WO2023045805A1 - 天线选择方法、装置、基带处理单元、基站及存储介质 - Google Patents

天线选择方法、装置、基带处理单元、基站及存储介质 Download PDF

Info

Publication number
WO2023045805A1
WO2023045805A1 PCT/CN2022/118513 CN2022118513W WO2023045805A1 WO 2023045805 A1 WO2023045805 A1 WO 2023045805A1 CN 2022118513 W CN2022118513 W CN 2022118513W WO 2023045805 A1 WO2023045805 A1 WO 2023045805A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
selection method
target
airborne terminal
processing unit
Prior art date
Application number
PCT/CN2022/118513
Other languages
English (en)
French (fr)
Inventor
杨军利
韩宏帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023045805A1 publication Critical patent/WO2023045805A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the embodiments of the present application relate to but are not limited to the communication field, for example, relate to an antenna selection method and device, a baseband processing unit, a base station, and a storage medium.
  • the satellite communication scheme has a wide coverage and can cover land and sea areas, but the deployment cost and operation cost are high, and the network time is prolonged; while the air-to-ground (Air To Ground, ATG) communication system scheme can only be used in Deployed in mainland China, it has the advantages of low cost, fast speed, small delay, and fast technology iteration and upgrade.
  • ATG Air To Ground
  • the ATG communication system needs to cover the existing high-altitude routes with the help of the ground base station system, and provide wireless access data bandwidth to the aircraft in flight, which can realize real-time return of aircraft front cabin data, real-time monitoring of aircraft monitoring status, and real-time monitoring of aircraft passengers and on-board aircraft.
  • Flight attendants provide high-altitude Internet services with large bandwidth, high reliability, and low latency.
  • the main purpose of the embodiment of the present application is to propose an antenna selection method, device, baseband processing unit, base station and storage medium, which can enable users to use high-quality wireless communication services and meet user needs.
  • the embodiment of the present application provides an antenna selection method, which is applied to a baseband processing unit, and the baseband processing unit is connected to an antenna module, and the antenna module is used to provide wireless communication coverage for aircraft routes, and the antenna module It includes a first antenna and a second antenna, the first coverage of the first antenna is different from the second coverage of the second antenna, and the method includes: acquiring the first position information of the antenna module and the airborne The second position information of the terminal device; generating the offset angle value of the airborne terminal device according to the first position information and the second position information; A target antenna for wireless communication with the airborne terminal device, where the target antenna is the first antenna or the second antenna.
  • the embodiment of the present application provides an antenna selection device, including: an acquisition module, configured to acquire the first location information of the antenna module and the second location information of the airborne terminal equipment; a generation module, configured to The position information and the second position information generate an offset angle value of the airborne terminal device; a determining module, configured to determine an offset angle value for communicating with the airborne terminal device according to the offset angle value and a preset boundary value A target antenna for wireless communication, where the target antenna is the first antenna or the second antenna.
  • the embodiment of the present application provides a baseband processing unit, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor executes the computer program to implement the following: The antenna selection method described in the first aspect.
  • a base station includes the baseband processing unit described in the third aspect.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to execute the antenna selection method described in the first aspect.
  • FIG. 1 is a schematic diagram of a system architecture platform for performing an antenna selection method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of an antenna selection method provided by an embodiment of the present application.
  • Fig. 3 is a flow chart of determining the target antenna when the location information cannot be obtained in the antenna selection method provided by an embodiment of the present application;
  • Fig. 4 is a flow chart of determining the target antenna when the RSRP from the airborne terminal device is not received in the antenna selection method provided by an embodiment of the present application;
  • FIG. 5 is a flow chart of an antenna selection method provided in another embodiment of the present application.
  • FIG. 6 is a schematic diagram of an antenna selection device provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a baseband processing unit performing an antenna selection method provided by an embodiment of the present application.
  • the Air To Ground (ATG) communication system solution adopts wireless access technology and customized wireless transceiver equipment. Telecom operators set up ground base stations along flight routes or specific airspaces to cover high altitudes (the coverage height of a single base station is 6000-12000 meters, covering a radius of 100 kilometers), it can provide aircraft with a maximum wireless data bandwidth of more than 100Mbps for different altitude routes, so that passengers in the cabin can access the external Internet.
  • ATG Air To Ground
  • the base station includes a baseband processing unit (Building Base band Unit, referred to as BBU) and an active antenna unit (Active Antenna Unit, referred to as AAU) connected to the BBU.
  • BBU Building Base band Unit
  • AAU Active Antenna Unit
  • the main function of the BBU is to process the baseband digital signal and to control the AAU.
  • AAU is a combination of RRU (Remote Radio Unit) and antenna. It integrates multiple T/R units.
  • AAU includes main functions such as RF modulation, RF transmission, RF reception, RF demodulation and RF control.
  • RSRP Reference Signal Receiving Power, Reference Signal Received Power
  • Core network It is the core of the mobile network. It establishes a reliable, secure network connection for end users and provides access to its services.
  • the core domain handles various basic functions in mobile networks, such as connectivity and mobility management, authentication and authorization, user data management and policy management, etc.
  • the Internet also known as the international network, refers to a huge network connected in series between networks. These networks are connected by a set of common protocols to form a logically single huge international network. In this network, there are Network equipment such as switches and routers, various connection links, a wide variety of servers, and countless computers and terminals.
  • Embodiments of the present application provide an antenna selection method, device, baseband processing unit, base station, and storage medium.
  • the antenna selection method includes but is not limited to the following steps: the baseband processing unit can obtain the first position information of the active antenna processing module and the on-board The second position information of the terminal device, generating the offset angle value of the airborne terminal device according to the first position information and the second position information, and determining the value for wireless communication with the airborne terminal device according to the offset angle value and the preset boundary value
  • the target antenna is the first antenna or the second antenna.
  • the target antenna is determined according to the offset angle value of the airborne terminal equipment relative to the active antenna processing module, so that users can continue to use high-quality wireless communication services to meet user needs on the aircraft.
  • FIG. 1 is a functional block diagram of a system architecture platform applicable to an embodiment of the present application.
  • the system architecture platform includes an airborne terminal device 110, a plurality of base stations 120 for communicating with the airborne terminal device 110, a core network 130 connected to the base station 120, and an Internet 140 connected to the core network 130, multiple The position of a base station 120 is set according to the aircraft route.
  • the base station 120 includes a baseband processing unit 121 and an antenna module 122 connected to the baseband processing unit 121.
  • the antenna module 122 is used for wireless communication coverage of the aircraft route.
