RU2769741C1 - Система и способ связи для беспилотного летательного аппарата - Google Patents
Система и способ связи для беспилотного летательного аппарата Download PDFInfo
- Publication number
- RU2769741C1 RU2769741C1 RU2021118361A RU2021118361A RU2769741C1 RU 2769741 C1 RU2769741 C1 RU 2769741C1 RU 2021118361 A RU2021118361 A RU 2021118361A RU 2021118361 A RU2021118361 A RU 2021118361A RU 2769741 C1 RU2769741 C1 RU 2769741C1
- Authority
- RU
- Russia
- Prior art keywords
- unmanned aerial
- controller
- aerial vehicle
- cellular
- network
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000001413 cellular effect Effects 0.000 claims abstract description 181
- 238000012545 processing Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000006870 function Effects 0.000 description 36
- 230000005540 biological transmission Effects 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 6
- 230000003915 cell function Effects 0.000 description 5
- 238000013507 mapping Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0022—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0027—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
- G05D1/104—Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18504—Aircraft used as relay or high altitude atmospheric platform
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18506—Communications with or from aircraft, i.e. aeronautical mobile service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
- H04L67/125—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/26—Cell enhancers or enhancement, e.g. for tunnels, building shadow
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/18—Network protocols supporting networked applications, e.g. including control of end-device applications over a network
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Relay Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Selective Calling Equipment (AREA)
Abstract
Группа изобретений относится к двум вариантам системы связи и четырем вариантам способа связи с беспилотным летательным аппаратом. Система связи по первому варианту содержит по меньшей мере один контроллер, беспилотный летательный аппарат и сетевое устройство, которые выполнены с возможностью обмениваться данными друг с другом через сотовую сеть. Система связи по второму варианту отличается от первого тем, что ее элементы образуют звездообразную сеть. Способы связи раскрывают различные варианты обмена данными между элементами системы. Обеспечивается повышение эффективности и качества связи при управлении беспилотными летательными аппаратами. 6 н. и 9 з.п. ф-лы, 12 ил.
Description
Область техники, к которой относится изобретение
Варианты осуществления настоящего раскрытия относятся к области технологий связи и, в частности, к системе связи и способу связи для беспилотного летательного аппарата.
Уровень техники
С ростом популярности беспилотных летательных аппаратов все больше и больше людей начинают осваивать и использовать беспилотные летательные аппараты. Существующие беспилотные летательные аппараты обычно точно выполняют некоторые полетные задания, включая операции по опрыскиванию, аэрофотосъемку, линейное патрулирование, наблюдение, выполнение измерений, транспортировку грузов и т.д. под ручным или автоматическим управлением.
В процессе эксплуатации беспилотного летательного аппарата беспилотному летательному аппарату часто требуется обмениваться данными с контроллером. Например, контроллер отправляет управляющий сигнал для управления беспилотным летательным аппаратом, или беспилотный летательный аппарат передает некоторые данные по обратной связи в контроллер. Контроллер в родственных технологиях обычно представляет собой портативный пульт дистанционного управления. Когда расстояние между контроллером и беспилотным летательным аппаратом является относительно большим для того, чтобы обеспечивать нормальную связь между контроллером и беспилотным летательным аппаратом, мощность передачи пульта дистанционного управления становится относительно высокой, что приводит к проблеме снижения его срока эксплуатации. Более того, в родственных технологиях для достижения лучшей связи между пультом дистанционного управления и беспилотным летательным аппаратом необходимо строго контролировать направление антенны пульта дистанционного управления. Таким образом, требования к выравниванию антенны являются относительно строгими, а также возрастают требования к эксплуатации. Кроме того, в родственных технологиях при наличии препятствия между контроллером и беспилотным летательным аппаратом качество связи может значительно ухудшиться, что влияет на эффективность действия связи.
Сущность изобретения
В связи с этим в системе и способе связи для беспилотного летательного аппарата, которые предусмотрены вариантами осуществления настоящего раскрытия, мощность передачи контроллера снижается, время работы контроллера увеличивается, и требования к выравниванию антенны снижаются. Таким образом, упрощается работа, сеть имеет возможность гибкой организации, и могут быть легко реализованы функции одного контроллера для нескольких беспилотных летательных аппаратов и нескольких контроллеров для одного пилотируемого летательного аппарата. Могут быть решены проблема плохого качества связи, вызванная препятствием между беспилотным летательным аппаратом и контроллером, и проблема неудобного увеличения расстояния связи.
Варианты осуществления настоящего раскрытия предусматривают систему связи для беспилотного летательного аппарата. Система связи включает в себя по меньшей мере один контроллер по меньшей мере один беспилотный летательный аппарат и сетевое устройство.
Контроллер, беспилотный летательный аппарат и сотовое устройство могут служить в качестве сотовых узлов, соответственно, и сотовые узлы обмениваются данными друг с другом через сотовую сеть.
Варианты осуществления настоящего раскрытия предусматривают систему связи для беспилотного летательного аппарата. Система связи включает в себя по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и другое устройство.
Контроллер обменивается данными с другим устройством через сотовую сеть, и другое устройство и беспилотный летательный аппарат образуют звездообразную сеть.
Способ связи беспилотного летательного аппарата, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя:
отправку, контроллером, управляющего сигнала для управления беспилотным летательным аппаратом через сотовую сеть; или отправку, контроллером, данных обратной связи беспилотного летательного аппарата через сотовую сеть и обработку данных обратной связи.
Способ связи беспилотного летательного аппарата, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя:
прием, сотовым устройством, через сотовую сеть, управляющего сигнала, отправленного контроллером, и пересылку управляющего сигнала в беспилотный летательный аппарат; или
отправку, сотовым устройством, через сотовую сеть, данных обратной связи, отправленных беспилотным летательным аппаратом, и пересылку данных обратной связи в контроллер.
Способ связи беспилотного летательного аппарата, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя:
прием, беспилотным летательным аппаратом, через сотовую сеть, управляющего сигнала, пересылаемого сотовым устройством, и выполнение соответствующей операции в соответствии с управляющим сигналом; или
отправку, беспилотным летательным аппаратом, данных обратной связи через сотовую сеть.
Способ связи беспилотного летательного аппарата, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя:
отправку, контроллером, управляющего сигнала для управления беспилотным летательным аппаратом или прием данных обратной связи беспилотного летательного аппарата и обработку данных обратной связи;
пересылку, сетевым устройством, управляющего сигнала или данных обратной связи; и
прием, беспилотным летательным аппаратом, управляющего сигнала, пересылаемого сетевым устройством, и выполнение соответствующей операции в соответствии с управляющим сигналом или отправку данных обратной связи.
Контроллер, беспилотный летательный аппарат и сотовое устройство служат в качестве сотовых узлов, соответственно, и сотовые узлы связываются друг с другом через сотовую сеть.
Краткое описание чертежей
Фиг. 1 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 2 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 3 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 4 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 5 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 6 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 7 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 8 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 9 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 10 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 11 - схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Фиг. 12 - блок-схема последовательности операций способа связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия.
Подробное описание изобретения
Настоящее раскрытие будет дополнительно подробно описано ниже со ссылкой на сопроводительные чертежи и варианты осуществления. Следует понимать, что конкретные варианты осуществления, описанные в данном документе, используются только для объяснения настоящего раскрытия, а не для ограничения настоящего раскрытия. Кроме того, следует отметить, что для упрощения описания сопроводительные чертежи показывают только часть структуры, относящейся к настоящему раскрытию, и не всю структуру.
На фиг. 1 показана схематичная структурная схема системы связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия. Система связи для беспилотного летательного аппарата может быть применена в общих сценариях коммуникационного полета беспилотного летательного аппарата. При необходимости система может применяться в сценариях операций по защите растений с использованием беспилотного летательного аппарата, таких как сценарий распыления пестицидов.
