RU2765964C1 - Способы нанесения на стеклянные изделия покрытий из оксида титана - Google Patents

Способы нанесения на стеклянные изделия покрытий из оксида титана Download PDF

Info

Publication number
RU2765964C1
RU2765964C1 RU2021134824A RU2021134824A RU2765964C1 RU 2765964 C1 RU2765964 C1 RU 2765964C1 RU 2021134824 A RU2021134824 A RU 2021134824A RU 2021134824 A RU2021134824 A RU 2021134824A RU 2765964 C1 RU2765964 C1 RU 2765964C1
Authority
RU
Russia
Prior art keywords
glass products
glass
titanium
titanium oxide
cleaning
Prior art date
Application number
RU2021134824A
Other languages
English (en)
Inventor
Дмитрий Юрьевич Старцев
Original Assignee
Дмитрий Юрьевич Старцев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Юрьевич Старцев filed Critical Дмитрий Юрьевич Старцев
Priority to RU2021134824A priority Critical patent/RU2765964C1/ru
Application granted granted Critical
Publication of RU2765964C1 publication Critical patent/RU2765964C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Группа изобретений относится к области декорирования стекла и изделий из него, а именно к способам нанесения оксида титана на стеклянные изделия, и может быть использована в стекольной промышленности. Из камеры для напыления откачивают воздух до вакуума 0,02 Па и вращают корзину со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту. Затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА и время очистки 20 минут. При этом проводят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100-100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов. Затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0. В камеру напускают реактивный газ кислород с давлением 0,2 Па и при токе инверторных источников 130-150 А на стеклянные изделия наносят слой оксида титана в течение 4-25 минут. В другом варианте осуществления изобретения после очистки включают источник магнетронного напыления с установленными мишенями из титана ВТ1-0 и при давлении напускаемого газа аргона 0,05 Па на поверхность стеклянных изделий наносят отражающий слой титана в течение 15 минут при следующих параметрах: ток источников 9-10 А и напряжение 380-400 В. Обеспечивается повышение прочности декоративного покрытия. 3 н.п. ф-лы.

