RU2770165C1 - Способ изготовления упругих элементов из монокристаллического кремния - Google Patents

Способ изготовления упругих элементов из монокристаллического кремния Download PDF

Info

Publication number
RU2770165C1
RU2770165C1 RU2021125338A RU2021125338A RU2770165C1 RU 2770165 C1 RU2770165 C1 RU 2770165C1 RU 2021125338 A RU2021125338 A RU 2021125338A RU 2021125338 A RU2021125338 A RU 2021125338A RU 2770165 C1 RU2770165 C1 RU 2770165C1
Authority
RU
Russia
Prior art keywords
elastic elements
etching
crystal silicon
anisotropic etching
plane
Prior art date
Application number
RU2021125338A
Other languages
English (en)
Inventor
Валерий Евгеньевич Пауткин
Фархад Анвярович Абдуллин
Александр Евгеньевич Мишанин
Вера Владимировна Алексеева
Original Assignee
Акционерное общество "Научно-исследовательский институт физических измерений"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт физических измерений" filed Critical Акционерное общество "Научно-исследовательский институт физических измерений"
Priority to RU2021125338A priority Critical patent/RU2770165C1/ru
Application granted granted Critical
Publication of RU2770165C1 publication Critical patent/RU2770165C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)
  • Weting (AREA)

Abstract

Изобретение относится к области приборостроения и может применяться для изготовления микромеханических датчиков - датчиков давления, ускорения, угловой скорости. Способ изготовления упругих элементов из монокристаллического кремния включает окисление плоской круглой пластины с определенной величиной клиновидности профиля с ориентацией базовой поверхности в плоскости (100), нанесение на нее защитного слоя фоторезиста, фотолитографию, вскрытие окон в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния, анизотропное травление пластины на глубину для получения требуемой толщины упругих элементов, при этом в процессе анизотропного травления плоской круглой пластины в травильном растворе проводят ее поворот вокруг своей оси в плоскости (100) на 360° дискретно с количеством шагов не менее четырех. Изобретение направлено на улучшение метрологических характеристик микромеханических датчиков за счет повышения точности воспроизведения упругих элементов, обусловленной уменьшением клиновидности и разнотолщинности кремниевых пластин в процессе анизотропного травления. 1 ил.