Например, контроллер в родственных технологиях обычно представляет собой портативный пульт дистанционного управления. Когда расстояние между контроллером и беспилотным летательным аппаратом является относительно большим, чтобы обеспечить нормальную связи между контроллером и беспилотным летательным аппаратом, мощность передачи пульта дистанционного управления должна быть относительно высокой, что приводит к проблеме снижения его срока эксплуатации. Более того, в родственных технологиях для достижения лучшей связи между пультом дистанционного управления и беспилотным летательным аппаратом необходимо строго контролировать направление антенны пульта дистанционного управления. Поэтому требования к настройке антенны являются относительно строгими, и повышаются требования к эксплуатации. В качестве другого примера архитектура связи беспилотного летательного аппарата представляет собой звездообразную сеть с контроллером в качестве центрального пункта. Например, контроллер напрямую обменивается данными с несколькими беспилотными летательными аппаратами или косвенно обменивается данными с беспилотными летательными аппаратами через главный контроллер. Когда беспилотный летательный аппарат летит, между контроллером и беспилотным летательным аппаратом может возникнуть препятствие, и это препятствие может легко привести к ухудшению качества связи между контроллером и беспилотным летательным аппаратом. При необходимости, в процессе работы беспилотного летательного аппарата по защите растений, между контроллером и беспилотным летательным аппаратом может оказаться кукуруза, подсолнухи, деревья или холмистая местность, что приведет к плохому качеству связи между контроллером и беспилотным летательным аппаратом, особенно когда беспилотный летательный аппарат летит на малой высоте. Когда беспилотный летательный аппарат улетает далеко, так как угол наклона между беспилотным летательным аппаратом и контроллером становится меньше, связь между контроллером и беспилотным летательным аппаратом становится более восприимчивой к препятствию. Таким образом, в системе связи для системы беспилотного летательного аппарата, предусмотренной вариантами осуществления настоящего раскрытия, так как в систему добавлено сотовое устройство, и сотовое устройство, беспилотный летательный аппарат и контроллер обмениваются данными друг с другом через сотовую сеть, можно уменьшить мощность передачи контроллера, и можно увеличить время работы контроллера. Кроме того, можно уменьшить требования к выравниванию антенны, тем самым упрощая работу. Кроме того, функции одного контроллера для нескольких беспилотных летательных аппаратов, нескольких контроллеров для одного беспилотного летательного аппарата и нескольких контроллеров для нескольких беспилотных летательных аппаратов можно удобно реализовать с помощью гибкой организации сети. Таким образом, можно решить проблему низкого качества связи, вызванную препятствием между беспилотным летательным аппаратом и контроллером.
Как показано на фиг. 1, система связи для беспилотного летательного аппарата, предусмотренная вариантом осуществления настоящего раскрытия, включает в себя по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и сетевое устройство. По меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и сотовое устройство служат в качестве сотовых узлов, соответственно, и сотовые узлы обмениваются данными друг с другом по меньшей мере через сотовую сеть в виде беспроводной сети. Контроллер используется для отправки управляющего сигнала для управления беспилотным летательным аппаратом или получения данных обратной связи беспилотного летательного аппарата и обработки данных обратной связи. Сотовое устройство используется для пересылки управляющего сигнала или данных обратной связи. Сотовым устройством может быть устройство, которое поддерживает функцию сотовой связи.
При необходимости сотовое устройство включает в себя по меньшей мере одно из: беспилотного летательного аппарата, контроллера, ретранслятора и базовой станции, работающей в режиме кинематики реального времени (RTK). Базовая станция RTK имеет функции широковещательной передачи вспомогательной информации для высокоточного позиционирования, маршрутизации и пересылки, а также может одновременно использоваться в качестве ретранслятора. На практике, так как базовая станция RTK устанавливается на большой высоте, базовая станция RTK обычно может использоваться в качестве ретранслятора. Когда сотовым устройством является базовая станция RTK, по сравнению с другими сотовыми устройствами базовая станция RTK может принимать спутниковый сигнал, декодировать спутниковый сигнал для выработки информации о результатах измерений и транслировать информацию о результатах измерений в беспилотный летательный аппарат. Беспилотный летательный аппарат может повысить точность позиционирования за счет использования информации об измерениях, отправляемой базовой станцией RTK, тем самым реализуя гибкую связь. Следует отметить, что, помимо функции ретрансляции и пересылки, базовая станция RTK может также напрямую отправлять данные, такие как данные измерений, выработанные самой базовой станцией RTK, в контроллер или беспилотный летательный аппарат. Например, базовая станция RTK напрямую отправляет данные в контроллер, так что контроллер может контролировать состояние базовой станции RTK. В качестве другого примера базовая станция RTK напрямую отправляет данные в беспилотный летательный аппарат для того, чтобы повысить точность навигации беспилотного летательного аппарата. Конечно, базовая станция RTK, как один сотовой узел в сотовой сети, может также отправлять данные в целевой беспилотный летательный аппарат или контроллер через другие сотовые узлы. Другими узлами сотовой сети могут быть контроллеры, беспилотные летательные аппараты, ретрансляторы или другие базовые станции RTK, чтобы увеличить расстояние связи между базовой станцией RTK и целевым беспилотным летательным аппаратом или контроллером. Аналогичным образом два вышеупомянутых случая также применимы к любому сотовому узлу в сотовой сети.
В случае автономного полета беспилотных летательных аппаратов, чтобы получить один контроллер для управления несколькими беспилотными летательными аппаратами для достижения высокой эффективности работы, система связи для беспилотного летательного аппарата должна поддерживать связь по принципу "один со многими". Для достижения сложного и точного управления в некоторых случаях требуется несколько контроллеров для управления одним и тем же беспилотным летательным аппаратом. Например, некоторые контроллеры управляют углом тангажа в полете, и некоторые контроллеры управляют датчиками для сбора данных. Таким образом, система связи для беспилотного летательного аппарата должна поддерживать связь по принципу "многие с одним". В качестве другого примера, в некоторых случаях для управления несколькими беспилотными летательными аппаратами требуется несколько контроллеров, поэтому требуется, чтобы система связи для беспилотного летательного аппарата поддерживала связь по принципу "многие со многими". В технических решениях, предусмотренных вариантами осуществления настоящего раскрытия, система связи для беспилотного летательного аппарата включает в себя по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и сетевое устройство, и по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и сотовое устройство обмениваются данными через сотовую сеть. Используя гибкость сотовой сети, контроллер, беспилотный летательный аппарат и сотовое устройство могут использоваться в качестве сотовых узлов, соответственно. Таким образом, беспилотный летательный аппарат, контроллер или сетевое устройство можно легко добавить или исключить для того, чтобы реализовать функции одного контроллера для нескольких беспилотных летательных аппаратов, нескольких контроллеров для одного пилотируемого летательного аппарата и нескольких контроллеров для нескольких беспилотных летательных аппаратов.
В родственных технологиях, когда необходимо добавить выделенное ретрансляционное устройство, обычно требуется операция конфигурирования, и использование выделенного ретрансляционного устройства затруднительно сразу после включения питания. Таким образом, сотовое устройство, предусмотренное в вариантах осуществления настоящего раскрытия, включает в себя по меньшей мере одно из устройств, имеющих функцию сотовой связи, такое как контроллер, беспилотный летательный аппарат, базовая станция RTK и ретранслятор. Когда необходимо добавить сотовое устройство, можно избежать трудоемкого этапа, такого как конфигурирование, и сотовое устройство можно использовать сразу после включения питания, чтобы оно было удобным для пользователя и повысило эффективность использования.