Description

Группа изобретений относится к области декорирования стекла и изделий из него, и может быть использована в стекольной промышленности на технологической стадии нанесения декоративных покрытий на стеклянные бытовые товары (рюмки, фужеры, бокалы, стаканы, вазы, кружки, тарелки и др.). [МПК C23C14/00, C23C16/00, C23C18/18]
Из уровня техники известен СПОСОБ ПРИГОТОВЛЕНИЯ ТИТАНОВЫХ ПОКРЫТИЙ [WO0022187 (A1) ― 2000-04-20], содержащего по меньшей мере один слой, выбранный из слоев, состоящих из нитрида титана TiN, слоев, состоящих из карбонитрида титана TiCN, слоев, состоящих из нитрида титана и другой металл M (Ti, M) N или Til-xMxN и слои, состоящие из карбонитрида титана и другого металла M (Ti, M) NC или Til-xMxNC /, в котором указанное покрытие наносится непрерывно и за один за одну операцию путем химического осаждения из паровой фазы с помощью плазмы (PACVD) из газовой смеси, содержащей восстановительный газ, водород, хлорид титана.
Недостатком аналога является недостаточная прочность покрытия
Также из уровня техники известен СПОСОБ ПОЛУЧЕНИЯ НАНОПЛЕНКИ НИТРИДА ТИТАНА НА ПОВЕРХНОСТИ ПОДЛОЖКИ, ПОДЛОЖКИ С ПЛЕНКОЙ И ИХ НАНЕСЕНИЕ [CN108546929 (A) ― 2018-09-18], содержащий этапы, на которых: транспортируют субстрат в реакционную камеру через шлюзовую камеру загрузки, реакционную камеру откачивают до вакуума; пропускают инертный газ в реакционную камеру и наносят покрытие используя аммиачную плазму и газообразный источник титана, после чего выполняют несколько циклов промывки газом реакционной камеры, поддерживают температуру реакционной камеры на уровне 150-220 °C и выполняют реакцию осаждения атомного слоя нитрида титана с плазменным усилением для получения подложки с нанопленкой нитрида титана на поверхности.
Недостатком данного аналога является необходимость поддержания высокой температуры для осаждения атомного слоя титана.
Наиболее близким по технической сущности является СПОСОБ НАНЕСЕНИЯ НА ИЗДЕЛИЯ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ [RU2039844C1, опубл. 20.07.1995], преимущественно покрытий на основе оксидов титана, хрома, вольфрама, циркония, гафния или ванадия, а также фаз внедрения, выбранных из ряда карбидов, нитридов и карбонитридов указанных металлов, включающий покрытие поверхности металлического или неметаллического материала путем распыления мишеней из активных металлов, их сплавов или композиционных материалов ионной бомбардировкой в тлеющем разряде в смеси инертного и реакционного газов при их раздельной подаче в реакционный объем, предварительно заполняемый инертным газом до давления (3,0 3,5) · 10-3 мм рт. ст. с последующим осаждением распыленных частиц на поверхность изделия, отличающийся тем, что реакционный газ подают в приповерхностную зону изделия, подогретого до 300 360 oС до установления в реакционном объеме давления (6,0 10) · 10 -3 мм рт. ст. время распыления контролируют в пределах, необходимых для получения декоративного эффекта заданной интенсивности и гаммы цветовых оттенков, а в качестве реакционного газа используют пары воды, диоксид углерода, воздух или смесь кислородсодержащих газов.
Основной технической проблемой прототипа является необходимость подогревания изделий до температуры 300-360 oС перед нанесением на них покрытий, что усложняет технологию нанесения покрытия, ограничивает применение материалов для нанесения на них покрытий с никой температурой плавления, а также увеличивает время, необходимое на осуществление технологической операции по нанесению на время нагрева и охлаждения изделия.
Задачей изобретения является устранение недостатков прототипа.
Техническим результатом изобретения является повышение прочности декоративного покрытия.
Указанный технический результат достигается за счет того, что способ нанесения оксид титана на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,02 Па и запускают вращение корзины со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 минут, при этом производят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100 – 100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0 при давлении газ аргона 0,2 Па и при токе инверторных источников 130-150 А на стеклянные изделия наносят слой оксид титана в течение 4-25 минут.
Указанный технический результат достигается за счет того, что способ нанесения оксид титана на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,02 Па и запускают вращение корзины со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 минут, при этом производят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100 – 100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают источник магнетронного напыления с установленными мишенями из титана ВТ1-0 и при давлении напускаемого газа аргона 0,05 Па, на поверхность стеклянных изделий наносят отражающий слой металла в течение 15 минут при следующих параметрах: ток источников 9-10 А, напряжение 380-400 В, затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0, в камеру напускают реактивный газ кислород с давлением 0,2 Па и при токе инверторных источников 130-150А на стеклянные изделия наносят слой оксид титана в течение 6-12 минут.
Указанный технический результат достигается за счет того, что способ нанесения оксид титана на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,02 Па и запускают вращение корзины со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 минут, при этом производят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100 – 100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0, в камеру напускают реактивный газ кислород с давлением 0,2 Па и при токе инверторных источников 130-150 А на стеклянные изделия наносят слой оксид титана в течение 15 минут.
Осуществление изобретения.
Первоначально проводят входной контроль сортовой посуды на предмет отбраковки изделий по причине сколов, нарушения геометрии, боя. Далее изделия поступают в цех гравировки, где производится нанесение гравированного узора автоматизированным способом на станках с программным управлением. Отгравированная посуда поступает в цех мойки, в котором изделия проходят этапы мойки, ополаскивания и сушки в секционной машине туннельного типа, например, МПС- 1600, для которой вода проходит подготовку с помощью установленной системы очистки OSMOS.