Description

Изобретение относится к области приборостроения и может применяться для изготовления микромеханических датчиков - датчиков давления, ускорения, угловой скорости.
При изготовлении упругих элементов микромеханических датчиков из монокристаллического кремния возникает их разброс по толщине, обусловленный клиновидностью и разнотолщинностью исходной кремниевой пластины, связанных с технологическими процессами ее изготовления.
Изготовление упругих элементов микромеханических датчиков из монокристаллического кремния проводят с использованием технологии анизотропного травления в растворе КОН. Данный процесс характеризуется высокой скоростью травления в направлении <100>.
Другой особенностью процесса анизотропного травления кремния в растворе КОН является наличие восходящих снизу-вверх потоков водорода, описанных следующими химическими реакциями:
Figure 00000001
Figure 00000002
Это приводит к увеличению скорости травления пластины по высоте, причем верхняя часть пластины травится быстрее нижней части, приводя к еще большей величине клиновидности и разнотолщинности формируемых упругих элементов.
При погружении пластины со сформированным топологическим рисунком упругих элементов в раствор КОН из-за наличия разнотолщинности и клиновидности профиля пластины формируются упругие элементы с разбросом по толщине, что приводит к значительному снижению метрологических свойств микромеханических датчиков.
Основной задачей при изготовлении упругих элементов является уменьшение влияния клиновидности и разнотолщинности кремниевой пластины, которые ухудшают метрологические характеристики микромеханических датчиков.
Известен способ изготовления балочных упругих элементов [Патент СССР, описание изобретения к АС № SU 1783596, МПК H01L 21/302, 1991] групповым методом из пластин кремния кристаллографической ориентации (100), включающий формирование с двух сторон пластины защитного окисла путем термического окисления и анизотропное травление в 30%-ном щелочном растворе КОН. При этом термическое окисление проводят до получения толщины защитного окисла не менее 2,3⋅10-3 толщины пластины, ориентируют пластину относительно направления кристаллографической оси [но] с двух сторон пластины в окисле вскрывают окна напротив друг друга шириной не менее 0,75 толщины h пластины, а анизотропное травление проводят при 96-98°С до получения заданного сечения упругого элемента, после чего дополнительно окисляют пластины с упругими элементами.
Известен способ изготовления упругого элемента микромеханического устройства [Патент Российской Федерации №2300823, МПК H01L 21/308, 2007]. В указанном способе окисляют плоскую пластину из монокристаллического кремния с ориентацией поверхности в плоскости (100), наносят на нее с двух сторон слой фоторезиста, предварительно вскрывают окна в слое фоторезиста при помощи двусторонней фотолитографии, травят окисел по вскрытым окнам шириной L1 в области формирования упругого элемента и анизотропно травят пластину до промежуточной глубины h. После травления окисла в месте формирования упругого элемента методом анизотропного травления формируют канавку шириной L1 и длиной М до самоторможения, вторично вскрывают окна в окисле для конечного формирования упругого элемента и производят анизотропное травление до получения требуемой толщины упругого элемента Н, толщина которого задается по формуле H=(T1-Tcam)V,
где T1 - время травления выступающих углов канавки, Tcam - время формирования канавки, V - скорость анизотропного травления,
Figure 00000003
Недостатком указанных способов является низкие метрологические характеристики изготавливаемых микромеханических датчиков, обусловленные разбросом по толщине упругих элементов из-за разнотолщинности и клиновидности исходной пластины из монокристаллического кремния.
Наиболее близким к изобретению по технической сущности и совокупности признаков является способ изготовления упругих элементов из монокристаллического кремния [Патент Российской Федерации №2211504, МПК H01L 21/306, опубл. 27.08.2003. Прототип]. Способ включает изготовление упругих элементов из монокристаллического кремния путем окисления плоской круглой пластины с ориентацией базовой поверхности в плоскости (100), нанесения на нее защитного слоя фоторезиста, фотолитографии, вскрытия окон в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния, анизотропного травления на глубину, меньшую, чем необходимо для получения требуемой толщины упругих элементов, изотропного дотравливания до получения требуемой толщины упругих элементов с одновременным формированием галтельных переходов. Согласно способа, пластины с определенной величиной клиновидности профиля для анизотропного травления на глубину, меньшую, чем необходимо для получения требуемой толщины упругого элемента, подвешивают таким образом, что минимальная толщина находится в верхней части травильного раствора, с последующим одновременным извлечением их со скоростью
Figure 00000004
где V - скорость извлечения пластин из раствора травителя; d - диаметр исходной кремниевой пластины; Ттр - расчетное время травления при максимальной толщине пластины; Т0тр - расчетное время травления при минимальной толщине пластины.
Недостатком указанного способа являются низкие метрологические характеристики микромеханических датчиков, обусловленные низкой точностью воспроизведения упругих элементов вследствие клиновидности и разнотолщинности исходной пластины в процессе ее травления до получения требуемой толщины упругих элементов.
Задачей, на которую направлено изобретение, является улучшение метрологических характеристик микромеханических датчиков за счет повышения точности воспроизведения упругих элементов путем уменьшения клиновидности и разнотолщинности кремниевых пластин в процессе анизотропного травления.
Поставленная цель достигается тем, что в способе изготовления упругих элементов из монокристаллического кремния, включающем окисление плоской круглой пластины с определенной величиной клиновидности профиля с ориентацией базовой поверхности в плоскости (100), нанесение на нее защитного слоя фоторезиста, фотолитографию, вскрытие окон в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния, анизотропное травление пластины на глубину для получения требуемой толщины упругих элементов, согласно изобретения в процессе анизотропного травления плоской круглой пластины в травильном растворе проводят ее поворот вокруг своей оси в плоскости (100) на 360° дискретно с количеством шагов не менее четырех.
Поворот пластины со сформированным топологическим рисунком упругих элементов в плоскости (100) вокруг своей оси на 360° дискретно в травильном растворе позволяет компенсировать величину ее клиновидности и разнотолщинности в процессе анизотропного травления за счет равного по времени нахождения обрабатываемых участков пластины со сформированным топологическим рисунком в восходящих потоках водорода согласно химическим реакциям (1), (2), приводящим к локальному увеличению скорости травления кремния, повышая таким образом равномерность травления участков кремния в области упругих элементов, что приводит к повышению точности воспроизведения упругих элементов и, как следствие улучшению метрологических характеристик микромеханических датчиков.
Таким образом, предлагаемое техническое решение улучшает метрологические характеристики микромеханических датчиков за счет повышения точности воспроизведения упругих элементов, обусловленной уменьшением клиновидности и разнотолщинности кремниевых пластин в процессе анизотропного травления.
На фиг.1 приведена последовательность операций способа, где
1 - кремниевая пластина, 2 - базовый срез пластины.
Способ реализуется следующим образом. Известными методами на поверхности плоской круглой кремниевой пластины 1 толщиной (380-420) мкм, имеющей ориентацию базовой поверхности в плоскости (100), формируют топологический рисунок упругих элементов путем нанесения на пластину 1 защитного слоя фоторезиста, фотолитографии, вскрытия окон в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния. Плоскую круглую кремниевую пластину 1 погружают в щелочной раствор КОН концентрации (20-30)%, имеющий температуру (94-98)°С базовым срезом 2 вниз (фиг.1а). Через 15-30 минут (в зависимости от толщины упругого элемента) в травильном растворе проводят поворот кремниевой пластины 1 вокруг своей оси в плоскости (100) на 90° (фиг.1б). Повторяют поворот кремниевой пластины 1 (фиг.1в, г) до тех пор пока кремниевая пластина 1 вновь не окажется базовым срезом 2 вниз (фиг.1д). Таким образом, проводят анизотропное травление пластины на глубину для получения требуемой толщины упругих элементов из монокристаллического кремния.
Применение предложенного способа улучшает метрологические характеристики микромеханических датчиков за счет повышения точности воспроизведения упругих элементов путем уменьшения клиновидности и разнотолщинности кремниевых пластин в процессе анизотропного травления.