В родственных технологиях, чтобы поддерживать связь на большом расстоянии, требуется, чтобы антенна контроллера имела большой коэффициент усиления. Таким образом, требуется, чтобы длина антенны была согласована с длиной волны несущей, и, следовательно, антенна должна быть больше по объему или длине и в то же время иметь подходящую форму. Тем не менее, контроллер обычно бывает портативным. Например, так как портативный пульт дистанционного управления имеет ограничения по форме и объему антенны, портативный пульт дистанционного управления не может использовать более эффективную антенну. Более того, когда расстояние между портативным пультом дистанционного управления и беспилотным летательным аппаратом является относительно большим, мощность передачи пульта дистанционного управления является относительно большой, что сразу же приводит проблему короткого срока эксплуатации. Система беспроводной связи, предусмотренная вариантами осуществления настоящего раскрытия, может пересылать данные связи между контроллером и беспилотным летательным аппаратом через сотовое устройство. Когда расстояние между контроллером и беспилотным летательным аппаратом является большим, контроллер может обмениваться данными с сетевым устройством, что позволяет снизить энергопотребление контроллера, увеличить время автономной работы и уменьшить коэффициент усиления контроллера, тем самым снижая требования к объему контроллера и емкости аккумуляторной батареи. Таким образом, согласно вариантам осуществления настоящего раскрытия в режиме реализации мощность передачи различных типов сотовых узлов может быть разной. При необходимости мощность передачи контроллера меньше, чем первое установленное пороговое значение мощности, мощность передачи беспилотного летательного аппарата и/или сотового устройства больше, чем второе установленное пороговое значение мощности, и первое установленное пороговое значение мощности меньше, чем второе установленное пороговое значение мощности. Следует отметить, что первое установленное пороговое значение мощности и второе установленное пороговое значение мощности могут быть установлены в соответствии с фактическими потребностями, а не с фиксированными значениями. Другими словами, мощность передачи контроллера может быть небольшой, в то время как мощность передачи сотового устройства или беспилотного летательного аппарата может быть большой. Контроллер и сотовое устройство, такие как базовая станция RTK и ретранслятор, образуют первую линию связи с перескоком, и расстояние связи может быть небольшим. Сотовое устройство и беспилотный летательный аппарат образуют вторую линию связи с перескоком, и расстояние связи может быть большим из-за большой мощности передачи. Таким образом, используя характеристики сотовой сети, удаленный контроллер может использовать сотовое устройство в качестве ретрансляционного узла для связи с беспилотным летательным аппаратом на большом расстоянии.
В большинстве случаев мощность передачи сетевых узлов определяет расстояния связи между сетевыми узлами Ретрансляционный узел может быть добавлен вместо увеличения мощности передачи, тем самым облегчая выполнение операций и решая проблему удобства увеличения расстояний связи. Например, каждая линия связи может достигать расстояния связи 1 км, так что N скачков могут достигать расстояния связи N*1 км. Каждое сотовое устройство может использоваться как ретрансляционный узел, и выделенное ретрансляционное устройство не требуется.
В родственных технологиях для достижения лучшей связи между контроллером и беспилотным летательным аппаратом необходимо строго контролировать направление антенного устройства контроллера, что требует более высоких требований к рабочему положению. Варианты осуществления настоящего раскрытия предусматривают сотовое устройство, и узлы устройства обмениваются данными через сотовую сеть. Контроллер и беспилотный летательный аппарат могут обмениваться данными через сотовое устройство, и соответствующий путь связи может быть выбран с помощью механизма сотовой сети. Таким образом, направление антенного устройства контроллера не требуется, и рабочее положение может быть также выбрано в соответствии с комфортом пользователя, чтобы облегчить работу пользователя. В режиме реализации согласно вариантам осуществления настоящего раскрытия антенные устройства различных типов сотовых узлов являются разными. При необходимости коэффициент усиления антенного устройства контроллера меньше, чем первое установленное значение коэффициента усиления, коэффициент усиления антенного устройства беспилотного летательного аппарата и/или сотового устройства больше, чем второе установленное значение коэффициента усиления, и первое установленное значение коэффициента усиления меньше, чем второе установленное значение коэффициента усиления. Следует отметить, что первое установленное значение коэффициента усиления и второе установленное значение коэффициента усиления могут быть установлены в соответствии с конкретными требованиями. При необходимости антенное устройство контроллера представляет собой всенаправленную антенну. Антенное устройство контроллера может иметь меньший коэффициент усиления. Так как требования к углам возвышения антенных устройств беспилотного летательного аппарата и сотового устройства не являются строгими, антенные устройства беспилотного летательного аппарата и сотовое устройство могут иметь более высокий коэффициент усиления и, следовательно, относительно большое расстояние связи между беспилотным летательным аппаратом и сетевым устройством, таким как базовая станция RTK или ретранслятор. Таким образом, за счет управления антенными устройствами сотовых узлов и уменьшения ограничения на коэффициент усиления антенных устройств дизайн антенн в большей степени соответствует общим требованиям к внешнему виду и конструкции. Кроме того, снижаются затраты на изготовление антенного устройства контроллера и стоимость системы связи для беспилотного летательного аппарата.
В родственных технологиях система связи для беспилотного летательного аппарата представляет собой звездообразную сеть с контроллером в качестве центрального пункта. То есть контроллер обменивается данными с несколькими беспилотными летательными аппаратами, соответственно, или контроллер обменивается данными с несколькими беспилотными летательными аппаратами через главный контроллер. Однако, когда система связи беспилотных летательных аппаратов применяется в соответствующих технологиях, при наличии препятствия между контроллером и беспилотным летательным аппаратом может ухудшиться качество связи между контроллером и беспилотным летательным аппаратом. Таким образом, варианты осуществления настоящего раскрытия предусматривают сотовое устройство, и сотовое устройство, контроллер и беспилотный летательный аппарат обмениваются данными через сотовую сеть. Когда между контроллером и беспилотным летательным аппаратом имеется препятствие, контроллер и беспилотный летательный аппарат могут косвенно обмениваться данными через сетевое устройство. В сотовой сети, включающей в себя контроллер, беспилотный летательный аппарат и сотовое устройство, каждый узел устройства может также автоматически выбирать путь связи, тем самым избегая препятствий для пересылки данных для реализации связи между контроллером и беспилотным летательным аппаратом. Таким образом, технические решения, предусмотренные вариантами осуществления настоящего раскрытия, позволяют решить проблему плохого качества связи, вызванную препятствием между контроллером и беспилотным летательным аппаратом.
В частности, контроллер может выбрать соответствующий путь, используя алгоритм обнаружения пути. Например, когда контроллер не может обнаружить конкретный сигнал беспилотного летательного аппарата или обнаруженный конкретный сигнал меньше определенного порогового значения мощности, контроллер запрашивает соседний узел относительно того, может ли соседний узел обмениваться данными с целевым беспилотным летательным аппаратом и т.д. Если сеть развернута правильно, контроллер может найти подходящий путь для связи с беспилотным летательным аппаратом. Например, если между контроллером и беспилотным летательным аппаратом имеется препятствие, контроллер может не обмениваться данными напрямую с беспилотным летательным аппаратом, и контроллер может косвенно обмениваться данными с целевым беспилотным летательным аппаратом через соседний узел A (то есть соседний сетевой узел A). Контроллер и соседний узел A образуют первую линию связь с перескоком, и соседний узел A и беспилотный летательный аппарат образуют вторую линию связь с перескоком. Аналогичным образом, если беспилотный летательный аппарат передает данные по каналу обратной связи в контроллер, способ определения пути связи может быть таким же, как способ определения пути связи контроллером. В вариантах осуществления настоящего раскрытия сотовая сеть может также называться многоскачковой сетью с гибкой сетевой архитектурой и такими характеристиками, как самопознающая, самоорганизующаяся сеть и автоматическая маршрутизация. Таким образом, сотовая сеть удобна в использовании, и устройство может быть легко добавлено в сотовую сеть или исключено из нее. Контроллер может быть наземным устройством управления в виде наземной станции, пульта дистанционного управления, смартфона, клипсы-держателя и т.д.
