RU2771024C1 - Способ и установка для изготовления диацетонитрила - Google Patents

Способ и установка для изготовления диацетонитрила Download PDF

Info

Publication number
RU2771024C1
RU2771024C1 RU2021115304A RU2021115304A RU2771024C1 RU 2771024 C1 RU2771024 C1 RU 2771024C1 RU 2021115304 A RU2021115304 A RU 2021115304A RU 2021115304 A RU2021115304 A RU 2021115304A RU 2771024 C1 RU2771024 C1 RU 2771024C1
Authority
RU
Russia
Prior art keywords
reactor
diacetonitrile
reaction
reaction mixture
butoxide
Prior art date
Application number
RU2021115304A
Other languages
English (en)
Inventor
Диана Евгеньевна Добродомова
Денис Дмитриевич Коваленко
Данил Александрович Ракитянский
Станислав Иванович Стеблянко
Ольга Геннадьевна Худасова
Марк Ильясович Нудель
Борис Владимирович Папонов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority to RU2021115304A priority Critical patent/RU2771024C1/ru
Application granted granted Critical
Publication of RU2771024C1 publication Critical patent/RU2771024C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/30Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same unsaturated acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/61Carboxylic acid nitriles containing cyano groups and nitrogen atoms being part of imino groups bound to the same carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области химической промышленности, а именно к способу получения технического диацетонитрила. Предлагаемый способ включает подачу в реактор суспензии измельченного трет-бутоксида калия в сухом ацетонитриле в соотношении 200 г трет-бутоксида калия на 1 л ацетонитрила и нагрев реакционной смеси в реакторе до 60°С с воздействием ультразвукового облучения на частоте 35 кГц для перемешивания реакционной смеси и массопереноса в гетерогенной системе трет-бутоксид калия-ацетонитрил до окончания реакции. При этом отводят образующийся в ходе реакции метан, а затем прореагировавшую реакционную смесь перекачивают из реактора в приемник, в котором после охлаждения до комнатной температуры производят ее нейтрализацию 10%-ной соляной кислотой до рН=2. Полученный в виде светло-желтого масла диацетонитрил промывают холодной водой с температурой 4-5°С до нейтральной реакции и оставляют стоять под слоем холодной воды с температурой 4-5°С в течение 10 ч, после чего отделяют фильтрованием на нутч-фильтре. Предлагаемый способ позволяет получать технический диацетонитрил чистотой 88% в промышленных условиях без использования легковоспламеняющихся жидкостей, высоких температур и агрессивных сред. Изобретение относится также к установке для получения технического диацетонитрила указанным способом. 2 н.п. ф-лы, 2 ил., 1 пр.

