3 г порошка цеолита ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48), представляющего собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм, и 11,2 г порошка ультрастабильного цеолита Y с силикатным модулем (SiO2/Al2O3 = 80), представляющего собой кристаллические частицы округлой формы диаметром 100-1000 нм. К смеси добавляют 105 мл водного раствора, содержащего 4,32 г азотной кислоты. Количество воды, добавляемой для приготовления пасты, составляет 0,8 мл/г порошков, а кислотный модуль равен 0,1. Пасту перемешивают 120 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 110°С и прокаливают 4 ч при температуре 550°С. Получают 100 г готового носителя с влагоёмкостью 0,8 см3/г. Носитель представляет собой гранулы с поперечным с сечением в виде трилистника с диаметром описанной окружности 1,6 мм, длиной 3-15 мм.
Полученные гранулы пропитывают по влагоёмкости водным раствором H2PtCl6, концентрация которого такова, чтобы обеспечить массовое содержание платины в готовом катализаторе 0,3%. Для пропитки используют 80 мл водного раствора, концентрация платины в котором 3,75 г/л. Пропитку проводят при температуре 25°С в течение 90 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 110°С в течение 4 ч, затем прокаливают при температуре 400°С в течение 4 ч.
В результате получают катализатор, содержащий, мас. %: Pt - 0,3; носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 20,0; ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) - 10,0; связующее - γ-оксид алюминия - остальное. Катализатор имеет удельную поверхность 355 м2/г, общий объём пор 0,67 см3/г, объём микропор 0,017 см3/г и представляет собой гранулы с сечением в форме трилистника с диаметром описанной окружности 1,6 мм и длиной 3-15 мм.
По данным просвечивающей электронной микроскопии высокого разрешения, входящий в состав катализатора ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм. Из данных энергодисперсионной рентгеновской спектроскопии катализатора, приведённых в таблице 1, следует, что платина преимущественно локализована на частицах γ-Al2O3.
Катализатор испытывают во второй стадии гидрокрекинга - гидрокрекинге сырья, полученного в результате первой стадии гидрокрекинга. Сырьё содержит не более 1 ppm серы и не более 5 ppm азота, и характеризуется температурами дистилляции 5, 50 и 95% объёма 344, 423 и 517°С соответственно. Сырьё содержит 4 мас. % ароматических соединений и имеет плотность 0,8397 г/см3 при 20°С. Процесс второй стадии гидрокрекинга проводят при температуре 320-340°С, давлении 6,0 МПа, объемном расходе сырья 1.5 ч-1, объемном соотношение водород/сырье 1000 нм33. Перед испытаниями катализаторы прогревают 4 ч при 400°С в токе водорода с объёмным расходом 500 ч-1. В ходе тестирования определяют температуру достижения конверсии сырья 54%, при этой температуре нарабатывают необходимое количество продуктов, из которых методом ректификации на автоматизированной установке для вакуумной разгонки нефтепродуктов на фракции B/R Instruments (США) выделяют целевую дизельную фракцию 180-360°С. Далее на аппарате ЛАЗ-М определяют температуры помутнения (по ГОСТ5066-2018 и ASTM D2500) и температуры застывания (по ГОСТ 20287 и ASTM D97). Определение цетанового числа проводят на приборе Cetane ID 510 (Herzog, Австрия) по ASTM D7668. Результаты тестирования во второй стадии гидрокрекинга приведены в таблице 2.
Пример 2.
Носитель готовят аналогично примеру 1 с той разницей, что берут навески псевдобемита, цеолита ZSM-23 и ультрастабильного цеолита Y, соответственно 100,0. 11,5 и 16,5 г и перемешивают их 15 мин в смесителе с Z-образными лопастями. Далее к смеси добавляют 166 мл водного раствора, содержащего 3,24 г азотной кислоты, при этом количество воды, добавляемой для приготовления пасты, составляет 1,3 мл/г порошков, а кислотный модуль равен 0,07. Пасту перемешивают 60 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,6 мм. Полученный влажный носитель сушат 2 ч при температуре 110°С и прокаливают 4 ч при температуре 550°С. Получают 100 г готового носителя с влагоёмкостью 0,85 см3/г. Носитель представляет собой гранулы с поперечным с сечением в виде трилистника с диаметром описанной окружности 1,6 мм, длиной 3-15 мм.
Полученные гранулы пропитывают по влагоёмкости водным раствором H2PtCl6, концентрация которого такова, чтобы обеспечить массовое содержание платины в готовом катализаторе 0,6%. Для пропитки используют 85 мл водного раствора, концентрация платины в котором 7,06 г/л. Пропитку проводят при температуре 50°С в течение 30 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 150°С в течение 2 ч, затем прокаливают при температуре 400°С в течение 4 ч.
В результате получают катализатор, содержащий, мас. %: Pt- 0,6, носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 10,0; ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) - 15,0; связующее - γ-оксид алюминия - остальное. Катализатор имеет удельную поверхность 345 м2/г, общий объём пор 0,66 см3/г, объём микропор 0,015 см3/г и представляет собой гранулы с сечением в форме трилистника с диаметром описанной окружности 1,5 мм и длиной 3-15 мм.
По данным просвечивающей электронной микроскопии высокого разрешения, входящий в состав катализатора ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
Из данных энергодисперсионной рентгеновской спектроскопии катализатора, приведённых в таблице 1, следует, что платина преимущественно локализована на частицах γ-Al2O3.
Катализатор испытывают во второй стадии гидрокрекинга аналогично примеру 1
Пример 3.
Носитель готовят аналогично примеру 1 с той разницей, что берут навески псевдобемита, цеолита ZSM-23 и ультрастабильного цеолита Y, соответственно 96,7; 17,0 и 14,0 г и перемешивают их 15 мин в смесителе с Z-образными лопастями. Далее к смеси добавляют 128 мл водного раствора, содержащего 3,58 г азотной кислоты, при этом количество воды, добавляемой для приготовления пасты, составляет 1,0 мл/г порошков, а кислотный модуль равен 0,08. Пасту перемешивают 90 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,5 мм. Полученный влажный носитель сушат 3 ч при температуре 110°С и прокаливают 4 ч при температуре 550°С. Получают 100 г готового носителя с влагоёмкостью 0,83 см3/г. Носитель представляет собой гранулы с поперечным с сечением в виде трилистника с диаметром описанной окружности 1,5 мм, длиной 3-15 мм.