В режиме реализации согласно вариантам осуществления настоящего раскрытия высоты сетевых узлов при необходимости являются разными. Когда между контроллером и беспилотным летательным аппаратом имеется препятствие, высота сотового устройства больше, чем высота препятствия. Так как между контроллером и беспилотным летательным аппаратом имеется препятствие, и высота сотового устройства больше, чем высота препятствия, можно избежать проблемы влияния на связь между контроллером и сотовым устройством и на связь между сотовым устройством и беспилотным летательным аппаратом. Таким образом, решена проблема, связанная с ухудшением качества связи при наличии препятствия между контроллером и беспилотным летательным аппаратом.
При необходимости контроллер обычно устанавливается на земле и легко блокируется препятствиями. Сотовое устройство, такое как базовая станция RTK или другие сотовые устройства, может быть установлено на большой высоте. Например, высота сотового устройства может быть увеличена с помощью кронштейна. Во время работы беспилотный летательный аппарат находится над посевами, и высота беспилотного летательного аппарата является также большой. Таким образом, сотовое устройство и беспилотный летательный аппарат имеют большую высоту, обычно при отсутствии препятствий, и имеют большое расстояние связи. Контроллер, сотовое устройство и беспилотный летательный аппарат обмениваются данными через сотовую сеть. Благодаря характеристикам сотовой сети, контроллер может использовать сотовое устройство в качестве ретрансляционного узла, чтобы обмениваться данными с беспилотным летательным аппаратом на большом расстоянии. Аналогичным образом контроллер может использовать другое сотовое устройство в качестве ретрансляционного узла и использовать характеристику высоты сотового устройства для связи с беспилотным летательным аппаратом на большом расстоянии. Если беспилотный летательный аппарат используется в качестве ретрансляционного узла, беспилотный летательный аппарат может долететь до места, где беспилотный летательный аппарат может обойти препятствие. Препятствием может быть склон холма или лес.
В режиме реализации согласно вариантам осуществления настоящего раскрытия, как показано на фиг. 1, при необходимости количество по меньшей мере одного контроллера равно по меньшей мере двум, и количество по меньшей мере одного беспилотного летательного аппарата равно по меньшей мере двум. Сотовым устройством может быть базовая станция RTK или ретранслятор. Путем установки количества по меньшей мере одного контроллера равного по меньшей мере двум и количества по меньшей мере одного беспилотного летательного аппарата равного по меньшей мере двум, можно реализовать несколько контроллеров для управления несколькими беспилотными летательными аппаратами.
В режиме реализации согласно вариантам осуществления настоящего раскрытия, при необходимости количество по меньшей мере одного контроллера равно одному, и количество по меньшей мере одного беспилотного летательного аппарата равно одному. Сотовым устройством может быть базовая станция RTK или ретранслятор. Таким образом, один контроллер может быть реализован для управления одним беспилотным летательным аппаратом. Как показано на фиг. 2 количество контроллеров равно одному, количество беспилотных летательных аппаратов равно одному, количество сотовых устройств равно одному. Сотовым устройством может быть базовая станция RTK или ретранслятор. Контроллер, сотовое устройство и беспилотный летательный аппарат обмениваются данными через сотовую сеть. Контроллер и беспилотный летательный аппарат могут напрямую обмениваться данными друг с другом, или контроллер и беспилотный летательный аппарат могут обмениваться данными друг с другом с использованием сотового устройства, такого как базовая станция RTK или ретранслятор, в качестве ретрансляционного узла.
В режиме реализации согласно вариантам осуществления настоящего раскрытия, при необходимости количество по меньшей мере одного контроллера равно одному, и количество по меньшей мере одного беспилотного летательного аппарата равно по меньшей мере двум. Сотовым устройством может быть базовая станция RTK или ретранслятор. Таким образом, один контроллер может быть реализован для управления несколькими беспилотными летательными аппаратами. Как показано на фиг. 3, количество контроллеров равно одному, и количество беспилотных летательных аппаратов равно по меньшей мере двум. Сотовым устройством может быть базовая станция RTK или ретранслятор. Контроллер может напрямую обмениваться данными с каждым беспилотным летательным аппаратом для управления управляемым устройством, например, облачной платформой, на беспилотном летательном аппарате. При необходимости контроллер может косвенно обмениваться данными с беспилотным летательным аппаратом, используя базовую станцию RTK или ретранслятор в качестве ретрансляционного узла.
В режиме реализации согласно вариантам осуществления настоящего раскрытия, при необходимости количество по меньшей мере одного контроллера равно по меньшей мере двум, и количество по меньшей мере одного беспилотного летательного аппарата равно одному. Сотовым устройством может быть базовая станция RTK или ретранслятор. Таким образом, для управления одним беспилотным летательным аппаратом может быть реализовано несколько контроллеров. Как показано на фиг. 4, количество контроллеров равно по меньшей мере двум, количество беспилотных летательных аппаратов равно одному, количество сотовых устройств равно одному. Сотовым устройством может быть базовая станция RTK или ретранслятор. Несколько контроллеров могут напрямую обмениваться данными с беспилотным летательным аппаратом для управления управляемым устройством, например облачной платформой, на беспилотном летательном аппарате. При необходимости несколько контроллеров могут косвенно обмениваться данными с беспилотным летательным аппаратом, используя базовую станцию RTK или ретранслятор в качестве ретрансляционного узла.
В режиме реализации согласно вариантам осуществления настоящего раскрытия система беспроводной связи может применяться в сценарии ретрансляции с двумя ретрансляторами. Как показано на фиг. 5, при необходимости сотовым устройством может быть базовая станция RTK или ретранслятор. Контроллер может косвенно обмениваться данными с беспилотными летательными аппаратами, используя базовую станцию RTK или выделенный ретранслятор в качестве ретрансляционного узла. Беспилотные летательные аппараты, сотовое устройство и контроллер обмениваются данными через сотовую сеть, то есть узлы устройств образуют в чистом виде сотовую сеть. Каждое устройство на фиг. 5 может быть узлом сети, и между узлами сети существует одноранговая связь. Каждый узел сети может напрямую обмениваться данными с соседним узлом. Находясь в определенной зоне покрытия, все узлы сотовой сети могут также быть соединены в виде односкачковой, то есть прямой связи. При отсутствии условий односкачкового соединения, может быть сформирована сотовая многоскачковая сеть.
В режиме реализации согласно вариантам осуществления настоящего раскрытия система беспроводной связи при необходимости может применяться в сценарии многоскачковой ретрансляции. При необходимости количество по меньшей мере одного контроллера равно одному, количество по меньшей мере одного беспилотного летательного аппарата равно одному, и количество сотовых устройств равно по меньшей мере трем. Например, как показано на фиг. 6, n ретрансляционных узлов развернуты в системе беспроводной связи. То есть n ретрансляционных узлов могут быть сотовыми устройствами с функцией ретрансляции. Сотовые устройства могут быть устройствами с функцией, реализующей маршрутизацию и пересылку данных. Сотовыми устройствами могут быть контроллеры, беспилотные летательные аппараты, базовые станции RTK или ретрансляторы. Контроллер, беспилотный летательный аппарат и сотовые устройства могут использоваться в качестве узлов устройств, и узлы устройств обмениваются данными друг с другом через сотовую сеть. Когда позиция беспилотного летательного аппарата изменяется с позиции 0 на позицию m, механизм маршрутизации сотовой сети может выбрать соответствующий ретрансляционный узел и соответствующий канал связи, чтобы значительно расширить зону покрытия беспроводного сигнала. Например, когда беспилотный летательный аппарат находится в позиции 0, контроллер может напрямую обмениваться данными с беспилотным летательным аппаратом. Когда беспилотный летательный аппарат находится в позиции 1, контроллер может косвенно обмениваться данными с беспилотным летательным аппаратом через сетевое устройство 1. Когда беспилотный летательный аппарат находится в позиции 2, контроллер и беспилотный летательный аппарат могут поочередно обмениваться данными друг с другом через сотовое устройство 1 и сотовое устройство 2. При необходимости, как показано на фиг. 7, сотовое устройство 1 может быть базовой станцией RTK, сотовое устройство 2 может быть ретранслятором, и сотовое устройство 3 может быть беспилотным летательным аппаратом.