Description

Группа изобретений относится к области химической промышленности, а именно к области химической технологии с использованием ультразвуковой активации, и может быть использована для производства диацетонитрила на предложенном устройстве.
Диацетонитрил является незаменимым базовым реагентом в синтезе аминопиразолов, аминопиримидинов, аминопиридинов и других, широко применяемых в синтезе субстанций фармацевтических препаратов, в том числе кардиотоников. Также диацетонитрил используется для синтеза полимеров, конденсированных гетероцикличных систем, красителей, агро- и ветеринарных препаратов.
Известно, что общим методом синтеза диацетонитрила является его димеризация.
Известен способ синтеза диацетонитрила (WO2006092032A2 публ. 2006-09-08) путем димеризации двух молекул ацетонитрила при кипячении в среде суспензии расплава натрия в абсолютном бензоле с образованием натриевой соли диацетонитрила, с последующим гидролизом водой и экстракцией дихлорметаном с выходом конечного продукта 20%.
Недостатками способа являются использование токсичного и огнеопасного бензола, взрывоопасного и огнеопасного натрия и низкий выход целевого продукта.
Известен способ синтеза диацетонитрила путем димеризации двух молекул ацетонитрила при нагревании в среде суспензии расплава натрия в абсолютном толуоле или ксилоле (EP0101836 A1 публ. 07.03.1984). Ацетонитрил и расплавленный натрий взаимодействуют при температуре 96-140°C и под давлением от 1 до 10 бар, в присутствии органического растворителя, инертного по отношению к натрию, с образованием натриевой соли диацетонитрила, после чего после гидролиза водой и разделения водной фазы и фазы растворителя высоко-чистый диацетонитрил кристаллизуется в холодной воде при температуре примерно от -4 до 0°C. Содержание диацетонитрила в готовом продукте превышает 99,5%
Недостатком способа является использование огнеопасных толуола или ксилола, взрывоопасного и огнеопасного натрия и использование избыточного давления.
Известен способ синтеза диацетонитрила путем димеризации двух молекул ацетонитрила при использовании системы натрий – нафталин в сухом этиленгликоле при комнатной температуре (US2307643A публ. 1943-01-05).
Недостатком способа является использование взрывоопасного и огнеопасного натрия и сложность разделения и очистки целевого диацетонитрила от нафталина.
Этот недостаток отсутствует в способе синтеза диацетонитрила, опубликованном в открытой печати (Katsuyoshi Shibata, Katsuyoshi Urano, and Masaki Matsui. A Convenient Synthesis of 3-Cyano-2-methylpyridines under Ultrasonic Irradiation. Bull. Chem. Soc. Japan, V.61, Iss. 6, pp. 2199-2200, 1988.) и выбранном в качестве прототипа. Способ включает облучение на водяной бане в течение 15 минут при комнатной температуре с помощью ультразвукового лабораторного очистителя Branson (45 кГц, 100 Вт) смеси сухой суспензии ацетонитрила в количестве 50 см3 и 100 мг β-бутоксида калия.
Недостатком способа является то, что он осуществлен в лабораторных условиях и является частью синтеза 3-циано-2-метилпиридинов, поэтому в способе прототипе не указана возможность выделения и сохранения диацетонитрила, как целевого продукта, не описана установка для проведения синтеза.
Известно, что для осуществления химических реакций можно использовать три типа химических реакторов с ультразвуковой активацией, а именно: классический химический реактор, реактор типа stopflow и проточный химический реактор.
Классический ультразвуковой химический реактор (WO2013147636 A1, публ. 03.10.2013) относится к области одновременной кавитационной обработки жидких сред различного состава. Режим акустической кавитации формируется за счет двойного резонансного эффекта в системе непрерывных механических колебательных каналов с прямоугольным поперечным сечением конечной длины, причем акустические колебания генерируются синфазно на противоположных сторонах.
Основным недостатком этого типа реактора является сложность выгрузки конечного продукта и невозможность использования полного объема реактора, поскольку процесс нейтрализации придется проводить в нем же, а это требует введения большого объема разбавленной соляной кислоты.
Реактор типа stopflow (US6656436 B1, публ. 02.12.2003) относится к системе преобразования химических структур. Содержит резервуар реактора, имеющий нижнюю зону, где поддерживается высокая степень растворимости при первичных условиях давления и температуры.
Недостатком является размещение ультразвуковых излучателей у боковых стенок реактора, что создает мертвую зону для облучения в центре реактора и замедляет процесс массопереноса в реакционной смеси.
Проточный химический реактор (US5384508 A, публ. 24.01.1995) представляет собой модульный реакторный блок для непрерывной ультразвуковой обработки веществ и/или реагентов, отличающийся наличием трубчатого металлического корпуса, имеющего цилиндрическую внутреннюю поверхность и прямую круглую поперечную секцию, открытую на концах подачи и выпуска. Поверхность указанной трубчатой детали металлического корпуса имеет в области узловой зоны выступающую в радиальном направлении манжетку, коаксиальную упомянутой трубке. На периферии муфты радиально располагается ультразвуковой преобразователь, при этом частота преобразователя равна частоте вибрации кольца и частоте продольной вибрации упомянутого трубчатого металлического тела.
Использование проточного реактора предполагает многократную циркуляцию реакционной смеси вокруг излучателя (источника ультразвука). Подобная система чрезвычайно удобна для реакций, которые осуществляются в одной жидкой фазе, но крайне неудобны для реакций, осуществляющихся гетерофазно.
Задачей, на решение которой направлены предлагаемые технические решения является создание устройства и способа, позволяющих осуществлять синтез диацетонитрила в промышленных условиях без использования легковоспламеняющихся жидкостей, высоких температур и агрессивных сред.
Технический результат заключается в возможности воспроизведения заявленного синтеза диацетонитрила чистотой 88% и устройства для его осуществления в промышленном масштабе без использования легковоспламеняющихся жидкостей, высоких температур и агрессивных сред.