  • the antenna module 122 includes a first Antenna 1221 and second antenna 1222, the first coverage of the first antenna 1221 is different from the second coverage of the second antenna 1222, the baseband processing unit 121 has the function of controlling the antenna module 122, and the airborne terminal device 110 is set in On the aircraft, it is used to provide service processing capabilities for users on the aircraft and the aircraft in real time, and can transmit information back to the base station 120 on the ground.
  • each base station 120 is mainly responsible for covering the area above the base station 120 and the air area between two base stations 120 in the same direction, so that the aircraft can be completely monitored. The signal of the route is fully covered.
  • the antenna panel corresponding to the first antenna 1221 and the antenna panel corresponding to the second antenna 1222 are arranged on different planes, which means that the antenna panel corresponding to the first antenna 1221 and the antenna panel corresponding to the second antenna 1222 are set according to actual conditions A certain angle to expand the total coverage of the first antenna 1221 and the second antenna 1222.
  • the antenna module 122 may be an active antenna unit, or may include a passive antenna unit and an RRU (Remote Radio Unit, remote radio unit), etc., which are not specifically limited in this embodiment.
  • RRU Remote Radio Unit, remote radio unit
  • first coverage area and the second coverage area may at least partially overlap, or may not overlap, which is not specifically limited in this embodiment.
  • the present embodiment does not limit the number of antennas provided in the antenna module 122.
  • it may be the two antennas disclosed in this embodiment.
  • the angles of the two antennas are different, or it may be three antennas.
  • the three antennas The angles between the two antennas may be different, or the angles of two antennas may be the same, and the angles of the other antennas may be different.
  • the antenna module 122 includes an AAU
  • the first antenna 1221 includes the first antenna 1221 array
  • the second antenna 1222 includes the second antenna 1222 array
  • the first antenna 1221 and the second antenna 1222 array The angle can be adjusted; or, when the antenna module 122 includes two AAUs, then the first antenna 1221 is one AAU, and the second antenna 1222 is another AAU, and the angle between the two AAUs can be set according to the actual situation.
  • the first antenna array 1221 includes several antenna elements
  • the second antenna array 1222 also includes several antenna elements, and this embodiment does not specifically limit the number of antenna elements.
  • the airborne terminal device 110 can be installed on a helicopter as well as on an airplane, which is not specifically limited in this embodiment.
  • the m antenna elements of the AAU can be physically divided into x top antennas (the first antenna 1221) and y
  • the bottom antenna (the second antenna 1222) the antenna element of the top antenna is inclined upwards, forming an angle of 45 degrees with the AAU antenna panel; the antenna element of the bottom antenna is perpendicular to the AAU antenna panel, and the antenna element of the top antenna is inclined upward to solve the problem of the base station 120 just above the area coverage problem.
  • the first AAU can be set at an angle of 45 degrees to the second AAU, which can also solve the problem of coverage of the area directly above the base station 120 .
  • the system architecture platform is applied to 3G cellular communications; for example, Code Division Multiple Access (CDMA for short), EVD0, Global System for Mobile Communications (Global System for Mobile Communications, GSM for short) )/General Packet Radio Service (GPRS for short), or 4G cellular communication, such as Long Term Evolution (LTE for short); or, 5G cellular communication; or, the subsequent evolution of the mobile communication network, this implementation
  • CDMA Code Division Multiple Access
  • EVD0 Code Division Multiple Access
  • EVD0 EVD0
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • 4G cellular communication such as Long Term Evolution (LTE for short)
  • LTE Long Term Evolution
  • 5G cellular communication 5G cellular communication
  • FIG. 1 does not constitute a limitation to the embodiment of the present application, and may include more or less components than those shown in the illustration, or combine some components, or have different Part placement.
  • Figure 2 is a flowchart of an antenna selection method provided by an embodiment of the present application.
  • the antenna selection method is applied to the BBU in the above-mentioned system architecture platform to select and control the antenna in the antenna module, and the antenna
  • the selection method includes but not limited to step S100, step S200 and step S300.
  • Step S100 acquiring the first location information of the antenna module and the second location information of the airborne terminal equipment
  • Step S200 generating an offset angle value of the airborne terminal device according to the first position information and the second position information;
  • Step S300 determining a target antenna for wireless communication with the airborne terminal device according to the offset angle value and the preset boundary value, where the target antenna is the first antenna or the second antenna.
  • the baseband processing unit obtains the first location information reported by the base station corresponding to the antenna module and the second location information of the airborne terminal device, and then calculates the relative location of the airborne terminal device according to the first location information and the second location information. Based on the offset angle value of the base station corresponding to the antenna module, and then determine the target antenna for wireless communication with the airborne terminal device according to the offset angle value and the preset boundary value, the target antenna is the first antenna or the second antenna. The target antenna is determined according to the offset angle value of the airborne terminal equipment relative to the antenna module, so that users can continue to use high-quality wireless communication services and meet user needs on the aircraft.
  • the preset boundary value is a boundary value preset and determined according to the coverage ranges of the first antenna and the second antenna, and the boundary value is set according to the coverage capabilities of the first antenna and the second antenna. Not specifically limited.
  • the baseband processing unit determines that the target antenna is the first Antenna, the first antenna of the control antenna module is connected to the airborne terminal equipment in the aircraft, so that the airborne terminal equipment can be connected to the first antenna with better coverage, so as to provide users on the aircraft with high-quality performance
  • the baseband processing unit moves the target antenna from the first The first antenna is switched to the second antenna, that is, the second antenna of the antenna module is controlled to connect with the airborne terminal equipment, so that the airborne terminal equipment can be connected with the second antenna with better coverage, so as to continuously provide users with high-quality performance wireless communication services to meet the needs of users on the aircraft
  • the antenna selection method further includes but does not It is limited to step S310 and step S320.
  • Step S310 determining the reference signal coverage angle value according to the RSRP
  • Step S320 determining the target antenna according to the reference signal coverage angle value and the preset reference signal coverage boundary value.
  • the antenna selection strategy based on the reference signal is adopted, and the reference signal covers the angle value Defined as ⁇ , the reference signal of the first antenna and the reference signal coverage boundary value of the second antenna are defined as ⁇ , the baseband processing unit selects the airborne terminal equipment according to the situation of the reference signal coverage angle value ⁇ and the reference signal coverage boundary value ⁇ connected target antenna.
  • the baseband processing unit determines that the target antenna is the first antenna, and controls the antenna module.
  • the first antenna is connected to the airborne terminal equipment in the aircraft, so that the airborne terminal equipment can be connected to the first antenna with better coverage, so as to provide users on the aircraft with high-quality wireless communication services.
