RU2778131C1 - Способ очистки цианидсодержащих стоков золотодобывающих предприятий - Google Patents

Способ очистки цианидсодержащих стоков золотодобывающих предприятий Download PDF

Info

Publication number
RU2778131C1
RU2778131C1 RU2022104996A RU2022104996A RU2778131C1 RU 2778131 C1 RU2778131 C1 RU 2778131C1 RU 2022104996 A RU2022104996 A RU 2022104996A RU 2022104996 A RU2022104996 A RU 2022104996A RU 2778131 C1 RU2778131 C1 RU 2778131C1
Authority
RU
Russia
Prior art keywords
purification
stage
reverse osmosis
water
cyanide
Prior art date
Application number
RU2022104996A
Other languages
English (en)
Inventor
Василий Николаевич Ковалев
Савелий Федорович Каплан
Артем Сергеевич Долотов
Андрей Алексеевич Фатеев
Original Assignee
Акционерное Общество "Полиметалл Инжиниринг"
Filing date
Publication date
Application filed by Акционерное Общество "Полиметалл Инжиниринг" filed Critical Акционерное Общество "Полиметалл Инжиниринг"
Application granted granted Critical
Publication of RU2778131C1 publication Critical patent/RU2778131C1/ru

Links

Images

Abstract

Изобретение относится к многостадийным методам обработки оборотной воды для последующего использования ее в технологическом цикле на предприятиях цветной металлургии или сброса на рельеф. Способ очистки цианидсодержащих стоков золотодобывающих предприятий включает фильтрацию, очистку обратным осмосом и химическую очистку от примесей. Первоначально удаляют механические примеси из исходной воды намывной фильтрацией с фильтровальным порошком. В полученный осветленный фильтрат добавляют антискалант и подвергают двухступенчатой очистке обратным осмосом. После очистки обратным осмосом поток в виде пермеата направляют на химическую очистку. На стадии химической очистки в поток подают раствор едкого натра до pH равного 11, после чего в него подают раствор гипохлорита натрия. После отрицательного анализа на цианид-ионы нейтрализуют избыточную щелочь концентрированной серной кислотой до pH равного 7-8. Далее воду под давлением прокачивают через активированный уголь. Обеспечивается высокая степень очистки цианидсодержащих стоков и возврат драгоценных металлов в технологический процесс золотодобывающих предприятий. 1 ил.