Предлагаемое устройство для синтеза диацетонитрила состоит из цилиндрического реактора, выполненного из нержавеющей химически стойкой стали, оснащенного крышкой с патрубками для введения ультразвукового излучателя, реактивов, ректификации паров, отвода газов и датчика контроля температуры. Внешняя поверхность реактора оборудована рубашкой для подогрева реакционной смеси до нужной температуры эксплуатации за счет циркуляции теплоносителя. Кроме того, реактор содержит патрубок слива продуктов реакции в приемник, также оснащенный рубашкой для охлаждения продукта реакции за счет циркуляции хладагента, которая, как и рубашка реактора, соединена с теплообменником, выполненным на основе элемента Пельтье. Технические операции в реакторе, включая подачу исходных реагентов, перекачку продуктов реакции из реактора в приемник, циркуляцию теплоносителя и хладагента при помощи насосов, регулируются блоком управления.
Первое преимущество предлагаемого устройства и способа заключается в возможности осуществления синтеза диацетонитрила димеризацией двух молекул ацетонитрила во взрыво- и пожаробезопасных условиях в промышленных условиях. Второе преимущество состоит в значительном упрощении проведения синтеза диацетонитрила за счет использования предложенного реактора с ультразвуковой активацией, оснащенного всем необходимым для успешного протекания реакции. Третьим преимуществом является использование элемента Пельтье для контроля температуры реакционной смеси во время проведения реакции, и охлаждении продукта реакции в приемнике, что позволяет снизить энергозатраты и минимизировать загрязнение окружающей среды за счет многократного использования воды в качестве тепло- и хладо-носителя.
Изобретение поясняется следующими изображениями:
Фиг. 1. Функциональная схема устройства для синтеза диацетонитрила.
Фиг. 2 . ЯМР 1Н спектр сырого продукта диацетонитрила, полученный на ЯМР спектрометре AGILENT MR400+ в растворе DMSO D6.
Устройство состоит из реактора 1, снабженного внешней рубашкой 2, сливного патрубка 3 для слива готового диацетонитрила в приемник 4, также снабженный внешней рубашкой 5. Ультразвуковой излучатель 6 размещен в центре реактора 1. Крышка реактора 1 снабжена фиксаторами 7, термодатчиком 8, пробоотборником 9, патрубком 10 для ввода реагентов. Внешняя рубашка 2 реактора 1 и внешняя рубашка 5 приемника 4 соединены с элементом Пельтье 11, содержащим термопасты 12, теплообменник нагрева 13, теплообменник охлаждения 14. Блок управления 15 связан с источником ультразвука 6, насосом 16 отвода метана, подачи реагентов и воздуха для перекачки готового продукта, насосом 17 циркуляции теплоносителя и насосом 18 циркуляции хладагента.
Способ на предложенном устройстве реализуют путем подачи через патрубок 10 для ввода в реактор 1 суспензии измельченного трет-бутоксида калия в сухом ацетонитриле в соотношении 200 г трет-бутоксида калия на 1 литр ацетонитрила и дальнейшего нагрева реакционной смеси до 60°С путем подачи теплоносителя в рубашку 2 реактора 1. Перемешивание реакционной смеси и массоперенос в гетерогенной системе трет-бутоксид калия – ацетонитрил осуществляют за счет воздействия ультразвукового облучения на частоте 35 кГц ультразвуковым излучателем 6 мощностью 300 Вт. Образующийся в ходе реакции метан отводят через устройство 10. Окончание реакции определяют посредством взятия пробы при помощи пробоотборника 9 и контроля состава реакционной смеси методом тонкослойной хроматографии (ТСХ) или ядерно-магнитного резонанса (ЯМР). После окончания реакции прореагировавшую реакционную смесь посредством подачи воздуха через патрубок 10 сливают из реактора 1 в приемник 4, где, после охлаждения до комнатной температуры с помощью внешней рубашки 5, производят её нейтрализацию 10% соляной кислотой до рН=2. При этом целевой диацетонитрил отделяется в виде светло-желтого масла, которое промывают холодной водой до нейтральной реакции и оставляют стоять на 10 часов под слоем холодной воды. Маслообразный сырой диацетонитрил достаточно быстро застывает, после чего его отделяют фильтрованием на нутч-фильтре.
Схема синтеза диацетонитрила из ацетонитрила по предлагаемому способу
Figure 00000001
Пример конкретного выполнения заявленного способа синтеза диацетонитрила.
В реактор 1 объемом 2 литра через патрубок 10 при помощи насоса 16 подают суспензию из 1,5 л ацетонитрила и 300 г измельченного трет-бутилата калия. Реактор 1 герметизируют с помощью фиксаторов 7, после чего температуру в реакторе поднимают до 60°С с помощью теплоносителя в рубашке 2, который подается насосом 17 от элемента Пельтье 11 и запускают непрерывную обработку ультразвуком на частоте 35 кГц реакционной смеси с использованием ультразвукового излучателя 6. Образующийся в ходе реакции метан отводят через патрубок 10. Через 2,5 ч установлено окончание реакции по результатам контроля состава реакционной смеси методом ЯМР в пробе, отобранной через пробоотборник 9 (Фиг.2). После этого посредством подачи воздуха через патрубок 10 реакционную смесь сливают в приемник 4, где охлаждают до комнатной температуры с помощью хладагента, который подают в рубашку 5 насосом 18 от элемента Пельтье 11. Циркуляция теплоносителя во внешней рубашке 2 реактора 1 и хладагента во внешней рубашке 5 приемника 4, работа ультразвукового излучателя 6, подача исходных ингридиентов и отвод побочного продукта реакции - метана, а также слив готового продукта диацетонитрила в приемник 4 регулируется блоком управления 15. В приемнике 4 после охлаждения реакционной смеси проводят её нейтрализацию 10% соляной кислотой до рН=2. Полученный диацетонитрил отделяется в виде светло-желтого масла, после чего его промывают холодной водой температурой 4-5°С до нейтральной реакции и оставляют стоять в приемнике под слоем холодной воды температурой 4-5°С в течение 10 часов. Выпавший осадок сырого диацетонитрила отфильтровывают на нутч-фильтре и получают 640 г целевого продукта чистотой 88%. Выход конечного продукта 64%.
Полученный сырой продукт существует в виде смеси ен-амино- и имино-таутомеров и содержит в качестве минорного продукта тример ацетонитрила - 4-амино-2,6-диметилпиримидин в соотношении Ен-амин : Имин : Tример = 35:53:12 , что подтверждает ЯМР 1Н спектр на фиг.2. и схема, характеризующая содержание изомеров диацетонитрила и количества примесей в сыром продукте:
Figure 00000002
Как видно из приведенных в примере и на фигуре 2 сведений, использование предложенного устройства и способа, позволило достичь результата, заключающегося в получении технического диацетонитрила чистотой 88% в промышленных условиях без использования легковоспламеняющихся жидкостей, высоких температур и агрессивных сред.