В режиме реализации согласно вариантам осуществления настоящего раскрытия, при необходимости по меньшей мере одно из: беспилотного летательного аппарата, контроллера и сотового устройства является устройством с функцией сетевого транзитного соединения. Устройство с функцией сетевого транзитного соединения выполнено с возможностью приема запроса доступа из другого устройства и доступа к серверу в соответствии с запросом доступа, и пересылки данных обратной связи сервера в другое устройство. Другим устройством может быть любое устройство в системе, за исключением устройства с функцией сотовой связи. При необходимости в качестве примера приведено сотовое устройство, являющееся устройством с функцией сетевого транзитного соединения. Как показано на фиг. 8, устройство с функцией сетевого транзитного соединения не только поддерживает функцию сотовой связи, но также имеет транзитную линию связи. Транзитная линия связи может быть проводной транзитной линией связи или беспроводной транзитной линией связи, такой как сеть беспроводной связи 4G и сеть асимметричной цифровой абонентской линии (ADSL). Устройство выполнено с возможностью приема запроса доступа от контроллеров или беспилотных летательных аппаратов, доступа к серверу в соответствии с запросом доступа и пересылки данных по каналу обратной связи с помощью сервера в контроллеры или беспилотные летательные аппараты. Сервер может быть облачным сервером или другими серверами. Устройство может получить доступ к Интернету или выделенной частной облачной сети через транзитную линию связи, и другие сотовые узлы могут косвенно получить доступ к Интернету или частной облачной сети через устройство с функцией транзитного соединения
При необходимости, как показано на фиг. 9, устройство с функцией сетевого транзитного соединения включает в себя модуль сотовой сети, шлюз и модуль транзитной линии связи (модуль портала). Модуль транзитной линии связи может включать транзитную линию связи. Транзитная линия связи может быть проводной или беспроводной транзитной линией связи, например, сетью беспроводной связи 4G и сетью без ADSL и т.д. Шлюз выполнен с возможностью маршрутизации и пересылки данных между модулем сотовой сети и модулем транзитной линии связи, чтобы реализовать преобразование данных между сотовой сетью и облачной сетью.
По меньшей мере одно из: беспилотного летательного аппарата, контроллера и сотового устройства является устройством с функцией сетевого транзитного соединения, то есть может также включать в себя шлюз и модуль транзитного соединения в дополнение к функции сотовой связи. Другие устройства могут иметь двунаправленный доступ к облачной сети через устройство с функцией транзитного соединения. Таким образом, установив по меньшей мере одно из: сотового устройства, контроллера и беспилотного летательного аппарата в качестве устройства с функцией транзитного соединения и устройства с функцией транзитного соединения, которое обменивается данными с другими устройствами через сотовую сеть, другие узлы устройства могут получить доступ сеть через устройство с функцией транзитного соединения для удобного получения дополнительной информации из Интернета. Повышается удобство и универсальность системы беспроводной связи, и рабочий параметр и рабочий статус могут быть получены с сервера и отправлены в контроллер. Кроме того, может быть реализован удаленный контроль системы управления беспилотным летательным аппаратом.
Система связи для беспилотного летательного аппарата предусмотрена вариантами осуществления настоящего раскрытия. Система включает в себя по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и другое устройство. Контроллер обменивается данными с другим устройством через сотовую сеть, и другое устройство и по меньшей мере один беспилотный летательный аппарат образуют звездообразную сеть. При необходимости другое устройство может включать в себя по меньшей мере одно из: базовой станции RTK, беспилотного летательного аппарата, ретранслятора и контроллера. При необходимости другое устройство может быть устройством с функцией сотовой сети и функцией точки доступа. Беспилотный летательный аппарат имеет функцию станции.
В вариантах осуществления настоящего раскрытия функция ретрансляции и пересылки некоторых устройств может быть при необходимости ограничена. В режиме реализации согласно вариантам осуществления настоящего раскрытия, при необходимости количество контроллеров равно одному, количество беспилотных летательных аппаратов равно по меньшей мере двум, и количество других устройств равно одному. При необходимости, как показано на фиг. 10, количество контроллеров равно одному, количество беспилотных летательных аппаратов равно по меньшей мере двум, и остальные устройства включают в себя базовую станцию RTK. Контроллер и базовая станция RTK могут обмениваться данными через сотовую сеть. Базовая станция RTK и беспилотные летательные аппараты могут обмениваться данными через звездообразную сеть. В настоящее время функция ретрансляции и пересылки для беспилотных летательных аппаратов ограничена. Базовая станция RTK не только выполняет функцию сотовой сети, но также имеет функцию точки доступа (AP). Базовая станция RTK может использовать технологии, относящиеся к семейству протоколов 802.11, для связи с контроллером. Используя функцию AP базовой станции RTK, проводная сеть может быть преобразована в беспроводной сигнал WiFi для подключения контроллера или беспилотных летательных аппаратов и других устройств. Беспилотные летательные аппараты могут иметь функцию станции. Все беспилотные летательные аппараты образуют звездную сеть с центром в базовой станции RTK или ретрансляторе. Контроллер косвенно обменивается данными через базовую станцию RTK или ретранслятор.
Звездообразная сеть формируется с использованием центрального устройства для соединения множества точек, то есть каждое устройство в сети соединяется с центральным устройством для формирования звездообразной сети. AP является создателем беспроводной сети и может быть центральным узлом беспроводной сети. STA относится к станции. Каждое устройство, подключенное к беспроводной сети, можно называть станцией.
Когда количество сотовых узлов становится большим, может увеличиться сложность сети, и может также увеличиться энергопотребление, тем самым снижая производительность сети. Устройство, расположенное на критическом пути, может быть оснащено функцией сотовой связи, и ключевое устройство с функцией сотовой сети считается центральным устройством. Центральное устройство и устройства, расположенные на некритических путях, образуют звездообразную сеть для достижения более разумной сетевой архитектуры и повышения производительности сети. Другими словами, используя гибридную сеть (сотовую сеть и звездообразную сеть) между контроллером, другими устройствами и беспилотными летательными аппаратами, можно повысить производительность сети и эффективность передачи данных.
В вариантах осуществления настоящего раскрытия система беспроводной связи может также включать в себя стороннее устройство с функцией сотовой связи. Стороннее устройство, контроллер и другие устройства обмениваются данными через сотовую сеть. Как показано на фиг. 11, при необходимости количество контроллеров равно одному, количество беспилотных летательных аппаратов кратно, и другие устройства могут быть базовой станцией RTK. Стороннее устройство, контроллер и базовая станция RTK обмениваются данными друг с другом через сотовую сеть, и базовая станция RTK и беспилотные летательные аппараты обмениваются данными через звездообразную сеть. При необходимости стороннее устройство может быть геодезическим и картографическим устройством. Например, геодезическое и картографическое устройство может измерять сельскохозяйственные угодья и т.д., и геодезическое и картографическое устройство, контроллер и беспилотные летательные аппараты могут взаимодействовать друг с другом.
Следует отметить, что вариант осуществления настоящего раскрытия, показанный на фиг. 11 в качестве примера, иллюстрирует режим связи между сторонним устройством, контроллером, сетевым устройством и беспилотными летательными аппаратами. Однако режим связи между сторонним устройством, контроллером, сотовым устройством и беспилотными летательными аппаратами не ограничивается режимом связи, показанным на фиг. 11. Стороннее устройство, контроллер, сотовое устройство и беспилотные летательные аппараты могут также обмениваться данными друг с другом через сотовую сеть.
Способ связи для беспилотного летательного аппарата, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя: отправку, контроллером, управляющего сигнала для управления беспилотным летательным аппаратом через сотовую сеть или прием, контроллером, данных обратной связи беспилотного летательного аппарата через сотовую сеть и обработку данных обратной связи.