Description

Изобретение относится к многостадийным методам обработки оборотной воды для последующего использования ее в технологическом цикле на предприятиях цветной металлургии или сброса на рельеф.
Известно техническое решение, описанное в патенте Российской Федерации №2615023, МПК C02F 9/04, 1/72,1/62,101/18,103/16, приоритет от 30.04.2015 г на изобретение: “Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов“, заключающийся в обработке вод окислителем, ионами железа(II) или (III), в котором из вод или пульп при окислительной обработке удаляют цианиды и тиоцианаты на заданную глубину очистки от этих соединений, проводят выдержку без подачи реагентов продолжительностью не менее чем 0,5 часа. Перед началом выдержки концентрация окислителя должна быть минимальной, а затем их обрабатывают ионами железа(II) или (III) для перевода мышьяка и сурьмы в нерастворимое состояние при значении рН 4,0-8,0, при этом воды или пульпы после окислительной обработки выдерживают без подачи реагентов предпочтительно 1-4 часа. При высокой остаточной концентрации тяжелых и цветных металлов после обработки ионами железа(II) или (III) дополнительно проводят щелочную обработку, например, NaOH или СаО. Окислительную обработку, обработку солями железа(II) или (III) и подщелачивание для удаления остаточных концентраций металлов проводят при постоянном перемешивании. Выдержку после окислительной обработки осуществляют как при перемешивании, так и без него. Очистку сточных вод и пульп проводят как в периодическом, так и в непрерывном режимах.
В указанном выше техническом решении предлагается способ двухстадийной реагентной обработки воды для ее очистки от цианид- и тиоцианат-ионов, а также от тяжелых металлов. Способ позволяет снизить концентрацию цианид- и тиоцианат-ионов до уровня ПДК, однако концентрацию железа, мышьяка и меди до уровня ПДК снизить не удается. Таким образом, воду, очищенную таким способом, сбрасывать в природные водоемы без дополнительной обработки невозможно. Кроме того, для оптимального протекания процесса требуется значительное время выдержки раствора или пульпы при реагентных обработках и в промежутках между ними, что обуславливает периодичность процесса.
Наиболее близким аналогом по совокупности существенных признаков и назначению является техническое решение, описанное в патенте РФ №2404140, МПК C02F 9/02,9/04,1/28,1/48,1/78, приоритет от 20.12.2008 г на изобретение: “Способ обработки оборотной воды из хвостохранилищ золотодобывающих фабрик”, включающий обработку воды ультрафильтрацией, сорбцией, обратным осмосом, в котором проводят постадийную очистку оборотной воды от примесей, включающую химическую очистку от примесей, фильтрование, сорбцию золота на смоле, озонирование, ультрафильтрацию и обратный осмос. Химическую очистку воды проводят перкарбонатом натрия при расходе последнего не менее 0,25 кг/м3 при перемешивании в течение не менее 15 мин, далее воду фильтруют для удаления образующегося осадка. Полученный фильтрат направляют на сорбционную очистку на смоле для извлечения золота с регулированием скорости протока не менее 10 м3/(м2·ч), полученный концентрат выводят из процесса, а воду после сорбции золота направляют на озонирование с расходом озона не менее 20 г/(м3·ч) и разложением роданидов в течение 15-20 мин. Обезвреженная от роданидов, содержащая осадок вода подается на стадию ультрафильтрации для предварительной очистки от твердых примесей под давлением в аппарате 7-9 атм. и рН 5-7, полученный концентрат возвращают на стадию фильтрации, а очищенная вода поступает на стадию обратного осмоса при давлении в аппарате 8-12 атм, Полученный после стадии обратного осмоса концентрат, не более 10-15% от объема переработки, сбрасывают в хвостохранилище, а полученную очищенную воду в природный водоем.
Один из недостатков описанного выше технического решения заключается в том, что обработка воды окислителями (перкарбонатом натрия, озоном) предшествует обессоливанию обратным осмосом. При такой последовательности операций остаточные (не прореагировавшие до конца, избыточные) количества окислителей попадают на мембранные элементы ультрафильтрации и обратного осмоса, что ведет к уменьшению срока службы мембран и увеличению солесодержания пермеата.
Другим недостатком известного технического решения является использование для окисления цианидов перкарбоната натрия, причем концентрации перкарбоната натрия, указанные в известном техническом решении, не достаточны для успешного окисления цианидов за указанное короткое время.
Задачей заявляемого изобретения является создание способа, обеспечивающего высокую степень очистки цианидсодержащих стоков и возврат драгоценных металлов в технологический процесс золотодобывающих предприятий.
Согласно изобретению в способе очистки цианидсодержащих стоков золотодобывающих предприятий, в котором проводят постадийную очистку от примесей, включающую фильтрацию, очистку обратным осмосом и химическую очистку от примесей, для решения поставленной задачи первоначально осуществляют удаление механических примесей из исходной воды намывной фильтрацией с использованием фильтровального порошка, полученный осветленный фильтрат подвергают двухступенчатой очистке обратным осмосом, перед первой ступенью очистки обратным осмосом в осветленный фильтрат добавляют антискалант, в первой ступени очистки обратным осмосом жидкость делят на два потока, один из которых в виде концентрата, содержащего комплексные соли драгоценных металлов, направляют на вход ступени концентрирования, после которой часть потока, содержащего увеличенную концентрацию комплексных солей драгоценных металлов, возвращают в технологический процесс золотодобывающего предприятия, а другой частью в виде пермеата разбавляют осветленный фильтрат, другой поток в виде пермеата первой ступени очистки обратным осмосом направляют под давлением на вторую ступень очистки обратным осмосом, в результате очистки на второй ступени обратного осмоса получают два потока, один из которых в виде концентрата, направляют на смешение с осветленным фильтратом, другой в виде пермеата направляют на химическую очистку, в которой первоначально подают в него раствор едкого натра до достижения pH равного 11, после чего в него подают раствор гипохлорита натрия, количество которого определяют исходя из концентрации цианида в пермеате и содержания активного хлора в гипохлорите натрия, после ввода всей дозы гипохлорита воду перемешивают 20-40 минут и после отрицательного анализа на цианид-ионы производят нейтрализацию избыточной щелочи концентрированной серной кислотой до pH равного 7-8, воду под давлением прокачивают через активированный уголь, выходящий раствор контролируют на наличие активного хлора и при его обнаружении направляют воду на слой свежего активированного угля, затем осуществляют накопление очищенной воды или ее сброс.
На чертеже представлена технологическая схема, иллюстрирующая предлагаемый способ.
Способ осуществляют следующим образом
На первой стадии процесса очистки исходную воду для фильтрации подают на участок фильтрации насосом 1. Для осветления потока используют намывные