  • the second antenna is connected to the airborne terminal equipment, so that the airborne terminal equipment can be connected to the second antenna with better coverage, so as to continuously provide users with high-quality wireless communication services and meet the needs of users on the aircraft.
  • the antenna selection method further includes but not limited to step S410.
  • Step S410 in the case of failure to obtain the first location information and/or the second location information, and failure to receive the RSRP from the airborne terminal device, determine that the second antenna is the target antenna, and the second coverage of the second antenna is greater than The first coverage area of the first antenna is large.
  • the baseband processing unit may determine that the target antenna is the default antenna
  • the range covered by the second antenna is the horizontal range of the base station facing the direction of the aircraft route, that is, the area in the normal direction of the antenna panel of the corresponding antenna module of the base station
  • the coverage range of the first antenna is the area above the base station, that is, the area of the base station In the upper area of the corresponding antenna module, in this case, the coverage of the second antenna is wider than that of the first antenna, and the second antenna with a wider coverage can be set as the default antenna.
  • the antenna selection method is described below through specific embodiments.
  • the antenna selection method includes but not limited to steps S501 to S510.
  • Step S501 respectively connecting with the AAU and the airborne terminal equipment
  • Step S502 periodically receiving the first location information and the second location information reported from the AAU and the airborne terminal equipment;
  • Step S503 judging whether the first location information and the second location information are valid, if yes, execute step S504, if not, execute step S505;
  • Step S504 calculating an offset angle value of the airborne terminal device relative to the antenna module according to the first position information and the second position information;
  • Step S505 judging whether the offset angle value is less than or equal to the preset boundary value, if yes, execute step S506, if not, execute step S508;
  • Step S506 determining the second antenna as the target antenna (the range covered by the second antenna is the horizontal range of the base station facing the direction of the aircraft route);
  • Step S507 determining the first antenna as the target antenna (the range covered by the first antenna is the upper area of the base station);
  • Step S508 judging whether the RSRP reported from the airborne terminal device is valid, if yes, execute step S509, if not, execute step S510;
  • Step S509 judging whether the reference signal coverage angle value determined by RSRP is less than or equal to the preset reference signal coverage boundary value, if yes, perform step S506, if not, perform step S507;
  • Step S510 sending the target antenna to the physical layer, so that the AAU is connected to the airborne terminal device through the target antenna.
  • the target antenna for communicating with the onboard terminal device is determined by calculating the offset angle of the onboard terminal device relative to the antenna module, so that users can continue to use high-quality wireless communication services to meet the needs of users on the aircraft .
  • An embodiment of the present application also provides an antenna selection device 600.
  • the generation module 620 is used to generate the offset angle value of the airborne terminal device according to the first position information and the second position information;
  • the determination module 630 is used to generate the offset angle value according to the offset angle value And the preset boundary value determines a target antenna for wireless communication with the airborne terminal device, where the target antenna is the first antenna or the second antenna.
  • the determination module 630 is also used to determine that the first antenna is the target antenna when the offset angle value is greater than the preset boundary value; and determine that the second antenna is the target antenna when the offset angle value is less than or equal to the preset boundary value antenna.
  • the determining module 630 is further configured to determine the reference signal coverage angle value according to the RSRP when the acquisition of the first position information and/or the second position information fails, and the reference signal received power RSRP from the airborne terminal equipment is received; The signal coverage angle value and the preset reference signal coverage boundary value determine the target antenna.
  • the determination module 630 is also used to determine that the first antenna is the target antenna when the reference signal coverage angle value is greater than the reference signal coverage boundary value; when the reference signal coverage angle value is less than or equal to the reference signal coverage boundary value, determine the second The second antenna is the target antenna.
  • the determination module 630 is further configured to determine that the second antenna is the target antenna when the acquisition of the first location information and/or the second location information fails, and the reception of the RSRP from the airborne terminal equipment fails, and the second coverage of the second antenna is The range is greater than the first coverage range of the first antenna.
  • the antenna selection device 600 and the antenna selection method in the above-mentioned embodiments have the same inventive idea, use the same technical means, solve the same problem, and can achieve the same technical effect, and will not be repeated here.
  • the baseband processing unit 700 includes a memory 720 , a processor 710 and a computer program stored in the memory 720 and operable on the processor 710 .
  • the processor 710 and the memory 720 may be connected via a bus or in other ways.
  • the memory 720 can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory 720 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 720 may optionally include memory located remotely from the processor, and these remote memories may be connected to the processor through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to realize the antenna selection method of the above-mentioned embodiment are stored in the memory 720, and when executed by the processor 710, the antenna selection method in the above-mentioned embodiment is executed, for example, the above-described FIG. 2 is executed.
  • An embodiment of the present application also provides a base station, including the baseband processing unit in the above embodiment, the technical means used by the base station, the technical problems solved and the achieved effects are the same as those of the base station in the above embodiment, here No longer.
  • an embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, by the above-mentioned Execution by a processor in the communication device in the embodiment can cause the processor to execute the antenna selection method corresponding to the baseband processing unit side in the above embodiment, for example, execute the method steps S100 to S300 in FIG. 2 described above, FIG. The method steps S310 to S320 in 3, the method steps S410 in FIG. 4 , and the method steps S501 to S510 in FIG. 5 .
  • the embodiment of the present application includes: the baseband processing unit that executes the antenna selection method is connected to the antenna module, the antenna module is used for wireless communication coverage of the aircraft route, the antenna module includes a first antenna and a second antenna, and the first coverage of the first antenna The range is different from the second coverage area of the second antenna.
  • the baseband processing unit can obtain the first location information of the antenna module and the second location information of the airborne terminal equipment, and generate the airborne terminal equipment according to the first location information and the second location information.
  • the offset angle value, and determine the target antenna for wireless communication with the airborne terminal device according to the offset angle value and the preset boundary value, and the target antenna is the first antenna or the second antenna.
  • the target antenna is determined according to the offset angle value of the airborne terminal equipment relative to the antenna module, so that users can continue to use high-quality wireless communication services and meet user needs on the aircraft.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了天线选择方法、装置、基带处理单元、基站及存储介质,该天线选择方法包括:基带处理单元能够获取天线模块的第一位置信息和机载终端设备的第二位置信息(S100),根据第一位置信息和第二位置信息生成机载终端设备的偏移角度值(S200),根据偏移角度值以及预设边界值确定用于与机载终端设备进行无线通信的目标天线,目标天线为第一天线或者第二天线(S300)。