В результате контроллер может отправлять управляющий сигнал или принимать данные через сотовую сеть и гибко объединяться в сеть с другими устройствами, чтобы обеспечить систему связи для реализации функций одного контроллера для нескольких беспилотных летательных аппаратов и нескольких контроллеров для одного беспилотного летательного аппарата.
Способ связи для беспилотного летательного аппарата, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя: прием, сотовым устройством, через сотовую сеть, управляющего сигнала, отправленного контроллером, и пересылку управляющего сигнала в беспилотный летательный аппарат; или прием, сотовым устройством, через сотовую сеть, данных обратной связи, отправленных беспилотным летательным аппаратом, и пересылку данных обратной связи в контроллер.
В результате сотовое устройство реализует пересылку управляющего сигнала или данных через сотовую сеть. Расстояние связи между контроллером и беспилотным летательным аппаратом увеличивается, мощность передачи контроллера снижается, время работы контроллера увеличивается, и требования к выравниванию антенны снижаются. Таким образом, упрощается работа, может быть решена проблема низкого качества связи, вызванная препятствием между беспилотным летательным аппаратом и контроллером, и проблема неудобного увеличения расстояния связи.
Способ связи для беспилотного летательного аппарата, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя: прием, беспилотным летательным аппаратом, через сотовую сеть управляющего сигнала, пересылаемого сотовым устройством, и выполнение соответствующей операции в соответствии с управляющим сигналом; или отправку, беспилотным летательным аппаратом, данных обратной связи через сотовую сеть.
В результате беспилотный летательный аппарат принимает управляющий сигнал или отправляет данные через сотовую сеть и гибко объединяется в сеть с другими устройствами, чтобы облегчить систему связи для реализации функций одного контроллера для нескольких беспилотных летательных аппаратов и нескольких контроллеров в одном беспилотном летательном аппарате.
На фиг. 12 показана блок-схема последовательности операций способа связи для беспилотного летательного аппарата согласно варианту осуществления настоящего раскрытия. Способ может применяться в системе связи для беспилотного летательного аппарата, предусмотренной вариантами осуществления настоящего раскрытия. Система связи для беспилотного летательного аппарата включает в себя по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и сетевое устройство. Как показано на фиг. 12, способ связи, предусмотренный вариантами осуществления настоящего раскрытия, включает в себя следующие этапы.
Этап 110: отправка, контроллером, управляющего сигнала для управления беспилотным летательным аппаратом или прием данных обратной связи беспилотного летательного аппарата и обработка данных обратной связи.
Этап 120: пересылка, сетевым устройством, управляющего сигнала или данных обратной связи.
Этап 130: прием, беспилотным летательным аппаратом, управляющего сигнала, пересылаемого сетевым устройством, и выполнение соответствующей операции в соответствии с управляющим сигналом или отправка данных обратной связи. Контроллер, беспилотный летательный аппарат и сотовое устройство служат в качестве сотовых узлов, соответственно, и сотовые узлы обмениваются данными друг с другом через сотовую сеть в форме беспроводной сети.
При необходимости сотовое устройство включает в себя по меньшей мере одно из: базовой станции RTK, беспилотного летательного аппарата, ретранслятора и контроллера.
При необходимости значения мощности передачи разных типов узлов сети являются разными.
При необходимости мощность передачи контроллера меньше, чем первое установленное пороговое значение мощности, мощность передачи беспилотного летательного аппарата и/или сотового устройства больше, чем второе установленное пороговое значение мощности, и первое установленное пороговое значение мощности меньше, чем второе установленное пороговое значение мощности.
При необходимости высота узлов сети является разной.
При необходимости, когда имеется препятствие между контроллером и беспилотным летательным аппаратом, высота сотового устройства больше, чем высота препятствия.
При необходимости антенные устройства разных типов узлов сети являются разными.
При необходимости коэффициент усиления антенного устройства контроллера меньше, чем первое установленное значение коэффициента усиления, коэффициент усиления антенного устройства беспилотного летательного аппарата и/или сотового устройства больше, чем второе установленное значение коэффициента усиления, и первое установленное значение коэффициента усиления меньше, чем второе установленное значение коэффициента усиления.
При необходимости антенное устройство контроллера представляет собой всенаправленную антенну.
При необходимости количество по меньшей мере одного контроллера равно одному, количество по меньшей мере одного беспилотного летательного аппарата равно одному, и сотовое устройство включает в себя базовую станцию RTK или ретранслятор.
При необходимости количество по меньшей мере одного контроллера равно одному, количество по меньшей мере одного беспилотного летательного аппарата равно по меньшей мере двум, и сотовое устройство включает в себя базовую станцию RTK или ретранслятор.
При необходимости количество по меньшей мере одного контроллера равно по меньшей мере двум, количество по меньшей мере одного беспилотного летательного аппарата равно одному, и сотовое устройство включает в себя базовую станцию RTK или ретранслятор.
При необходимости количество по меньшей мере одного контроллера равно по меньшей мере двум, количество по меньшей мере одного беспилотного летательного аппарата равно по меньшей мере двум, и сотовое устройство включает в себя базовую станцию RTK или ретранслятор.
При необходимости количество по меньшей мере одного контроллера равно одному, количество по меньшей мере одного беспилотного летательного аппарата равно одному, и количество сотовых устройств равно по меньшей мере трем.
При необходимости сотовое устройство включает в себя базовую станцию RTK, ретранслятор и беспилотный летательный аппарат.
При необходимости по меньшей мере одно из по меньшей мере одного беспилотного летательного аппарата по меньшей мере одного контроллера и сотового устройства является устройством с функцией сетевого транзитного соединения.
Устройство с функцией сетевого транзитного соединения выполнено с возможностью приема запроса доступа из другого устройства и доступа к серверу в соответствии с запросом доступа и пересылки данных обратной связи сервера в другое устройство, и это другое устройство включает в себя любое устройство системы, за исключением устройства с функцией сетевого транзитного соединения.
При необходимости устройство с функцией сетевого транзитного соединения включает в себя модуль сотовой сети, шлюз и модуль транзитного соединения.
Модуль транзитной линии связи включает в себя транзитную линию связи.
Шлюз выполнен с возможностью маршрутизации и пересылки данных между сотовым сетевым модулем и модулем обратной связи.
При необходимости количество по меньшей мере одного контроллера равно по меньшей мере двум, количество по меньшей мере одного беспилотного летательного аппарата равно по меньшей мере двум, и сотовое устройство включает в себя устройство с функцией сетевого транзитного соединения.
На основе вариантов осуществления, упомянутых выше, способ может дополнительно включать следующие этапы:
удаление сетевым узлом информации о маршрутизации соседнего узла, когда сотовый узел не может обнаружить установленный сигнал, отправленный соседним узлом, при этом соседний узел относится к узлу, который напрямую обменивается данными с сетевым узлом; установление, с помощью сетевого узла, линии связи с целевым устройством и добавление информации о маршрутизации целевого устройства, если сотовый сети обнаруживает сигнал измерения, отправленный целевым устройством.
Отказ сетевого узла в обнаружении соседнего узла может быть вызван тем фактом, что соседний узел выполнил задачу, или исчерпана мощность, или другими ситуациями.
Таким образом, за счет добавления информации о маршрутизации вновь добавленного устройства может быть реализована взаимная связь между вновь добавленным устройством и исходным устройством. Удаление информации о маршрутизации устройства не влияет на взаимную связь между остальными устройствами.