Прошедшую очистку поверхности посуда поступает на участок маскирования, на котором на внешнюю поверхность каждого изделия наносят в ручном режиме, с помощью станков намотки, маскируемый слой, шириной 2-3 см, из полиэтиленовой ленты, который обеспечивает четкую границу между участками поверхности изделия подлежащими и не подлежащими декорированию напылением. Остальная часть внешней поверхности изделий, не подлежащая декорированию напылением, маскируется пластиковыми формами, выполненными индивидуально для каждого ассортимента изделий. Подготовленная посуда поступает в цех напыления, в котором ее устанавливают в цилиндрические корзины из нержавеющей стали, выполненные по схеме планетарного вращения, при этом корзины могут быть выполнены в различных вариантах и содержать от одного до восьми носителей в каждой в зависимости от размера изделий. Собранные корзины, в количестве 10 штук включительно, устанавливают в посадочные места карусели камеры напыления вакуумной установки.
Для напыления используется установка вакуумного напыления VTT-1200-V2-IS1_ARC1, в состав которой входят: откачной пост, камера напыления, стойка управления, стойка инверторных блоков питания источника ионной очистки и двух магнетронов, блок управления тремя инверторами дугового испарителя.
Откачной пост включает в себя: масляный пластинчато-роторный насос HENA 300 компании Pfeiffer, роторный насос Рутса OKTA 500 компании Pfeiffer, паромасляный диффузионный насос НВДМ-630. Рабочие жидкости: для насоса HENA 300 вакуумное масло Pfeiffer 3, для НВДМ-630 вакуумное масло ВМ-1С.
В камере напыления установлены: карусель с планетарным вращением подложки, с возможностью управления скоростью вращения карусели, источник ионной очистки щелевого типа, два магнетрона планарного типа, дуговой испаритель планарного типа. Установка обеспечивает управление технологическим процессом посредством графического интерфейса пользователя, как в автоматическом, так и в ручном режимах.
Рассмотрим технологии напыления оксид титана.
Целью напыления оксид титана является получение радужного декоративного покрытия. Решение поставленной задачи основано на интерференционном свойстве пленки оксид титана. С изменением толщины наносимого покрытия можно получать широкий спектр цветовой гаммы, с сохранением прозрачности на просвет в пределах от 60% до 90%. Кроме этого, различные точки поверхности подложки, находящиеся на различных расстояниях от источника напыления, обусловленных разнообразием геометрии стеклянной посуды, обогащают цветовые оттенки, позволяя создавать широкий спектр: серебристый, лимонный, желтый, багрянец, голубой, синий. Расширить декоративные свойства напыляемых стеклянных изделий, позволяет метод с нанесение промежуточного слоя из зеркально отражающего металла - титан, нержавеющая сталь. При этом, уменьшается прозрачность на свет стеклянных изделий до уровня 10%-60%, повышается равномерность основного цвета изделий, цветовая гамма воспроизводится как: черное золото, фуксия, аметист, ярко синий, голубой. Декоративный эффект радужного покрытия наиболее выражен при нанесении напыления на всю поверхность стеклянного изделия, без маскирования участков поверхности.
Технология напыления оксид титана для формирования покрытия типа «Радуга».
В камеру напыления загружают корзины, заряженные посудой. Из камеры откачивают воздух до вакуума 0,02 Па, запускают вращение карусели со скоростью 2 оборота в минуту, включают подачу газа аргона в режиме стабилизации давления 0,06 Па и включают источник ионной очистки поверхности подложки при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 минут. Затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0, в камеру напускается реактивный газ кислород со стабилизацией по давлению 0,2 Па и при токе инверторных источников 130-150 А наносят слой оксид титана в течение 15 мин. При этом получается прозрачно золотистое покрытие с уменьшением прозрачности исходных изделий на 10%. Изменяя время нанесения слоя оксид титана от 4 до 25 минут можно получить цвет изделий с основным оттенком, соответственно, в следующей последовательности: фиолетовый, синий, голубой, серебристый, золотой, лиловый.
Технология напыления оксид титана для формирования покрытия типа «Черное золото», «Фуксия», «Аметист», «Ярко синий», «Голубой».
В камеру напыления загружают корзины, заряженные посудой. Из камеры откачивают воздух до вакуума 0,02 Па, запускают вращение карусели со скоростью 2 оборота в минуту, включают подачу газа аргона в режиме стабилизации давления 0,06 Па и включают источник ионной очистки поверхности подложки при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА, время очистки 20 минут. Далее включают источники магнетронного напыления с установленными мишенями из титана ВТ1-0 и, при стабилизации давления напускаемого газа аргон 0,05 Па наносят отражающий слой металла в течение 15 минут при следующих параметрах: ток источников 9-10 А, напряжение 380-400 В. Затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0, в камеру напускают реактивный газ кислород со стабилизацией по давлению 0,2 Па и при токе инверторных источников 130-150 А наносят слой оксид титана в течение 6 минут. При этом получается золотистое покрытие с уменьшенной прозрачностью исходного стеклянного изделия на 70%, «черное золото». Увеличивая время нанесения оксид титана до 12 минут, можно получить цветовое покрытие, соответственно, «фуксия»-основной цвет багрянец, «аметист»-багрянец с появлением синего оттенка, «ярко синий», «голубой».
Указанный технический результат изобретения достигается за счет равномерной ионной очистки поверхности подложки стеклянного изделия от адсорбированных атомов и окислов пленки посредством вращения карусели со скоростью 2 оборота в минуту и бомбардировкой поверхности стекла в высоком вакууме ионами аргона с энергией 100 – 100000 эВ в едином вакуумном цикле с нанесением слоев покрытия, кроме того технический результат достигается интенсификацией процесса за счет нанесения металла дуговым испарителем при максимально возможной скорости; упрощением технологии, в отличии от магнетронного напыления, за счет исключения необходимости контроля и поддержания на определенном уровне процентного содержания аpгона и азота (кислорода) в газовой смеси во время формирования покрытия.