напорные фильтры 3, 4. Из емкости 6 фильтровальный порошок насосом-дозатором 7 подают в трубопровод с исходной водой. Полученная смесь нагнетается в трубопровод, где происходит равномерное распределение фильтровального порошка в потоке жидкой фазы перед поступлением на осветление в намывной фильтр 3 или 4. Введение фильтровального порошка в поток исходной воды повышает проницаемость осадка, что приводит к увеличению производительности фильтров и продолжительности их работы. Фильтры 3, 4 установлены параллельно таким образом, что в каждый момент времени один фильтр находится в работе, а второй - обслуживается или находится в режиме ожидания. Вывод фильтра из режима фильтрации в стадию промывки происходит при достижении давления на фильтре 5,5 атм. Осадок, содержащий задержанные взвешенные вещества и фильтровальный порошок, периодически, по мере накопления, смывают с фильтра и направляют в шламонакопитель. Пульпа фильтровального порошка готовится в емкостях 5 (намывка) и 6 (емкость подпитки фильтрующего слоя). В качестве жидкой фазы для приготовления пульпы фильтровального порошка используют исходную воду. Намывка фильтровального порошка на фильтр осуществляется путем циркуляции пульпы по контуру емкость намывки 5 - насос намывки 2 - фильтр 3 или 4. После завершения намывки фильтр сразу же переводят в режим фильтрации. Продолжительность стадии фильтрования зависит от содержания взвешенных веществ в продуктивных растворах. Фильтрат направляют в буферную емкость 8 БОС (блок осветленных стоков), где его разбавляют пермеатом третьей ступени УООЗ 19 и рассолом (концентратом) со второй ступени УОО2 15. Объем буферной емкости БОС 8 выбирается таким, чтобы обеспечить смешение трех потоков жидкости, а также гарантировать безостановочную работу первой ступени 12 установки обратного осмоса (УОО1) в течение времени обслуживания осветлительного фильтра (смыв осадка, промывка салфеток, намывка фильтрующего слоя и т.д.). Перед первой ступенью очистки обратным осмосом в осветленный фильтрат добавляют антискалант. Для этого в трубопровод, питающий УОО1 (12), насосом - дозатором 10 из емкости 11 дозируют антискалант. Затем насосом 9 первой ступени установки обратного осмоса из блока 8 осветленных стоков (БОС) воду подают на первую ступень установки обратного осмоса УОО1 (12). Первая ступень обратноосмотической установки УОО1 (12) состоит из двух блоков, работающих параллельно. Поток жидкости на первой ступени обратного осмоса делится на две части, одну часть потока в виде концентрата, полученного на УОО1 (12), направляют в емкость 17 - блок сбора концентрата (БСК) и насосом 18 направляют на вход ступени концентрирования на обратноосмотическую установку УОО3 (19). Концентрат из УОО3 (19) возвращают в технологический процесс золотодобывающего предприятия. Другую часть потока жидкости в виде пермеата 1 (пермеата первой ступени обратного осмоса) собирают в емкость 13 блока частично обессоленных стоков (БЧОС). Коэффициент отбора пермеата 1 на УОО1 (12) не должен превышать 0,5 с целью обеспечения высокой селективности по растворенным веществам. Полученный пермеат 1 (пермеат первой ступени обратного осмоса) из емкости 13 насосом 14 подают на вторую ступень установки очистки обратным осмосом УОО2 (15). Вторая ступень обратноосмотической установки УОО2 (15) состоит из одного блока номинальной производительности по исходной воде 57 м3/ч. Коэффициент отбора пермеата 2 (пермеата второй ступени) на УОО2 (15) не должен превышать 0, 5 с целью обеспечения высокой селективности по растворенным веществам. Поток жидкости на второй ступени обратного осмоса 15 делят на две части, одну часть потока в виде концентрата направляют на смешение с осветленным фильтратом в блок 8 осветленных стоков. Другая часть потока жидкости в виде пермеата 2 (пермеата второй ступени обратного осмоса) собирают в емкость 16 блока пермеата и направляют на химическую очистку с помощью насоса 20 в емкость обезвреживания 21 или 22. Объем емкостей составляет 50 м3. Производительность насоса 20 подбирается таким образом, чтобы обеспечить заполнение емкости за 15-20 минут. Из емкости 23 насосом - дозатором 26 в емкости обезвреживания 21 или 22 подают раствор едкого натра до достижения pH=11. При использовании раствора едкого натра NaOH с концентрацией 200 г/л требуется подать в емкость 12,5-15 л раствора. Затем в емкость обезвреживания 21 или 22 насосом - дозатором 27 подают раствор гипохлорита натрия из емкости 24. Количество подаваемого гипохлорита определяют исходя из концентрации цианида в пермеате и содержания активного хлора в гипохлорите натрия. На один цикл обезвреживания будет расходоваться ориентировочно 20 л раствора гипохлорита натрия с концентрацией активного хлора 175 мг/л .После ввода всей дозы гипохлорита вода перемешивается 20-40 минут, затем, после отрицательного анализа на цианид-ион, обезвреженную воду подают в емкость 29, в которой происходит нейтрализация избыточной щелочи концентрированной серной кислотой (93%) до pH 7-8. Серную кислоту подают насосом-дозатором 28 из емкости 25. Ориентировочный расход кислоты на один цикл 5-8 кг (3-5 л). Нейтрализованную воду насосом 30 (31) прокачивают через колонны 32 и 33 (34,35), в которые загружен активированный уголь. Колонна имеет соотношение высоты к диаметру равное 6. Расход воды через колонны не более 25 м3/ч. Выходящую воду контролируют на наличие активного хлора. При обнаружении проскока поток переключают на резервные колонны 34 и 35 (32,33), уголь выгружают и направляют на термическую реактивацию, а в колонны загружают свежий активированный уголь. Разгрузку отработанного угля производят из нижней части колонны через специальный люк. Очищенную воду собирают в накопитель или направляют на сброс.
Заявляемый способ обеспечивает более высокую степень очистки цианидсодержащих стоков по сравнению с ближайшим аналогом прежде всего за счет другой последовательности обработки стоков, поскольку окислительная обработка воды гипохлоритом натрия осуществляется после обратноосмотического обессоливания. Такая последовательность операций исключает попадание окислителей на мембранные элементы обратного осмоса, что увеличивает срока службы мембран и уменьшает солесодержание пермеата. Также заявляемый способ снижает потери драгоценных металлов со сточными водами за счет непрерывного возвращения цианидных комплексов драгоценных металлов в составе концентрата установки обратного осмоса в технологический процесс золотодобывающего предприятия,
Кроме того, заявляемый в качестве изобретения способ, в отличие от ближайшего аналога, включает фильтрацию, обратноосмотическое обессоливание и реагентную обработку, что с одной стороны позволяет достичь значений ниже ПДК по всем содержащимся в воде загрязнителям, а с другой - позволяет осуществлять непрерывный процесс очистки воды.
Заявляемое в качестве изобретения техническое решение соответствует критерию "промышленная применимость", так как на практике очистка цианидсодержащих стоков, выполненная на конкретном золотодобывающем предприятии по заявляемому в качестве изобретения способу, подтвердила высокую степень очистки цианидсодержащих стоков и возврат драгоценных металлов в технологический процесс золотодобывающего предприятия, Возврат цианидных солей в технологический процесс в виде концентрата снижает удельный расход реагентов (гипохлорита натрия и активированного угля) на очистку воды.