Description

天线选择方法、装置、基带处理单元、基站及存储介质
相关申请的交叉引用
本申请基于申请号为202111126970.2、申请日为2021年09月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信领域,例如涉及天线选择方法、装置、基带处理单元、基站及存储介质。
背景技术
目前,航空通信主要的技术方案有两种,一种是卫星通信方案,一种是空地宽带通信方案。其中,卫星通信方案覆盖范围广,能够对陆地和海洋区域进行覆盖,但部署成本和运营成本高,而且网络时延长;而地空宽带(Air To Ground,简称ATG)通信系统方案虽然仅能在大陆地区部署,但具有成本低、速率快、时延小、技术迭代升级快等优势。
ATG通信系统需要借助地面基站系统覆盖现有的高空航线,给飞行中的飞机提供无线接入数据带宽,可以实现飞机前舱数据的实时回传、飞机监控状态的实时监控、飞机上乘客和机上空乘人员提供大带宽、高可靠、低时延的高空上网服务等。但现有的ATG通信系统中存在覆盖盲区,当飞机处于覆盖盲区时无线通信的质量性能较差,无法满足用户使用需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例的主要目的在于提出天线选择方法、装置、基带处理单元、基站及存储介质,能够使得用户使用高质量性能的无线通信服务,满足用户使用需求。
第一方面,本申请实施例提供了一种天线选择方法,应用于基带处理单元,所述基带处理单元与天线模块连接,所述天线模块用于对飞机航路进行无线通信覆盖,所述天线模块包括第一天线和第二天线,所述第一天线的第一覆盖范围与所述第二天线的第二覆盖范围不同,所述方法包括:获取所述天线模块的第一位置信息和机载终端设备的第二位置信息;根据所述第一位置信息和所述第二位置信息生成所述机载终端设备的偏移角度值;根据所述偏移角度值以及预设边界值确定用于与所述机载终端设备进行无线通信的目标天线,所述目标天线为所述第一天线或者所述第二天线。
第二方面,本申请实施例提供了天线选择装置,包括:获取模块,用于获取天线模块的第一位置信息和机载终端设备的第二位置信息;生成模块,用于根据所述第一位置信息和所述第二位置信息生成所述机载终端设备的偏移角度值;确定模块,用于根据所述偏移角度值以及预设边界值确定用于与所述机载终端设备进行无线通信的目标天线,所述目标天线为所述第一天线或者所述第二天线。
第三方面,本申请实施例提供了一种基带处理单元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的天线选择方法。
第四方面,一种基站,包括第三方面所述的基带处理单元。
第五方面,一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行第一方面所述的天线选择方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图1是本申请一个实施例提供的用于执行天线选择方法的系统架构平台的示意图;
图2是本申请一个实施例提供的天线选择方法的流程图;
图3是本申请一个实施例提供的天线选择方法中无法获取位置信息的情况下确定目标天线的流程图;
图4是本申请一个实施例提供的天线选择方法中没有接收到来自所述机载终端设备的RSRP的情况下确定目标天线的流程图;
图5是本申请另一个实施例提供的天线选择方法的流程图;
图6是本申请一个实施例提供的天线选择装置的示意图;
图7是本申请一个实施例提供的执行天线选择方法的基带处理单元的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
首先,对本申请中涉及的若干名词进行解释:
地空宽带(Air To Ground,简称ATG)通信系统方案采用无线接入技术,采用定制的无线收发设备,电信运营商沿飞行航路或特定空域架设地面基站,向高空进行覆盖(单个基站覆盖高度为6000-12000米,覆盖半径100公里),可以为不同高度层航线的飞机提供最高100Mbps以上的无线数据带宽,从而使机舱内的乘客可以访问外部互联网。
基站包括基带处理单元(Building Base band Unite,简称BBU)和与BBU连接的有源天线单元(Active Antenna Unit,简称AAU)。其中BBU的主要作用,是负责基带数字信号处理,具有对AAU进行控制的功能。AAU是RRU(Remote Radio Unit)与天线的组合,集成了多个T/R单元,AAU包括:射频调制、射频发射、射频接收、射频解调制及射频控制等等主要功能。
RSRP(Reference Signal Receiving Power,参考信号接收功率)是LTE网络中可以代表无线信号强度的关键参数以及物理层测量需求之一,是在某个符号内承载参考信号的所有RE(资源粒子)上接收到的信号功率的平均值。
核心网(5GC):是移动网络的核心。它为最终用户建立可靠、安全的网络连接,并提供对其服务的访问。核心域处理移动网络中的各种基本功能,例如连接性和移动性管理、身份验证和授权、用 户数据管理和策略管理等。
互联网(Internet),又称国际网络,指的是网络与网络之间所串连成的庞大网络,这些网络以一组通用的协议相连,形成逻辑上的单一巨大国际网络,在这个网络中有交换机、路由器等网络设备、各种不同的连接链路、种类繁多的服务器和数不尽的计算机、终端。
本申请实施例提供了天线选择方法、装置、基带处理单元、基站及存储介质,该天线选择方法包括但不限于如下步骤:基带处理单元能够获取有源天线处理模块的第一位置信息和机载终端设备的第二位置信息,根据第一位置信息和第二位置信息生成机载终端设备的偏移角度值,根据偏移角度值以及预设边界值确定用于与机载终端设备进行无线通信的目标天线,目标天线为第一天线或者第二天线。根据机载终端设备相对于有源天线处理模块的偏移角度值确定目标天线,使得用户能够持续使用高质量性能的无线通信服务,满足飞机上的用户使用需求。
下面结合附图,对本申请实施例的技术方案进行介绍。
图1是本申请实施例适用的一种系统架构平台的功能框图。在一个实施例中,系统架构平台包括机载终端设备110、多个用于与机载终端设备110通信的基站120、与基站120连接的核心网130以及与核心网130连接的互联网140,多个基站120的位置根据飞机航路进行设置,该基站120包括基带处理单元121、与基带处理单元121连接的天线模块122,该天线模块122用于对飞机航路进行无线通信覆盖天线模块122包括第一天线1221和第二天线1222,第一天线1221的第一覆盖范围与第二天线1222的第二覆盖范围不同,该基带处理单元121具有控制天线模块122的功能,另外机载终端设备110设置在飞机上,用于为能实时未飞机和飞机上的用户提供业务处理能力,并可以将信息传输回地面基站120。