Claims (3)

1. Способ нанесения оксида титана на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,02 Па и вращают корзину со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА и время очистки 20 мин, при этом проводят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100-100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0, в камеру напускают реактивный газ кислород с давлением 0,2 Па и при токе инверторных источников 130-150 А на стеклянные изделия наносят слой оксида титана в течение 4-25 мин.
2. Способ нанесения оксида титана на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,02 Па и вращают корзину со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА и время очистки 20 мин, при этом проводят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100-100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают источник магнетронного напыления с установленными мишенями из титана ВТ1-0 и при давлении напускаемого газа аргона 0,05 Па на поверхность стеклянных изделий наносят отражающий слой титана в течение 15 мин при следующих параметрах: ток источников 9-10 А и напряжение 380-400 В, затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0, в камеру напускают реактивный газ кислород с давлением 0,2 Па и при токе инверторных источников 130-150А на стеклянные изделия наносят слой оксида титана в течение 6-12 мин.
3. Способ нанесения оксида титана на стеклянные изделия, характеризующийся тем, что из камеры для напыления откачивают воздух до вакуума 0,02 Па и запускают вращение корзины со стеклянными изделиями со скоростью вращения корзины 2 оборота в минуту, затем подают газ аргон при давлении 0,06 Па и включают источник ионной очистки поверхности стеклянных изделий при следующих параметрах: напряжение анода 3 кВ, ток анода 200 мА и время очистки 20 мин, при этом проводят очистку поверхностного слоя стеклянных изделий посредством бомбардировки в высоком вакууме ионами аргона с энергией 100-100000 эВ, которые распыляют поверхностный слой с удалением адсорбированных атомов и окислов, затем включают дуговой испаритель с установленной мишенью из титана ВТ1-0, в камеру напускают реактивный газ кислород с давлением 0,2 Па и при токе инверторных источников 130-150 А на стеклянные изделия наносят слой оксида титана в течение 15 мин.
RU2021134824A 2021-11-29 2021-11-29 Способы нанесения на стеклянные изделия покрытий из оксида титана RU2765964C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021134824A RU2765964C1 (ru) 2021-11-29 2021-11-29 Способы нанесения на стеклянные изделия покрытий из оксида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021134824A RU2765964C1 (ru) 2021-11-29 2021-11-29 Способы нанесения на стеклянные изделия покрытий из оксида титана

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2021100369A Division RU2761391C1 (ru) 2021-01-12 2021-01-12 Способы нанесения на стеклянные изделия металлических покрытий из нитрида титана

Publications (1)

Publication Number Publication Date
RU2765964C1 true RU2765964C1 (ru) 2022-02-07

Family

ID=80214783

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021134824A RU2765964C1 (ru) 2021-11-29 2021-11-29 Способы нанесения на стеклянные изделия покрытий из оксида титана