В технических решениях, предусмотренных вариантами осуществления настоящего раскрытия, посредством объединения беспилотного летательного аппарата, контроллера и сотового устройства в сотовую сеть, беспилотный летательный аппарат, контроллер и сотовое устройство обмениваются данными через сотовую сеть, мощность передачи контроллера снижается, время работы контроллера увеличивается, и снижаются требования к выравниванию антенны. Таким образом, упрощается работа, тем самым позволяя системе связи реализовать функций одного контроллера для нескольких беспилотных летательных аппаратов и нескольких контроллеров для одного беспилотного летательного аппарата. Могут быть решены проблема плохого качества связи, вызванная препятствием между беспилотным летательным аппаратом и контроллером, и проблема неудобного увеличения расстояния связи.
Claims (31)
1. Система связи для беспилотного летательного аппарата, содержащая по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и сетевое устройство,
в которой контроллер, беспилотный летательный аппарат и сотовое устройство служат в качестве сотовых узлов, соответственно, и сотовые узлы обмениваются данными друг с другом через сотовую сеть.
2. Система по п. 1, в которой сотовое устройство содержит по меньшей мере одно из: базовой станции RTK, беспилотного летательного аппарата, ретранслятора и контроллера.
3. Система по п. 1, в которой мощность передачи контроллера меньше, чем первое установленное пороговое значение мощности, мощность передачи беспилотного летательного аппарата и/или сотового устройства больше, чем второе установленное пороговое значение мощности, и первое установленное пороговое значение мощности меньше, чем второе установленное пороговое значение мощности.
4. Система по п. 1, в которой при наличии препятствия между контроллером и беспилотным летательным аппаратом высота сотового устройства больше высоты препятствия.
5. Система по п. 1, в которой коэффициент усиления антенного устройства контроллера меньше, чем первое установленное значение коэффициента усиления, коэффициент усиления антенного устройства беспилотного летательного аппарата и/или сотового устройства больше, чем второе установленное значение коэффициента усиления, и первое установленное значение коэффициента усиления меньше, чем второе установленное значение коэффициента усиления.
6. Система по п. 1, в которой по меньшей мере одно из по меньшей мере одного беспилотного летательного аппарата, по меньшей мере одного контроллера и сотового устройства является устройством с функцией сетевого транзитного соединения;
устройство с функцией сетевого транзитного соединения выполнено с возможностью приема запроса доступа из другого устройства и доступа к серверу в соответствии с запросом доступа и пересылки данных обратной связи сервера в другое устройство, и другое устройство содержит любое устройство системы, за исключением устройства с функцией сетевого транзитного соединения.
7. Система по п. 6, в которой устройство с функцией сетевого транзитного соединения содержит модуль сотовой сети, шлюз и модуль транзитного соединения;
модуль транзитной линии связи содержит транзитную линию связи; и
шлюз выполнен с возможностью маршрутизации и пересылки данных между модулем сотовой сети и модулем транзитной линии связи.
8. Система связи для беспилотного летательного аппарата, содержащая по меньшей мере один контроллер, по меньшей мере один беспилотный летательный аппарат и другое устройство,
в которой по меньшей мере один контроллер обменивается данными с другим устройством через сотовую сеть, и другое устройство и по меньшей мере один беспилотный летательный аппарат образуют звездообразную сеть.
9. Система по п. 8, в которой другое устройство содержит устройство с функцией сотовой сети и функцией точки доступа AP, и беспилотный летательный аппарат имеет функцию станции STA.
10. Система по п. 8 или 9, в которой другое устройство содержит по меньшей мере одно из: базовой станции RTK, беспилотного летательного аппарата, ретранслятора и контроллера.
11. Система по п. 10, дополнительно содержащая стороннее устройство с функцией сотовой сети,
в которой стороннее устройство, по меньшей мере один контроллер и другое устройство обмениваются данными через сотовую сеть.
12. Способ связи для беспилотного летательного аппарата, содержащий:
отправку контроллером управляющего сигнала для управления беспилотным летательным аппаратом через сотовую сеть; или
прием данных обратной связи беспилотного летательного аппарата через сотовую сеть и обработку данных обратной связи.
13. Способ связи для беспилотного летательного аппарата, содержащий:
прием, сотовым устройством, через сотовую сеть, управляющего сигнала, отправленного контроллером, и пересылку управляющего сигнала в беспилотный летательный аппарат; или
отправку, сотовым устройством, через сотовую сеть, данных обратной связи, отправленных беспилотным летательным аппаратом, и пересылку данных обратной связи в контроллер.
14. Способ связи для беспилотного летательного аппарата, содержащий:
прием, беспилотным летательным аппаратом, через сотовую сеть, управляющего сигнала, пересланного сотовым устройством, и выполнение соответствующей операции в соответствии с управляющим сигналом; или
отправку, беспилотным летательным аппаратом, данных обратной связи через сотовую сеть.
15. Способ связи для беспилотного летательного аппарата, содержащий:
отправку, контроллером, управляющего сигнала для управления беспилотным летательным аппаратом или отправку данных обратной связи беспилотного летательного аппарата и обработку данных обратной связи;
пересылку, сетевым устройством, управляющего сигнала или данных обратной связи; и
прием, беспилотным летательным аппаратом, управляющего сигнала, пересланного сетевым устройством, и выполнение соответствующей операции в соответствии с управляющим сигналом или отправку данных обратной связи,
в котором контроллер, беспилотный летательный аппарат и сотовое устройство служат в качестве сотовых узлов, соответственно, и сотовые узлы обмениваются данными друг с другом через сотовую сеть.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/117895 WO2020107256A1 (zh) | 2018-11-28 | 2018-11-28 | 一种无人机通信系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2769741C1 true RU2769741C1 (ru) | 2022-04-05 |
Family
ID=69009259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2021118361A RU2769741C1 (ru) | 2018-11-28 | 2018-11-28 | Система и способ связи для беспилотного летательного аппарата |
Country Status (9)
Country | Link |
---|---|
US (1) | US20210288714A1 (ru) |
EP (1) | EP3876216A4 (ru) |
JP (1) | JP2022509784A (ru) |
KR (1) | KR20210109523A (ru) |
CN (1) | CN110651435B (ru) |
AU (1) | AU2018450592A1 (ru) |
CA (1) | CA3121282A1 (ru) |
RU (1) | RU2769741C1 (ru) |
WO (1) | WO2020107256A1 (ru) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7048892B2 (ja) * | 2018-07-24 | 2022-04-06 | 日本電信電話株式会社 | 通信システム及び通信方法 |
US11368284B2 (en) * | 2019-09-25 | 2022-06-21 | Ford Global Technologies, Llc | Vehicle blockchain transactions |
CN111194038B (zh) * | 2020-01-07 | 2021-07-02 | 北京航空航天大学 | 多无人机移动基站位置部署方法 |