Полученные гранулы пропитывают по влагоёмкости водным раствором H2PtCl6, концентрация которого такова, чтобы обеспечить массовое содержание платины в готовом катализаторе 0,5%. Для пропитки используют 83 мл водного раствора, концентрация платины в котором 6,02 г/л. Пропитку проводят при температуре 30°С в течение 60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 120°С в течение 3 ч, затем прокаливают при температуре 400°С в течение 4 ч.
В результате получают катализатор, содержащий, мас. %: Pt - 0,5, носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 15,0; ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) - 12,5; связующее - γ-оксид алюминия - остальное. Катализатор имеет удельную поверхность 350 м2/г, общий объём пор 0,65 см3/г, объём микропор 0,016 см3/г и представляет собой гранулы с сечением в форме трилистника с диаметром описанной окружности 1,5 мм и длиной 3-15 мм.
По данным просвечивающей электронной микроскопии высокого разрешения, входящий в состав катализатора ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
Из данных энергодисперсионной рентгеновской спектроскопии катализатора, приведённых в таблице 1, следует, что платина преимущественно локализована на частицах γ-Al2O3.
Катализатор испытывают во второй стадии гидрокрекинга аналогично примеру 1.
Пример 4.
Носитель готовят аналогично примеру 1 с той разницей, что берут навески псевдобемита, цеолита ZSM-23 и ультрастабильного цеолита Y, соответственно 106,7; 11,5 и 11,5 г и перемешивают их 15 минут в смесителе с Z-образными лопастями. Далее к смеси добавляют 103,8 мл водного раствора, содержащего 2,47 г азотной кислоты, при этом количество воды, добавляемой для приготовления пасты, составляет 0,8 мл/г порошков, а кислотный модуль равен 0,05. Пасту перемешивают 60 мин и формуют через фильеру с отверстиями в форме четырёхлистника с диаметром описанной окружности 1,5 мм. Полученный влажный носитель сушат 2 ч при температуре 110°С и прокаливают 4 ч при температуре 550°С. Получают 100 г готового носителя с влагоёмкостью 0,79 см3/г. Носитель представляет собой гранулы с поперечным с сечением в виде четырёхлистника с диаметром описанной окружности 1,5 мм, длиной 3-15 мм.
Полученные гранулы пропитывают по влагоёмкости водным раствором H2PtCl6, концентрация которого такова, чтобы обеспечить массовое содержание платины в готовом катализаторе 0,45%. Для пропитки используют 79 мл водного раствора, концентрация платины в котором 5,7 г/л. Пропитку проводят при температуре 40°С в течение 50 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 130°С в течение 4 ч, затем прокаливают при температуре 400°С в течение 4 ч.
В результате получают катализатор, содержащий, мас. %: Pt- 0,45, носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 10,0; ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) - 10,0; связующее - γ-оксид алюминия - остальное. Катализатор имеет удельную поверхность 335 м2/г, общий объём пор 0,68 см3/г, объём микропор 0,015 см3/г и представляет собой гранулы с сечением в форме четырёхлистника с диаметром описанной окружности 1,5 мм и длиной 3-15 мм.
По данным просвечивающей электронной микроскопии высокого разрешения, входящий в состав катализатора ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
Из данных энергодисперсионной рентгеновской спектроскопии катализатора, приведённых в таблице 1, следует, что платина преимущественно локализована на частицах γ-Al2O3.
Катализатор испытывают во второй стадии гидрокрекинга аналогично примеру 1.
Пример 5.
Носитель готовят аналогично примеру 1 с той разницей, что берут навески псевдобемита, цеолита ZSM-23 и ультрастабильного цеолита Y, соответственно 86,7, 22,0 и 16,5 г и перемешивают их 15 мин в смесителе с Z-образными лопастями. Далее к смеси добавляют 125,2 мл водного раствора, содержащего 6,02 г азотной кислоты, при этом количество воды, добавляемой для приготовления пасты, составляет 1,0 мл/г порошков, а кислотный модуль равен 0,15. Пасту перемешивают 90 мин и формуют через фильеру с отверстиями в форме четырёхлистника с диаметром описанной окружности 1,5 мм. Полученный влажный носитель сушат 2 ч при температуре 110°С и прокаливают 4 ч при температуре 550°С. Получают 100 г готового носителя с влагоёмкостью 0,86 см3/г. Носитель представляет собой гранулы с поперечным с сечением в виде четырёхлистника с диаметром описанной окружности 1,5 мм, длиной 3-15 мм.
Полученные гранулы пропитывают по влагоёмкости водным раствором H2PtCl6, концентрация которого такова, чтобы обеспечить массовое содержание платины в готовом катализаторе 0,5%. Для пропитки используют 86 мл водного раствора, концентрация платины в котором 5,81 г/л. Пропитку проводят при температуре 30°С в течение 60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 120°С в течение 4 ч, затем прокаливают при температуре 400°С в течение 4 ч.
В результате получают катализатор, содержащий, мас. %: Pt - 0,5, носитель - остальное, причём носитель содержит, мас. %: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем (SiO2/Al2O3 = 48) - 20,0; ультрастабильный цеолит Y с силикатным модулем (SiO2/Al2O3 = 80) - 15,0; связующее - γ-оксид алюминия - остальное. Катализатор имеет удельную поверхность 365 м2/г, общий объём пор 0,66 см3/г, объём микропор 0,018 см3/г и представляет собой гранулы с сечением в форме четырёхлистника с диаметром описанной окружности 1,5 мм и длиной 3-15 мм.
По данным просвечивающей электронной микроскопии высокого разрешения, входящий в состав образцов катализаторов в примерах 1-5 ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
Из данных энергодисперсионной рентгеновской спектроскопии катализатора, приведённых в таблице 1, следует, что платина преимущественно локализована на частицах γ-Al2O3.
Катализатор испытывают во второй стадии гидрокрекинга аналогично примеру 1.
Результаты тестирования образцов катализаторов в примерах 1-5 во второй стадии гидрокрекинга приведены в таблице 2.
На известном катализаторе [RU 2565669, C10G 71/00, 20.10.2015] при проведении второй стадии гидрокрекинга для конверсии сырья в интервале 45-65% требовались температуры второй стадии гидрокрекинга в интервале 343-354°С. При этом, выход дизельной фракции, кипящей в интервале 177-371°С составлял 50 мас. %, а получаемая дизельная фракция имела температуру помутнения в интервале (-11) - (-21)°С и цетановое число в интервале 65,5-65,9.
Таблица 1 - Данные энергодисперсионной рентгеновской спектроскопии.