Claims (1)

  1. Способ изготовления упругих элементов из монокристаллического кремния путем окисления плоской круглой пластины с определенной величиной клиновидности профиля с ориентацией базовой поверхности в плоскости (100), нанесения на нее защитного слоя фоторезиста, фотолитографии, вскрытия окон в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния, анизотропного травления пластины на глубину для получения требуемой толщины упругих элементов, отличающийся тем, что в процессе анизотропного травления плоской круглой пластины в травильном растворе проводят ее поворот вокруг своей оси в плоскости (100) на 360° дискретно с количеством шагов не менее четырех.
RU2021125338A 2021-08-26 2021-08-26 Способ изготовления упругих элементов из монокристаллического кремния RU2770165C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021125338A RU2770165C1 (ru) 2021-08-26 2021-08-26 Способ изготовления упругих элементов из монокристаллического кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021125338A RU2770165C1 (ru) 2021-08-26 2021-08-26 Способ изготовления упругих элементов из монокристаллического кремния

Publications (1)

Publication Number Publication Date
RU2770165C1 true RU2770165C1 (ru) 2022-04-14

Family

ID=81212700

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021125338A RU2770165C1 (ru) 2021-08-26 2021-08-26 Способ изготовления упругих элементов из монокристаллического кремния

Country Status (1)