CN111251321A (zh) * | 2020-03-16 | 2020-06-09 | 浙江图讯科技股份有限公司 | 一种远程控制防爆侦察系统 |
CN111465046B (zh) * | 2020-04-11 | 2021-03-19 | 中广核(北京)新能源科技有限公司 | 一种基于平原开阔地貌的风电场站无线网络系统 |
WO2021223167A1 (zh) * | 2020-05-07 | 2021-11-11 | 深圳市大疆创新科技有限公司 | 控制方法及设备、可移动平台及计算机可读存储介质 |
CN111724631B (zh) * | 2020-05-29 | 2021-09-24 | 北京三快在线科技有限公司 | 无人机业务管理系统、方法、可读存储介质及电子设备 |
CN112944287B (zh) * | 2021-02-08 | 2023-05-30 | 西湖大学 | 一种具有主动光源的空中修补系统 |
US11669087B2 (en) * | 2021-07-15 | 2023-06-06 | Howe & Howe Inc. | Controlling and monitoring remote robotic vehicles |
CN114189872B (zh) * | 2021-12-08 | 2022-11-29 | 香港中文大学(深圳) | 无人机中继服务位置的确定方法与装置 |
CN114245479A (zh) * | 2021-12-21 | 2022-03-25 | 江苏翰林正川工程技术有限公司 | 一种无人机的无线组网系统 |
CN114244424A (zh) * | 2021-12-24 | 2022-03-25 | 承德石油高等专科学校 | 一种垂直起降固定翼无人机通信方法与系统 |
JP2023122456A (ja) * | 2022-02-22 | 2023-09-01 | 株式会社日立国際電気 | メッシュネットワークシステム及び移動ノード |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2387080C1 (ru) * | 2008-08-28 | 2010-04-20 | Общество с ограниченной ответственностью "Технологическая лаборатория" | Система видеомониторинга и связи |
US20150236778A1 (en) * | 2014-02-17 | 2015-08-20 | Ubiqomm Llc | Broadband access to mobile platforms using drone/uav background |
CN107204130A (zh) * | 2017-07-14 | 2017-09-26 | 哈尔滨工业大学(威海) | 民用无人机空管系统及采用该系统实现对无人机进行飞行控制的方法 |
US20170285633A1 (en) * | 2016-04-01 | 2017-10-05 | Lntel Corporation | Drone control registration |
US20180218617A1 (en) * | 2015-11-02 | 2018-08-02 | At&T Intellectual Property I, L.P. | Intelligent drone traffic management via radio access network |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9654200B2 (en) * | 2005-07-18 | 2017-05-16 | Mutualink, Inc. | System and method for dynamic wireless aerial mesh network |
CN102711118B (zh) * | 2012-06-21 | 2014-09-03 | 北京邮电大学 | 一种移动通信系统和方法 |
FR3028186A1 (fr) * | 2014-11-12 | 2016-05-13 | Parrot | Equipement de telecommande de drone a longue portee |
US9927807B1 (en) * | 2015-07-13 | 2018-03-27 | ANRA Technologies, LLC | Command and control of unmanned vehicles using cellular and IP mesh technologies for data convergence |
CN205320073U (zh) * | 2015-12-25 | 2016-06-15 | 顺丰科技有限公司 | 无人机数据传输自组网网络 |
US9948380B1 (en) * | 2016-03-30 | 2018-04-17 | X Development Llc | Network capacity management |
US9949138B2 (en) * | 2016-07-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Systems and methods to augment the capacities and capabilities of cellular networks through an unmanned aerial vehicle network overlay |
US10470241B2 (en) * | 2016-11-15 | 2019-11-05 | At&T Intellectual Property I, L.P. | Multiple mesh drone communication |
CN106792916B (zh) * | 2016-12-13 | 2023-07-21 | 浙江科技学院 | 一种混合型远距离无线传感器网络系统及其通信方法 |
CN106656300A (zh) * | 2016-12-21 | 2017-05-10 | 中国航天时代电子公司 | 一种采用自组网数据链的无人机集群作战系统 |
CN106791653A (zh) * | 2016-12-23 | 2017-05-31 | 湖南基石通信技术有限公司 | 一种扩展无人机图传范围的方法 |
KR102715376B1 (ko) * | 2016-12-30 | 2024-10-11 | 인텔 코포레이션 | 라디오 통신을 위한 방법 및 디바이스 |
CN106713875A (zh) * | 2017-03-28 | 2017-05-24 | 朱华章 | 一种城市道路交通全景视频控制方法及系统 |
CN107380443A (zh) * | 2017-09-08 | 2017-11-24 | 深圳市道通智能航空技术有限公司 | 无人机控制系统及实现方法、地面控制设备和中继站 |
CN107728642B (zh) * | 2017-10-30 | 2021-03-09 | 北京博鹰通航科技有限公司 | 一种无人机飞行控制系统及其方法 |
-
2018
- 2018-11-28 AU AU2018450592A patent/AU2018450592A1/en not_active Abandoned
- 2018-11-28 EP EP18941245.5A patent/EP3876216A4/en not_active Withdrawn
- 2018-11-28 WO PCT/CN2018/117895 patent/WO2020107256A1/zh active Application Filing
- 2018-11-28 KR KR1020217016654A patent/KR20210109523A/ko not_active Application Discontinuation
- 2018-11-28 CN CN201880030853.6A patent/CN110651435B/zh active Active
- 2018-11-28 JP JP2021527159A patent/JP2022509784A/ja not_active Withdrawn
- 2018-11-28 RU RU2021118361A patent/RU2769741C1/ru active
- 2018-11-28 CA CA3121282A patent/CA3121282A1/en not_active Abandoned
-
2021
- 2021-05-27 US US17/331,907 patent/US20210288714A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2387080C1 (ru) * | 2008-08-28 | 2010-04-20 | Общество с ограниченной ответственностью "Технологическая лаборатория" | Система видеомониторинга и связи |
US20150236778A1 (en) * | 2014-02-17 | 2015-08-20 | Ubiqomm Llc | Broadband access to mobile platforms using drone/uav background |
US20180218617A1 (en) * | 2015-11-02 | 2018-08-02 | At&T Intellectual Property I, L.P. | Intelligent drone traffic management via radio access network |
US20170285633A1 (en) * | 2016-04-01 | 2017-10-05 | Lntel Corporation | Drone control registration |
CN107204130A (zh) * | 2017-07-14 | 2017-09-26 | 哈尔滨工业大学(威海) | 民用无人机空管系统及采用该系统实现对无人机进行飞行控制的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3876216A1 (en) | 2021-09-08 |
JP2022509784A (ja) | 2022-01-24 |
CA3121282A1 (en) | 2020-06-04 |
KR20210109523A (ko) | 2021-09-06 |
AU2018450592A1 (en) | 2021-06-24 |
CN110651435B (zh) | 2022-06-21 |
CN110651435A (zh) | 2020-01-03 |
EP3876216A4 (en) | 2022-04-27 |
WO2020107256A1 (zh) | 2020-06-04 |
US20210288714A1 (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2769741C1 (ru) | Система и способ связи для беспилотного летательного аппарата | |
US20220118870A1 (en) | Unmanned aerial vehicle drive testing and mapping of carrier signals | |
US11398954B2 (en) | Managing network communication of an unmanned autonomous vehicle | |
US11962390B2 (en) | Methods, apparatus and system for extended wireless communications | |
Arafat et al. | Routing protocols for unmanned aerial vehicle networks: A survey | |
US9854408B2 (en) | Deploying cell on drone or droneap to mitigate radio capacity and coverage issues | |
Bulut et al. | Trajectory optimization for cellular-connected UAVs with disconnectivity constraint | |
Sahingoz | Mobile networking with UAVs: Opportunities and challenges | |
Mukherjee et al. | Flying ad hoc networks: A comprehensive survey | |
US9590721B2 (en) | Systems and methods for using different beam widths for communications between balloons | |
US10341010B2 (en) | Mobility and power management for high altitude platform (HAP) communication systems | |
US9537561B1 (en) | Optimization of communications with UAVS using terrestrial cellular networks | |
US8682265B2 (en) | Radio communication apparatus, radio network system, and data link construction method used for the same | |
Sundaresan et al. | SkyLiTE: End-to-end design of low-altitude UAV networks for providing LTE connectivity | |
WO2019204997A1 (zh) | 一种自主移动平台、控制端以及自主移动平台系统 | |
US20210144562A1 (en) | Integrated access and backhaul from high altitude platforms | |
US20230336239A1 (en) | Location dependent relay node configuration | |
CN110830350B (zh) | 通信系统 | |
EP4169296B1 (en) | Reduced forwarding rules for aerospace network nodes | |
US11012874B1 (en) | Method and apparatus for detecting and responding to a disruption in communication services | |
Xing et al. | Network formation game for routing in unmanned aerial vehicle networks | |
Vlasceanu et al. | Multi-UAV architecture for ground data collection | |
KR20200094241A (ko) | 다중 드론 시스템 환경에서의 네트워크 자가 복구 방법 및 그에 따른 다중 드론 시스템 | |
WO2023045805A1 (zh) | 天线选择方法、装置、基带处理单元、基站及存储介质 | |
US20220190909A1 (en) | Aerial vehicle for establishing a cellular network |