可以理解的是,由于基站120是根据飞机航路进行设置,每个基站120主要负责对基站120上方区域和在同一个方向上的两个基站120之间的空中区域进行覆盖,从而能够完成对飞机航路的信号全覆盖。
可以理解的是,第一天线1221对应的天线面板和第二天线1222对应的天线面板设置在非同一平面,表征第一天线1221对应的天线面板与第二天线1222对应的天线面板根据实际情况设置一定角度,以扩大第一天线1221和第二天线1222总的覆盖范围。
需要说明的是,天线模块122可以是有源天线单元,也可以包括无源天线单元及RRU(Remote Radio Unit,射频拉远单元)等,本实施例对其不作具体限定。
需要说明的是,第一覆盖范围与第二覆盖范围可以是至少部分重叠,也可以是没有重叠部分的,本实施例对其不作具体限定。
需要说明的是,本实施例不限定天线模块122中所设置的天线数量,例如可以是本实施例中公开的两个天线,两个天线的角度不同,也可以是三个天线,三个天线之间的角度可以均不同,也可以其中两个天线的角度相同,另外一各天线的角度不相同。
需要说明的是,当天线模块122包括一个AAU,那么第一天线1221包括第一天线1221阵,第二天线1222包括第二天线1222阵,第一天线1221阵和第二天线1222阵之间的角度可以调整;或者,当天线模块122包括两个AAU,那么第一天线1221则为一个AAU,第二天线1222则另一个AAU,两个AAU之间的角度可以根据实际情况设置,本实施例不作具体限定。可以理解的是,第一天线1221阵包括若干个天线阵子,第二天线1222阵也包括若干个天线阵子,本是实施例对天线阵子的个数不作具体限定。
需要说明的是,机载终端设备110除了可以设置在飞机上,还可以设置在直升机上,本实施例对 其不作具体限定。
例如,在天线模块122包括一个AAU的场景下,为了克服5G ATG通信系统所面临的覆盖盲区问题,可以将AAU的m个天线阵子物理区分为x个顶部天线(第一天线1221)和y个底部天线(第二天线1222),顶部天线的天线阵子向上倾斜,与AAU天线面板成45度夹角;底部天线的天线阵子垂直于AAU天线面板,顶部天线的天线阵子向上倾斜能设置够解决基站120正上方的区域覆盖的问题。同理,第一AAU可以与第二AAU成45度夹角设置,也可以解决基站120正上方的区域覆盖的问题。
本领域技术人员可以理解的是,该系统架构平台应用于3G蜂窝通信;例如,码分多址(Code Division Multiple Access,简称CDMA)、EVD0、全球移动通信系统(Global System for Mobile Communications,简称GSM)/通用分组无线服务(General Packet Radio Service,简称GPRS),或者4G蜂窝通信,例如长期演进(Long Term Evolution,简称LTE);或者,5G蜂窝通信;或者,后续演进的移动通信网络,本实施例对其不作具体限定。
本领域技术人员可以理解的是,图1中示出的系统架构平台并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述系统架构平台,下面提出本申请的天线选择方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的天线选择方法的流程图,该天线选择方法应用于上述系统架构平台中的BBU,对天线模块中的天线进行选择控制,并且该天线选择方法包括但不限于有步骤S100、步骤S200和步骤S300。
步骤S100,获取天线模块的第一位置信息和机载终端设备的第二位置信息;
步骤S200,根据第一位置信息和第二位置信息生成机载终端设备的偏移角度值;
步骤S300,根据偏移角度值以及预设边界值确定用于与机载终端设备进行无线通信的目标天线,目标天线为第一天线或者第二天线。
在一实施例中,基带处理单元获取天线模块对应基站上报的第一位置信息以及机载终端设备的第二位置信息,然后根据第一位置信息和第二位置信息计算得出机载终端设备相对于天线模块对应基站的偏移角度值,然后根据偏移角度值以及预设边界值确定用于与机载终端设备进行无线通信的目标天线,目标天线为第一天线或者第二天线。根据机载终端设备相对于天线模块的偏移角度值确定目标天线,使得用户能够持续使用高质量性能的无线通信服务,满足飞机上的用户使用需求。
可以理解的是,预设边界值为根据第一天线和第二天线的覆盖范围所预设确定的边界值,该边界值根据第一天线和第二天线的覆盖能力设置,本实施例对其不作具体限定。
在一实施例中,在偏移角度值大于预设边界值的情况下,即设置有该机载终端设备的飞机位于天线模块对应的基站的上方区域,那么基带处理单元确定目标天线为第一天线,控制天线模块的第一天线与飞机中的机载终端设备进行连接,使得机载终端设备能够与覆盖能力更好的第一天线连接,从而能够为该飞机上的用户提供高质量性能的无线通信服务,在偏移角度值小于或者等于预设边界值的情况下,即设置有该机载终端设备的飞机移动到天线模块对应的基站的斜上方区域,基带处理单元将目标天线从第一天线切换为第二天线,即控制天线模块的第二天线与机载终端设备进行连接,使得机载终端设备能够与覆盖能力更好的第二天线连接,从而能够持续为用户提供高质量性能的无线通信服务,满足飞机上的用户使用需求。
参照图3,在一实施例中,在获取第一位置信息和/或第二位置信息失败,且接收到来自机载终端设备的参考信号接收功率RSRP的情况下,天线选择方法还包括但不限于步骤S310和步骤S320。
步骤S310,根据RSRP确定参考信号覆盖角度值;
步骤S320,根据参考信号覆盖角度值与预设的参考信号覆盖边界值确定目标天线。
在一实施例中,在基站和机载终端设备上报的位置信息无效或无位置信息上报,且机载终端设备上报的有效的情况下,采用基于参考信号的天线选择策略,参考信号覆盖角度值定义为γ,将第一天线的参考信号与第二天线的参考信号覆盖边界值定义为ε,基带处理单元根据参考信号覆盖角度值γ和参考信号覆盖边界值ε的情况选择与机载终端设备连接的目标天线。
在一实施例中,在γ>ε的情况下,即设置有该机载终端设备的飞机位于天线模块对应的基站的上方区域,那么基带处理单元确定目标天线为第一天线,控制天线模块的第一天线与飞机中的机载终端设备进行连接,使得机载终端设备能够与覆盖能力更好的第一天线连接,从而能够为该飞机上的用户提供高质量性能的无线通信服务,在γ<=ε的情况下,即设置有该机载终端设备的飞机移动到天线模块对应的基站的斜上方区域,基带处理单元将目标天线从第一天线切换为第二天线,即控制天线模块的第二天线与机载终端设备进行连接,使得机载终端设备能够与覆盖能力更好的第二天线连接,从而能够持续为用户提供高质量性能的无线通信服务,满足飞机上的用户使用需求。