Claims (2)

1. Способ получения технического диацетонитрила, включающий подачу в реактор суспензии измельченного трет-бутоксида калия в сухом ацетонитриле в соотношении 200 г трет-бутоксида калия на 1 л ацетонитрила, нагрев реакционной смеси в реакторе до 60°С с воздействием ультразвукового облучения на частоте 35 кГц для перемешивания реакционной смеси и массопереноса в гетерогенной системе трет-бутоксид калия-ацетонитрил до окончания реакции, при этом отводят образующийся в ходе реакции метан, затем прореагировавшую реакционную смесь перекачивают из реактора в приемник, в котором после охлаждения до комнатной температуры производят ее нейтрализацию 10%-ной соляной кислотой до рН=2, полученный в виде светло-желтого масла диацетонитрил промывают холодной водой с температурой 4-5°С до нейтральной реакции и оставляют стоять под слоем холодной воды с температурой 4-5°С в течение 10 ч, после чего отделяют фильтрованием на нутч-фильтре.
2. Установка для получения технического диацетонитрила способом по п. 1, содержащая реактор, снабженный внешней рубашкой и сливным патрубком для слива прореагировавшей смеси в приемник, который также снабжен внешней рубашкой, крышка реактора снабжена фиксаторами, термодатчиком, пробоотборником и патрубком для ввода реагентов, воздуха для слива прореагировавшей смеси и отвода образующегося метана, внешняя рубашка реактора и внешняя рубашка приемника соединены с элементом Пельтье, блок управления связан с источником ультразвука, насосом отвода метана, подачи реагентов и воздуха для перекачки готового продукта, насосом циркуляции теплоносителя и насосом циркуляции хладагента.
RU2021115304A 2021-05-28 2021-05-28 Способ и установка для изготовления диацетонитрила RU2771024C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021115304A RU2771024C1 (ru) 2021-05-28 2021-05-28 Способ и установка для изготовления диацетонитрила