примера
Концентрация элемента, ат. %
Область Al2O3 Область цеолитов
Al Si Pt Al Si Pt
1 98,35 0,65 1,10 26,8 73,17 0,03
2 98,05 0,15 1,80 33,45 66,51 0,04
3 97,80 0,55 1,65 31,72 68,25 0,03
4 98,25 0,26 1,49 34,64 65,34 0,02
5 97,65 0,84 1,51 30,11 69,85 0,04
Таблица 2 - Результаты тестирования во второй стадии гидрокрекинга

примера
Температура достижения конверсии сырья 54%, °С Выход дизельной фракции на превращённое сырьё, мас. % Температура помутнения дизельной фракции, °С Температура застывания дизельной фракции, °С Цетановое число по
ASTM D7668
1 327 56,5 -46 -60 67,4
2 321 62,1 -44 -50 72,0
3 325 60,9 -45 -52 71,0
4 330 63,4 -42 -49 73,3
5 320 55,5 -47 -61 66,9
Таким образом, как видно из приведенных примеров, катализатор, приготовленный заявляемым способом, за счет своего химического состава имеет высокую активность и селективность в целевых реакциях, обеспечивая достижение заданной конверсии сырья при температуре значительно ниже, чем на катализаторе-прототипе и существенно больший выход дизельной фракции, чем при использовании катализатора-прототипа. При этом температуры помутнения и застывания получаемой дизельной фракции значительно ниже, а цетановое число существенно выше, чем при использовании катализатора-прототипа.