Claims (1)

  1. Способ очистки цианидсодержащих стоков золотодобывающих предприятий, в котором проводят постадийную очистку от примесей, включающую фильтрацию, очистку обратным осмосом и химическую очистку от примесей, отличающийся тем, что первоначально осуществляют удаление механических примесей из исходной воды намывной фильтрацией с использованием фильтровального порошка, полученный осветленный фильтрат подвергают двухступенчатой очистке обратным осмосом, перед первой ступенью очистки обратным осмосом в осветленный фильтрат добавляют антискалант, в первой ступени очистки обратным осмосом жидкость делят на два потока, один из которых в виде концентрата, содержащего комплексные соли драгоценных металлов, направляют на вход ступени концентрирования, после которой часть потока, содержащего увеличенную концентрацию комплексных солей драгоценных металлов, возвращают в технологический процесс золотодобывающего предприятия, а другой частью в виде пермеата разбавляют осветленный фильтрат, другой поток в виде пермеата первой ступени очистки обратным осмосом направляют под давлением на вторую ступень очистки обратным осмосом, в результате очистки на второй ступени обратного осмоса получают два потока, один из которых в виде концентрата, направляют на смешение с осветленным фильтратом, другой в виде пермеата направляют на химическую очистку, в которой первоначально подают в него раствор едкого натра до достижения pH равного 11, после чего в него подают раствор гипохлорита натрия, количество которого определяют исходя из концентрации цианида в пермеате и содержания активного хлора в гипохлорите натрия, после ввода всей дозы гипохлорита воду перемешивают 20-40 минут и после отрицательного анализа на цианид-ионы производят нейтрализацию избыточной щелочи концентрированной серной кислотой до pH равного 7-8, нейтрализованный раствор воды под давлением прокачивают через активированный уголь, выходящий раствор контролируют на наличие активного хлора и при его обнаружении направляют воду на слой свежего активированного угля, затем осуществляют накопление очищенной воды или ее сброс.
RU2022104996A 2022-02-25 Способ очистки цианидсодержащих стоков золотодобывающих предприятий RU2778131C1 (ru)