参照图4,在一实施例中,天线选择方法还包括但不限于步骤S410。
步骤S410,在获取第一位置信息和/或第二位置信息失败,且接收到来自机载终端设备的RSRP失败的情况下,确定第二天线为目标天线,第二天线的第二覆盖范围比第一天线的第一覆盖范围大。
在一实施例中,在基站和机载终端设备上报的位置信息无效或无位置信息上报,且机载终端设备上报的RSRP失效或无上报的情况下,基带处理单元可以确定目标天线为默认天线,例如第二天线覆盖的范围为基站面向飞机航路方向的水平范围,即可以是基站相应天线模块的天线面板法线方向的区域,第一天线的覆盖范围为基站的上方区域,即可以是基站相应天线模块的上方区域,在此情况下,第二天线的覆盖范围比第一天线广,可以将覆盖范围更广的第二天线设定为默认天线。
以下通过具体的实施例对天线选择方法进行说明。
参照图5,在一实施例中,天线选择方法包括但不限于步骤S501至S510。
步骤S501,分别与AAU和机载终端设备进行连接;
步骤S502,周期性接收来自AAU和机载终端设备上报的第一位置信息和第二位置信息;
步骤S503,判断第一位置信息和第二位置信息是否有效,若是,则执行步骤S504,若否,则执行步骤S505;
步骤S504,根据第一位置信息和第二位置信息计算得到机载终端设备相对于天线模块的偏移角度值;
步骤S505,判断偏移角度值是否小于等于预设边界值,若是,则执行步骤S506,若否,则执行步骤S508;
步骤S506,将第二天线确定为目标天线(第二天线覆盖的范围为基站面向飞机航路方向的水平范围);
步骤S507,将第一天线确定为目标天线(第一天线覆盖的范围为基站的上方区域);
步骤S508,判断来自机载终端设备上报的RSRP是否有效,若是,执行步骤S509,若否,执行步骤S510;
步骤S509,判断通过RSRP确定参考信号覆盖角度值是否小于等于预设的参考信号覆盖边界值,若是,执行步骤S506,若否,执行步骤S507;
步骤S510,将目标天线发送至物理层,以使AAU通过目标天线与机载终端设备进行连接。
本实施例通过计算机载终端设备相对于天线模块的偏移角度情况确定与机载终端设备进行通信连接的目标天线,使得用户能够持续使用高质量性能的无线通信服务,满足飞机上的用户使用需求。
基于上述天线选择方法,下面分别提出本申请的天线选择装置、基带处理单元、基站和计算机可读存储介质的各个实施例。
本申请的一个实施例还提供了一种天线选择装置600,如图6所示,天线选择装置600包括获取模块610、生成模块620和确定模块630,其中获取模块610用于获取天线模块的第一位置信息和机载终端设备的第二位置信息;生成模块620用于根据第一位置信息和第二位置信息生成机载终端设备的偏移角度值;确定模块630用于根据偏移角度值以及预设边界值确定用于与机载终端设备进行无线通信的目标天线,目标天线为第一天线或者第二天线。
确定模块630还用于在偏移角度值大于预设边界值的情况下,确定第一天线为目标天线;在偏移角度值小于或者等于预设边界值的情况下,确定第二天线为目标天线。
确定模块630还用于在获取第一位置信息和/或第二位置信息失败,且接收到来自机载终端设备的参考信号接收功率RSRP的情况下,根据RSRP确定参考信号覆盖角度值;根据参考信号覆盖角度值与预设的参考信号覆盖边界值确定目标天线。
确定模块630还用于在参考信号覆盖角度值大于参考信号覆盖边界值的情况下,确定第一天线为目标天线;在参考信号覆盖角度值小于或者等于参考信号覆盖边界值的情况下,确定第二天线为目标天线。
确定模块630还用于在获取第一位置信息和/或第二位置信息失败,且接收来自机载终端设备的RSRP失败的情况下,确定第二天线为目标天线,第二天线的第二覆盖范围比第一天线的第一覆盖范围大。
天线选择装置600与上述实施例中的天线选择方法为同一个发明点思想,使用相同的技术手段,解决相同的问题,且能够达到相同的技术效果,在此不再赘述。
本申请的一个实施例还提供了一种基带处理单元,如图7所示,基带处理单元700包括存储器720、处理器710及存储在存储器720上并可在处理器710上运行的计算机程序。
处理器710和存储器720可以通过总线或者其他方式连接。
存储器720作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器720可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器720可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述实施例的天线选择方法所需的非暂态软件程序以及指令存储在存储器720中,当被处理器710执行时,执行上述实施例中的天线选择方法,例如,执行以上描述的图2中的方法步骤S100至S300、图3中的方法步骤S310至S320、图4中的方法步骤S410、图5中的方法步骤S501至S510。
本申请的一个实施例还提供了一种基站,包括上述实施例中的基带处理单元,该基站所使用的技术手段、解决的技术问题以及达到的效果与上述实施例中的基站相同,在此不再赘述。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述实施例中通信设备中的一个处理器执行,可使得处理器执行上述实施例中的对应于基带处理单元侧的天线选择方法,例如,执行以上描述的图2中的方法步骤S100至S300、图3中的方法步骤S310至S320、图4中的方 法步骤S410、图5中的方法步骤S501至S510。
本申请实施例包括:执行天线选择方法的基带处理单元与天线模块连接,该天线模块用于对飞机航路进行无线通信覆盖,天线模块包括第一天线和第二天线,第一天线的第一覆盖范围与第二天线的第二覆盖范围不同,基带处理单元能够获取天线模块的第一位置信息和机载终端设备的第二位置信息,根据第一位置信息和第二位置信息生成机载终端设备的偏移角度值,根据偏移角度值以及预设边界值确定用于与机载终端设备进行无线通信的目标天线,目标天线为第一天线或者第二天线。根据机载终端设备相对于天线模块的偏移角度值确定目标天线,使得用户能够持续使用高质量性能的无线通信服务,满足飞机上的用户使用需求。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (12)