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021115304A RU2771024C1 (ru) 2021-05-28 2021-05-28 Способ и установка для изготовления диацетонитрила

Publications (1)

Publication Number Publication Date
RU2771024C1 true RU2771024C1 (ru) 2022-04-25

Family

ID=81306221

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021115304A RU2771024C1 (ru) 2021-05-28 2021-05-28 Способ и установка для изготовления диацетонитрила

Country Status (1)

Country Link
RU (1) RU2771024C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2307643A (en) * 1943-01-05 Process for the production of a
EP0101836A1 (de) * 1982-08-20 1984-03-07 Chemie Linz Aktiengesellschaft Verfahren zur Herstellung von reinem Diacetonitril
WO2006092032A2 (en) * 2005-03-03 2006-09-08 Universidade Federal Do Rio De Janeiro - Ufrj PHARMACEUTICAL COMPOSITIONS CONTAINING 1-METHYL-3,6,7,8-TETRAHYDROPIRAZOLO[3,4-b]PIRROLO[4,3-d]PYRIDINE-6,8-DIONE DERIVATIVES, USE, AND PROCESS FOR PREPARING THEM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2307643A (en) * 1943-01-05 Process for the production of a
EP0101836A1 (de) * 1982-08-20 1984-03-07 Chemie Linz Aktiengesellschaft Verfahren zur Herstellung von reinem Diacetonitril
WO2006092032A2 (en) * 2005-03-03 2006-09-08 Universidade Federal Do Rio De Janeiro - Ufrj PHARMACEUTICAL COMPOSITIONS CONTAINING 1-METHYL-3,6,7,8-TETRAHYDROPIRAZOLO[3,4-b]PIRROLO[4,3-d]PYRIDINE-6,8-DIONE DERIVATIVES, USE, AND PROCESS FOR PREPARING THEM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUYOSHI SHIBATA ET AL., A Convenient Synthesis of 3-Cyano-2-methylpyridines under Ultrasonic Irradiation, BULL. CHEM. SOC. JAPAN, 1988, Vol. 61, Iss. 6, pp. 2199-2200. *

Similar Documents

Publication Publication Date Title
Snead et al. End-to-end continuous flow synthesis and purification of diphenhydramine hydrochloride featuring atom economy, in-line separation, and flow of molten ammonium salts
EP1836332B1 (en) Hydrodynamic cavitation crystallization device and process
CN107879909A (zh) 一种使用微通道反应器合成酰基萘的方法
CN106800513B (zh) 三硝基间苯三酚的合成方法
EP2744489A1 (en) Process for manufacturing hmb and salts thereof
Wood et al. Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment
Sprecher et al. Acyl azide synthesis and curtius rearrangements in microstructured flow chemistry systems
RU2771024C1 (ru) Способ и установка для изготовления диацетонитрила
Arvela et al. Rapid cyanation of aryl iodides in water using microwave promotion
CN107253913B (zh) 一种微通道反应器制备氯烯炔的方法
CN110511157A (zh) 一种利用微通道反应技术制备三氟乙酰胺的方法
Rajanna et al. Vilsmeier Haack adducts as effective reagents for regioselective nitration of aromatic compounds under conventional and non-conventional conditions
CN213434486U (zh) 连续式活塞流漩涡流反应装置、硝化反应装置、氟化铵生产装置、硫酸钠与氯化钠分离系统
CN111760544B (zh) 连续式活塞流漩涡流反应装置
CN106336362A (zh) 一种碘佛醇的制备方法
JP2003523960A (ja) カルボニル化合物と有機金属試薬の反応
CN113024411B (zh) 三甲苯草酮的制备方法
KR20220101115A (ko) 하이드록삼산의 합성을 위한 연속 유동 프로세스
JP3873123B2 (ja) アクリル酸及び/又はピルビン酸の合成方法
EP1596980A1 (en) Method and apparatus for control of chemical reactions
RU197761U1 (ru) Лабораторный стенд для проведения процессов окисления фурановых производных
CN205517753U (zh) 一种工业化制备功能化石墨烯的反应装置
US11834388B2 (en) Continuous-flow preparation method of diclofenac sodium
CN217745796U (zh) 一种l-卡内腈的重结晶装置
CN213708197U (zh) 一种对氯苯肼盐酸盐反应系统