Publications (1)

Publication Number Publication Date
RU2778131C1 true RU2778131C1 (ru) 2022-08-15

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2404140C2 (ru) * 2008-12-29 2010-11-20 Закрытое акционерное общество "Золотодобывающая компания "Полюс" Способ обработки оборотной воды из хвостохранилищ золотодобывающих фабрик
CN204569612U (zh) * 2015-04-17 2015-08-19 长春黄金研究院 一种黄金行业含氰废水综合处理系统
RU2615023C2 (ru) * 2015-04-30 2017-04-03 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов
RU2650961C2 (ru) * 2015-12-11 2018-04-18 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ регенерации свободного цианида из растворов с отделением образующегося осадка

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2404140C2 (ru) * 2008-12-29 2010-11-20 Закрытое акционерное общество "Золотодобывающая компания "Полюс" Способ обработки оборотной воды из хвостохранилищ золотодобывающих фабрик
CN204569612U (zh) * 2015-04-17 2015-08-19 长春黄金研究院 一种黄金行业含氰废水综合处理系统
RU2615023C2 (ru) * 2015-04-30 2017-04-03 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов
RU2650961C2 (ru) * 2015-12-11 2018-04-18 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ регенерации свободного цианида из растворов с отделением образующегося осадка

Similar Documents

Publication Publication Date Title
CN105800885B (zh) 高浓度难降解含盐有机废水的资源化回收利用处理系统
CN105800886B (zh) 高浓度难降解含盐有机废水的资源化回收利用处理工艺
US5573676A (en) Process and a device for the decomposition of free and complex cyanides, AOX, mineral oil, complexing agents, cod, nitrite, chromate, and separation of metals in waste waters
CN102459096A (zh) 从镀敷清洗废水中回收水和金属的方法
US6080317A (en) Process and apparatus for the purification of waste water
US6790352B1 (en) Process for treating acid mine water with moderate to high sulfate content
CN102583889A (zh) 废水处理方法和废水处理系统
CN202415321U (zh) 一种重金属废水深度处理及回用装置
CN210528699U (zh) 具有生化出水软化功能的垃圾渗滤液处理系统
RU2589139C2 (ru) Способ очистки дренажных вод полигонов твердых бытовых отходов
US4200526A (en) Process for treating waste water
TW589284B (en) Liquid treatment method and apparatus
CN105217850B (zh) 压裂返排液的无害化处理系统及方法
RU2615023C2 (ru) Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов
RU2404140C2 (ru) Способ обработки оборотной воды из хвостохранилищ золотодобывающих фабрик
RU2778131C1 (ru) Способ очистки цианидсодержащих стоков золотодобывающих предприятий
KR101679603B1 (ko) 세정분말과 침지형 분리막 모듈을 이용한 수 처리장치
IE20090511A1 (en) An effluent treatment process
RU2361823C1 (ru) Установка для очистки сточных вод полигонов твердых бытовых отходов
RU2294794C2 (ru) Способ получения осветленной воды
RU2736050C1 (ru) Установка для очистки сточных, дренажных и надшламовых вод промышленных объектов и объектов размещения отходов производства и потребления
RU2811306C1 (ru) Способ комплексной очистки карьерных и подотвальных сточных вод
JP4416458B2 (ja) シアン化合物を含有する排水の処理方法
CN211111439U (zh) 一种针对高浓度含氰废水的处理装置
JP3356928B2 (ja) 浸漬型膜濾過装置を用いた水処理設備の運転方法