  1. 一种天线选择方法,应用于基带处理单元,所述基带处理单元与天线模块连接,所述天线模块用于对飞机航路进行无线通信覆盖,所述天线模块包括设置有第一天线和第二天线,所述第一天线的第一覆盖范围与所述第二天线的第二覆盖范围不同,所述方法包括:
    获取所述天线模块的第一位置信息和机载终端设备的第二位置信息;
    根据所述第一位置信息和所述第二位置信息生成所述机载终端设备的偏移角度值;
    根据所述偏移角度值以及预设边界值确定用于与所述机载终端设备进行无线通信的目标天线,所述目标天线为所述第一天线或者所述第二天线。
  2. 根据权利要求1所述的天线选择方法,其中,所述第一覆盖范围与所述第二覆盖范围至少部分重叠。
  3. 根据权利要求1所述的天线选择方法,其中,所述根据所述偏移角度以及预设边界值确定用于与所述机载终端设备进行无线通信的目标天线,包括:
    在所述偏移角度值大于预设边界值的情况下,确定所述第一天线为所述目标天线;
    在所述偏移角度值小于或者等于预设边界值的情况下,确定所述第二天线为所述目标天线。
  4. 根据权利要求1所述的天线选择方法,还包括:
    在获取所述第一位置信息和/或所述第二位置信息失败,且接收到来自所述机载终端设备的参考信号接收功率RSRP的情况下,根据所述RSRP确定参考信号覆盖角度值;
    根据所述参考信号覆盖角度值与预设的参考信号覆盖边界值确定所述目标天线。
  5. 根据权利要求4所述的天线选择方法,其中,所述根据所述参考信号覆盖角度值与预设的参考信号覆盖边界值确定所述目标天线,包括:
    在所述参考信号覆盖角度值大于所述参考信号覆盖边界值的情况下,确定所述第一天线为所述目标天线;
    在所述参考信号覆盖角度值小于或者等于所述参考信号覆盖边界值的情况下,确定所述第二天线为所述目标天线。
  6. 根据权利要求1所述的天线选择方法,还包括:在获取所述第一位置信息和/或所述第二位置信息失败,且接收来自所述机载终端设备的RSRP失败的情况下,确定所述第二天线为所述目标天线,所述第二天线的第二覆盖范围比所述第一天线的第一覆盖范围大。
  7. 根据权利要求1至6任意一项所述的天线选择方法,其中,所述第一天线用于覆盖所述天线模块的上方区域,所述第二天线用于覆盖所述天线模块面向飞机航路方向的水平范围。
  8. 根据权利要求7所述的天线选择方法,其中,
    当所述天线模块包括一个有源天线处理单元,所述第一天线包括第一天线阵,所述第二天线包括第二天线阵;
    或者,
    当所述天线模块包括两个有源天线处理单元,所述第一天线为一个所述有源天线处理单元,所述第二天线为另一个所述有源天线处理单元。
  9. 一种天线选择装置,包括:
    获取模块,用于获取天线模块的第一位置信息和机载终端设备的第二位置信息;
    生成模块,用于根据所述第一位置信息和所述第二位置信息生成所述机载终端设备的偏移角度值;
    确定模块,用于根据所述偏移角度值以及预设边界值确定用于与所述机载终端设备进行无线通信的目标天线,所述目标天线为所述第一天线或者所述第二天线。
  10. 一种基带处理单元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至8任意一项所述的天线选择方法。
  11. 一种基站,包括权利要求10所述的基带处理单元。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行权利要求1至8任意一项所述的天线选择方法。
PCT/CN2022/118513 2021-09-26 2022-09-13 天线选择方法、装置、基带处理单元、基站及存储介质 WO2023045805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111126970.2A CN115882915A (zh) 2021-09-26 2021-09-26 天线选择方法、装置、基带处理单元、基站及存储介质
CN202111126970.2 2021-09-26