Claims (8)

1. Способ приготовления катализатора второй стадии гидрокрекинга, характеризующийся тем, что катализатор готовят пропиткой по влагоёмкости водным раствором H2PtCl6 с концентрацией платины 3,75 – 7,06 г/л носителя, содержащего, мас.%: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем SiO2/Al2O3 = 48 – 10,0-20,0, ультрастабильный цеолит Y с силикатным модулем SiO2/Al2O3 = 80 – 10,0-15,0, связующее – γ-оксид алюминия – остальное, с последующими стадиями сушки и прокаливания, в результате получают катализатор, который содержит, мас.%: Pt – 0,3-0,6, носитель – остальное, причём носитель содержит, мас.%: одномерный среднепористый цеолит ZSM-23 со структурой MTT и силикатным модулем SiO2/Al2O3 = 48 – 10,0-20,0; ультрастабильный цеолит Y с силикатным модулем SiO2/Al2O3 = 80 – 10,0-15,0; связующее – γ-оксид алюминия – остальное, катализатор имеет удельную поверхность не менее 330 м2/г, общий объём пор – не менее 0,60 см3/г, при этом объём микропор – не менее 0,015 см3/г.
2. Способ по п.1, отличающийся тем, что пропитку носителя раствором H2PtCl6 проводят при температуре 25-50°С в течение 30-90 мин при периодическом перемешивании, затем катализатор сушат на воздухе при температуре 110-150°С в течение 2-4 ч, затем прокаливают при температуре 400°С в течение 4 ч.
3. Способ по п.1, отличающийся тем, что для приготовления носителя количество гидроксида алюминия AlOOH и порошков цеолитов берут с учетом того, чтобы получить массовое содержание цеолита ZSM-23 в готовом носителе 10-20%, а ультрастабильного цеолита Y – 10,0-15,0 мас.%, при этом количество воды, добавляемой для приготовления пасты, составлет 0,8-1,3 мл/г, а кислотный модуль азотной кислоты на Al2O3 составляет от 0,05 до 0,15.
4. Способ по п.1, отличающийся тем, что для приготовления носителя в смесителе с Z-образными лопастями перемешивание компонентов продолжают в течение 60-120 мин до образования пластичной массы, после чего готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм.
5. Способ по п.1, отличающийся тем, что сушку экструдатов носителя осуществляют при температуре 110°С в течение 2-4 ч, а прокалку при температуре 550°С в течение 4 ч.
6. Способ по п.1, отличающийся тем, что входящий в состав получаемого катализатора ультрастабильный цеолит Y представляет собой кристаллические частицы округлой формы диаметром 100-1000 нм, а входящий в его состав цеолит ZSM-23 представляет собой кристаллические частицы призматической формы длиной 50-300 нм и шириной 15-30 нм.
7. Способ по п.1, отличающийся тем, что по данным энергодисперсионной рентгеновской спектроскопии в составе получаемого катализатора платина преимущественно локализована на частицах γ-Al2O3, что оставляет поверхность и каналы цеолитов свободными для протекания реакций крекинга и изомеризации.
8 . Способ по п.1, отличающийся тем, что получаемый катализатор представляет собой гранулы с сечением в форме трилистника или четырёхлистника с диаметром описанной окружности не более 1,6 мм и длиной не более 15 мм.
RU2021137084A 2021-12-15 Способ приготовления катализатора второй стадии гидрокрекинга RU2779443C1 (ru)