Country Link
RU (1) RU2770165C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822991A (ja) * 1994-07-07 1996-01-23 Toshiba Corp 半導体装置の製造方法
RU2211504C1 (ru) * 2002-07-25 2003-08-27 Государственное образовательное учреждение высшего и послевузовского образования Нижегородский государственный технический университет Способ изготовления упругих элементов из монокристаллического кремния
RU2300823C2 (ru) * 2005-08-30 2007-06-10 Открытое акционерное общество Арзамасское научно-производственное предприятие "ТЕМП-АВИА" (ОАО АНПП "ТЕМП-АВИА") Способ изготовления упругого элемента микромеханического устройства
RU2601219C1 (ru) * 2015-08-24 2016-10-27 Акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления микромеханических упругих элементов
RU2648287C1 (ru) * 2016-12-27 2018-03-23 Акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления упругих элементов микромеханических датчиков

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822991A (ja) * 1994-07-07 1996-01-23 Toshiba Corp 半導体装置の製造方法
RU2211504C1 (ru) * 2002-07-25 2003-08-27 Государственное образовательное учреждение высшего и послевузовского образования Нижегородский государственный технический университет Способ изготовления упругих элементов из монокристаллического кремния
RU2300823C2 (ru) * 2005-08-30 2007-06-10 Открытое акционерное общество Арзамасское научно-производственное предприятие "ТЕМП-АВИА" (ОАО АНПП "ТЕМП-АВИА") Способ изготовления упругого элемента микромеханического устройства
RU2601219C1 (ru) * 2015-08-24 2016-10-27 Акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления микромеханических упругих элементов
RU2648287C1 (ru) * 2016-12-27 2018-03-23 Акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления упругих элементов микромеханических датчиков

Similar Documents

Publication Publication Date Title
RU2648287C1 (ru) Способ изготовления упругих элементов микромеханических датчиков
RU2770165C1 (ru) Способ изготовления упругих элементов из монокристаллического кремния
WO2013149547A1 (zh) Mems封帽硅片的多硅槽形成方法及其刻蚀掩膜结构
RU2601219C1 (ru) Способ изготовления микромеханических упругих элементов
RU2300823C2 (ru) Способ изготовления упругого элемента микромеханического устройства
RU2572288C1 (ru) Способ изготовления глубокопрофилированных кремниевых структур
RU2580910C1 (ru) Способ изготовления упругого элемента микромеханического устройства
RU2628732C1 (ru) Способ формирования монокристаллического элемента микромеханического устройства
TWI358750B (en) Mask structure for manufacture of trench type semi
RU2211504C1 (ru) Способ изготовления упругих элементов из монокристаллического кремния
Sun et al. Fabrication of uniform porosity, all-porous-silicon microstructures and stress/stress gradient control
RU2691162C1 (ru) Способ формирования глубокопрофилированных кремниевых структур
RU2345337C2 (ru) СПОСОБ КОНТРОЛЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В КРЕМНИЕВОЙ СТРУКТУРЕ ПЛЕНКА SiO2 - ПОДЛОЖКА Si
US20130221495A1 (en) Oxide microchannel with controllable diameter
RU2692112C1 (ru) Способ изготовления сквозных микроотверстий в кремниевой подложке
RU2730104C1 (ru) Способ изготовления профилированных кремниевых структур
RU2662499C1 (ru) Способ изготовления микромеханических элементов из пластин монокристаллического кремния
US8501516B2 (en) Method for producing micromechanical patterns having a relief-like sidewall outline shape or an adjustable angle of inclination
RU2059321C1 (ru) Способ изготовления упругих элементов из монокристаллического кремния
RU2625248C1 (ru) Способ изготовления кристаллов микроэлектромеханических систем
RU2804791C1 (ru) Способ изготовления глубокопрофильных многоуровневых микроструктур в кварцевом стекле
EP4197965A1 (en) Method for structural layer fabrication in micromechanical devices
TWI229377B (en) Method for forming cavities having different aspect ratios
CN111620297B (zh) 一种深腔刻蚀方法
KR100414199B1 (ko) 습식 식각을 이용한 실리콘 웨이퍼의 구조물 제조방법