Publications (1)

Publication Number Publication Date
WO2023045805A1 true WO2023045805A1 (zh) 2023-03-30

Family

ID=85720036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118513 WO2023045805A1 (zh) 2021-09-26 2022-09-13 天线选择方法、装置、基带处理单元、基站及存储介质

Country Status (2)

Country Link
CN (1) CN115882915A (zh)
WO (1) WO2023045805A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107786253A (zh) * 2016-08-26 2018-03-09 北京臻迪机器人有限公司 一种天线控制方法及装置
WO2020045006A1 (ja) * 2018-08-27 2020-03-05 Hapsモバイル株式会社 Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御
CN111698639A (zh) * 2019-03-15 2020-09-22 北京京东尚科信息技术有限公司 航线的信号覆盖的控制方法、系统、设备和存储介质
CN112490636A (zh) * 2020-11-20 2021-03-12 中国电子科技集团公司第五十四研究所 一种基于通视的机载天线自动切换方法
CN113055062A (zh) * 2019-12-11 2021-06-29 中兴通讯股份有限公司 航线通信方法、系统、计算机可读存储介质及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107786253A (zh) * 2016-08-26 2018-03-09 北京臻迪机器人有限公司 一种天线控制方法及装置
WO2020045006A1 (ja) * 2018-08-27 2020-03-05 Hapsモバイル株式会社 Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御
CN111698639A (zh) * 2019-03-15 2020-09-22 北京京东尚科信息技术有限公司 航线的信号覆盖的控制方法、系统、设备和存储介质
CN113055062A (zh) * 2019-12-11 2021-06-29 中兴通讯股份有限公司 航线通信方法、系统、计算机可读存储介质及电子设备
CN112490636A (zh) * 2020-11-20 2021-03-12 中国电子科技集团公司第五十四研究所 一种基于通视的机载天线自动切换方法

Also Published As

Publication number Publication date
CN115882915A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US11950111B2 (en) UAV modular redundant communication modems
US9859972B2 (en) Broadband access to mobile platforms using drone/UAV background
US11930372B2 (en) Communication control apparatus, communication apparatus, and communication control method
US10461842B2 (en) Open wireless architecture (OWA) unified airborne and terrestrial communications architecture
US20180367212A1 (en) Spatial router with dynamic queues
WO2021114828A1 (zh) 航线通信方法、系统、计算机可读存储介质及电子设备
EP3550737B1 (en) Air-to-ground communication system, method, and device
JP7452531B2 (ja) 通信制御装置、通信装置、及び通信制御方法
US20200186237A1 (en) Communication system for aircrafts
US20230073733A1 (en) User equipment location determination using different coverage types
US20230254801A1 (en) Tracking area code transmission in non-terrestrial networks
KR20220003014A (ko) 통합 무선 솔루션
EP4016859A1 (en) Improved uplink operation
US20230397155A1 (en) Height-Based Management of Wireless Device
WO2023045805A1 (zh) 天线选择方法、装置、基带处理单元、基站及存储介质
US10979916B2 (en) Mobile communications network
JPWO2020137915A1 (ja) 通信制御装置、通信装置、及びプロキシ装置
CN112188602A (zh) 一种功率控制方法及通信设备
WO2023201559A1 (en) Emergency messaging using mobile relay
WO2024011562A1 (en) Multiplexing and diversity for multi-aircraft emergency message relaying
KR102631820B1 (ko) Tvws 지향성 안테나를 이용한 원거리 통신 시스템 제어 방법
US20230413225A1 (en) Change of Height of Wireless Device
WO2024018780A1 (ja) 端末装置、情報処理装置、及び通信方法
EP4132211A1 (en) Application function node and communication method
KR20240041615A (ko) 셀룰라 기반의 항공기 통신 방법 및 그를 위한 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871853

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022871853

Country of ref document: EP

Effective date: 20240426