Country Status (1)

Country Link
RU (1) RU2765964C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2039844C1 (ru) * 1992-03-16 1995-07-20 Вахминцев Герман Борисович Способ нанесения на изделия защитно-декоративных покрытий
JP2001046882A (ja) * 1999-08-05 2001-02-20 Nippon Sheet Glass Co Ltd 酸化チタンの光触媒膜の被覆方法
US20060048708A1 (en) * 2004-09-03 2006-03-09 Klaus Hartig Coater having interrupted conveyor system
RU2335576C2 (ru) * 2003-03-28 2008-10-10 Ппг Индастриз Огайо, Инк. Подложки, покрытые смесями титановых и алюминиевых материалов, способы получения подложек и катодные мишени из металлических титана и алюминия
RU2720846C2 (ru) * 2015-12-09 2020-05-13 Сэн-Гобэн Гласс Франс Способ и установка для получения цветного остекления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2039844C1 (ru) * 1992-03-16 1995-07-20 Вахминцев Герман Борисович Способ нанесения на изделия защитно-декоративных покрытий
JP2001046882A (ja) * 1999-08-05 2001-02-20 Nippon Sheet Glass Co Ltd 酸化チタンの光触媒膜の被覆方法
RU2335576C2 (ru) * 2003-03-28 2008-10-10 Ппг Индастриз Огайо, Инк. Подложки, покрытые смесями титановых и алюминиевых материалов, способы получения подложек и катодные мишени из металлических титана и алюминия
US20060048708A1 (en) * 2004-09-03 2006-03-09 Klaus Hartig Coater having interrupted conveyor system
RU2720846C2 (ru) * 2015-12-09 2020-05-13 Сэн-Гобэн Гласс Франс Способ и установка для получения цветного остекления

Similar Documents

Publication Publication Date Title
CA2479698A1 (en) Protective layer for a body, and process and arrangement for producing protective layers
US6503373B2 (en) Method of applying a coating by physical vapor deposition
JP2004068159A (ja) 多層バリヤ層を作製するための高速処理法
CN105132876B (zh) 一种钢制齿轮的表面复合处理方法
US9260776B2 (en) Method of producing α crystal structure-based alumina films
RU2765964C1 (ru) Способы нанесения на стеклянные изделия покрытий из оксида титана
CN105671513A (zh) 一种新型的真空彩色镀膜工艺
RU2766419C1 (ru) Способ нанесения карбонитрида титана на стеклянные изделия
RU2761391C1 (ru) Способы нанесения на стеклянные изделия металлических покрытий из нитрида титана
RU2766421C1 (ru) Способ нанесения оксидированной нержавеющей стали на стеклянные изделия
RU2765966C1 (ru) Способ нанесения алюминия на стеклянные изделия
RU2765965C1 (ru) Способ нанесения латуни марки л63 на стеклянные изделия
KR101212323B1 (ko) Pvd 진공 코팅 방법을 이용한 유리 가공품의 메탈릭 코팅층 형성 방법 및 이를 이용하여 제조한 유리 가공품
CN108265271A (zh) 一种物理气相沉积法在产品上制作蓝色膜的方法
CN112342512A (zh) 蓝黑色金属薄膜及其制备方法和应用
RU2777094C1 (ru) Способ нанесения на стеклянные изделия металлических покрытий из меди и медных сплавов
JPH02125861A (ja) 被処理物の表面に被膜を形成する方法
RU2769142C1 (ru) Способ получения покрытий на основе системы Ti-Al, синтезированных в среде реакционных газов
RU2677043C1 (ru) Способ получения износостойкого покрытия на основе интерметаллида системы Ti-Al
KR920002708B1 (ko) TiN의 플라즈마 화학증착방법
RU2210625C2 (ru) Способ получения декоративных покрытий
RU2192500C2 (ru) Способ ионноплазменного нанесения покрытий на изделия из полимерных материалов
RU2709069C1 (ru) Способ электронно-лучевого нанесения упрочняющего покрытия на изделия из полимерных материалов
CN212688170U (zh) 蓝黑色金属薄膜和镀膜制品
CN209194045U (zh) 钛离子电镀膜饰品