Publications (1)

Publication Number Publication Date
RU2779443C1 true RU2779443C1 (ru) 2022-09-07

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20040798A1 (it) * 2004-04-23 2004-07-23 Eni Spa Processo e catalizzatori per l'apertura di anelli naftenici
FR2909012B1 (fr) * 2006-11-23 2009-05-08 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.
WO2010124935A1 (en) * 2009-04-29 2010-11-04 Shell Internationale Research Maatschappij B.V. Hydrocracking catalyst
RU2565669C2 (ru) * 2010-09-30 2015-10-20 ЭкссонМобил Рисерч энд Энджиниринг Компани Способ гидрокрекинга, селективный в отношении улучшенного дистиллята и улучшенного выхода смазочных материалов и их свойств

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20040798A1 (it) * 2004-04-23 2004-07-23 Eni Spa Processo e catalizzatori per l'apertura di anelli naftenici
FR2909012B1 (fr) * 2006-11-23 2009-05-08 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.
WO2010124935A1 (en) * 2009-04-29 2010-11-04 Shell Internationale Research Maatschappij B.V. Hydrocracking catalyst
RU2565669C2 (ru) * 2010-09-30 2015-10-20 ЭкссонМобил Рисерч энд Энджиниринг Компани Способ гидрокрекинга, селективный в отношении улучшенного дистиллята и улучшенного выхода смазочных материалов и их свойств

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Дубинин М.Е. и др. БИЦЕОЛИТНЫЕ КАТАЛИЗАТОРЫ ГИДРОКРЕКИНГА ДЛЯ ПОЛУЧЕНИЯ СРЕДНИХ ДИСТИЛЛЯТОВ. Всероссийская научная конференция молодых ученых. Наука Технологии Инновации. Сборник научных трудов, часть 3. Новосибирск, 2019, с.42-44. *

Similar Documents

Publication Publication Date Title
EP3342844A1 (en) Method for manufacturing lubricant base oil
JP3786007B2 (ja) 炭化水素油中に含む芳香族化合物の水素化処理用触媒
CN100587040C (zh) 极低酸度usy和均相非晶形氧化硅-氧化铝加氢裂化催化剂及方法
US8772196B2 (en) Aromatics hydrogenation catalyst and a method of making and using such catalyst
US8932454B2 (en) Mesoporous Y hydrocracking catalyst and associated hydrocracking processes
US9988585B2 (en) Method for producing base oil for lubricant oils
CN100587039C (zh) 极低酸度超稳定y沸石催化剂组合物及方法
US7169291B1 (en) Selective hydrocracking process using beta zeolite
KR20090025254A (ko) 탄화수소 증류분의 제조 방법
JP2004535479A (ja) 炭化水素ストリームの異性化脱ロウ方法
US8431014B2 (en) Process and catalyst system for improving dewaxing catalyst stability and lubricant oil yield
WO2007006473A1 (en) Process for improving the quality as a fuel of hydrotreated hydrocarbon blends
CA2881858C (en) Improved noble metal zeolite catalyst for second-stage hydrocracking
EP0947575A1 (en) A process for hydrocracking a heavy distillate oil under middle pressure
KR20140034177A (ko) 탈랍 촉매 안정성 및 윤활유 수율을 개선하기 위한 신규 방법 및 촉매 시스템
WO2006032989A1 (en) Hydrocracking process and catalyst composition
RU2779443C1 (ru) Способ приготовления катализатора второй стадии гидрокрекинга
RU2779444C1 (ru) Катализатор второй стадии гидрокрекинга
RU2739566C1 (ru) Способ получения катализатора изодепарафинизации дизельных фракций для использования в каталитической системе, состоящей из катализаторов гидроочистки и изодепарафинизации и катализатор, полученный этим способом
RU2785685C1 (ru) Способ получения низкозастывающего дизельного топлива
RU2616003C1 (ru) Способ получения низкосернистого низкозастывающего дизельного топлива
CN112221535A (zh) 一种中油型加氢裂化催化剂及其制备方法
CN1261539C (zh) 一种烃油加氢转化催化剂
EP2589434A1 (en) Process and catalysts for enhancing the fuel quality of hydrocarbon blends
JP2001205084A (ja) 炭化水素油中の芳香化合物の水素化処理用触媒